
623Information Technology and Control 2018/4/47

A Method for Reverse
Engineering UML Use Case
Model for Websites

ITC 4/47
Journal of Information Technology
and Control
Vol. 47 / No. 4 / 2018
pp. 623-638
DOI 10.5755/j01.itc.47.4.21264

A Method for Reverse Engineering UML Use
Case Model for Websites

Received 2018/07/17 Accepted after revision 2018/09/27

 http://dx.doi.org/10.5755/j01.itc.47.4.21264

Corresponding author: lina.ceponiene@ktu.lt

Lina Čeponienė, Vaidotas Drungilas, Mantas Jurgelaitis, Jonas Čeponis
Faculty of Informatics; Kaunas University of Technology; Studentų Str. 50, LT-51368, Kaunas, Lithuania;
e-mails: lina.ceponiene@ktu.lt, vaidotas.drungilas@ktu.lt, mantas.jurgelaitis@ktu.lt, jonas.ceponis@ktu.lt

Problems with inadequately documented or undocumented websites could be alleviated by introducing reverse
engineering of UML diagrams. In this paper, the method for reverse engineering UML use case model for websites
is presented. It consists of two steps: recording user actions in the analyzed website, and then transforming the
combination of recorded activity and publicly available HTML code information into UML use case model.
This model consists of UML use case diagram and UML activity diagrams describing scenario of each use case.
The proposed method is implemented as a Google Chrome plugin named WEB2UML. WEB2UML is able to generate
UML use case and activity diagrams in XMI format, compatible with MagicDraw UML CASE tool. During experi-
mental evaluation of the WEB2UML tool, two UML use case models were reverse engineered: one for moodle.
if.ktu.lt website and another for researchgate.net website. The quality of generated models was evaluated using
an anonymous questionnaire completed by 13 UML modelling experts. The results of expert evaluation are
encouraging: in total, average expert evaluation score was 8,4 in a scale of ten.
KEYWORDS: UML, use case diagram, activity diagram, reverse engineering, website.

1. Introduction
UML is a commonly used modelling language encom-
passing a wide range of various diagrams for specifying
different aspects of software systems. UML use case di-
agrams are used for expressing user requirements [15,
30]. Use case diagram supplemented by descriptions
for each use case forms use case model of the system.
Use case description contains a scenario, which can be

represented by UML activity diagram [3]. In this paper,
we analyze use case model composed of UML use case
diagram and UML activity diagrams for each use case.
The use case model can be used during development
and while maintaining Web systems [12]. This model
serves as a tool for communication inside the develop-
ment team as well as between customers and develop-

Information Technology and Control 2018/4/47624

ers, because it helps to represent the system in terms of
its functional usage [10].
Model Driven Engineering (MDE) [28] is an approach
which strives to improve software development pro-
cesses by introducing modelling into different steps
of the process, such as implementation, testing, main-
tenance, etc. MDE employs UML models for repre-
senting complex systems and proposes transforma-
tions for software development. Apart from utilizing
the potential of model transformations, MDE em-
phasizes the fact that modeling can help to decrease
the complexity of software development tasks, as the
models can be used to represent the analyzed system
in different levels of abstraction [7].
However, problems of keeping UML models up to date
arise, as updating the diagrams requires additional ef-
fort from developers. Websites more often than any
other type of software are subject to constant updates
and improvements, as they have to meet ever chang-
ing user requirements and succeed in highly com-
petitive market [17, 21]. Website developers, facing
continuous changes in requirements, tend to sacrifice
the quality of website documentation and spend more
resources on development of new website function-
ality [26]. If not properly maintained, UML models
lose their practical value and can even be misleading.
Finding and fixing the discrepancies between docu-
mented UML models and the present functionality
of a web system, requires significant effort from de-
velopment team. Likewise, the support of legacy sys-
tems, whose documentation is not available, is also a
challenging task [14].
The problems with inadequately documented or un-
documented systems can be alleviated by introducing
reverse engineering of UML models. Reverse engineer-
ing is defined as a process of system analysis performed
in order to identify the systems structure and behavior
and represent them in a different form or using a higher
level of abstraction [5]. Model Driven Engineering prin-
ciples can be successfully applied in reverse engineering
area: Model Driven Reverse Engineering (MDRE) con-
centrates on applying MDE strategies for developing
efficient reverse engineering solutions [4]. Reverse en-
gineered UML diagrams can help to visualize, improve
understanding and provide documentation for the exist-
ing functionality of web systems [27, 32].
In this paper, a method for reverse engineering UML
use case model from web systems is presented. This
method enables transformation of recorded website

user activity into UML use case and activity diagrams.
The method consists of two main steps: recording
user actions in the website, and then transforming
the combination of recorded activity and HTML code
information into UML use case model.
Our method is based on dynamic analysis of website
usage, without analyzing the internal source code.
Only directly accessible HTML code of website is an-
alyzed together with the recorded user activity. Many
existing methods for reverse engineering UML dia-
grams require access to the source code of system un-
der analysis [2, 6, 9, 16]. Reverse engineering UML di-
agrams from websites without access to source code
can be useful in various situations, e.g. during analy-
sis of undocumented legacy systems for finding out
their functionality or for comparing functionality of
existing public websites [1]. Furthermore, reverse en-
gineering UML diagrams excluding analysis of source
code ensures that our approach is language indepen-
dent, which broadens the set of web applications that
can be reverse engineered using our method. Other
methods, not relying on source code analysis exist, but
these methods mainly generate UML sequence, state
diagrams [13, 33] or non-UML based visualizations
[18] for websites. None of the aforementioned meth-
ods generates both use case and activity diagrams.
Our approach also employs real web application us-
ers – they can perform their usual activities in web-
site, just providing information about their role and
performed processes, and the tool records these ac-
tivities for further transformation into UML use case
and activity diagrams. A Google Chrome plugin as a
prototype tool was implemented for evaluating the
proposed method. Experiment results indicate that
the tool is capable of reversing use case models for
websites. Although there still are some disadvantag-
es in method implementation, such as action naming
problems in activity diagrams, experts evaluated the
quality of generated models as adequate.
The rest of the paper is organized as follows. The
second section analyses related work in the area of
reverse engineering UML diagrams. The proposed
methodology for reverse engineering UML use case
and activity diagrams from recorded activity of web-
site usage is presented in the third section. The fourth
section analyses method implementation. Exper-
iment setting and results are discussed in the fifth
section. Finally, conclusions and future work are pre-
sented in the last section.

625Information Technology and Control 2018/4/47

2. Related Work
Reverse engineering can facilitate comprehension
and decrease effort required for website mainte-
nance, reengineering or evolution [5]. UML-based
reverse engineering is quite popular as UML is com-
monly used as a standard for software modelling and
as a tool for communication [27]. UML diagrams pro-
vide a clear notation, which can be used to construct
diagrams for various aspects of systems. Reverse en-
gineering of UML diagrams can be useful for improv-
ing understanding of program code in various areas of
software development even in software development
education [32]. UML diagrams are suitable for spec-
ifying system structural elements and behavior at
various abstraction levels [24]. Structural UML dia-
grams, such as class, component or package diagrams
can be used to represent static structures in terms of
system parts and their relations. Furthermore, behav-
ioral diagrams, such as activity, use case or sequence
diagrams, are able to express dynamic behavior of ob-
jects in the analyzed system.
Reverse engineering methods cover both structural
and behavioral UML diagrams, but in general, static
structures can be reverse engineered with less dif-
ficulty than behavioral diagrams. A number of UML
CASE tools, for example MagicDraw [23] and Visual
Paradigm [31], already support reverse engineering
of structural UML diagrams, such as class diagrams
[25]. Although CASE tools provide similar function-
ality, a need for more effective ways of reverse engi-
neering structural diagrams still exists. For example,
in [8] a method for reverse engineering class diagrams
is presented, which is more effective and flexible in
terms of scalability than reverse engineering options
in existing CASE tools. This method uses a set of ac-
curate mappings for representing C++ syntactic and
semantic information in UML class diagrams.
In contrast, reverse engineering behavioral diagrams
is a more complicated task, not so widely supported
by UML CASE tools. Sequence diagrams can be re-
verse engineered in several UML CASE tools, such as
Enterprise Architect [29], but the implementation of
this feature is quite primitive [25]. Quite a lot of stud-
ies analyze the possibilities for reverse engineering
sequence diagrams, such as [2, 9, 13, 33]. Reversing
other behavioral diagrams, like activity diagrams, use
case diagrams and state machines is not supported by

CASE tools, although there is also a number of studies
in this area [11, 13, 19].
There are several solutions focusing on reverse engi-
neering of behavioral UML diagrams, particularly for
websites. The reverse engineering tool PHP2XMI [2]
is able to generate behavioral model of a website, ex-
pressed as an UML sequence diagram. The tool anal-
yses PHP-based web applications’ source code for in-
serting probes to collect dynamic information, stores
and filters execution traces generated by the probes
during interactive browser sessions and transforms re-
corded execution traces into UML sequence diagrams.
Another website-oriented approach is presented in
[9]. In this approach, a tool named WARE is proposed
for website reverse engineering of UML use case, se-
quence and class diagrams. WARE tool uses static
code as an input and is capable of reverse engineering
only when having access to entire source code of web
application. In general, when source code is available,
reverse engineering UML diagrams seems to have
more possibilities for implementation, as source code
is a valuable source of information [2, 6, 9, 16]. Unfor-
tunately, the source code is not always available. In
addition, analysis of application without examining
source code ensures that our method is language in-
dependent. It is also important for analysis of a wide
range of websites implemented using different tech-
nologies. Our research concentrates on reverse engi-
neering websites without access to internal source
code and utilizing only information acquired from
publicly available HTML code and recorded user ac-
tivity in the website.
In situations where the source code is not available,
an approach of extracting information from a working
system can be used for reversing UML behavior dia-
grams [33]. This approach focusses on fully dynamic
analysis of the system for reverse engineering of UML
sequence diagrams and is intended for systems where
static code analysis cannot be directly applied. The
process of reverse engineering starts with collecting
execution traces (sequences of method invocations)
for the analyzed system. The collected traces are lat-
er merged into a Labeled Transition System (LTS),
which is transformed into a sequence diagram. The
idea of applying dynamic analysis for gathering exe-
cution traces of analyzed system is also employed in
our proposed solution. Another approach based on
collecting trace information is presented in [13]. This

Information Technology and Control 2018/4/47626

method is intended for (re)documenting API usage
and uses trace information, gathered by monitoring
behavior of applications, which are using the API. Af-
terwards, UML state machine and sequence diagrams
are reverse engineered from the gathered informa-
tion. The problems of merging the recorded execution
traces are addressed in [22], where a method for iden-
tifying systems key behavior and generating a read-
able sequence diagrams is presented.
There are several studies on reverse engineering spe-
cifically use case diagrams. Some of them are based on
source code analysis [6, 9, 16], which is not applicable to
our method. Others have one major disadvantage: they
require effort for creating additional specifications
which are used as an input for diagram generation. In
[11], reverse engineering is used for generating use case
models from structured textual use case specifications.
In [19], event tables are used for use case model genera-
tion. In event tables, information about each event, the
source of event, action and associated object must be
provided for generating informative use case model. In
our work, we decided to minimize required additional
input, as requirement for exhaustive additional spec-
ifications compromises the whole idea of simplifying
diagram extraction process.
Reverse engineering approaches, using different
form of visualization (e.g. [18, 20]) than UML-based
approaches, provide further insight. In [18] the ap-
proach for visualization of web-based systems user
interface is proposed. User interface models, which
use information visualization technique ModelUIVIZ,
are reverse engineered from web applications. The
tool for this approach, WMUID, was implemented as
a Google Chrome plugin, which uses Google Chrome
API to access website elements. Both crawler and
tracer mechanisms are used for data extraction. The
crawler analyses user interface and identifies interac-
tive elements, such as buttons, inputs and links. The
tracer monitors and registers user interaction and
navigation. Another tool, WMUIT, is used for display-
ing the data collected by WMUID tool. In our work,
a tool similar to the tracer is also implemented as a
Chrome plugin. In general, the principles of [18] are
successfully applied in our research.
Our proposed method analyses information acquired
by recording website usage. It does not require access
to the websites source code to perform static code
analysis, as dynamic analysis is enough for gather-
ing required information. The only additional infor-
mation source for our reverse engineering method

is publicly available website HTML code. Based on
other methods’ implementations, we decided to im-
plement usage recording tool as a browser plugin for
gathering event sequences, which can then be con-
verted to use case and activity diagrams.

3. A Method for Reverse Engineering
UML Use Case Model
The proposed method for reverse engineering UML
use case model enables dynamic analysis of web ap-
plications, in order to generate UML use case model.
The method does not require access to internal source
code of the application – only recorded user actions
and public HTML content is used. The created use

Figure 1
General process for reverse engineering of UML use case
model

The first step of the method is to record user actions
in the website under analysis. The user indicates his
role and process (use case) he is going to perform in
the analyzed website. Afterwards, user performs
actions in the website for particular process and the
tool logs the events’ sequences. When the user
indicates, that he has recorded actions for all
required usage scenarios of the website, the second
step can be performed. Initially, website usage
recording results are prepared for transformation
by removing actors’ and use cases’ duplicates.
Afterwards, registered event sequences are
combined and various types of appropriate
relations between actors and use cases are detected,
such as generalizations between actors, include and
extend relations between use cases, associations
between actors and use cases. The results are then
transformed into an XMI file which can be imported
in UML CASE tool for further usage.

4. Algorithms for Relation Detection

In this paper, we present in detail three most
important algorithms of our method – actor
generalization detection, extend relation
detection, and include relation detection. These
algorithms make up the main group of
procedures required for transforming
recorded user activity into UML diagrams.
The algorithms are performed sequentially, as
defined in Figure 1.

The first algorithm (Figure 2) detects
generalization relations between actors in use
case diagram by analyzing recorded data
associated with user defined roles. The roles
that user specifies during activity recording
are recognized as actors in our method. Each
actor has a set of recorded processes, which are
identified as use cases associated with this
actor. The actors owned use case sets are
compared, and two types of match can be
detected (Figure 2, line 8): full or partial. A full
match between use case sets is detected when
intersection between two actors use case sets is
equal to use case set of one of these actors. In
that case, we have to determine subactor (actor
who has more use cases) and superactor (which
has less use cases) for creating generalization
(Figure 2, lines 10-14), and then remove all of
subactors’ inherited and now redundant use
cases from his set (Figure 2, line 15). Another
type of match between use case sets is a partial
match. Partial match occurs when intersection
between actors use case sets is not empty and
is not equal to use case set of one of the actors.
Then our algorithm creates a new actor, which
will generalize both compared actors, and
prompts for a new actor name (Figure 2, lines
17-18). Use cases from the intersection of
compared actor sets are associated with the
new actor (Figure 2, line 19). Afterwards, a
generalization is created between new actor
and each of the compared actors (Figure 2, line
20). Lastly, the redundant inherited use cases
are removed from compared actors sets (line
21). The comparison of use case sets is
repeated until all actors are compared to each
other, including the ones created during the
generalization creation.

Figure 2

Algorithm in pseudocode for detecting generalizations between actors

627Information Technology and Control 2018/4/47

case model encompasses UML use case diagram along
with specifications of each use case in a form of UML
activity diagrams. Each activity diagram specifies a
use case scenario with required include and extend re-
lations between use cases. Alternative scenarios are
also represented in activity diagrams, as the method
is able to combine recorded scenarios for appropriate
use cases. In reverse engineered use case diagram,
generalizations between actors are also determined
and additional actors may be created if situations
arise when use case sets are overlapping. The method
consists of two main steps, after which the generated
UML diagrams can be imported, viewed and edited in
UML CASE tool (Figure 1).
The first step of the method is to record user actions in
the website under analysis. The user indicates his role
and process (use case) he is going to perform in the
analyzed website. Afterwards, user performs actions
in the website for particular process and the tool logs
the events’ sequences. When the user indicates, that
he has recorded actions for all required usage scenar-
ios of the website, the second step can be performed.
Initially, website usage recording results are prepared
for transformation by removing actors’ and use cases’
duplicates. Afterwards, registered event sequences
are combined and various types of appropriate rela-

tions between actors and use cases are detected, such
as generalizations between actors, include and extend
relations between use cases, associations between ac-
tors and use cases. The results are then transformed
into an XMI file which can be imported in UML CASE
tool for further usage.

4. Algorithms for Relation Detection
In this paper, we present in detail three most important
algorithms of our method – actor generalization detec-
tion, extend relation detection, and include relation de-
tection. These algorithms make up the main group of
procedures required for transforming recorded user
activity into UML diagrams. The algorithms are per-
formed sequentially, as defined in Figure 1.
The first algorithm (Figure 2) detects generalization
relations between actors in use case diagram by ana-
lyzing recorded data associated with user defined roles.
The roles that user specifies during activity recording
are recognized as actors in our method. Each actor has
a set of recorded processes, which are identified as use
cases associated with this actor. The actors owned use
case sets are compared, and two types of match can be
detected (Figure 2, line 8): full or partial. A full match

The second algorithm detects extend relations
between use cases in use case diagram. It is worth
mentioning that both include and extend use case
relations must also be represented in activity
diagrams. For each include relation between
including and included use case, there must exist a
reference (in the form of callBehaviorAction) in
including use cases’ activity diagram. Analogously,
for each extend relation between extended and
extending use case, in extended use cases’ activity
diagram, there must exist a decision node
(representing the choice of performing the
extending use cases activity diagram), a reference
(in the form of callBehaviorAction), and a merge
node.

General process of extend relation detection is
presented in Figure 3, where main steps of the
process are marked as arrows and numbered. The
pool of user defined processes recorded during
website usage (recognized as use cases) is analyzed.
Figure 3

Main steps of extend relation detection

In the first step, use cases with repeated names
are selected. As a result of the first step,
subsets are created for each group of same
named use cases. In the second step, one use
case subset is selected for further analysis.
During the third step, the sequences of
recorded actions are compared by finding
matching subsequences. The sets are modified
in such a way, that matching sequences are
positioned along the same indexes, and
placeholder variables (“0” in Figure 3) are
appended at the beginning and the end of the
sequences for alignment. An example of

1 function CreateGeneralizations(log){
2 actors = log.actors;
3 for (int i = 0; i <= actors.getCount(); i++){
4 for (int j = 0; j <= actors.getCount(); j++){
5 if (i != j) actors = DetermineRelation(actors[i], actors[j], actors); }}}

6 function DetermineRelation(actor1, actor2, actors){
7 matchingUseCases = CompareUseCases(actor1, actor2);
8 matchType = DetectMatch(actor2, matchingUseCases);
9 if (matchtype == "full"){

10 if (actor1.GetUseCaseCount() > actor2.GetUseCaseCount()){
11 subActor = actor1; superActor = actor2;}
12 else{
13 subActor = actor2; superActor = actor1;}
14 GeneralizeActor(superActor, subActor);
15 RemoveMatchingUseCases(subActor, matchingUseCases);}
16 if(matchtype == "partial"){
17 newActorName = PromptForNewActorName();
18 newActor = CreateActor(newActorName, matchingUseCases);
19 actors.Append(newActor);
20 CreateGeneralization(newActor, actor1, actor2);
21 RemoveMatchingUseCases(actor1, actor2, matchingUseCases);}
22 return actors;}

Figure 2
Algorithm in pseudocode for detecting generalizations between actors

Information Technology and Control 2018/4/47628

between use case sets is detected when intersection
between two actors use case sets is equal to use case
set of one of these actors. In that case, we have to de-
termine subactor (actor who has more use cases) and
superactor (which has less use cases) for creating gen-
eralization (Figure 2, lines 10-14), and then remove all
of subactors’ inherited and now redundant use cases
from his set (Figure 2, line 15). Another type of match
between use case sets is a partial match. Partial match
occurs when intersection between actors use case sets
is not empty and is not equal to use case set of one of the
actors. Then our algorithm creates a new actor, which
will generalize both compared actors, and prompts for a
new actor name (Figure 2, lines 17-18). Use cases from
the intersection of compared actor sets are associated
with the new actor (Figure 2, line 19). Afterwards, a
generalization is created between new actor and each
of the compared actors (Figure 2, line 20). Lastly, the
redundant inherited use cases are removed from com-
pared actors sets (line 21). The comparison of use case
sets is repeated until all actors are compared to each
other, including the ones created during the general-
ization creation.
The second algorithm detects extend relations be-
tween use cases in use case diagram. It is worth men-
tioning that both include and extend use case relations
must also be represented in activity diagrams. For
each include relation between including and included
use case, there must exist a reference (in the form of
callBehaviorAction) in including use cases’ activity
diagram. Analogously, for each extend relation be-
tween extended and extending use case, in extended
use cases’ activity diagram, there must exist a deci-
sion node (representing the choice of performing the
extending use cases activity diagram), a reference (in
the form of callBehaviorAction), and a merge node.
General process of extend relation detection is pre-
sented in Figure 3, where main steps of the process
are marked as arrows and numbered. The pool of user
defined processes recorded during website usage
(recognized as use cases) is analyzed.
In the first step, use cases with repeated names are
selected. As a result of the first step, subsets are cre-
ated for each group of same named use cases. In the
second step, one use case subset is selected for fur-
ther analysis. During the third step, the sequences of
recorded actions are compared by finding matching
subsequences. The sets are modified in such a way,

that matching sequences are positioned along the
same indexes, and placeholder variables (“0” in Fig-
ure 3) are appended at the beginning and the end of
the sequences for alignment. An example of aligned
sequences is presented in Figure 3 as a result of the
third step. Matching sequence in this case consists of
recorded actions 2 and 3.
In the fourth step, the new use case combining all
subset use cases is created and its activity diagram
is gradually generated. The required elements (e.g.
actions, decision and merge nodes) are gradually ap-
pended to activity diagram and joined with control
flow relations. To determine the order of appending
elements, matching sequences of actions are detect-
ed. Each action of subsets’ use case is processed de-
pending on whether it exists in a range of matching
elements or not. When the action exists in the range
of matching actions, and we have reached the appro-

Figure 3
Main steps of extend relation detection

The second algorithm detects extend relations
between use cases in use case diagram. It is worth
mentioning that both include and extend use case
relations must also be represented in activity
diagrams. For each include relation between
including and included use case, there must exist a
reference (in the form of callBehaviorAction) in
including use cases’ activity diagram. Analogously,
for each extend relation between extended and
extending use case, in extended use cases’ activity
diagram, there must exist a decision node
(representing the choice of performing the
extending use cases activity diagram), a reference
(in the form of callBehaviorAction), and a merge
node.

General process of extend relation detection is
presented in Figure 3, where main steps of the
process are marked as arrows and numbered. The
pool of user defined processes recorded during
website usage (recognized as use cases) is analyzed.
Figure 3

Main steps of extend relation detection

In the first step, use cases with repeated names
are selected. As a result of the first step,
subsets are created for each group of same
named use cases. In the second step, one use
case subset is selected for further analysis.
During the third step, the sequences of
recorded actions are compared by finding
matching subsequences. The sets are modified
in such a way, that matching sequences are
positioned along the same indexes, and
placeholder variables (“0” in Figure 3) are
appended at the beginning and the end of the
sequences for alignment. An example of

1 function CreateGeneralizations(log){
2 actors = log.actors;
3 for (int i = 0; i <= actors.getCount(); i++){
4 for (int j = 0; j <= actors.getCount(); j++){
5 if (i != j) actors = DetermineRelation(actors[i], actors[j], actors); }}}

6 function DetermineRelation(actor1, actor2, actors){
7 matchingUseCases = CompareUseCases(actor1, actor2);
8 matchType = DetectMatch(actor2, matchingUseCases);
9 if (matchtype == "full"){

10 if (actor1.GetUseCaseCount() > actor2.GetUseCaseCount()){
11 subActor = actor1; superActor = actor2;}
12 else{
13 subActor = actor2; superActor = actor1;}
14 GeneralizeActor(superActor, subActor);
15 RemoveMatchingUseCases(subActor, matchingUseCases);}
16 if(matchtype == "partial"){
17 newActorName = PromptForNewActorName();
18 newActor = CreateActor(newActorName, matchingUseCases);
19 actors.Append(newActor);
20 CreateGeneralization(newActor, actor1, actor2);
21 RemoveMatchingUseCases(actor1, actor2, matchingUseCases);}
22 return actors;}

629Information Technology and Control 2018/4/47

priate place during combined activity diagram cre-
ation, new action element is created and appended to
the activity diagram. Otherwise, actions that do not
exist in matching range are included in a subsequence
starting with non-matching action and ending when
action in matching range is found or main sequence
ends. Figure 4 presents a pseudo-code fragment
demonstrating the processing of non-matching sub-
sequences. If non-matching subsequence contains
less actions then determined beforehand (Figure 4,
line 4), its actions are appended to the activity. Deci-
sion and merge nodes are inserted, respectively, be-
fore and after the actions, joining them with control
flow relations (Figure 4, lines 14-16). If non-matching
subsequence contains more actions than the defined
constant, a new use case is created. Use case name
must be provided for creation (Figure 4, line 18) and
activity diagram is also created for this use case. Ac-
tions of non-matching sequence are inserted into the
new activity diagram (Figure 4, line 20). The new ex-
tending use case and combined use case are joined by
extend relation (Figure 4, line 21). Combined use cas-
es’ activity diagram is appended with decision node,
reference (callBehaviorAction) to the new activity di-
agram, and merge node (Figure 4, lines 22-24).

Figure 4
Fragment of algorithm in pseudocode for extend relation detection

The third algorithm is used for detecting include re-
lations between use cases. It is started only when all
extend relations are detected and all alternative se-
quences are combined into respective use cases. In
Figure 5, pseudocode fragment for include relation
detection is presented. In the beginning, matching
recorded actions’ sequences longer than the defined
constant (Figure 5, line 3) are detected in all use cas-
es (Figure 5, line 4). Use cases are grouped in subsets
where matching sequences were found (Figure 5, line
5). For each use case subset, a new use case (which
will act as included use case) is created, whose name
must be provided. Additionally, a new activity dia-
gram for the new use case is created encompassing
the matching sequence (Figure 5, line 12). The actions
of matching sequence are removed from all the use
cases in the subset. The new use case is then joined
with the including use cases from the subset using
include relation. For all subset use cases, a reference
(callBehaviorAction) to the new use case is inserted
instead of removed matching sequence.
The result of execution of all three presented algo-
rithms is transformed into XMI format. This ensures
that resulting diagrams can be modified and improved
using CASE tool for further usage. The resulting XMI

aligned sequences is presented in Figure 3 as a
result of the third step. Matching sequence in this
case consists of recorded actions 2 and 3.

In the fourth step, the new use case combining all
subset use cases is created and its activity diagram
is gradually generated. The required elements (e.g.
actions, decision and merge nodes) are gradually
appended to activity diagram and joined with
control flow relations. To determine the order of
appending elements, matching sequences of actions
are detected. Each action of subsets’ use case is
processed depending on whether it exists in a range
of matching elements or not. When the action exists
in the range of matching actions, and we have
reached the appropriate place during combined
activity diagram creation, new action element is
created and appended to the activity diagram.
Otherwise, actions that do not exist in matching
range are included in a subsequence starting with
non-matching action and ending when action in
matching range is found or main sequence ends.
Figure 4 presents a pseudo-code fragment

demonstrating the processing of non-
matching subsequences. If non-matching
subsequence contains less actions then
determined beforehand (Figure 4, line 4), its
actions are appended to the activity. Decision
and merge nodes are inserted, respectively,
before and after the actions, joining them with
control flow relations (Figure 4, lines 14-16). If
non-matching subsequence contains more
actions than the defined constant, a new use
case is created. Use case name must be
provided for creation (Figure 4, line 18) and
activity diagram is also created for this use
case. Actions of non-matching sequence are
inserted into the new activity diagram (Figure
4, line 20). The new extending use case and
combined use case are joined by extend relation
(Figure 4, line 21). Combined use cases’
activity diagram is appended with decision
node, reference (callBehaviorAction) to the new
activity diagram, and merge node (Figure 4,
lines 22-24).

Figure 4

Fragment of algorithm in pseudocode for extend relation detection

The third algorithm is used for detecting include
relations between use cases. It is started only when all
extend relations are detected and all alternative
sequences are combined into respective use cases. In
Figure 5, pseudocode fragment for include relation
detection is presented. In the beginning, matching
recorded actions’ sequences longer than the defined
constant (Figure 5, line 3) are detected in all use cases
(Figure 5, line 4). Use cases are grouped in subsets
where matching sequences were found (Figure 5, line
5). For each use case subset, a new use case (which will

act as included use case) is created, whose name
must be provided. Additionally, a new activity
diagram for the new use case is created
encompassing the matching sequence (Figure 5,
line 12). The actions of matching sequence are
removed from all the use cases in the subset. The
new use case is then joined with the including
use cases from the subset using include relation.
For all subset use cases, a reference
(callBehaviorAction) to the new use case is
inserted instead of removed matching sequence.

1 function CreateExtends(log){
2 …
3 useCases = log.getUseCases();
4 minCountForExtend = 2;
5 combinedUseCase = new UseCase; combinedActivity = new Activity;
6 start = getStartOfNonMatchingSequence(useCaseSubset);
7 end = getEndOfNonMatchingSequence(useCaseSubset);
8 foreach (useCaseSubset as UseCaseSubsetElement){
9 nonMatchingSequences = getSubSequences(useCaseSubsetElement, start, end);

10 AnalyzeNonMatchingSequences(nonMatchingSequences, useCases);}}

11 function AnalyzeNonMatchingSequences(nonMatchingSequences, useCases){
12 foreach(nonMatchingSequences as nonMatchingSeq){
13 if(nonMatchingSeq.lenght <= minCountForExtend){
14 combinedActivity.appendDecision();
15 combinedActivity.appendAction(nonMatchingSeq);
16 combinedActivity.appendMerge();}
17 else {
18 extendingUseCaseName = PromptForUseCaseName();
19 extendingUseCase = createNewUseCase(useCases, extendingUseCaseName);
20 createExtendingActivity(extendingUseCase, nonMatchingSeq);
21 createExtendRelation(combinedUseCase,extendingUseCase);
22 combinedActivity.appendDecision();
23 combinedActivity.appendCallBehaviorAction(extendingUseCase);
24 combinedActivity.appendMerge();}}}

Information Technology and Control 2018/4/47630

Figure 5
Algorithm in pseudocode for include relation detection

The result of execution of all three presented
algorithms is transformed into XMI format. This
ensures that resulting diagrams can be modified and
improved using CASE tool for further usage. The
resulting XMI file contains one use case diagram,

containing use cases, actors and their relation,
and activity diagrams – one for each use case.

Figure 5

Algorithm in pseudocode for include relation detection

5. Implementation of Usage

Recording and Diagram
Generation Tool

For implementing the proposed method, a tool
capable of recording user actions in a website,
extracting HTML code information, and transforming
all gathered data into UML use case model was
developed. The tool WEB2UML was implemented in a
form of a plugin for Google Chrome browser. The
main view of WEB2UML tool user interface is
presented in Figure 6.
Figure 6

The implemented WEB2UML plugin

User activity recording implementation in
WEB2UML is based on the procedure, which
starts with user providing the name for the role

1 function CreateIncludes(log){
2 ...
3 minCountForInclude = 2;
4 useCases = log.getUseCases();
5 matchingSequences = getMatchingSequences(minCountForInclude, useCases);
6 matchingUseCaseSets = getMatchingSets(useCases, matchingSequences);
7 modifySets(matchingUseCaseSets, matchingSequences);}

8 function modifySets(matchingUseCaseSets, matchingSequences){
9 for (i=0; i <= matchingUseCaseSets.getCount();i++){

10 useCaseName = PromptForUseCaseName();
11 includedUseCase = createUseCase(useCaseName);
12 createIncludedActivity(includedUseCase, matchingSequences[i]);
13 matchingUseCases = matchingUseCaseSets[i];
14 for (j=0; j <= matchingUseCases.getCount();j++){
15 matchingUseCases[j].removeActions(matchingSequences[i]);
16 createIncludeRelation(includedUseCase, matchingUseCases[j]);
17 matchingUseCases[j].insertCallBehaviorAction(matchingSequences[i]);}}}

file contains one use case diagram, containing use cas-
es, actors and their relation, and activity diagrams –
one for each use case.

5. Implementation of Usage
Recording and Diagram
Generation Tool
For implementing the proposed method, a tool capa-
ble of recording user actions in a website, extracting
HTML code information, and transforming all gath-
ered data into UML use case model was developed.
The tool WEB2UML was implemented in a form of a
plugin for Google Chrome browser. The main view of
WEB2UML tool user interface is presented in Figure 6.
User activity recording implementation in
WEB2UML is based on the procedure, which starts
with user providing the name for the role he under-
takes in the web system and the process he is going
to record. Afterwards, the user performs necessary
actions for fulfilling the process. The process with
the same name can be recorded several times, thus
demonstrating all possible alternative scenarios of
process execution. User can record other processes,
until he is satisfied with the recorded scope. After fin-
ishing the recording, user can export the recorded in-
formation in a form of JSON (Figure 7). The recorded
information in JSON format can be shared between
users, later exported and imported for further use.

Figure 6
The implemented WEB2UML plugin

The result of execution of all three presented
algorithms is transformed into XMI format. This
ensures that resulting diagrams can be modified and
improved using CASE tool for further usage. The
resulting XMI file contains one use case diagram,

containing use cases, actors and their relation,
and activity diagrams – one for each use case.

Figure 5

Algorithm in pseudocode for include relation detection

5. Implementation of Usage

Recording and Diagram
Generation Tool

For implementing the proposed method, a tool
capable of recording user actions in a website,
extracting HTML code information, and transforming
all gathered data into UML use case model was
developed. The tool WEB2UML was implemented in a
form of a plugin for Google Chrome browser. The
main view of WEB2UML tool user interface is
presented in Figure 6.
Figure 6

The implemented WEB2UML plugin

User activity recording implementation in
WEB2UML is based on the procedure, which
starts with user providing the name for the role

1 function CreateIncludes(log){
2 ...
3 minCountForInclude = 2;
4 useCases = log.getUseCases();
5 matchingSequences = getMatchingSequences(minCountForInclude, useCases);
6 matchingUseCaseSets = getMatchingSets(useCases, matchingSequences);
7 modifySets(matchingUseCaseSets, matchingSequences);}

8 function modifySets(matchingUseCaseSets, matchingSequences){
9 for (i=0; i <= matchingUseCaseSets.getCount();i++){

10 useCaseName = PromptForUseCaseName();
11 includedUseCase = createUseCase(useCaseName);
12 createIncludedActivity(includedUseCase, matchingSequences[i]);
13 matchingUseCases = matchingUseCaseSets[i];
14 for (j=0; j <= matchingUseCases.getCount();j++){
15 matchingUseCases[j].removeActions(matchingSequences[i]);
16 createIncludeRelation(includedUseCase, matchingUseCases[j]);
17 matchingUseCases[j].insertCallBehaviorAction(matchingSequences[i]);}}}

631Information Technology and Control 2018/4/47

Figure 7
Fragment of JSON file for activity recording

he undertakes in the web system and the process he is
going to record. Afterwards, the user performs
necessary actions for fulfilling the process. The process
with the same name can be recorded several times,
thus demonstrating all possible alternative scenarios
of process execution. User can record other processes,
until he is satisfied with the recorded scope. After
finishing the recording, user can export the recorded
information in a form of JSON (Figure 7). The recorded
information in JSON format can be shared between
users, later exported and imported for further use.
Figure 7

Fragment of JSON file for activity recording

The functionality of XMI generation in WEB2UML tool
covers both analysis of recorded data for creating
diagrams with required include, extend, actor
generalization relations and transforming the analysis
results into XMI file. The XMI file generated by
WEB2UML tool is compatible with CASE tool
MagicDraw UML and can be opened in this tool for
further analysis and modification.

The implemented WEB2UML tool was tested by
generating several use case models for web
applications, which are already documented and
comparing the reversed UML diagrams to the ones
already provided in websites documentation. For the
testing, the graduate computer science students’ final
projects were used, where web systems were
implemented and documented using UML diagrams,
including use case and activity diagrams. WEB2UML
was able to generate use case models for all websites
used in testing. In general, reverse engineering was
successful, as most of the diagram elements in
reversed diagrams corresponded to the diagram

elements in websites documentation. However,
it is worth noting that WEB2UML was not able to
fully evaluate and correctly record some actions
related to iframe elements in HTML as well as
JavaScript intensive website functionality. In the
future, recording functionality of WEB2UML
must be improved, to ensure full recording of
website usage data. Nonetheless, current range
of capabilities of WEB2UML is sufficient for
demonstrating the functionality of generating
UML diagrams based on recorded data.

6. The Experiment
The experiment was performed to assess
WEB2UML tools’ ability to reverse engineer
UML models from selected websites and the
quality of reversed models. The experiment was
carried out in two phases. First, two use case
models for selected websites were reversed using
the WEB2UML tool. Then, the generated models
were analyzed and evaluated by field experts in
UML, having various experience in UML
modelling or certified by OMG.

As the assessment of WEB2UML reverse
engineered models requires expert knowledge,
the anonymous questionnaire was created and
sent to the list of known experts working both in
academic and in business sectors. The evaluation
of the models is a time-consuming task: experts
not only need to analyze the provided UML use
case diagram and each use cases’ activity
diagrams, but also to familiarize with systems
functionality and usage scenarios and then
finally evaluate each model based on the
provided aspects. With the intention to collect as
many responses as possible, only two websites
were chosen for reverse engineering and
evaluation. In total, 18 invitations to fill out the
questionnaire were extended, and 13 experts
completed the questionnaire.

7. The Generated Use Case Models
UML use case models for selected websites were
generated based on system usage scenarios,
which were created to demonstrate method
capabilities. The scenarios were developed to
include two types of generalizations between
actors (partial and full, see Figure 2, line 9 and
line 16). Scenarios also cover situations where
include and extend relations between use cases
should be detected.

The first model was reversed for Moodle website
https://moodle.if.ktu.lt. Two roles were recorded:

{"sites": [
 {"site": "",
 "roles": [
 {"role": "",
 "use cases": [
 {"use case": "",
 "events": [
 {"element":
 {...,
 "id": ?,
 "page_url": "",
 ...},
 {"element":
 {...,
 "form_values": [
 {"name": "",
 "value": ""},
 {...}],
 "id": "",
 "method": "",
 ...},
 "event": {
 "metaKey":?,
 "type": "" },
 "id": ?,
 "page_url": "",
 ...},
 {...}]
 }]
 }]
 }]

The functionality of XMI generation in WEB2UML
tool covers both analysis of recorded data for cre-
ating diagrams with required include, extend, actor
generalization relations and transforming the anal-
ysis results into XMI file. The XMI file generated by
WEB2UML tool is compatible with CASE tool Magic-
Draw UML and can be opened in this tool for further
analysis and modification.
The implemented WEB2UML tool was tested by gen-
erating several use case models for web applications,
which are already documented and comparing the
reversed UML diagrams to the ones already provid-
ed in websites documentation. For the testing, the
graduate computer science students’ final projects
were used, where web systems were implemented
and documented using UML diagrams, including
use case and activity diagrams. WEB2UML was able
to generate use case models for all websites used
in testing. In general, reverse engineering was suc-
cessful, as most of the diagram elements in reversed
diagrams corresponded to the diagram elements in
websites documentation. However, it is worth noting
that WEB2UML was not able to fully evaluate and

correctly record some actions related to iframe ele-
ments in HTML as well as JavaScript intensive web-
site functionality. In the future, recording function-
ality of WEB2UML must be improved, to ensure full
recording of website usage data. Nonetheless, current
range of capabilities of WEB2UML is sufficient for
demonstrating the functionality of generating UML
diagrams based on recorded data.

6. The Experiment
The experiment was performed to assess WEB2UML
tools’ ability to reverse engineer UML models from
selected websites and the quality of reversed mod-
els. The experiment was carried out in two phases.
First, two use case models for selected websites were
reversed using the WEB2UML tool. Then, the gen-
erated models were analyzed and evaluated by field
experts in UML, having various experience in UML
modelling or certified by OMG.
As the assessment of WEB2UML reverse engineered
models requires expert knowledge, the anonymous
questionnaire was created and sent to the list of
known experts working both in academic and in
business sectors. The evaluation of the models is a
time-consuming task: experts not only need to ana-
lyze the provided UML use case diagram and each use
cases’ activity diagrams, but also to familiarize with
systems functionality and usage scenarios and then
finally evaluate each model based on the provided as-
pects. With the intention to collect as many responses
as possible, only two websites were chosen for reverse
engineering and evaluation. In total, 18 invitations to
fill out the questionnaire were extended, and 13 ex-
perts completed the questionnaire.

7. The Generated Use Case Models
UML use case models for selected websites were gen-
erated based on system usage scenarios, which were
created to demonstrate method capabilities. The sce-
narios were developed to include two types of gener-
alizations between actors (partial and full, see Figure
2, line 9 and line 16). Scenarios also cover situations
where include and extend relations between use cases
should be detected.

Information Technology and Control 2018/4/47632

The first model was reversed for Moodle website https://
moodle.if.ktu.lt. Two roles were recorded: student and
teacher. The tasks, that might be familiar to the experts,
were chosen for clarity of the generated models. Stu-
dent logged in and performed some tasks – downloaded
course material, completed a test composed of 10 ques-
tions, and filled out a feedback form. Teacher logged in as
well, then downloaded course material, and completed
the same test. Additionally, teacher added a new file and
removed an old one from the course, as well as edited a
students’ registration date.
The reversed use case diagram for Moodle website is
presented in Figure 8. The tool detected generaliza-
tion between student and teacher actors: their sets of
use cases had intersection including processes of log-
ging in, downloading file and performing test. There-
fore, additional actor was created (course user) and
associated with use cases from the intersection set.

Figure 8
Use case diagram reversed engineered from Moodle website

Figure 9
Activity diagram for the recorded process of logging in to
Moodle website

student and teacher. The tasks, that might be familiar
to the experts, were chosen for clarity of the generated
models. Student logged in and performed some tasks
– downloaded course material, completed a test
composed of 10 questions, and filled out a feedback
form. Teacher logged in as well, then downloaded
course material, and completed the same test.
Additionally, teacher added a new file and removed
an old one from the course, as well as edited a
students’ registration date.

The reversed use case diagram for Moodle website is
presented in Figure 8. The tool detected generalization
between student and teacher actors: their sets of use
cases had intersection including processes of logging
in, downloading file and performing test. Therefore,
additional actor was created (course user) and
associated with use cases from the intersection set.

Both include and extend relations were properly
detected in reversed use case model. Use cases of
viewing course statistics and changing users’
registration information included the set of actions for
opening administrator menu. Therefore, this action set
was transferred into included use case and connected
to including use cases by include relations. For the use
case of managing resources, three alternative scenarios
were recorded and combined into a single use case.
For this process, two additional extending use cases
were created (remove resource and create new
resource).
Figure 8

Use case diagram reversed engineered from Moodle website

Activity diagrams were generated for every use case
in reversed model for Moodle website. An example of
activity diagram for login process is presented in
Figure 9. Each activity diagram has two swimlanes,
representing the user and the system under analysis.

Actions are named using the information
extracted from websites HTML code where
possible. Some system actions (e.g. process form
data) were named according to the expected
typical reactions of the system.
Figure 9

Activity diagram for the recorded process of logging
in to Moodle website

Activity diagram for use case of viewing the
statistics of the course is presented in Figure 10.
Include relation was correctly represented in
generated activity diagram – reference to activity
for use case of opening administration menu was
inserted in the beginning of the generated
diagram. Reference to included use cases’
activity diagram is indicated by the colon before
action's name and can be additionally
represented using the rake icon inside the action
node.
Figure 10

Activity diagram for the recorded process of viewing
course statistics in Moodle website

Both include and extend relations were properly de-
tected in reversed use case model. Use cases of view-
ing course statistics and changing users’ registration
information included the set of actions for opening ad-
ministrator menu. Therefore, this action set was trans-

ferred into included use case and connected to includ-
ing use cases by include relations. For the use case of
managing resources, three alternative scenarios were
recorded and combined into a single use case. For this
process, two additional extending use cases were cre-
ated (remove resource and create new resource).
Activity diagrams were generated for every use case
in reversed model for Moodle website. An example
of activity diagram for login process is presented in
Figure 9. Each activity diagram has two swimlanes,
representing the user and the system under analy-
sis. Actions are named using the information ex-
tracted from websites HTML code where possible.
Some system actions (e.g. process form data) were
named according to the expected typical reactions
of the system.

student and teacher. The tasks, that might be familiar
to the experts, were chosen for clarity of the generated
models. Student logged in and performed some tasks
– downloaded course material, completed a test
composed of 10 questions, and filled out a feedback
form. Teacher logged in as well, then downloaded
course material, and completed the same test.
Additionally, teacher added a new file and removed
an old one from the course, as well as edited a
students’ registration date.

The reversed use case diagram for Moodle website is
presented in Figure 8. The tool detected generalization
between student and teacher actors: their sets of use
cases had intersection including processes of logging
in, downloading file and performing test. Therefore,
additional actor was created (course user) and
associated with use cases from the intersection set.

Both include and extend relations were properly
detected in reversed use case model. Use cases of
viewing course statistics and changing users’
registration information included the set of actions for
opening administrator menu. Therefore, this action set
was transferred into included use case and connected
to including use cases by include relations. For the use
case of managing resources, three alternative scenarios
were recorded and combined into a single use case.
For this process, two additional extending use cases
were created (remove resource and create new
resource).
Figure 8

Use case diagram reversed engineered from Moodle website

Activity diagrams were generated for every use case
in reversed model for Moodle website. An example of
activity diagram for login process is presented in
Figure 9. Each activity diagram has two swimlanes,
representing the user and the system under analysis.

Actions are named using the information
extracted from websites HTML code where
possible. Some system actions (e.g. process form
data) were named according to the expected
typical reactions of the system.
Figure 9

Activity diagram for the recorded process of logging
in to Moodle website

Activity diagram for use case of viewing the
statistics of the course is presented in Figure 10.
Include relation was correctly represented in
generated activity diagram – reference to activity
for use case of opening administration menu was
inserted in the beginning of the generated
diagram. Reference to included use cases’
activity diagram is indicated by the colon before
action's name and can be additionally
represented using the rake icon inside the action
node.
Figure 10

Activity diagram for the recorded process of viewing
course statistics in Moodle website

Activity diagram for use case of viewing the statistics
of the course is presented in Figure 10. Include rela-
tion was correctly represented in generated activity
diagram – reference to activity for use case of opening

633Information Technology and Control 2018/4/47

administration menu was inserted in the beginning of
the generated diagram. Reference to included use cas-
es’ activity diagram is indicated by the colon before
action’s name and can be additionally represented us-
ing the rake icon inside the action node.

Figure 10
Activity diagram for the recorded process of viewing course
statistics in Moodle website

For reversing the second use case model, a usage of
ResearchGate website (https://researchgate.net) was
recorded. Two user roles were defined: one for the
author and the other for the reader. Reader logged in,
requested access to the full text of the research
publication and viewed job listings. The author
performed the same processes as the reader.
Additionally, the author changed his profile settings,
edited one research publication and removed one
research publication. The author also added a new
research publication (two scenarios were recorded for
this process: one for just adding the publication
information, and the other for adding publication
information with additional actions of attaching a file).

Reverse engineered use case diagram for
ResearchGate website is presented in Figure 11. In
generated diagram, generalization between actors was
successfully detected and created, as the author
inherits all use cases associated with the reader.
Included use case of viewing the contributions was
created. This included use case was connected using
include relation to use cases of research item editing
and removing. Extending use case was also created for
the use case of adding the new research publication.
Figure 11

Use case diagram reversed engineered from ResearchGate
website

The activity diagram for the use case of adding
new research publication is presented in Figure
12. As two scenarios were recorded for this use
case, the tool combined them into one activity
diagram. During the process of combining,
extend relation was detected and new extending
use case for adding a file was created. This was
also represented in extended use cases’ activity
diagram in Figure 12, as it contains both decision
and merge nodes and a reference
(callBehaviorAction) to the extending use cases’
activity diagram.
Figure 12

Activity diagram for the recorded process of adding
new research publication in ResearchGate website

Figure 11
Use case diagram reversed engineered from ResearchGate
website

For reversing the second use case model, a usage of
ResearchGate website (https://researchgate.net) was
recorded. Two user roles were defined: one for the
author and the other for the reader. Reader logged in,
requested access to the full text of the research
publication and viewed job listings. The author
performed the same processes as the reader.
Additionally, the author changed his profile settings,
edited one research publication and removed one
research publication. The author also added a new
research publication (two scenarios were recorded for
this process: one for just adding the publication
information, and the other for adding publication
information with additional actions of attaching a file).

Reverse engineered use case diagram for
ResearchGate website is presented in Figure 11. In
generated diagram, generalization between actors was
successfully detected and created, as the author
inherits all use cases associated with the reader.
Included use case of viewing the contributions was
created. This included use case was connected using
include relation to use cases of research item editing
and removing. Extending use case was also created for
the use case of adding the new research publication.
Figure 11

Use case diagram reversed engineered from ResearchGate
website

The activity diagram for the use case of adding
new research publication is presented in Figure
12. As two scenarios were recorded for this use
case, the tool combined them into one activity
diagram. During the process of combining,
extend relation was detected and new extending
use case for adding a file was created. This was
also represented in extended use cases’ activity
diagram in Figure 12, as it contains both decision
and merge nodes and a reference
(callBehaviorAction) to the extending use cases’
activity diagram.
Figure 12

Activity diagram for the recorded process of adding
new research publication in ResearchGate website

For reversing the second use case model, a usage of
ResearchGate website (https://researchgate.net) was
recorded. Two user roles were defined: one for the
author and the other for the reader. Reader logged in,
requested access to the full text of the research publi-
cation and viewed job listings. The author performed
the same processes as the reader. Additionally, the au-
thor changed his profile settings, edited one research
publication and removed one research publication.
The author also added a new research publication
(two scenarios were recorded for this process: one for
just adding the publication information, and the oth-
er for adding publication information with additional
actions of attaching a file).
Reverse engineered use case diagram for Research-
Gate website is presented in Figure 11. In generated
diagram, generalization between actors was success-

fully detected and created, as the author inherits all
use cases associated with the reader. Included use
case of viewing the contributions was created. This
included use case was connected using include rela-
tion to use cases of research item editing and remov-
ing. Extending use case was also created for the use
case of adding the new research publication.
The activity diagram for the use case of adding
new research publication is presented in Figure 12.
As two scenarios were recorded for this use case,
the tool combined them into one activity diagram.
During the process of combining, extend relation
was detected and new extending use case for add-
ing a file was created. This was also represented in
extended use cases’ activity diagram in Figure 12,
as it contains both decision and merge nodes and a
reference (callBehaviorAction) to the extending use
cases’ activity diagram.
The generated models along with the predefined
scenarios were provided to experts for evaluation. A
questionnaire was prepared for evaluating the mod-
els. The experts answered equivalent questionnaire
questions for both Moodle and ResearchGate use case
models.

Information Technology and Control 2018/4/47634

Figure 12
Activity diagram for the recorded process of adding new
research publication in ResearchGate website

The generated models along with the predefined
scenarios were provided to experts for evaluation. A
questionnaire was prepared for evaluating the models.
The experts answered equivalent questionnaire
questions for both Moodle and ResearchGate use case
models.

8. The Expert Evaluation Results
Altogether, 13 experts completed the anonymous
questionnaire. Before evaluating the models, experts
were asked to outline their experience in UML
modelling. In total, four of the experts declared, that
they are OMG certified UML Professionals: two
Intermediate and two Advanced level. The declared
expert experience in UML modelling varies: six of
them have nine or more years of experience, two have
between five and eight years of experience and five
experts have between two and four years of
experience.

The questions in the questionnaire were grouped
according to the evaluated diagram type. Two
question groups were created – one for use case
diagram and the other for all activity diagrams in the

model. For evaluation, experts had to choose a
score from one to ten for each question. The
questions for both groups are presented in Table
1. Questions in questionnaire were designed to
evaluate syntax and semantics of generated UML
use case model. Experts were asked to evaluate
use case diagrams by assessing overall quality of
generated use case diagram (question 1) and
elements of the diagram as well as their relations
(question 2-4). Experts also had to evaluate the
naming of use case diagram elements (question
5). Activity diagrams were evaluated by
assessing the overall quality of the scenarios’
representations (question 6). Experts were asked
to assess the consistency between use case and
activity diagrams: how extend and include
relations correspond to specific combinations of
elements in activity diagrams (question 7). In
addition, the quality of generated names for
activity diagram elements was assessed
(question 8). All questions in the questionnaire
were of equal weight.

Table 1

The list of questions in model evaluation
questionnaire

Use case diagram evaluation

1. Rate the quality of the generated use case
diagram for given system scenarios

2. Rate the quality of the generated
generalization relations between actors

3. Rate the quality of the generated extend
relations between use cases

4. Rate the quality of the generated include
relations between use cases

5. Rate the quality of use case diagram
element names

Activity diagrams evaluation

6. Rate the quality of the generated activity
diagrams for given system scenarios

7. Rate the quality of include and extend
relations’ representation in activity
diagrams

8. Rate the quality of activity diagrams
element names

Out of the collected responses, the arithmetic
means of each expert evaluation scores for
Moodle and ResearchGate use case models were
calculated (Figure 13). As we can see, the use case
model for Moodle website was evaluated more
favorably with mean score of 8.5 and a much
smaller distribution between expert given scores.
ResearchGate evaluation score is more varied:
the mean score of 8.3 is fairly similar, but with
larger distribution of given scores. Larger

8. The Expert Evaluation Results
Altogether, 13 experts completed the anonymous
questionnaire. Before evaluating the models, experts
were asked to outline their experience in UML mod-
elling. In total, four of the experts declared, that they
are OMG certified UML Professionals: two Interme-
diate and two Advanced level. The declared expert ex-
perience in UML modelling varies: six of them have
nine or more years of experience, two have between

five and eight years of experience and five experts
have between two and four years of experience.
The questions in the questionnaire were grouped ac-
cording to the evaluated diagram type. Two question
groups were created – one for use case diagram and the
other for all activity diagrams in the model. For evalu-
ation, experts had to choose a score from one to ten for
each question. The questions for both groups are pre-
sented in Table 1. Questions in questionnaire were de-
signed to evaluate syntax and semantics of generated
UML use case model. Experts were asked to evaluate use
case diagrams by assessing overall quality of generated
use case diagram (question 1) and elements of the dia-
gram as well as their relations (question 2-4). Experts
also had to evaluate the naming of use case diagram el-
ements (question 5). Activity diagrams were evaluated
by assessing the overall quality of the scenarios’ repre-
sentations (question 6). Experts were asked to assess
the consistency between use case and activity diagrams:
how extend and include relations correspond to specific
combinations of elements in activity diagrams (question
7). In addition, the quality of generated names for activi-
ty diagram elements was assessed (question 8). All ques-
tions in the questionnaire were of equal weight.

Table 1
The list of questions in model evaluation questionnaire

Use case diagram evaluation

1. Rate the quality of the generated use case diagram for
given system scenarios

2. Rate the quality of the generated generalization
relations between actors

3. Rate the quality of the generated extend relations
between use cases

4. Rate the quality of the generated include relations
between use cases

5. Rate the quality of use case diagram element names

Activity diagrams evaluation

6. Rate the quality of the generated activity diagrams for
given system scenarios

7. Rate the quality of include and extend relations’
representation in activity diagrams

8. Rate the quality of activity diagrams element names

635Information Technology and Control 2018/4/47

Out of the collected responses, the arithmetic means
of each expert evaluation scores for Moodle and Re-
searchGate use case models were calculated (Figure
13). As we can see, the use case model for Moodle web-
site was evaluated more favorably with mean score of
8.5 and a much smaller distribution between expert
given scores. ResearchGate evaluation score is more
varied: the mean score of 8.3 is fairly similar, but with
larger distribution of given scores. Larger distribution
of evaluation scores for ResearchGate model may be
caused by insufficient WEB2UML capabilities of re-
cording. ResearchGate website employs HTML code
obfuscation and implements a wide range of JavaS-
cript functionality, which is why the recording tool
was not able to correctly record some of the actions
performed by the user.

Figure 13
The boxplot diagram for model evaluation scores

distribution of evaluation scores for ResearchGate
model may be caused by insufficient WEB2UML
capabilities of recording. ResearchGate website
employs HTML code obfuscation and implements a
wide range of JavaScript functionality, which is why
the recording tool was not able to correctly record
some of the actions performed by the user.
Figure 13

The boxplot diagram for model evaluation scores

Additionally, evaluation score means for each
question about the models were calculated (Figure 14).
The results are quite similar among the questions, only
questions about activity diagrams and activity
diagrams' elements naming are clear outliers.

The quality of the naming in activity diagram was
evaluated in lowest scores (4.8 for ResearchGate and
4.5 for Moodle). The problems with action names
might have also be the cause of the poor evaluation of
activity diagrams in general. On the other hand, other
aspects of generated models received quite
encouraging evaluation. Use case diagrams for both
models were evaluated very positively (8.5 for
ResearchGate and 9.0 for Moodle). Relation detection
capabilities of WEB2UML were also favorably
evaluated, as the score means for the questions about
generalization, include and extend relations was above
9.1 for both models.
Figure 14

The mean scores for each question of model evaluation

9. Discussion

The experimental results indicate that
WEB2UML tool is able to reverse engineer the
use case model for a website. The tool generates
use case diagram with scenarios for each use case
in a form of activity diagrams. The resulting use
case diagram is similar to reversed use case
diagrams presented in [6, 9, 16], as it
encompasses the main elements of use case
diagram: use cases, include and extend relations.
Our tool also incorporates actors and actor
generalizations into the use case diagram, which
are only present in [9] generated use case
diagram. On the other hand, our tool does not
detect use case generalizations, while approach
in [6] does. The main difference between our
method and approaches in [6, 9, 16] is that our
method does not require access to internal source
code of the system. The other significant
difference is that our approach also incorporates
activity diagram generation for each use case.
Other approaches either do not generate any
diagrams for use case scenario representation ([6,
16]) or use sequence diagrams ([9]). The methods
not requiring access to source code, like [11, 19],
cannot be directly compared to our approach, as
they require additional specifications for
diagram generation. The contents and quality
of diagrams generated in [11, 19] directly
depends on the quality of the prepared
additional specifications.

Additionally, evaluation score means for each ques-
tion about the models were calculated (Figure 14).
The results are quite similar among the questions,
only questions about activity diagrams and activity
diagrams’ elements naming are clear outliers.

The quality of the naming in activity diagram was
evaluated in lowest scores (4.8 for ResearchGate and
4.5 for Moodle). The problems with action names
might have also be the cause of the poor evaluation of
activity diagrams in general. On the other hand, other
aspects of generated models received quite encour-
aging evaluation. Use case diagrams for both models
were evaluated very positively (8.5 for ResearchGate
and 9.0 for Moodle). Relation detection capabilities
of WEB2UML were also favorably evaluated, as the
score means for the questions about generalization,
include and extend relations was above 9.1 for both
models.

Figure 14
The mean scores for each question of model evaluation

distribution of evaluation scores for ResearchGate
model may be caused by insufficient WEB2UML
capabilities of recording. ResearchGate website
employs HTML code obfuscation and implements a
wide range of JavaScript functionality, which is why
the recording tool was not able to correctly record
some of the actions performed by the user.
Figure 13

The boxplot diagram for model evaluation scores

Additionally, evaluation score means for each
question about the models were calculated (Figure 14).
The results are quite similar among the questions, only
questions about activity diagrams and activity
diagrams' elements naming are clear outliers.

The quality of the naming in activity diagram was
evaluated in lowest scores (4.8 for ResearchGate and
4.5 for Moodle). The problems with action names
might have also be the cause of the poor evaluation of
activity diagrams in general. On the other hand, other
aspects of generated models received quite
encouraging evaluation. Use case diagrams for both
models were evaluated very positively (8.5 for
ResearchGate and 9.0 for Moodle). Relation detection
capabilities of WEB2UML were also favorably
evaluated, as the score means for the questions about
generalization, include and extend relations was above
9.1 for both models.
Figure 14

The mean scores for each question of model evaluation

9. Discussion

The experimental results indicate that
WEB2UML tool is able to reverse engineer the
use case model for a website. The tool generates
use case diagram with scenarios for each use case
in a form of activity diagrams. The resulting use
case diagram is similar to reversed use case
diagrams presented in [6, 9, 16], as it
encompasses the main elements of use case
diagram: use cases, include and extend relations.
Our tool also incorporates actors and actor
generalizations into the use case diagram, which
are only present in [9] generated use case
diagram. On the other hand, our tool does not
detect use case generalizations, while approach
in [6] does. The main difference between our
method and approaches in [6, 9, 16] is that our
method does not require access to internal source
code of the system. The other significant
difference is that our approach also incorporates
activity diagram generation for each use case.
Other approaches either do not generate any
diagrams for use case scenario representation ([6,
16]) or use sequence diagrams ([9]). The methods
not requiring access to source code, like [11, 19],
cannot be directly compared to our approach, as
they require additional specifications for
diagram generation. The contents and quality
of diagrams generated in [11, 19] directly
depends on the quality of the prepared
additional specifications.

9. Discussion
The experimental results indicate that WEB2UML
tool is able to reverse engineer the use case model for a
website. The tool generates use case diagram with sce-

Information Technology and Control 2018/4/47636

narios for each use case in a form of activity diagrams.
The resulting use case diagram is similar to reversed use
case diagrams presented in [6, 9, 16], as it encompasses
the main elements of use case diagram: use cases, in-
clude and extend relations. Our tool also incorporates
actors and actor generalizations into the use case dia-
gram, which are only present in [9] generated use case
diagram. On the other hand, our tool does not detect use
case generalizations, while approach in [6] does. The
main difference between our method and approaches
in [6, 9, 16] is that our method does not require access to
internal source code of the system. The other significant
difference is that our approach also incorporates activity
diagram generation for each use case. Other approaches
either do not generate any diagrams for use case scenario
representation ([6, 16]) or use sequence diagrams ([9]).
The methods not requiring access to source code, like
[11, 19], cannot be directly compared to our approach,
as they require additional specifications for diagram
generation. The contents and quality of diagrams gen-
erated in [11, 19] directly depends on the quality of the
prepared additional specifications.
The results of expert evaluation of diagrams generated
by WEB2UML tool are promising, as experts positively
evaluated the generated use case models (the mean of
all expert evaluation scores is 8.4). Both Moodle and
ResearchGate models were evaluated fairly similarly
among all the questions in questionnaire. The draw-
backs of usage recording tool caused slightly lower eval-
uation of the model for ResearchGate website. Another
problem for both models is action naming in activity
diagrams. Current version of WEB2UML is not able to
generate suitable names for the actions, based on the in-
formation extracted from websites HTML code. In the
future, we are going to improve the tools capabilities of
generating the adequate names for actions.

10. Conclusions
UML diagrams are utilized during various phases of
software development lifecycle, including implemen-
tation and maintenance. Unfortunately, the task of
maintaining the documentation up to date is costly,
so is the process of manual recovering of documenta-
tion for legacy systems. Reverse engineering can al-
leviate this problem by providing means for creating
visual representations of analyzed systems. In this

paper, the method for reverse engineering UML use
case model for websites is presented. The proposed
solution is implemented as a Google Chrome plugin
named WEB2UML and is able to generate UML use
case and activity diagrams describing interactions
between the user and the system. These diagrams are
generated in XMI format, compatible with Magic-
Draw UML CASE tool. WEB2UML tool is able to cre-
ate required include and extend relations between use
cases as well as generalizations between actors in use
case diagram. It also enables combining of user re-
corded processes for the same use case into activity
diagrams with decision nodes.
During experimental evaluation of the tool, two UML
use case models were reverse engineered: one for
moodle.if.ktu.lt website and another for researchgate.
net website. The WEB2UML tool was able to reverse
engineer UML models for corresponding websites ac-
cording to the usage scenarios, which were created to
demonstrate method capabilities. Both reversed use
case diagrams encompassed include and extend rela-
tions and generalizations between actors. Activity di-
agrams were generated for every use case in the mod-
el and alternative usage scenarios were successfully
combined into activity diagrams. The main drawback
of reverse engineered models was the naming of the ac-
tions in activity diagrams. The information for action
names was extracted from websites publicly available
HTML code, but this process did not produce satisfac-
tory result and should be further improved.
The quality of generated models was evaluated us-
ing a questionnaire for UML modelling experts. In
total, 13 experts participated in the experiment by
evaluating the generated models and completing the
questionnaire. The results of expert evaluation are
encouraging, as experts positively evaluated both re-
versed use case models, with exception of naming in
activity diagrams, which received quite negative eval-
uation. Relations between elements, both in use case
and activity diagrams received the highest evaluation
scores. Altogether, the mean of expert evaluation
scores was 8.4 in a scale of ten.
In the future we are planning to improve the method
and its implementation for generating more adequate
action names in activity diagrams. The capabilities of
recording user actions of WEB2UML tool should also
be improved, which would significantly increase ap-
plicability of the proposed method.

637Information Technology and Control 2018/4/47

References
1. Aabidi, M. H., Mahi, B. El, Baidada, C., Jakimi, A., Am-

mar, H. Benefits of Reverse Engineering Technologies
in Software Development Makerspace. ITM Web of
Conferences, 2017, 13, 01028. https://doi.org/10.1051/
itmconf/20171301028

2. Alalfi, M. H., Cordy, J. R., Dean, T. R. Automated Reverse
Engineering of UML Sequence Diagrams for Dynamic
Web Applications. International Conference on Soft-
ware Testing, Verification and Validation Workshops,
2009, 287-294. https://doi.org/10.1109/ICSTW.2009.8
https://doi.org/10.1109/ICSTW.2009.8

3. Bolloju, N., Sun, S. X. Benefits of Supplementing Use
Case Narratives with Activity Diagrams—An Explorato-
ry Study. Journal of Systems and Software, 2012, 85(9),
2182-2191. https://doi.org/10.1016/j.jss.2012.04.076

4. Bruneliere, H., Cabot, J., Dupé, G., Madiot, F. MoDisco:
A Model Driven Reverse Engineering Framework. In-
formation and Software Technology, 2014, 56(8), 1012-
1032. https://doi.org/10.1016/j.infsof.2014.04.007

5. Chikofsky, E., Cross, J. Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software, 1990, 7(1), 13-
17. https://doi.org/10.1109/52.43044

6. Claudia, P., Liliana, M., Liliana, F. Recovering Use Case
Diagrams from Object Oriented Code: An MDA-based
Approach. Eighth International Conference on Informa-
tion Technology: New Generations (ITNG), Las Vegas,
2011, 737-742. https://doi.org/10.1109/ITNG.2011.130

7. da Silva, A. R. Model-Driven Engineering: A Survey
Supported by the Unified Conceptual Model. Comput-
er Languages, Systems & Structures, 2015, 43, 139-155.
https://doi.org/10.1016/j.cl.2015.06.001

8. Decker, M. J., Swartz, K., Collard, M. L., Maletic, J. I. A
Tool for Efficiently Reverse Engineering Accurate UML
Class Diagrams. IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2016,
607-609. https://doi.org/10.1109/ICSME.2016.37

9. Di Lucca, G. A., Fasolino, A. R., Tramontana, P. Reverse
Engineering Web Applications: The WARE Approach.
Journal of Software Maintenance and Evolution: Re-
search and Practice, 2004, 16(1-2), 71-101. https://doi.
org/10.1002/smr.281

10. Dick, J., Hull, E., Jackson, K. Requirements Engineer-
ing. Springer, 2017. https://doi.org/10.1007/978-3-319-
61073-3

11. El-Attar, M., Miller, J. Producing robust Use Case Di-
agrams via Reverse Engineering of Use Case Descrip-

tions. Software & Systems Modeling, 2008, 7(1), 67–83.
https://doi.org/10.1007/s10270-006-0039-3

12. Fernández-Sáez, A. M., Chaudron, M. R., Genero, M. An
Industrial Case Study on the Use of UML in Software
Maintenance and Its Perceived Benefits and Hurdles.
Empirical Software Engineering, 2018, 1-65. https://
doi.org/10.1007/s10664-018-9599-4

13. Jiang, J., Koskinen, J., Ruokonen, A., Systa, T. Construct-
ing Usage Scenarios for API Redocumentation. 15th IEEE
International Conference on Program Comprehension,
2007, 259-264. https://doi.org/10.1109/ICPC.2007.16

14. Kaur, H., Ahamad, S., Verma, G. N. Elements of Lega-
cy Program Complexity. International Journal of Re-
search in Engineering and Technology, 2015, 4(3), 501-
505. https://doi.org/10.15623/ijret.2015.0403085

15. Larman, C. Applying UML and Patterns: An Introduc-
tion to Object Oriented Analysis and Design and Itera-
tive Development. Dorling Kindersley Pvt. Ltd., 2008.

16. Li, Q., Hu, S., Chen, P., Wu, L., Chen, W. Discovering
and Mining Use Case Model in Reverse Engineering.
Fourth International Conference on Fuzzy Systems and
Knowledge Discovery, Haikou, China, 2007, 4, 431-436.
https://doi.org/10.1109/FSKD.2007.255

17. Martin, R., Archer, L. Reverse Engineering of Web Ap-
plications: A Technical Review. University of Liverpool,
2007.

18. Martins, L. C. G., Garcia, R. E., Marçal, I. Using Infor-
mation Visualization to Comprehend User Interface
Layer: An Application to Web-Based Systems. Pro-
ceedings of the XVI Brazilian Symposium on Human
Factors in Computing Systems, 2017, 49. https://doi.
org/10.1145/3160504.3160558

19. Mohammad, I. M., Rafa, E. A.-Q. An Approach to De-
rive the Use Case Diagrams from an Event Table. SE-
PADS’09 Proceedings of the 8th WSEAS International
Conference on Software Engineering, Parallel and Dis-
tributed Systems, Cambridge, 2009, 33-38.

20. Morgado, I. C., Paiva, A. C., Faria, J. P. Dynamic Reverse
Engineering of Graphical User Interfaces. International
Journal on Advances in Software, 2012, 5(3-4), 224-236.

21. Murugesan, S. Web Application Development: Chal-
lenges and the Role of Web Engineering. Web Engi-
neering: Modelling and Implementing Web Applica-
tions, Springer-Verlag London, 2008, 7-32. https://doi.
org/10.1007/978-1-84628-923-1_2

22. Noda, K., Kobayashi, T., Toda, T., Atsumi, N. Identifying
Core Objects for Trace Summarization Using Reference

Information Technology and Control 2018/4/47638

Relations and Access Analysis. IEEE 41st Annual Com-
puter Software and Applications Conference (COM-
PSAC), Turin, 2017, 13-22. https://doi.org/10.1109/
COMPSAC.2017.142

23. NoMagic, Inc. MagicDrawUML. https://www.nomagic.
com/products/magicdraw. Accessed on July 10, 2018.

24. Object Management Group. UML 2.5 Specification.
http://www.omg.org/spec/UML/2.5/PDF. Accessed on
March 1, 2015.

25. Osman, H., Chaudron, M. R. Correctness and Complete-
ness of CASE Tools in Reverse Engineering Source
Code into UML Model. GSTF Journal on Computing,
2012, 2(1), 193-201. http://dx.doi.org/10.5176_2010-
2283_2.1.150

26. Prause, C. R., Durdik, Z. Architectural Design and Doc-
umentation: Waste in Agile Development? IEEE In-
ternational Conference on Software and System Pro-
cess (ICSSP), 2012, 130-134. https://doi.org/10.1109/
ICSSP.2012.6225956

27. Raibulet, C., Fontana, F. A., Zanoni, M. Model-Driven
Reverse Engineering Approaches: A Systematic Litera-
ture Review. IEEE Access, 2017, 5, 14516-14542. https://
doi.org/10.1109/ACCESS.2017.2733518

28. Schmidt, D. Model-Driven Engineering. Computer,
2006, 39(2), 25-31.

29. Sparx Systems Pty Ltd. Enterprise Architect. http://
www.sparxsystems.com.au/products/ea/index.html.
Accessed on July 10, 2018.

30. Tiwari, S., Gupta, A. A Systematic Literature Review
of Use Case Specifications Research. Information and
Software Technology, 2015, 67, 128-158. https://doi.
org/10.1016/j.infsof.2015.06.004

31. Visual Paradigm. https://www.visual-paradigm.com/.
Accessed on July 10, 2018.

32. Yang, J., Lee, Y., Gandhi, D., Valli, S. G. Synchro-
nized UML Diagrams for Object-Oriented Program
Comprehension. 12th International Conference on
Computer Science and Education (ICCSE), Hous-
ton, TX, USA, 2017, 12-17. https://doi.org/10.1109/
ICCSE.2017.8085455

33. Ziadi, T., da Silva, M. A. A., Hillah, L. M., Ziane, M. A
Fully Dynamic Approach to the Reverse Engineering
of UML Sequence Diagrams. 16th IEEE International
Conference on Engineering of Complex Computer Sys-
tems, ICECCS, Las Vegas, United States, 2011, 107-116.
https://doi.org/10.1109/ICECCS.2011.18

