
Information Technology and Control 2019/1/4834

An Efficient Outlier Detection
Approach Over Uncertain Data
Stream Based on Frequent
Itemset Mining

ITC 1/48
Journal of Information Technology
and Control
Vol. 48 / No. 1 / 2019
pp. 34-46
DOI 10.5755/j01.itc.48.1.21162

An Efficient Outlier Detection Approach Over Uncertain Data
Stream Based on Frequent Itemset Mining

Received 2018/07/06 Accepted after revision 2018/12/18

 http://dx.doi.org/10.5755/j01.itc.48.1.21162

Corresponding author: sunruizhi@cau.edu.cn

Shangbo Hao, Saihua Cai, Ruizhi Sun, Sicong Li
College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
e-mails: hao_caumail@cau.edu.cn, caisaih@cau.edu.cn, sunruizhi@cau.edu.cn, lsc@cau.edu.cn

Outlier detection is essential in data-based science. It aims to detect those itemsets that have a significant differ-
ence from the other data. With the limitations of equipment precision and network transmission, uncertain data
are becoming more common in daily life. However, the traditional outlier detection methods are not applicable for
uncertain data stream, and the large volume of data makes outlier detection costly in terms of memory usage and
time. Moreover, the multiple scanning of the data stream required for Apriori-like methods is unrealistic. In this
paper, a matrix structure is constructed to store the information of an uncertain data stream, and the subsequent
mining process is conducted on the matrix structure; therefore, the whole data stream needs to be scanned only
once. Then, the “upper cap” concept is used in the FIM-UDS method to mine the frequent itemsets more effective-
ly to support outlier detection. Moreover, two outlier factors and an outlier detection method called FIM-UDSOD
are designed to detect potential outliers. Finally, two public datasets are used to verify the efficiency of the FIM-
UDS method, and one synthetic dataset is used to evaluate the FIM-UDSOD method. The experimental results
show that our proposed FIM-UDSOD method is more effective than other methods in detecting outliers.
KEYWORDS: outlier detection, frequent itemset mining, uncertain data stream, outlier factors.

1. Introduction
As a main form of data, data stream is increasingly com-
mon in daily life due to the wide use of sensors. However,
outliers (abnormal data) exist with the emergence of data

stream, and they have seriously affected the accuracy of
the data. Therefore, the outliers need to be detected as
soon as possible to allow better use of the collected data.

35Information Technology and Control 2019/1/48

The traditional outlier detection methods can be
divided into clustering-based methods [9, 14], dis-
tance-based methods [1, 2, 3, 10], KNN-based
(K-nearest neighbor) methods [13], density-based
methods [15, 16] and frequent itemset mining-based
methods [4, 7]. The traditional clustering-based out-
lier detection methods, distance-based outlier detec-
tion methods, KNN-based outlier detection methods
and density-based outlier detection methods can
detect implicit outliers. However, the increasing fre-
quency of subitemsets has not been taken into con-
sideration in outlier detection; therefore, the detected
outliers are not consistent with the definition of out-
liers proposed by Hawkins [6]. Aimed at this problem,
the itemset mining-based outlier detection methods
fully consider the influence of the frequency of the
existing itemsets on abnormality judgment. However,
the outlier judgment condition of the existing item-
set mining-based outlier detection method, FindF-
POF [7], is very simple, which makes the efficiency
of outlier detection very poor when the length of the
detected transactions is not constant. Moreover, the
most common outlier detection methods [7, 13-16]
are directed toward static precise data (the data’s ex-
istence or nonexistence has been determined), which
are not suitable for uncertain data stream (each data
element has an existential probability), although the
data are only added as a probability attribute. Al-
though window-based technologies such as sliding
windows [20], damped windows [19] and landmark
windows [17] provide good solutions for processing
data stream, the large volume of data stream causes
the frequent itemset mining processes to require con-
siderable time cost. The multiple scanning of the data
stream in methods such as some Apriori-like meth-
ods [5] and FP-growth-like methods [12, 18, 20] is also
unrealistic in the era of big data.
Another problem we need to solve is the design of
an evaluation index for outliers. Such an index is an
important factor for outlier detection, and the bene-
fits and drawbacks of the designed evaluation index
directly determine the outlier detection efficiency.
However, the evaluation index of precise data is not
suitable for uncertain data, and no evaluation index
has existed for uncertain data stream until now.
Based on the problems of outlier detection over the
uncertain data stream listed above, this paper pres-
ents an efficient outlier detection method. The main
contributions are summarized as follows:

1 The influence of the frequency of each itemset on
abnormality judgment is fully considered to make
the detected outliers more consistent with the defi-
nition of outliers proposed by Hawkins.

2 An algorithm directed into Frequent Itemset Min-
ing over Uncertain Data Stream (called FIM-UDS)
is proposed. It uses a matrix to store the informa-
tion existing in an uncertain data stream and then
computes the “upper cap” before frequent itemset
mining to reduce the potential scale of the extended
itemsets. The longer frequent itemsets are mined
with the extending process of frequent 1-itemsets.

3 A Frequent Itemset Mining-based Outlier Detec-
tion method over Uncertain Data Stream (called
FIM-UDSOD) is proposed to effectively detect the
implicit outliers based on the two designed devia-
tion factors.

The remainder of this paper is organized as follows.
Related work is introduced in Section 2. The pre-
liminaries and problem definition are presented in
Section 3. The outlier detection method, including
frequent itemset mining and outlier detection, is in-
troduced in Section 4. The experimental results and
discussion are presented in Section 5. Finally, the
conclusions of this paper are discussed in Section 6.

2. Related Work
In this section, we introduce some related work cor-
responding to this paper, including (1) frequent item-
set mining on data stream and (2) outlier detection.

2.1. Frequent Itemset Mining on Data Stream
In recent years, several frequent itemset mining al-
gorithms have been proposed to mine frequent item-
sets on data stream. Lim and Kang [12] proposed
TwMinSwap to track recent frequent items in high-
speed data stream and TwMinSwap identifies re-
cent frequent itemsets from high-speed data stream.
Aimed at the sliding window-based data stream en-
vironments, Yun and Lee [20] proposed a new algo-
rithm called WEPS to extract the weighted erasable
patterns, where the new tree and list data structures
were applied in the mining process. During the pat-
tern expanding operations, only the basic informa-
tion of the tree’s data was stored in the list structure,

Information Technology and Control 2019/1/4836

in order to improve mining efficiency. To mine more
meaningful patterns, the gain values of patterns and
different item importance are considered in the eras-
able pattern mining framework, and then a weight
factor-based strong pattern pruning technique and
the overestimated method satisfying the anti-mono-
tone property are used to prevent unintended pat-
tern losses caused by the weight factor. Yun et al. [18]
proposed the first HAUPM algorithm named SHAU
that considers the time factors of transactions to find
recent important high average utility patterns over
a data stream, where the tree-based data structure
called SHAU-tree was used to store average utility in-
formation of a recent stream data batch by batch, and
the batch list was used to store each node. To further
decrease the number of generated candidates, a new
strategy, named RUG, was proposed to minimize the
values of overestimated average utilities stored in the
global SHAU-tree during the accumulation of stream
data.

2.2. Outlier Detection
For the clustering-based outlier detection method,
Huang et al. [9] proposed a novel outlier cluster de-
tection algorithm called ROCF that does not require
the top-n parameter, where a preliminary clustering
algorithm was proposed to conduct outlier cluster
detection based on a MUtual Neighbors Graph con-
structed by connecting each point to its mutual neigh-
bors. Then, an outlier detection approach based on
the idea that outlier clusters are usually much smaller
than normal clusters was proposed to detect implicit
outliers. The clusters were judged as outlier clusters
via decision graph instead of parameter n or α by man-
ual set. Shi and Zhang [14] proposed a novel cluster-
ing-based outlier iterative detection method to detect
the outliers and then adjusted the cluster according
to the relationship between the internal relations of
the clusters to improve the efficiency of the detec-
tion rate. The detection result of the clustering-based
method is highly dependent on the selected clustering
algorithm and is time consuming.
For the distance-based outlier detection method,
Kontaki et al. [10] first proposed a novel continuous
distance-based outlier detection algorithm called
COD that has two versions, where the radius R was
fixed, and the values of k were changing. Then, a new
distance-based outlier detection algorithm called

ACOD was proposed to support the handling of mul-
tiple values of k and multiple values of R to enable the
concurrent execution of different monitoring strate-
gies. Finally, a microcluster-based outlier detection
algorithm called MCOD was proposed to reduce the
distance calculating times, which could be easily ex-
tended to a new edition of AMCOD to support multi-
ple queries. Angiulli and Fassetti [1] first proposed the
high memory cost distance-based outlier detection
algorithm, and then they [2] proposed a strictly fixed
memory requirements approximation algorithm to
reduce the memory usage of the former algorithm.
However, distance-based methods need to calculate
the distance of each itemset, which is computation-
ally intensive.
For the KNN-based outlier detection method, Ra-
maswamy et al. [13] proposed a K-nearest neigh-
bor-based new outlier detection method to over-
come some defects of the distance-based methods;
it ranked every point according to the distance from
its nearest neighbor point to the K-nearest neighbor
point, and the top n points were determined as outli-
ers. Although the KNN-based method is much more
efficient than the distance-based methods, it is not
suitable for large-scale data because its computation-
al volume is very large.
For the density-based outlier detection method, Vries
et al. [16] used a projection strategy to search the KNN
outliers and then proposed an outlier detection meth-
od based on the local density to detect the outliers.
Tang and He [15] presented an effective density-based
outlier detection approach with local kernel density
estimation (KDE). A relative density-based outlier
score (RDOS) was introduced to measure the local
outlierness of objects, where the density distribution
at the location of an object was estimated with a local
KDE method based on the extended nearest neigh-
bors of the object. Instead of using only the k-nearest
neighbors, the reverse nearest neighbors and shared
nearest neighbors of an object for density distribution
estimation were further considered in the proposed
algorithm. However, density-based methods may face
the problem of dimension disasters.
For the itemset mining-based outlier detection meth-
od, the FindFPOF method [7] was first proposed to
detect the implicit outliers from a static precise data-
set, where the judging standard was the proportion
of the contained frequent itemsets to the total num-

37Information Technology and Control 2019/1/48

ber of mined frequent itemsets. Because the length
of each transaction was not considered in the outlier
detection phase, the accuracy of outlier detection was
not high enough when the length of the transactions
was unfixed. The maximal frequent itemset min-
ing-based outlier detection method was proposed
by Cai et al. [4] to reduce the time cost of the outlier
detection phase, where the whole outlier detection
process was divided into a maximal frequent itemset
mining phase and a pattern matching phase. Hemal-
atha et al. [8] proposed a minimal infrequent itemset
mining-based outlier detection algorithm, MIFPOD,
to further improve the detection accuracy. In the
MIFPOD algorithm, three outlier factors, transaction
weighting factor (TWF), minimal infrequent devi-
ation factor (MIPDF) and minimal infrequent pat-
tern-based outlier factor (MIFPOF), were designed
to provide the basis for outlier detection.

3. Preliminaries and Problem
Definition
In this section, we first introduce some concepts relat-
ed to this paper, and then the problem definition is de-
scribed to illustrate the problem that needs to be solved.

3.1. Preliminaries
Let I={i1, i2, i3,…, in} be a set of literals called item-
set and Is={i1, i2,…, ik} be a k-itemset, where Is ⊆I and
k∈[1,n], Is is a subset of I and I is the superset of Is.
Data stream DS=[t1, t2, …, tm) contains a collection of
infinite transactions, and each tj is a subset of itemset
I.
The sliding window (SW) model allows processing
of only the most recent transactions from the data
stream, and |SW| is defined as the size of the sliding
window.
Unlike the precise data stream, each item {ij} of the
uncertain data stream exists with an existential
probability value (p(ij ,tj)), and it expresses the like-
lihood of {ij} that appeared in transaction tj, where

()0 < , 1j jp i t ≤ . If itemset X is formed by some items
x, then () (,,)j

x
j

X

p xp X t t
∈

= ∏ .

Definition 1. Support (sup): the frequency of
itemset X that exists in DS is defined as support,

| |

1
(,)

SW

j x X
jsup(X) p x t

= ∈

= ∑∏ .

Definition 2. Frequent itemset (FI): the itemset X is
an FI if its support is not less than the predefined min-
imum support threshold min_sup.
Definition 3. Infrequent itemset (iFI): the itemset X

is an iFI if its support is less than the predefined min-
imum support threshold min_sup.
For illustrating the above definitions more intuitively,
we take the next transactions that are shown in Table
1 as an example. In this example, |SW| is set to 5 and
min_sup is set to 0.7.
In transaction t1, the existential probability of itemset
{a} is 0.8, and the existential probability of itemset
{ab} is 0.48 (0.8*0.6). In the current sliding window,
sup({ab})= 0.8*0.6+0.6*0+0.3*0.5+0*0.5+0.4*0.3=0.75
>0.7; therefore, {ab} is a frequent itemset.

Table 1
Transaction information of a data stream

id Transaction id Transaction

t1
{a:0.8, b:0.6, d:0.3,

e:0.4, f:0.2} t5
{a:0.4, b:0.3, c:0.6,

f:0.2}

t2
{a:0.6, c:0.9, e:0.7,

f:0.1} t6
{a:0.7, d:0.5, e:0.4,

f:0.6}

t3
{a:0.3, b:0.5, c:0.6,

e:0.2} t7
{b:0.6, c:0.2, d:0.4,

f:0.3}

t4
{b:0.5, d:0.2, e:0.7,

f:0.3} t8 {c:0.5, d:0.4, e:0.7}

… …… … ……

The downward closure property [4] is an important
theoretical basis in FI mining to make the mining pro-
cess more efficient, which can save considerable time
cost on the “extension” operation.
Property 1. All nonempty subsets of frequent item-
sets are frequent.
Proof. Assume s is a frequent itemset, that is
sup(s)≥min_sup. s’ is a nonempty subset of s, which
means that s’ is contained in the transactions that
contain s, that is, sup(s’)≥sup(s)≥min_sup; therefore,
s’ is also frequent.
Property 2. All supersets of infrequent itemsets are
infrequent.
Proof. Assume s is an infrequent itemset, s’ is a superset
of s, and s’ is also a frequent itemset, that is, s is a subset

Information Technology and Control 2019/1/4838

of s’. It can be known from Property 1 that s is a frequent
itemset, which is contradicted by the assumption.

3.2. Problem Definition
Based on the above definitions, the problem definition
of outlier detection over uncertain data stream based
on frequent itemset mining can be described as fol-
lows:
Problem definition. Given a DS and the user-speci-
fied minimal outlier threshold Φ, the task is to find the
transactions whose outlier factors are less than Φ. In
the frequent itemset mining phase, the task is to find
the itemsets whose support is not less than the pre-
defined minimal support of min_sup.

4. Our Proposed Approach
In this section, we propose an outlier detection meth-
od called FIM-UDSOD that is based on frequent item-
set mining to detect abnormal data (outliers) over un-
certain data stream.
The main steps of the FIM-UDSOD method are di-
vided into the following: (1) frequent itemset mining
stage and (2) outlier detection stage. In the frequent
itemset mining stage, the matrix structure is con-
structed to store the data information of the uncertain
data stream when the data flow in the sliding window
and the infrequent itemsets are deleted to reduce the
potential number of extended itemsets. In the outlier
detection stage, the outliers are detected based on the
created deviation factors and the outlier determina-
tion method, and the transactions whose deviation
degree is less than the predefined threshold Φ are re-
garded as outliers. Thus, in frequent itemset mining,
the creation of deviation factors and outlier deviation
calculating are the core parts of outlier detection over
uncertain data stream.
In this section, the first subsection presents the fre-
quent itemset mining method, and the second sub-
section introduces two deviation factors and the
outlier detection method based on the mined fre-
quent itemsets.

4.1. Frequent Itemset Mining Method
To deal with the stream property, we propose a slid-
ing window-based method called FIM-UDS to mine
the most recent frequent itemsets over uncertain

data stream. Because the “extension” process is the
most time-consuming process, we propose the “up-
per cap” concept to reduce the potentially extended
itemsets. The whole process is split into the next 5
steps, and each step is explained in the example list-
ed in Table 1.
1 Matrix Construction: In the FIM-UDS method, we

use a matrix structure to store the data informa-
tion of an uncertain data stream. The scale of the
constructed matrix is (|SW|+1)*m (m is the maxi-
mal size of items, row (|SW|+1) stands for the sup-
port of each item). Transactions are scanned, and
the probability of each item is added into matrix
A in turn, the probability of item {ik} appearing in
Td is written as Ad,k; otherwise, Ad,k is written as 0 if
item {ik} does not appear in Td. The sliding window
moves to the next new transaction after finishing
the current frequent itemset mining process. After
constructing the matrix, the support of each item
is calculated, and these items whose support is less
than the predefined min_sup are not considered in
the next “extension” process, and these frequent
1-itemsets are added into FI_L (frequent itemset
library). The example of matrix construction is
listed as follows: the min_sup is set to 0.7, and the
size of the sliding window is 5.
The data information of transactions t1, t2, t3, t4 and
t5 are scanned and written to matrix A successive-
ly, and then the support of each item is calculated.
The constructed matrix A is shown in Figure 1. Af-
ter calculation, 1-itemset {d} is infrequent due to
sup({d})=0.5<0.7, and it is discarded to reduce the
“extension” process. Then, frequent 1-itemsets of
{a}, {b}, {c}, {e} and {f} are saved into FI_L.

Figure 1
The construction of matrix A

1

2

3

4

5

0.8 0.6 0 0.3 0.4 0.2
0.6 0 0.9 0 0.7 0.1
0.3 0.5 0.6 0 0.2 0
0 0.5 0 0.2 0.7 0.3

0.4 0.3 0.6 0 0 0.2
2.1 1.9 2.1 0.5 2 0.8

sup

a b c d e f

t
t
t
t
t

39Information Technology and Control 2019/1/48

2 Ucap and supcap calculation: The “upper cap” value
(Ucap) for each 1-itemset is calculated before the
“extension” process to reduce the potential scale of
extended itemsets. The specific calculation meth-
ods of Ucap and supcap are listed in formula (1) and
formula (2):

1

1
1

 [1,| |]

(,)* , | | 1(,)
(,), | | 1

max (,).
j

k
cap r j j

r j
m

j j

r j
r t

p x t M tx t
p x t t

M p x t

U ，

(1)

(1)

| |

1

(() |)
SWcap cap

j j

j

(X) t X tsup U

 . (2)

(2)

In formula (1), M is the maximal probability of the
item except for itself, k is the length of the itemset
(k-itemset) that needs to be extended. If supcap(X)
is less than the predefined min_sup, the itemset X
does not require an “extension” process because
any superset of infrequent itemsets is impossible.
The supcap value is given in Figure 2.
In this example, Ucap(a,t1)=0.8*0.6=0.48. From
the calculation of sup, we know that 1-itemset
{d} is infrequent; then, the values in column d
are all written as 0. After calculation of supcap,
supcap(f)=0.58<0.7, that is to say, any superset that
contains item {f} cannot be frequent; therefore,
item {f} does not need to be added into potentially
extended itemsets.

Figure 2
The supcap value for each 1-itemset

1

2

3

4

5

0.48 0.48 0 0 0.32 0.16
0.54 0 0.63 0 0.63 0.09
0.18 0.3 0.3 0 0.12 0

0 0.35 0 0 0.35 0.21
0.24 0.18 0.24 0 0 0.12
1.52 1.31 1.17 0 1.42 0.58

capsup

a b c d e f

t
t
t
t
t

(take the least Ucap value of the constituent 1-item-
set) process, and then these “frequent 2-itemsets”
are saved into FI_L.
In the example, the 2-itemsets of {{ab}, {ac}, {ae},
{bc}, {be}, {ce}} are extended by frequent 1-itemsets
of {a}, {b}, {c}, {e} with the “union” process. Then
the supcap of each 2-itemset is calculated as follows:
supcap({ab})=0.48+0+0.18+0+0.18=0.84 (frequent);
supcap({ac})=0+0.54+0.18+0+0.24=0.96 (frequent);
supcap({ae})=0.32+0.54+0.12+0+0=0.98 (frequent);
supcap({bc})=0+0+0.3+0+0.18=0.48 (infrequent);
supcap({be})=0.32+0+0.12+0.35+0=0.79 (frequent);
supcap({ce})=0+0.63+0.12+0+0=0.75 (frequent).
After calculation, 2-itemset {bc} is infrequent; it is
not a potential extended itemset and any superset
({abc} and {bce}) also cannot been frequent, there-
fore, the supersets of itemset {bc} no longer need to
be calculated. Then, the “frequent 2-itemsets” of
{{ab}, {ac}, {ae}, {be}, {ce}} are saved into FI_L.

4 “Repeat (2) and (3)”: Repeat steps (2) and (3) until
no frequent itemsets can be extended.
In our example, the “upper cap” value of Ucap for
each 2-itemset is calculated with formula (1), and
the supcap is calculated with formula (2). The calcu-
lation result is listed in Figure 3.
In the example, Ucap(a,t1)=0.8*0.6*0.6=0.288, oth-
er Ucap values are also similarly calculated. Due to
supcap({c})=0.687<0.7, itemset {c} need not be con-
sidered in the next extended process. Then, items
{a}, {b} and {e} are extended into 3-itemset {abe}
and supcap({abe})=0.256+0+0.072+0+0=0.328 <0.7,
which is not a frequent itemset. All “extension”
processes are ended because no more frequent
itemsets exist in this example.

3 “Frequent 2-itemset” mining: The 2-itemsets are
extended by these frequent 1-itemsets with the
“union” process. The “support value” (denoted as
sup’) calculation of each 2-itemset is “taking least”

Figure 3
The pcap(xr) and supcap(X) for each 2-itemset

1

2

3

4

5

0.288 0.384 0 0 0.256 0
0.486 0 0.441 0 0.567 0
0.108 0.18 0.15 0 0.072 0

0 0.245 0 0 0.175 0
0.144 0.108 0.096 0 0 0
1.026 0.917 0.687 0

capsup

a b c d e f

t
t
t
t
t

1.07 0

Information Technology and Control 2019/1/4840

5 “Frequent itemset” checking: After the “extension”
process, these “frequent itemsets” that exist in FI_L
(except for frequent 1-itemsets) need to be checked
to determine if they are truly frequent, and the in-
frequent itemset should be removed from FI_L:
sup({ab})=0.48+0+0.15+0+0.12=0.75 (frequent);
sup ({ac})=0+0.54+0.18+0+0.24=0.96 (frequent);
sup ({ae})=0.32+0.42+0.06+0+0=0.8 (frequent);
sup({be})=0.24+0+0.1+0.35+0=0.69<0.7(infrequent);
sup({ce})=0+0.63+0.12+0+0=0.75 (frequent).
With the above 5 steps, all the frequent itemsets of
{{a}, {b}, {c}, {e}, {f}, {ab}, {ac}, {ae}, {ce}} have been
mined from the target dataset, and the detailed
steps are shown in Algorithm 1.

Algorithm 1: FIM-UDS

Input: Uncertain data stream, m (largest size of
items), min_sup
Output: FIs

1. construct matrix
2.add probability value into matrix
3.for k=1 to m do
4. calculate sup({ik})
5. if sup({ik})≥min_sup then
6. FI_L←{ik} // frequent 1-itemsets are added into
FI_L
7. end if
8. calculate pcap(ik,tj) and supcap(ik)
9. if supcap(ik) ≥ min_sup then
10. for k=1 to m do
11. extend {ix} and {iy} into {ix,iy}
12. calculate sup’({ix,iy})
13. if sup’({ix,iy})≥min_sup then
14. FI_L←{ix,iy} // ”frequent 2-itemsets” are
added into FI_L
15. end if
16. end for
17. end if
18. go to 8
19.end for
20. check if “frequent itemsets” are truly frequent
21.return FIs
22. move the sliding window
23. go to 2

4.2. Outlier Detection Method
From the definition of an outlier, we know that an
outlier is data with a significant difference from other
data; therefore, the outlier index of each transaction
is a major indicator of outliers. He et al. [7] proposed
the frequent itemset mining-based outlier detection
method, but the influence of the length of the trans-
actions on outlier detection was not fully considered.
In the definition of the outlier index in the literature
[10], the transaction is judged as a normal transaction
if the frequent itemset outlier index is larger than the
predefined threshold. However, if the length of the
transaction is sufficiently long to make the proportion
of the frequent itemsets to the transaction relatively
small, it is not fair to judge the current transaction
outlier or not based on the theory proposed in the
literature [10]. Therefore, in this subsection, we pro-
posed two outlier factors based on the mined frequent
itemsets to determine the possibility of the transac-
tion being or not being an outlier, which considers the
proportion of the frequent itemsets to the length of
the transaction.
Definition 4. FIOF (Frequent Itemset Outlier Factor):
Let DS=[t1, t2, …, tn) be n transactions in the sliding
window, the total number of mined frequent itemsets
is |FIL|, FIOF of transaction ti is defined as:

, _
()

() .
| |

iX t X FI L
i

sup X
FIOF t

FIL
⊆ ∈=
∑

 (3)

()() i
i

FIOF tTOF t
m

= . (4)

(3)

The interpretation of formula (3) is as follows: if a
transaction ti contains more frequent itemsets, the
FIOF value will be much larger, and the larger FIOF
value indicates transaction ti is less likely to be an out-
lier.
Definition 5. TOF (Transaction Outlier Factor): Let
DS=[t1, t2, …, tn) be n transactions in the sliding win-
dow, and suppose that the size of the current transac-
tion is m. For each transaction ti, TOF is defined as:

, _
()

() .
| |

iX t X FI L
i

sup X
FIOF t

FIL
⊆ ∈=
∑

 (3)

()() i
i

FIOF tTOF t
m

= . (4) (4)

The interpretation of formula (4) is as follows: if a
transaction contains more frequent itemsets, its FIOF
value is correspondingly greater; therefore, the TOF
value is also much greater, and the higher TOF value in-
dicates that transaction ti is less likely to be an outlier.

41Information Technology and Control 2019/1/48

In our approach, the TOF value is used as the basic
measure to judge whether a transaction is an outlier,
and the main idea of the outlier detection method over
an uncertain data stream based on frequent itemset
mining (FIM-UDSOD) is as follows: (1) calculate the
defined values of FIOF and TOF, (2) compare the TOF
value with the predefined minimal threshold Φ. If
TOF(ti) is less than Φ, transaction ti is determined to
be an outlier. The specific process of the FIM-UDSOD
method is included in Algorithm 2.

Algorithm 2: FIM-UDSOD

Input: Data stream, Φ, n (size of |SW|)
Output: Outliers

1. call Algorithm 1 // mine all frequent itemsets
2. for i ∈[1,n] do
3. for X in transaction ti and FI_L do
4. call formula (3)
5. call formula (4)
6. end for
7.end for
8. if TOF(Ti) < F then
9. ti is judged as outlier

10. end if

Next, we take the data information in Table 1 as an
example to clearly explain the proposed FIM-UDSOD
method. The parameters are the same as above, and Φ
is set to 0.055. The number of mined frequent item-
sets in this example is 9. The final calculation results
are shown in Table 2.

Table 2
Specific results of outlier detection

Trans m FIs FIOF TOF

t1 5 {a}, {b}, {e}, {f},
{ab},{ae} 0.311 0.0622

t2 4 {a}, {c}, {e}, {f}, {ac},
{ae}, {ce} 0.432 0.1081

t3 4 {a}, {b}, {c}, {e}, {ab},
{ac}, {ae}, {ce} 0.234 0.0586

t4 4 {b}, {e}, {f} 0.167 0.0417

t5 4 {a}, {b}, {c}, {f},
{a,b},{a,c} 0.207 0.0517

After the calculation of TOF(ti), we find that the nu-
merical value of TOF(t4) and TOF(t5) is less than the
minimal threshold Φ. Then, transactions t4 and t5 are
determined to be outliers.

5. Experimental Results and
Discussions
To evaluate the proposed FIM-UDSOD method, nu-
merous experiments are conducted on a synthetic
dataset randomly generated with lengths ranging
from [6,9]. Each element of the synthetic dataset is
independent and randomly selected from [1,9] with a
randomly generated probability from (0,1.0), and the
scale is 300 to display the outlier detection results.
Then, we randomly generate several outliers to sub-
stitute for the generated elements, and the outlier
element is selected from [10,15] with a random prob-
ability from (0,1.0). To test the mining efficiency of
the proposed FIM-UDS method, two public datasets
of T10I4D100K and mushroom downloaded from the
Frequent Itemset Mining Implementations Reposi-
tory (http://fimi.cs.helsinki.fi/data/) are used in the
experiment. The existential probability range in (0,1)
is randomly generated for each itemset, as suggested
by the literature [11] because these datasets do not
provide probability values.
The FindFPOF method [7] and MIFPOD method [8]
are used as the compared methods to test the detec-
tion efficiency of the FIM-UDSOD method, which is
tested with different values of min_sup and different
sizes of the sliding window. To further test the min-
ing efficiency of the proposed FIM-UDS method, the
U-Apriori [5] method and UF-Growth [11] method
are used as the comparison methods in the experi-
ments. All experiments are run on a machine running
Windows 7 with an Intel dual-core i3-2020 2.93 GHz
processor and 4GB RAM. All algorithms are imple-
mented using Python 3.6.

5.1. Detection Efficiency of FIM-UDSOD
Method
The experiment that tests the detection efficiency of
the FIM-UDSOD method is conducted with differ-
ent sizes of sliding windows and different values of
min_sup, where the top k transactions in this exper-
iment indicate the selected previous k transactions
with the least TOF value when all implanted outliers

Information Technology and Control 2019/1/4842

are detected. The size of the sliding window in this ex-
periment is set at 10 and 20, and the results are shown
in Figures 4 and 5. The bar in the figure indicates the
injected number of outliers.

Figure 4
Top k transactions selected when |SW| is 10

Figure 5
Top k transactions selected when |SW| is 20

0 5 10 15 20 25 30
0

2

4

6

8

10

12

No. of sliding window (min_sup =2)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =3)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =4)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15 20 25 30
0

2

4

6

8

10

12

No. of sliding window (min_sup =2)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =3)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =4)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15 20 25 30
0

2

4

6

8

10

12

No. of sliding window (min_sup =2)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =3)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =4)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 4)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 6)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 8)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 4)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 6)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 8)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 4)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 6)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 8)

To
p

 k
 tr

an
sa

ct
io

ns

FIM-UDSOD
FindFPOF
MIFPOD

As shown in Figure 4, when the size of the sliding
window is 10, the top k transactions selected by the
FIM-UDSOD method are the smallest of the com-
pared three methods. That is, the outlier detection

efficiency of the FIM-UDSOD method is the highest
against the other two methods, and the accuracy of
the MIFPOD method is relatively accurate compared
to the FindFPOF method in most situations. The rea-
son for the FIM-UDSOD method being more accu-
rate than the FindFPOF method is that the length of
transactions is taken into consideration in the outlier
detection phase. Figure 5 shows the outlier detection
accuracy of the compared three methods when the
size of the sliding window is 20. The accuracy of the

43Information Technology and Control 2019/1/48

FIM-UDSOD method is also better than the Find-
FPOF method and MIFPOD method and the outlier
detection of the FIM-UDSOD method is near 100%
with the larger value of min_sup.

5.2. Time Cost and Memory Usage of the
FIM-UDS Method
The itemset mining-based outlier detection process is
divided into (1) frequent itemset mining phase and (2)
outlier detection phase, where the frequent itemset
mining phase requires the most time cost. This sub-
section shows the time cost of the FIM-UDS method
with different sizes of sliding windows and different
values of min_sup, where the U-Apriori [5] meth-
od and UF-Growth[11] method are compared. The
experiments are conducted on two public datasets,
T10I4D100K and mushroom, where T10I4D100K is a
sparse dataset and mushroom is a dense dataset. The
time cost of the FIM-UDS method and two compared
methods on dataset T10I4D100K is shown in Figure
6, and the time cost on dataset mushroom is shown
in Figure 7. The memory usage of the FIM-UDS
method and the two compared methods on dataset
T10I4D100K is shown in Figure 8, and the memory
usage on the dataset mushroom is shown in Figure 9.
Figure 6 shows that for the sparse dataset T10I4D100K
and a constant value of min_sup, the time cost of the
FIM-UDS, U-Apriori and UF-Growth methods exhib-
its a growth trend with an increasing sliding window
size. Compared with the other two methods, the time
cost of our proposed FIM-UDS method is the smallest
because a large number of itemsets are discarded in
the “extension” process for the use of the “upper cap”.
The time cost of the FIM-UDS method presents a sta-
ble growth trend and only increases the small ratio
with an increasing sliding window size. However, the
time cost of the UF-Growth method presents a small
increase when the size of the sliding window is
between 10 and 70, and then it presents a sharp in-
crease when the size of the sliding window is equal
to or greater than 80. The speed of the increase in the
time cost for the U-Apriori method is relatively fast.
On the sparse dataset T10I4D100K, when the size of
the sliding window is unchanged, the time cost of the
FIM-UDS method and UF-Growth method presents a
very small downward trend with increasing values of
min_sup. Among the three compared methods, the time
cost of our proposed FIM-UDS method is the smallest
with the change in the min_sup value, and the reduced

Figure 6
Time cost of three methods on sparse dataset T10I4D100K

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Size of sliding window (min_sup =3)

Ti
m

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

45

Size of sliding window (min_sup =5)

Ti
m

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

Size of sliding window (min_sup =10)

Ti
m

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Size of sliding window (min_sup =3)

Ti
m

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

45

Size of sliding window (min_sup =5)

Ti
m

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

Size of sliding window (min_sup =10)

Ti
m

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Size of sliding window (min_sup =3)

Ti
m

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

45

Size of sliding window (min_sup =5)

Ti
m

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

Size of sliding window (min_sup =10)

Ti
m

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

range of the FIM-UDS method is also very small.
As shown in Figure 7, in the dense dataset mushroom,
when the size of the sliding window is constant, the
time cost of the FIM-UDS, U-Apriori and UF-Growth
methods exhibits a growth trend with increasing val-
ues of min_sup. Compared with the other two meth-
ods, the time cost of the FIM-UDS method is the
smallest. Additionally, the time cost increases by only
a small ratio, and the growth margin is also very small

Information Technology and Control 2019/1/4844

Figure 7
Time cost of three methods on dense dataset mushroom

Figure 8
Memory usage of three methods on sparse dataset T10I4D100K

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Size of sliding window (min_sup =5)

Lo
g 2 o

f t
im

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

Size of sliding window (min_sup =10)

Lo
g 2 o

f t
im

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

30 40 50 60 70 80 90 100

0

5

10

15

Size of sliding window (min_sup =15)

Lo
g 2 o

f t
im

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Size of sliding window (min_sup =5)

Lo
g 2 o

f t
im

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

Size of sliding window (min_sup =10)

Lo
g 2 o

f t
im

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

30 40 50 60 70 80 90 100

0

5

10

15

Size of sliding window (min_sup =15)

Lo
g 2 o

f t
im

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Size of sliding window (min_sup =5)

Lo
g 2 o

f t
im

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

Size of sliding window (min_sup =10)

Lo
g 2 o

f t
im

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

30 40 50 60 70 80 90 100

0

5

10

15

Size of sliding window (min_sup =15)

Lo
g 2 o

f t
im

e
co

st
 (s

)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

220

240

260

Size of sliding window (min_sup =3)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100

60

80

100

120

140

160

180

200

220

Size of sliding window (min_sup =5)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

Size of sliding window (min_sup =10)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

220

240

260

Size of sliding window (min_sup =3)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100

60

80

100

120

140

160

180

200

220

Size of sliding window (min_sup =5)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

Size of sliding window (min_sup =10)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

220

240

260

Size of sliding window (min_sup =3)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100

60

80

100

120

140

160

180

200

220

Size of sliding window (min_sup =5)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

Size of sliding window (min_sup =10)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

of min_sup. Our proposed FIM-UDS method is also the
most efficient method, and it is also very stable.
Figures 8 and 9 show that the peak memory usage
of our proposed FIM-UDS is the lowest of the three
compared methods. The peak memory usage of the
FIM-UDS method shows a steady trend when the

with an increasing sliding window size. However, the
time cost of the UF-Growth method is relatively large,
and the critical point of sudden growth increases
gradually with an increase in the sliding window size.
On dataset mushroom, when the size of the sliding win-
dow is unchanged, the time cost of the three methods
presents a downward trend with the increasing values

45Information Technology and Control 2019/1/48

value of min_sup increases. More specifically, the in-
creasing peak memory usage of the FIM-UDS meth-
od is very large when the value of min_sup is 20 and
30 on sparse dataset T10I4D100K, and the increas-
ing peak memory usage of the FIM-UDS method is

Figure 9
Memory usage of three methods on dense dataset mushroom

10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

500

550

600

650

Size of sliding window (min_sup =5)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

Size of sliding window (min_sup =10)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

Size of sliding window (min_sup =15)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

500

550

600

650

Size of sliding window (min_sup =5)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

Size of sliding window (min_sup =10)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

Size of sliding window (min_sup =15)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

500

550

600

650

Size of sliding window (min_sup =5)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

Size of sliding window (min_sup =10)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

Size of sliding window (min_sup =15)

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

U-Apriori
FIM-UDS
UF-Growth

very large on dense dataset mushroom when the val-
ue of min_sup is smaller than 40. On sparse dataset
T10I4D100K, the peak memory usage of the U-Apri-
ori method is the highest among the three methods,
and the peak memory usage of the UF-Growth meth-
od is the highest on dense dataset mushroom.

6. Conclusions
With the rapid development of technology, the scale
of data stream has shown an explosive growth trend
in recent years, the uncertain data stream is also ap-
pearing more frequently. Unfortunately, outliers often
exist accompanied with the data stream, and the exist-
ing outliers may distort the processing of the collect-
ed data stream; therefore, the issue of outliers needs
to be solved. From the definition of outliers, we know
that outliers rarely appear and differ from normal data;
thus, outlier detection on uncertain data stream can
be divided into (1) a frequent itemset mining process
and (2) an outlier detection process. In this paper, we
first propose an algorithm called FIM-UDS to mine
the frequent itemsets over an uncertain data stream
and then propose an outlier detection method called
FIM-UDSOD that is based on mined frequent itemsets
and design two outlier factors. More specifically, the
matrix structure is used in the FIM-UDS algorithm
to store the data information existing in an uncertain
data stream, and the “upper cap” needs to be computed
before the frequent itemset mining to reduce the num-
ber of potential extended operations. For the FIM-UD-
SOD method, the size of the current transaction is also
considered to detect the outliers more fairly.
The experiments are conducted with different sizes
of sliding windows and different values of min_sup to
evaluate the performance of our proposed FIM-UDS
method. The results show that the FIM-UDS method
is much more effective than the U-Apriori method
and the UF-Growth method. The FIM-UDSOD meth-
od is capable of detecting the existing outliers when
the lengths of the transactions vary.

Acknowledgement
This work was supported by the Chinese Universi-
ties Scientific Fund under grant number 2017XD003
and the Fundamental Research Funds for the Central
Universities under grant number 2018XD004.

Information Technology and Control 2019/1/4846

Streams. Information Systems, 2016, 55, 37-53. https://
doi.org/10.1016/j.is.2015.07.006

11. Leung, C. K. S., Carmichael, C. L., Hao, B. Efficient
Mining of Frequent Patterns from Uncertain Data.
Proceedings of 7th IEEE International Conference on
Data Mining Workshop (ICDMW 2007), Omaha, USA,
October 28-31, 2007, 489-494. https://doi.org/10.1109/
ICDMW.2007.84

12. Lim, Y., Kang, U. Time-Weighted Counting for Recently
Frequent Pattern Mining in Data Streams. Knowledge
and Information Systems, 2017, 53(2), 391-422. https://
doi.org/10.1007/s10115-017-1045-1

13. Ramaswamy, S., Rastogi, R., Shim, K. Efficient Al-
gorithms for Mining Outliers from Large Data Sets.
Proceedings of ACM SIGMOD Record (2000), Tex-
as, USA, May 15-18, 2000, 427-438. https://doi.
org/10.1145/342009.335437

14. Shi, Y., Zhang, L. COID: A Cluster–Outlier Iterative De-
tection Approach to Multi-Dimensional Data Analysis.
Knowledge and Information Systems, 2011, 28(3), 709-
733. https://doi.org/10.1007/s10115-010-0323-y

15. Tang, B., He, H. A Local Density-Based Approach for
Outlier Detection. Neurocomputing, 2017, 241, 171-180.
https//doi.org/10.1016/j.neucom.2017.02 .039

16. Vries, T. D., Chawla, S., Houle, M. E. Density-Preserving
Projections for Large-Scale Local Anomaly Detection.
Knowledge and Information Systems, 2012, 32(1), 25-
52. https://doi.org/10.1007/s10115-011-0430-4

17. Yu, J. X., Chong, Z., Lu, H., Zhang, Z., Zhou, A. A False
Negative Approach to Mining Frequent Itemsets from
High Speed Transactional Data Streams. Informa-
tion Sciences, 2006, 176(14), 1986-2015. https://doi.
org/10.1016/j.ins.2005.11.003

18. Yun, U., Kim, D., Ryang, H., Lee, G., Lee, K. M. Mining
Recent High Average Utility Patterns Based on Slid-
ing Window from Stream Data. Journal of Intelligent
& Fuzzy Systems, 2016, 30(6), 3605-3617. https://doi.
org/10.3233/IFS-162106

19. Yun, U., Kim, D., Yoon, E., Fujita, H. Damped Window
Based High Average Utility Pattern Mining Over Data
Streams. Knowledge-Based Systems, 2018, 144, 188-
205. https://doi.org/10.1016/j.knosys.2017.12.029

20. Yun, U., Lee, G. Sliding Window Based Weighted Erasa-
ble Stream Pattern Mining for Stream Data Applicati-
ons. Future Generation Computer Systems, 2016, 59,
1-20. https://doi.org/10.1016/j.future.2015.12.012

References
1. Angiulli, F., Fassetti, F. Detecting Distance-Based Out-

liers in Streams of Data. Proceedings of 16th ACM Con-
ference on Information and Knowledge Management
(CIKM 2007), Lisbon, Portugal, November 6-10, 2007,
811-820. https://doi.org/10.1145/1321440.1321552

2. Angiulli, F., Fassetti, F. Distance-Based Outlier Queries
in Data Streams: The Novel Task and Algorithms. Data
Mining and Knowledge Discovery, 2010, 20(2), 290-
324. https://doi.org/10.1007/s10618-009-0159-9

3. Cao, L., Yang, D., Wang, Q., Yu. Y., Wang. J., Rundenstein-
er, E. A. Scalable Distance-Based Outlier Detection
Over High-Volume Data Streams. Proceedings of 30th
IEEE International Conference on Data Engineering
(ICDE 2014), Chicago, USA, March 31 - April 4, 2014,
76-87. https://doi.org/10.1109/ICDE.2014.6816641

4. Cai, S., Sun, R., Cheng, C., Wu, G. Exception Detection
of Data Stream Based on Improved Maximal Frequent
Itemsets Mining. Proceedings of 11th Springer Chinese
Conference on Trusted Computing and Information Se-
curity (CTCIS 2017), Changsha, China, September 14-17,
112-125. https://doi.org/10.1007/978-981-10-7080-8_10

5. Chui, C. K., Kao, B., Hung, E. Mining Frequent Item-
sets from Uncertain Data. Proceedings of 11th Spring-
er Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD 2007), Nanjing, China, May
22-25, 2007, 47-58. https://doi.org/10.1007/978-3-540-
71701-0_8

6. Hawkins, D.M. Identification of Outliers. London:
Chapman and Hall, 1980. https://doi.org/10.1007/978-
94-015-3994-4

7. He, Z., Xu, X., Huang, Z. J., Deng, S. FP-Outlier: Frequent
Pattern Based Outlier Detection. Computer Science
and Information Systems, 2005, 2(1), 103-118. https://
doi.org/10.2298/CSIS0501103H

8. Hemalatha, C. S., Vaidehi, V., Lakshmi, R. Minimal In-
frequent Pattern Based Approach for Mining Outliers
in Data Streams. Expert Systems with Applications,
2015, 42(4), 1998-2012. https://doi.org/10.1016/j.
eswa.2014.09.053

9. Huang, J., Zhu, Q., Yang, L., Cheng, D, Wu, Q. A Novel
Outlier Cluster Detection Algorithm Without Top-n
Parameter. Knowledge-Based Systems, 2017, 121, 32-
40. https://doi.org/10.1016/j.knosys.2017.01.013

10. Kontaki, M., Gounaris, A., Papadopoulos, A. N., Tsichlas,
K., Manolopoulos, Y. Efficient and Flexible Algorithms
for Monitoring Distance-Based Outliers Over Data

