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Outlier detection is essential in data-based science. It aims to detect those itemsets that have a significant differ-
ence from the other data. With the limitations of equipment precision and network transmission, uncertain data 
are becoming more common in daily life. However, the traditional outlier detection methods are not applicable for 
uncertain data stream, and the large volume of data makes outlier detection costly in terms of memory usage and 
time. Moreover, the multiple scanning of the data stream required for Apriori-like methods is unrealistic. In this 
paper, a matrix structure is constructed to store the information of an uncertain data stream, and the subsequent 
mining process is conducted on the matrix structure; therefore, the whole data stream needs to be scanned only 
once. Then, the “upper cap” concept is used in the FIM-UDS method to mine the frequent itemsets more effective-
ly to support outlier detection. Moreover, two outlier factors and an outlier detection method called FIM-UDSOD 
are designed to detect potential outliers. Finally, two public datasets are used to verify the efficiency of the FIM-
UDS method, and one synthetic dataset is used to evaluate the FIM-UDSOD method. The experimental results 
show that our proposed FIM-UDSOD method is more effective than other methods in detecting outliers.
KEYWORDS:  outlier detection, frequent itemset mining, uncertain data stream, outlier factors.

1. Introduction
As a main form of data, data stream is increasingly com-
mon in daily life due to the wide use of sensors. However, 
outliers (abnormal data) exist with the emergence of data 

stream, and they have seriously affected the accuracy of 
the data. Therefore, the outliers need to be detected as 
soon as possible to allow better use of the collected data.
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The traditional outlier detection methods can be 
divided into clustering-based methods [9, 14], dis-
tance-based methods [1, 2, 3, 10], KNN-based 
(K-nearest neighbor) methods [13], density-based 
methods [15, 16] and frequent itemset mining-based 
methods [4, 7]. The traditional clustering-based out-
lier detection methods, distance-based outlier detec-
tion methods, KNN-based outlier detection methods 
and density-based outlier detection methods can 
detect implicit outliers. However, the increasing fre-
quency of subitemsets has not been taken into con-
sideration in outlier detection; therefore, the detected 
outliers are not consistent with the definition of out-
liers proposed by Hawkins [6]. Aimed at this problem, 
the itemset mining-based outlier detection methods 
fully consider the influence of the frequency of the 
existing itemsets on abnormality judgment. However, 
the outlier judgment condition of the existing item-
set mining-based outlier detection method, FindF-
POF [7], is very simple, which makes the efficiency 
of outlier detection very poor when the length of the 
detected transactions is not constant. Moreover, the 
most common outlier detection methods [7, 13-16] 
are directed toward static precise data (the data’s ex-
istence or nonexistence has been determined), which 
are not suitable for uncertain data stream (each data 
element has an existential probability), although the 
data are only added as a probability attribute. Al-
though window-based technologies such as sliding 
windows [20], damped windows [19] and landmark 
windows [17] provide good solutions for processing 
data stream, the large volume of data stream causes 
the frequent itemset mining processes to require con-
siderable time cost. The multiple scanning of the data 
stream in methods such as some Apriori-like meth-
ods [5] and FP-growth-like methods [12, 18, 20] is also 
unrealistic in the era of big data.
Another problem we need to solve is the design of 
an evaluation index for outliers. Such an index is an 
important factor for outlier detection, and the bene-
fits and drawbacks of the designed evaluation index 
directly determine the outlier detection efficiency. 
However, the evaluation index of precise data is not 
suitable for uncertain data, and no evaluation index 
has existed for uncertain data stream until now.
Based on the problems of outlier detection over the 
uncertain data stream listed above, this paper pres-
ents an efficient outlier detection method. The main 
contributions are summarized as follows:

1 The influence of the frequency of each itemset on 
abnormality judgment is fully considered to make 
the detected outliers more consistent with the defi-
nition of outliers proposed by Hawkins.

2 An algorithm directed into Frequent Itemset Min-
ing over Uncertain Data Stream (called FIM-UDS) 
is proposed. It uses a matrix to store the informa-
tion existing in an uncertain data stream and then 
computes the “upper cap” before frequent itemset 
mining to reduce the potential scale of the extended 
itemsets. The longer frequent itemsets are mined 
with the extending process of frequent 1-itemsets.

3 A Frequent Itemset Mining-based Outlier Detec-
tion method over Uncertain Data Stream (called 
FIM-UDSOD) is proposed to effectively detect the 
implicit outliers based on the two designed devia-
tion factors.

The remainder of this paper is organized as follows. 
Related work is introduced in Section 2. The pre-
liminaries and problem definition are presented in 
Section 3. The outlier detection method, including 
frequent itemset mining and outlier detection, is in-
troduced in Section 4. The experimental results and 
discussion are presented in Section 5. Finally, the 
conclusions of this paper are discussed in Section 6.

2. Related Work
In this section, we introduce some related work cor-
responding to this paper, including (1) frequent item-
set mining on data stream and (2) outlier detection.

2.1. Frequent Itemset Mining on Data Stream
In recent years, several frequent itemset mining al-
gorithms have been proposed to mine frequent item-
sets on data stream. Lim and Kang [12] proposed 
TwMinSwap to track recent frequent items in high-
speed data stream and TwMinSwap identifies re-
cent frequent itemsets from high-speed data stream. 
Aimed at the sliding window-based data stream en-
vironments, Yun and Lee [20] proposed a new algo-
rithm called WEPS to extract the weighted erasable 
patterns, where the new tree and list data structures 
were applied in the mining process. During the pat-
tern expanding operations, only the basic informa-
tion of the tree’s data was stored in the list structure, 
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in order to improve mining efficiency. To mine more 
meaningful patterns, the gain values of patterns and 
different item importance are considered in the eras-
able pattern mining framework, and then a weight 
factor-based strong pattern pruning technique and 
the overestimated method satisfying the anti-mono-
tone property are used to prevent unintended pat-
tern losses caused by the weight factor. Yun et al. [18] 
proposed the first HAUPM algorithm named SHAU 
that considers the time factors of transactions to find 
recent important high average utility patterns over 
a data stream, where the tree-based data structure 
called SHAU-tree was used to store average utility in-
formation of a recent stream data batch by batch, and 
the batch list was used to store each node. To further 
decrease the number of generated candidates, a new 
strategy, named RUG, was proposed to minimize the 
values of overestimated average utilities stored in the 
global SHAU-tree during the accumulation of stream 
data.

2.2. Outlier Detection
For the clustering-based outlier detection method, 
Huang et al. [9] proposed a novel outlier cluster de-
tection algorithm called ROCF that does not require 
the top-n parameter, where a preliminary clustering 
algorithm was proposed to conduct outlier cluster 
detection based on a MUtual Neighbors Graph con-
structed by connecting each point to its mutual neigh-
bors. Then, an outlier detection approach based on 
the idea that outlier clusters are usually much smaller 
than normal clusters was proposed to detect implicit 
outliers. The clusters were judged as outlier clusters 
via decision graph instead of parameter n or α by man-
ual set. Shi and Zhang [14] proposed a novel cluster-
ing-based outlier iterative detection method to detect 
the outliers and then adjusted the cluster according 
to the relationship between the internal relations of 
the clusters to improve the efficiency of the detec-
tion rate. The detection result of the clustering-based 
method is highly dependent on the selected clustering 
algorithm and is time consuming.
For the distance-based outlier detection method, 
Kontaki et al. [10] first proposed a novel continuous 
distance-based outlier detection algorithm called 
COD that has two versions, where the radius R was 
fixed, and the values of k were changing. Then, a new 
distance-based outlier detection algorithm called 

ACOD was proposed to support the handling of mul-
tiple values of k and multiple values of R to enable the 
concurrent execution of different monitoring strate-
gies. Finally, a microcluster-based outlier detection 
algorithm called MCOD was proposed to reduce the 
distance calculating times, which could be easily ex-
tended to a new edition of AMCOD to support multi-
ple queries. Angiulli and Fassetti [1] first proposed the 
high memory cost distance-based outlier detection 
algorithm, and then they [2] proposed a strictly fixed 
memory requirements approximation algorithm to 
reduce the memory usage of the former algorithm. 
However, distance-based methods need to calculate 
the distance of each itemset, which is computation-
ally intensive.
For the KNN-based outlier detection method, Ra-
maswamy et al. [13] proposed a K-nearest neigh-
bor-based new outlier detection method to over-
come some defects of the distance-based methods; 
it ranked every point according to the distance from 
its nearest neighbor point to the K-nearest neighbor 
point, and the top n points were determined as outli-
ers. Although the KNN-based method is much more 
efficient than the distance-based methods, it is not 
suitable for large-scale data because its computation-
al volume is very large.
For the density-based outlier detection method, Vries 
et al. [16] used a projection strategy to search the KNN 
outliers and then proposed an outlier detection meth-
od based on the local density to detect the outliers. 
Tang and He [15] presented an effective density-based 
outlier detection approach with local kernel density 
estimation (KDE). A relative density-based outlier 
score (RDOS) was introduced to measure the local 
outlierness of objects, where the density distribution 
at the location of an object was estimated with a local 
KDE method based on the extended nearest neigh-
bors of the object. Instead of using only the k-nearest 
neighbors, the reverse nearest neighbors and shared 
nearest neighbors of an object for density distribution 
estimation were further considered in the proposed 
algorithm. However, density-based methods may face 
the problem of dimension disasters.
For the itemset mining-based outlier detection meth-
od, the FindFPOF method [7] was first proposed to 
detect the implicit outliers from a static precise data-
set, where the judging standard was the proportion 
of the contained frequent itemsets to the total num-
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ber of mined frequent itemsets. Because the length 
of each transaction was not considered in the outlier 
detection phase, the accuracy of outlier detection was 
not high enough when the length of the transactions 
was unfixed. The maximal frequent itemset min-
ing-based outlier detection method was proposed 
by Cai et al. [4] to reduce the time cost of the outlier 
detection phase, where the whole outlier detection 
process was divided into a maximal frequent itemset 
mining phase and a pattern matching phase. Hemal-
atha et al. [8] proposed a minimal infrequent itemset 
mining-based outlier detection algorithm, MIFPOD, 
to further improve the detection accuracy. In the 
MIFPOD algorithm, three outlier factors, transaction 
weighting factor (TWF), minimal infrequent devi-
ation factor (MIPDF) and minimal infrequent pat-
tern-based outlier factor (MIFPOF), were designed 
to provide the basis for outlier detection.

3. Preliminaries and Problem 
Definition
In this section, we first introduce some concepts relat-
ed to this paper, and then the problem definition is de-
scribed to illustrate the problem that needs to be solved.

3.1. Preliminaries
Let I={i1, i2, i3,…, in} be a set of literals called item-
set and Is={i1, i2,…, ik} be a k-itemset, where Is ⊆I and 
k∈[1,n], Is is a subset of I and I is the superset of Is.
Data stream DS=[t1, t2, …, tm) contains a collection of 
infinite transactions, and each tj is a subset of itemset 
I.
The sliding window (SW) model allows processing 
of only the most recent transactions from the data 
stream, and |SW| is defined as the size of the sliding 
window.
Unlike the precise data stream, each item {ij} of the 
uncertain data stream exists with an existential 
probability value (p(ij ,tj)), and it expresses the like-
lihood of {ij} that appeared in transaction tj, where 

( )0 < , 1j jp i t ≤ . If itemset X is formed by some items 
x, then ( ) ( ,, )j

x
j

X

p xp X t t
∈

= ∏ .

Definition 1. Support (sup): the frequency of 
itemset X that exists in DS is defined as support, 
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Definition 2. Frequent itemset (FI): the itemset X is 
an FI if its support is not less than the predefined min-
imum support threshold min_sup.
Definition 3. Infrequent itemset (iFI): the itemset X 

is an iFI if its support is less than the predefined min-
imum support threshold min_sup.
For illustrating the above definitions more intuitively, 
we take the next transactions that are shown in Table 
1 as an example. In this example, |SW| is set to 5 and 
min_sup is set to 0.7.
In transaction t1, the existential probability of itemset 
{a} is 0.8, and the existential probability of itemset 
{ab} is 0.48 (0.8*0.6). In the current sliding window, 
sup({ab})= 0.8*0.6+0.6*0+0.3*0.5+0*0.5+0.4*0.3=0.75
>0.7; therefore, {ab} is a frequent itemset.

Table 1
Transaction information of a data stream

id Transaction id Transaction

t1
{a:0.8, b:0.6, d:0.3, 

e:0.4, f:0.2} t5
{a:0.4, b:0.3, c:0.6, 

f:0.2}

t2
{a:0.6, c:0.9, e:0.7, 

f:0.1} t6
{a:0.7, d:0.5, e:0.4, 

f:0.6}

t3
{a:0.3, b:0.5, c:0.6, 

e:0.2} t7
{b:0.6, c:0.2, d:0.4, 

f:0.3}

t4
{b:0.5, d:0.2, e:0.7, 

f:0.3} t8 {c:0.5, d:0.4, e:0.7}

… …… … ……

The downward closure property [4] is an important 
theoretical basis in FI mining to make the mining pro-
cess more efficient, which can save considerable time 
cost on the “extension” operation.
Property 1. All nonempty subsets of frequent item-
sets are frequent.
Proof. Assume s is a frequent itemset, that is 
sup(s)≥min_sup. s’ is a nonempty subset of s, which 
means that s’ is contained in the transactions that 
contain s, that is, sup(s’)≥sup(s)≥min_sup; therefore, 
s’ is also frequent.
Property 2. All supersets of infrequent itemsets are 
infrequent.
Proof. Assume s is an infrequent itemset, s’ is a superset 
of s, and s’ is also a frequent itemset, that is, s is a subset 
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of s’. It can be known from Property 1 that s is a frequent 
itemset, which is contradicted by the assumption.

3.2. Problem Definition
Based on the above definitions, the problem definition 
of outlier detection over uncertain data stream based 
on frequent itemset mining can be described as fol-
lows:
Problem definition. Given a DS and the user-speci-
fied minimal outlier threshold Φ, the task is to find the 
transactions whose outlier factors are less than Φ. In 
the frequent itemset mining phase, the task is to find 
the itemsets whose support is not less than the pre-
defined minimal support of min_sup.

4. Our Proposed Approach
In this section, we propose an outlier detection meth-
od called FIM-UDSOD that is based on frequent item-
set mining to detect abnormal data (outliers) over un-
certain data stream.
The main steps of the FIM-UDSOD method are di-
vided into the following: (1) frequent itemset mining 
stage and (2) outlier detection stage. In the frequent 
itemset mining stage, the matrix structure is con-
structed to store the data information of the uncertain 
data stream when the data flow in the sliding window 
and the infrequent itemsets are deleted to reduce the 
potential number of extended itemsets. In the outlier 
detection stage, the outliers are detected based on the 
created deviation factors and the outlier determina-
tion method, and the transactions whose deviation 
degree is less than the predefined threshold Φ are re-
garded as outliers. Thus, in frequent itemset mining, 
the creation of deviation factors and outlier deviation 
calculating are the core parts of outlier detection over 
uncertain data stream.
In this section, the first subsection presents the fre-
quent itemset mining method, and the second sub-
section introduces two deviation factors and the 
outlier detection method based on the mined fre-
quent itemsets.

4.1. Frequent Itemset Mining Method
To deal with the stream property, we propose a slid-
ing window-based method called FIM-UDS to mine 
the most recent frequent itemsets over uncertain 

data stream. Because the “extension” process is the 
most time-consuming process, we propose the “up-
per cap” concept to reduce the potentially extended 
itemsets. The whole process is split into the next 5 
steps, and each step is explained in the example list-
ed in Table 1.
1 Matrix Construction: In the FIM-UDS method, we 

use a matrix structure to store the data informa-
tion of an uncertain data stream. The scale of the 
constructed matrix is (|SW|+1)*m (m is the maxi-
mal size of items, row (|SW|+1) stands for the sup-
port of each item). Transactions are scanned, and 
the probability of each item is added into matrix 
A in turn, the probability of item {ik} appearing in 
Td is written as Ad,k; otherwise, Ad,k is written as 0 if 
item {ik} does not appear in Td. The sliding window 
moves to the next new transaction after finishing 
the current frequent itemset mining process. After 
constructing the matrix, the support of each item 
is calculated, and these items whose support is less 
than the predefined min_sup are not considered in 
the next “extension” process, and these frequent 
1-itemsets are added into FI_L (frequent itemset 
library). The example of matrix construction is 
listed as follows: the min_sup is set to 0.7, and the 
size of the sliding window is 5.
The data information of transactions t1, t2, t3, t4 and 
t5 are scanned and written to matrix A successive-
ly, and then the support of each item is calculated. 
The constructed matrix A is shown in Figure 1. Af-
ter calculation, 1-itemset {d} is infrequent due to 
sup({d})=0.5<0.7, and it is discarded to reduce the 
“extension” process. Then, frequent 1-itemsets of 
{a}, {b}, {c}, {e} and {f} are saved into FI_L.

Figure 1
The construction of matrix A
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2 Ucap and supcap calculation: The “upper cap” value 
(Ucap) for each 1-itemset is calculated before the 
“extension” process to reduce the potential scale of 
extended itemsets. The specific calculation meth-
ods of Ucap and supcap are listed in formula (1) and 
formula (2):
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In formula (1), M is the maximal probability of the 
item except for itself, k is the length of the itemset 
(k-itemset) that needs to be extended. If supcap(X) 
is less than the predefined min_sup, the itemset X 
does not require an “extension” process because 
any superset of infrequent itemsets is impossible. 
The supcap value is given in Figure 2.
In this example, Ucap(a,t1)=0.8*0.6=0.48. From 
the calculation of sup, we know that 1-itemset 
{d} is infrequent; then, the values in column d 
are all written as 0. After calculation of supcap,  
supcap(f)=0.58<0.7, that is to say, any superset that 
contains item {f} cannot be frequent; therefore, 
item {f} does not need to be added into potentially 
extended itemsets.

Figure 2
The supcap value for each 1-itemset
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(take the least Ucap value of the constituent 1-item-
set) process, and then these “frequent 2-itemsets” 
are saved into FI_L.
In the example, the 2-itemsets of {{ab}, {ac}, {ae}, 
{bc}, {be}, {ce}} are extended by frequent 1-itemsets 
of {a}, {b}, {c}, {e} with the “union” process. Then 
the supcap of each 2-itemset is calculated as follows:
supcap({ab})=0.48+0+0.18+0+0.18=0.84 (frequent);
supcap({ac})=0+0.54+0.18+0+0.24=0.96 (frequent);
supcap({ae})=0.32+0.54+0.12+0+0=0.98 (frequent);
supcap({bc})=0+0+0.3+0+0.18=0.48 (infrequent);
supcap({be})=0.32+0+0.12+0.35+0=0.79 (frequent);
supcap({ce})=0+0.63+0.12+0+0=0.75 (frequent).
After calculation, 2-itemset {bc} is infrequent; it is 
not a potential extended itemset and any superset 
({abc} and {bce}) also cannot been frequent, there-
fore, the supersets of itemset {bc} no longer need to 
be calculated. Then, the “frequent 2-itemsets” of 
{{ab}, {ac}, {ae}, {be}, {ce}} are saved into FI_L.

4 “Repeat (2) and (3)”: Repeat steps (2) and (3) until 
no frequent itemsets can be extended.
In our example, the “upper cap” value of Ucap for 
each 2-itemset is calculated with formula (1), and 
the supcap is calculated with formula (2). The calcu-
lation result is listed in Figure 3.
In the example, Ucap(a,t1)=0.8*0.6*0.6=0.288, oth-
er Ucap values are also similarly calculated. Due to 
supcap({c})=0.687<0.7, itemset {c} need not be con-
sidered in the next extended process. Then, items 
{a}, {b} and {e} are extended into 3-itemset {abe} 
and supcap({abe})=0.256+0+0.072+0+0=0.328 <0.7, 
which is not a frequent itemset. All “extension” 
processes are ended because no more frequent 
itemsets exist in this example.

3 “Frequent 2-itemset” mining: The 2-itemsets are 
extended by these frequent 1-itemsets with the 
“union” process. The “support value” (denoted as 
sup’) calculation of each 2-itemset is “taking least” 

Figure 3
The pcap(xr) and supcap(X) for each 2-itemset
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5 “Frequent itemset” checking: After the “extension” 
process, these “frequent itemsets” that exist in FI_L 
(except for frequent 1-itemsets) need to be checked 
to determine if they are truly frequent, and the in-
frequent itemset should be removed from FI_L:
sup({ab})=0.48+0+0.15+0+0.12=0.75 (frequent);
sup ({ac})=0+0.54+0.18+0+0.24=0.96 (frequent);
sup ({ae})=0.32+0.42+0.06+0+0=0.8 (frequent);
sup({be})=0.24+0+0.1+0.35+0=0.69<0.7(infrequent);
sup({ce})=0+0.63+0.12+0+0=0.75 (frequent).
With the above 5 steps, all the frequent itemsets of 
{{a}, {b}, {c}, {e}, {f}, {ab}, {ac}, {ae}, {ce}} have been 
mined from the target dataset, and the detailed 
steps are shown in Algorithm 1.

Algorithm 1: FIM-UDS

Input: Uncertain data stream, m (largest size of 
items), min_sup
Output: FIs

1. construct matrix
2.add probability value into matrix
3.for k=1 to m do
4.  calculate sup({ik})
5.  if sup({ik})≥min_sup then
6.    FI_L←{ik} // frequent 1-itemsets are added into 
FI_L
7.  end if
8.  calculate pcap(ik,tj) and supcap(ik)
9.  if supcap(ik) ≥ min_sup then
10.    for k=1 to m do
11.      extend {ix} and {iy} into {ix,iy}
12.      calculate sup’({ix,iy})
13.      if sup’({ix,iy})≥min_sup then
14.        FI_L←{ix,iy}  // ”frequent 2-itemsets” are 
added into FI_L
15.      end if
16.    end for
17.  end if
18.  go to 8
19.end for
20. check if “frequent itemsets” are truly frequent
21.return FIs
22. move the sliding window
23. go to 2

4.2. Outlier Detection Method
From the definition of an outlier, we know that an 
outlier is data with a significant difference from other 
data; therefore, the outlier index of each transaction 
is a major indicator of outliers. He et al. [7] proposed 
the frequent itemset mining-based outlier detection 
method, but the influence of the length of the trans-
actions on outlier detection was not fully considered. 
In the definition of the outlier index in the literature 
[10], the transaction is judged as a normal transaction 
if the frequent itemset outlier index is larger than the 
predefined threshold. However, if the length of the 
transaction is sufficiently long to make the proportion 
of the frequent itemsets to the transaction relatively 
small, it is not fair to judge the current transaction 
outlier or not based on the theory proposed in the 
literature [10]. Therefore, in this subsection, we pro-
posed two outlier factors based on the mined frequent 
itemsets to determine the possibility of the transac-
tion being or not being an outlier, which considers the 
proportion of the frequent itemsets to the length of 
the transaction.
Definition 4. FIOF (Frequent Itemset Outlier Factor): 
Let DS=[t1, t2, …, tn) be n transactions in the sliding 
window, the total number of mined frequent itemsets 
is |FIL|, FIOF of transaction ti is defined as:
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The interpretation of formula (3) is as follows: if a 
transaction ti contains more frequent itemsets, the 
FIOF value will be much larger, and the larger FIOF 
value indicates transaction ti is less likely to be an out-
lier.
Definition 5. TOF (Transaction Outlier Factor): Let 
DS=[t1, t2, …, tn) be n transactions in the sliding win-
dow, and suppose that the size of the current transac-
tion is m. For each transaction ti, TOF is defined as:
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The interpretation of formula (4) is as follows: if a 
transaction contains more frequent itemsets, its FIOF 
value is correspondingly greater; therefore, the TOF 
value is also much greater, and the higher TOF value in-
dicates that transaction ti is less likely to be an outlier.
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In our approach, the TOF value is used as the basic 
measure to judge whether a transaction is an outlier, 
and the main idea of the outlier detection method over 
an uncertain data stream based on frequent itemset 
mining (FIM-UDSOD) is as follows: (1) calculate the 
defined values of FIOF and TOF, (2) compare the TOF 
value with the predefined minimal threshold Φ. If 
TOF(ti) is less than Φ, transaction ti is determined to 
be an outlier. The specific process of the FIM-UDSOD 
method is included in Algorithm 2.

Algorithm 2: FIM-UDSOD

Input: Data stream, Φ, n (size of |SW|)
Output: Outliers

1. call Algorithm 1   // mine all frequent itemsets
2. for i ∈[1,n] do
3.  for X in transaction ti and FI_L do
4.    call formula (3)
5.    call formula (4)
6.  end for
7.end for
8. if TOF(Ti) < F then
9.  ti is judged as outlier

10. end if

Next, we take the data information in Table 1 as an 
example to clearly explain the proposed FIM-UDSOD 
method. The parameters are the same as above, and Φ 
is set to 0.055. The number of mined frequent item-
sets in this example is 9. The final calculation results 
are shown in Table 2.

Table 2
Specific results of outlier detection

Trans m FIs FIOF TOF

t1 5 {a}, {b}, {e}, {f}, 
{ab},{ae} 0.311 0.0622

t2 4 {a}, {c}, {e}, {f}, {ac}, 
{ae}, {ce} 0.432 0.1081

t3 4 {a}, {b}, {c}, {e}, {ab}, 
{ac}, {ae}, {ce} 0.234 0.0586

t4 4 {b}, {e}, {f} 0.167 0.0417

t5 4 {a}, {b}, {c}, {f}, 
{a,b},{a,c} 0.207 0.0517

After the calculation of TOF(ti), we find that the nu-
merical value of TOF(t4) and TOF(t5) is less than the 
minimal threshold Φ. Then, transactions t4 and t5 are 
determined to be outliers.

5. Experimental Results and 
Discussions
To evaluate the proposed FIM-UDSOD method, nu-
merous experiments are conducted on a synthetic 
dataset randomly generated with lengths ranging 
from [6,9]. Each element of the synthetic dataset is 
independent and randomly selected from [1,9] with a 
randomly generated probability from (0,1.0), and the 
scale is 300 to display the outlier detection results. 
Then, we randomly generate several outliers to sub-
stitute for the generated elements, and the outlier 
element is selected from [10,15] with a random prob-
ability from (0,1.0). To test the mining efficiency of 
the proposed FIM-UDS method, two public datasets 
of T10I4D100K and mushroom downloaded from the 
Frequent Itemset Mining Implementations Reposi-
tory (http://fimi.cs.helsinki.fi/data/) are used in the 
experiment. The existential probability range in (0,1) 
is randomly generated for each itemset, as suggested 
by the literature [11] because these datasets do not 
provide probability values.
The FindFPOF method [7] and MIFPOD method [8] 
are used as the compared methods to test the detec-
tion efficiency of the FIM-UDSOD method, which is 
tested with different values of min_sup and different 
sizes of the sliding window. To further test the min-
ing efficiency of the proposed FIM-UDS method, the 
U-Apriori [5] method and UF-Growth [11] method 
are used as the comparison methods in the experi-
ments. All experiments are run on a machine running 
Windows 7 with an Intel dual-core i3-2020 2.93 GHz 
processor and 4GB RAM. All algorithms are imple-
mented using Python 3.6.

5.1. Detection Efficiency of FIM-UDSOD 
Method
The experiment that tests the detection efficiency of 
the FIM-UDSOD method is conducted with differ-
ent sizes of sliding windows and different values of 
min_sup, where the top k transactions in this exper-
iment indicate the selected previous k transactions 
with the least TOF value when all implanted outliers 
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are detected. The size of the sliding window in this ex-
periment is set at 10 and 20, and the results are shown 
in Figures 4 and 5. The bar in the figure indicates the 
injected number of outliers.

Figure 4
Top k transactions selected when |SW| is 10

Figure 5
Top k transactions selected when |SW| is 20

  

   

0 5 10 15 20 25 30
0

2

4

6

8

10

12

No. of sliding window (min_sup =2)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 
FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =3)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 
FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =4)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 
FIM-UDSOD
FindFPOF
MIFPOD

 

  

   

0 5 10 15 20 25 30
0

2

4

6

8

10

12

No. of sliding window (min_sup =2)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 
FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =3)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 
FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =4)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 
FIM-UDSOD
FindFPOF
MIFPOD

 

  

   

0 5 10 15 20 25 30
0

2

4

6

8

10

12

No. of sliding window (min_sup =2)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 
FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =3)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 
FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15 20 25 30

0

2

4

6

8

10

12

No. of sliding window (min_sup =4)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 
FIM-UDSOD
FindFPOF
MIFPOD

 

 
 

 

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 4)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 

FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 6)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 

FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 8)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 

FIM-UDSOD
FindFPOF
MIFPOD

 

 

 
 

 

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 4)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 

FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 6)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 

FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 8)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 

FIM-UDSOD
FindFPOF
MIFPOD

 

 

 
 

 

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 4)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 

FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 6)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 

FIM-UDSOD
FindFPOF
MIFPOD

 
0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

No. of sliding window (min_sup = 8)

To
p 

 k
 tr

an
sa

ct
io

ns

 

 

FIM-UDSOD
FindFPOF
MIFPOD

 

 

As shown in Figure 4, when the size of the sliding 
window is 10, the top k transactions selected by the 
FIM-UDSOD method are the smallest of the com-
pared three methods. That is, the outlier detection 

efficiency of the FIM-UDSOD method is the highest 
against the other two methods, and the accuracy of 
the MIFPOD method is relatively accurate compared 
to the FindFPOF method in most situations. The rea-
son for the FIM-UDSOD method being more accu-
rate than the FindFPOF method is that the length of 
transactions is taken into consideration in the outlier 
detection phase. Figure 5 shows the outlier detection 
accuracy of the compared three methods when the 
size of the sliding window is 20. The accuracy of the 
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FIM-UDSOD method is also better than the Find-
FPOF method and MIFPOD method and the outlier 
detection of the FIM-UDSOD method is near 100% 
with the larger value of min_sup.

5.2. Time Cost and Memory Usage of the 
FIM-UDS Method
The itemset mining-based outlier detection process is 
divided into (1) frequent itemset mining phase and (2) 
outlier detection phase, where the frequent itemset 
mining phase requires the most time cost. This sub-
section shows the time cost of the FIM-UDS method 
with different sizes of sliding windows and different 
values of min_sup, where the U-Apriori [5] meth-
od and UF-Growth[11] method are compared. The 
experiments are conducted on two public datasets, 
T10I4D100K and mushroom, where T10I4D100K is a 
sparse dataset and mushroom is a dense dataset. The 
time cost of the FIM-UDS method and two compared 
methods on dataset T10I4D100K is shown in Figure 
6, and the time cost on dataset mushroom is shown 
in Figure 7. The memory usage of the FIM-UDS 
method and the two compared methods on dataset 
T10I4D100K is shown in Figure 8, and the memory 
usage on the dataset mushroom is shown in Figure 9.
Figure 6 shows that for the sparse dataset T10I4D100K 
and a constant value of min_sup, the time cost of the 
FIM-UDS, U-Apriori and UF-Growth methods exhib-
its a growth trend with an increasing sliding window 
size. Compared with the other two methods, the time 
cost of our proposed FIM-UDS method is the smallest 
because a large number of itemsets are discarded in 
the “extension” process for the use of the “upper cap”. 
The time cost of the FIM-UDS method presents a sta-
ble growth trend and only increases the small ratio 
with an increasing sliding window size. However, the 
time cost of the UF-Growth method presents a small 
increase when the size of the sliding window is 
between 10 and 70, and then it presents a sharp in-
crease when the size of the sliding window is equal 
to or greater than 80. The speed of the increase in the 
time cost for the U-Apriori method is relatively fast.
On the sparse dataset T10I4D100K, when the size of 
the sliding window is unchanged, the time cost of the 
FIM-UDS method and UF-Growth method presents a 
very small downward trend with increasing values of 
min_sup. Among the three compared methods, the time 
cost of our proposed FIM-UDS method is the smallest 
with the change in the min_sup value, and the reduced 

Figure 6
Time cost of three methods on sparse dataset T10I4D100K
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range of the FIM-UDS method is also very small.
As shown in Figure 7, in the dense dataset mushroom, 
when the size of the sliding window is constant, the 
time cost of the FIM-UDS, U-Apriori and UF-Growth 
methods exhibits a growth trend with increasing val-
ues of min_sup. Compared with the other two meth-
ods, the time cost of the FIM-UDS method is the 
smallest. Additionally, the time cost increases by only 
a small ratio, and the growth margin is also very small 
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Figure 7
Time cost of three methods on dense dataset mushroom

Figure 8
Memory usage of three methods on sparse dataset T10I4D100K
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of min_sup. Our proposed FIM-UDS method is also the 
most efficient method, and it is also very stable.
Figures 8 and 9 show that the peak memory usage 
of our proposed FIM-UDS is the lowest of the three 
compared methods. The peak memory usage of the 
FIM-UDS method shows a steady trend when the 

with an increasing sliding window size. However, the 
time cost of the UF-Growth method is relatively large, 
and the critical point of sudden growth increases 
gradually with an increase in the sliding window size.
On dataset mushroom, when the size of the sliding win-
dow is unchanged, the time cost of the three methods 
presents a downward trend with the increasing values 
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value of min_sup increases. More specifically, the in-
creasing peak memory usage of the FIM-UDS meth-
od is very large when the value of min_sup is 20 and 
30 on sparse dataset T10I4D100K, and the increas-
ing peak memory usage of the FIM-UDS method is 

Figure 9
Memory usage of three methods on dense dataset mushroom
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very large on dense dataset mushroom when the val-
ue of min_sup is smaller than 40. On sparse dataset 
T10I4D100K, the peak memory usage of the U-Apri-
ori method is the highest among the three methods, 
and the peak memory usage of the UF-Growth meth-
od is the highest on dense dataset mushroom.

6. Conclusions
With the rapid development of technology, the scale 
of data stream has shown an explosive growth trend 
in recent years, the uncertain data stream is also ap-
pearing more frequently. Unfortunately, outliers often 
exist accompanied with the data stream, and the exist-
ing outliers may distort the processing of the collect-
ed data stream; therefore, the issue of outliers needs 
to be solved. From the definition of outliers, we know 
that outliers rarely appear and differ from normal data; 
thus, outlier detection on uncertain data stream can 
be divided into (1) a frequent itemset mining process 
and (2) an outlier detection process. In this paper, we 
first propose an algorithm called FIM-UDS to mine 
the frequent itemsets over an uncertain data stream 
and then propose an outlier detection method called 
FIM-UDSOD that is based on mined frequent itemsets 
and design two outlier factors. More specifically, the 
matrix structure is used in the FIM-UDS algorithm 
to store the data information existing in an uncertain 
data stream, and the “upper cap” needs to be computed 
before the frequent itemset mining to reduce the num-
ber of potential extended operations. For the FIM-UD-
SOD method, the size of the current transaction is also 
considered to detect the outliers more fairly.
The experiments are conducted with different sizes 
of sliding windows and different values of min_sup to 
evaluate the performance of our proposed FIM-UDS 
method. The results show that the FIM-UDS method 
is much more effective than the U-Apriori method 
and the UF-Growth method. The FIM-UDSOD meth-
od is capable of detecting the existing outliers when 
the lengths of the transactions vary.
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