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Modern algorithms for mining frequent itemsets face the noteworthy deterioration of performance when min-
imum support tends to decrease, especially for sparse datasets. Long-tailed itemsets, frequent itemsets found 
at lower minimum support, are significant for present-day applications such as recommender systems. In this 
study, a novel power set based method named as HARnessing the Power of Power sets (HARPP) for mining 
frequent itemsets is developed. HARPP is based on the concept of power set from set theory and incorporates 
efficient data structures for mining. Without storing it entirely in memory, HARPP scans the dataset only once 
and mines frequent itemsets on the fly. In contrast to state-of-the-art, the efficiency of HARPP increases with a 
decrease in minimum support that makes it a viable technique for mining long-tailed itemsets. A performance 
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study shows that HARPP is efficient and scalable. It is faster up to two orders of magnitude than FP-Growth 
algorithm at lower minimum support, particularly when datasets are sparse. HARPP memory consumption is 
less than that of state-of-the-art by an order of magnitude, on most datasets.
KEYWORDS:  Association Rules, Frequent Itemset Mining, Apriori, FP-Growth, Recommendation Systems.

1. Introduction
In data mining, mining association rules is a key 
problem that determines associations among items 
such that the existence of some items implies the oc-
currence of other items, in the same transaction. Its 
maiden use in retails helped companies in making 
better business decisions, such as which items should 
be put on sale, which items to be placed jointly on 
shelves, and how to tailor strategies of marketing [1]. 
The ever-increasing use of association rule mining 
has become an indispensable tool due to its tremen-
dous power of extracting and furnishing profound in-
sights about data. The applications span over various 
domains that include medical applications [7, 15, 24, 
27, 43], Internet and web security [11, 35, 62, 65], pre-
dicting natural disasters [41], recommender systems 
[3, 44, 48, 61], weather forecasting [57], and market 
basket analysis [2].
Mining of association rules is a two-step process [1]. 
In the first step, all frequent itemsets are discovered. 
Frequent itemsets are those itemsets that are present 
in an adequate number of transactions higher than 
the minimum support, a predefined threshold for a 
minimum number of transactions. In the second step, 
association rules are learned in a straightforward 
manner by using the frequent itemsets discovered in 
the first step. Thus, the performance of association 
rule mining techniques is heavily dependent on dis-
covering frequent itemsets, in the first step.
Frequent itemset mining is regarded as a vital task 
due to its wide-ranging use in data mining, such as 
mining association rules, correlations, and episodes 
[31]. It is a process of finding groups of items from 
transactions contained within a database [1]. A trans-
actional database contains a sequence of transactions 
where each transaction corresponds to a basket of 
items purchased by a customer. Giant retailers such 
as Amazon, Netflix, YouTube, and e-Bay additionally 
recommend pertinent products/items of interest to 
the user, based on frequent itemsets techniques uti-
lizing the history of previous similar users [4]. 

State-of-the-art algorithms for mining frequent item-
sets have been comprehensively investigated on dense 
datasets. Mining performance on these datasets has 
been greatly improved over the years. However, these 
algorithms have not been adequately validated on 
real sparse datasets. Their efficiency is below par on 
these datasets and becomes more inferior when the 
minimum support threshold is further decreased. In 
this paper, a novel method, HARnessing the Power of 
Power sets (HARPP) is proposed that efficiently dis-
covers the frequent itemsets at lower minimum sup-
port thresholds especially from real sparse datasets. 
The rest of the paper is structured as follows. Section 
2 presents related work. Section 3 presents important 
definitions and problem description in detail. HARPP 
algorithm is presented in Section 4. An example of 
HARPP is discussed in Section 5. Section 6 presents 
the detailed experimental results and performance 
study. Section 7 summarizes the study and highlights 
future research issues.

2. Related Work
The naive brute-force frequent itemset mining algo-
rithm [26] generates all possible itemsets first and 
then counts their support. It discards the itemsets 
whose support is less than minimum support thresh-
old. Brute force algorithm traverses each itemset (ex-
cept empty set) in the database to count its support. 
This algorithm is not a complex one but it is quite 
inefficient as the number of itemsets grows in expo-
nential order. If I be the set of all distinct items, then 
for a reasonably large I, this algorithm wants the 
enormous memory to store 2I itemsets which makes 
it not viable in veracity. Today’s giant retailers such as 
Amazon and Netflix might store thousands of items, 
thus I tends to be very large. If one can circumvent the 
massive hunger of memory, the performance of min-
ing can be made better significantly. 
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Apriori is a benchmark algorithm for mining frequent 
itemsets. It is based on candidate-set generation and 
test approach [2]. To improve the performance, Apriori 
adheres to the principle of hierarchical monotonicity, 
which states that a subset of a frequent itemset must be 
frequent too. Similarly, a superset of an infrequent item-
set must be infrequent. For mining, Apriori has to scan 
the entire database numerous times to create candidate 
itemsets and then to discover frequent itemsets. In the 
beginning, all items in the database are declared can-
didate k-itemsets. The entire database is then scanned 
and the support count of each candidate itemset is in-
cremented. Based on the minimum support threshold, 
the frequent itemsets are then generated. These fre-
quent k-itemsets help in generating the candidate (k+1) 
itemsets. A rescanning of the database is performed for 
counting the support of each candidate itemset. This 
procedure is repeated until frequent k-itemsets can-
not be generated anymore. The number of candidate 
k-itemsets generated is reduced because all combina-
tions of k-itemsets are not considered. Therefore, Apri-
ori is better than the brute-force algorithm.
Apriori heuristic-based approaches are adopted by a 
number of studies [2, 30, 36, 39, 45, 49-50, 54], how-
ever, they have to deal with the over-abundant gen-
eration of candidate itemsets and then to count their 
support. Repetitive scanning of the database [32] is 
another substantial limitation. To avoid repetitive 
database scanning, many vertical mining techniques 
were proposed [14, 52, 63-64]. Each itemset is rep-
resented vertically (such as diff-set or Tid-set). Set 
intersection is used for support counting of itemsets, 
which is advantageous as the entire database is not 
scanned for this purpose.
Highlighting the processing overhead associated with 
the generation of a massive amount of candidate item-
sets by Apriori, direct hashing pruning (DHP) algo-
rithm was proposed [47]. It was claimed that most of 
the processing overhead occurs during the creation of 
large 2-itemsets. Therefore, by improving the initial 
generation of candidate itemsets, the performance 
of the algorithm can be improved. Second, a perfor-
mance-affecting factor highlighted was the quantity 
of the data that were scanned during the discovery 
of frequent itemsets. DHP provided frequent itemset 
generation in an efficient manner and reduced the 
size of the database effectively too. Perfect Hashing 
and Pruning (PHP) [46] optimized DHP by using per-
fect hashing while creating hash tables for Cκ+1. This 

effectively eliminates the hash table collisions that 
were evident in DHP and consequently C κ+1 contains 
the actual counts of the Cκ+1 itemsets lessening the 
need to recount the occurrence of Cκ+1 itemsets in D. 
To further improve the performance, sampling [55] 
and the dynamic counting of itemsets [12] were also 
proposed, which made the stringent division between 
counting and producing candidates a bit softer. As 
soon as a candidate itemset qualifies the minimum 
support threshold, based on it DIC begins the process 
of generating further candidates. DIC employs a pre-
fix tree and performs faster. To devise more efficient 
solution following Apriori principle, Cluster-Based 
Association Rule (CBAR) algorithm was proposed 
that utilized clustering mechanism [56]. CBAR per-
forms database scanning once and then it constructs 
cluster tables. During scanning of the database, it 
clusters a transaction record, whose length is k to the 
k-th cluster table. 
The procedure of generating candidate 2-itemsets 
in CBAR is similar to that of the Apriori algorithm. 
CBAR contrasts candidate 2- itemsets against the 2nd 
cluster. If an itemset meets the minimum threshold 
requirement, it is believed as frequent itemset and it 
is not further checked within the larger clusters. Sim-
ilarly, the candidate 3- itemsets are compared against 
the 3rd cluster and so forth. CBAR is advantageous as 
it generates frequent itemsets by contrasting with the 
partial cluster tables as compared to Apriori where 
each itemset is compared with the whole database.
An enhanced cluster based association rule mining 
algorithm was proposed and based on this, a recom-
mender system prototype was implemented [23]. It 
performed two optimizations in the CBAR algorithm. 
Firstly, it minimized the database by eradicating all 
the infrequent items before clustering the transac-
tional dataset. It performed two database scans, first 
to identify the large 1- itemsets and to discover the in-
frequent itemsets. Another scanning was done to erad-
icate infrequent itemsets from all the transactions to 
do their clustering. The second optimization was the 
addition of a counter for each transaction. If a transac-
tion comes for the first time, the counter was set to one 
and the transaction is added to the appropriate clus-
ter table. But if a certain transaction comes more than 
once, then it is not entered into the cluster, instead, the 
counter is incremented by one. This optimization re-
duced the size of cluster tables and the counter helped 
to identify the frequent large itemsets easily. 
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Based on extended prefix-tree structure, FP-Growth 
stores the database in a trie structure and each item has 
a linked list going through all transactions in which that 
item exists. This data structure is denoted by FP-tree 
(Frequent-Pattern tree), which is highly condensed 
[32]. A counter is stored in each node to keep track of 
the number of transactions sharing the branch through 
that node. A link is also stored, which points to the next 
existence of that particular itemset in the FP-tree. In 
this way, it links together all occurrences of an itemset 
in the FP-tree. A header table is also maintained, which 
contains each distinct item together with its support 
and a connection to the first occurrence of the item 
in the FP-tree. It incorporates a divide-and-conquer 
strategy for mining frequent itemsets. 
Like FP-tree, PPC-trees (Pre-order Post-order Code 
trees) were proposed to store the information of fre-
quent itemsets [21]. PPC tree was found to be more 
efficient than FP-tree because the algorithm travers-
es the tree once to determine the N-list of frequent 
1-itemsets. Whereas algorithms employing FP-tree 
have to traverse the tree a number of times. Based on 
PPC-tree the PrePost algorithm was proposed [22]. It 
first builds a PPC-tree by using a tree construction al-
gorithm, then N-lists corresponding to 1-itemsets are 
generated. N-list represents transaction ID list (TID 
list) in compressed form, which depicts the features 
of an itemset. Then a divide-and-conquer technique 
is used to discover frequent itemsets. It is better than 
FP-tree because it does not construct further addi-
tional trees in forthcoming iterations. 
Nodeset is another itemset representation based 
on PPC tree, in which encoding of a node is done by 
pre-order or post-order code. An algorithm FIN is 
proposed based on Nodeset, which is as efficient as 
the PrePost but consumes less memory [19]. PrePost 
algorithm has a limitation due to following Aprio-
ri-like approach to mine frequent itemsets, even it 
has adopted single-path property of N-list for pruning 
search space. To overcome this limitation, PrePost+ 
algorithm was proposed [20]. To represent frequent 
itemsets, PrePost+ uses N-list and mines frequent 
itemsets directly. It employs Children-Parent Equiv-
alence pruning to reduce the search space and to 
avoid the repetitive search.
The concept of subsume index was proposed to fur-
ther enhance the mining efficiency [53]. The subsume 
index of a frequent 1-itemset represents a list contain-

ing frequent 1-itemsets that are co-occurring with it. 
Based on subsume index, an algorithm NSFI was pro-
posed [58]. NSFI combined N-Lists and the concept 
of subsume index to mine frequent itemsets more 
efficiently while capturing less memory. NSFI used a 
hash table to create N-lists corresponding to frequent 
1-itemsets to gain more efficiency. Furthermore, it 
has improved the procedure of N-list intersection and 
mined frequent itemsets without determining their 
associated N-lists by using subsume index. PrePost+ 
is found to be the most efficient one. 
On dense datasets, state-of-the-art techniques in-
cluding FP-Growth algorithm and its high-flying suc-
cessors such as PrePost [22], FIN [19], PrePost+ [20], 
and NSFI [58] achieve great efficiency. In these stud-
ies, the majority of the datasets used for the evalua-
tion are dense and comprised of limited transactions, 
having less than 100,000 transactions except Acci-
dents dataset. Further, it is worth mentioning that for 
higher minimum support, several million frequent 
itemsets are discovered from these datasets. Pre-
dominantly, there is no substantial distinction among 
efficiencies of state-of-the-art techniques when ap-
plied on these datasets. However, when the minimum 
support is low, the distinction becomes noticeable in 
some cases, such as the FIN on dataset connect, the 
PrePost on dataset Accidents, and the PrePost+ on 
some datasets. But abundant frequent itemsets are 
discovered at this minimum support level, whose sig-
nificance is somewhat arguable.
Due to their inherent characteristics, the perfor-
mance of these algorithms is not up to the mark when 
applied on sparse datasets [22]. For example, NSFI is 
applied to only one sparse dataset (Retail dataset) and 
its running time is slightly less than that of PrePost. 
FP-Growth, FP-Growth*, and PrePost achieved al-
most the same running time while working on sparse 
datasets [22]. Likewise, PrePost+ is applied to only 
one sparse dataset (kosarok dataset). Results are ev-
ident that FIN, PrePost, and PrePost+ have achieved 
similar running time when applied on this dataset. 
Moreover, a drastic increase in their running times 
can be seen when minimum support tends to decrease 
further (less than 0.4% for kosarok dataset) [20]. The 
efficiency of FP-Growth degrades when the patterns 
become longer and/or minimum support decreases 
because it constructs conditional FP-trees in abun-
dance during mining [29]. This shows that on sparse 
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datasets mining efficiency of these algorithms is far 
from a satisfactory level, especially when minimum 
support is low.
Moreover, these algorithms make two passes over 
the database, therefore, they have to store the entire 
database in memory. If the database is too large to be 
stored in memory, they are unable to run [28]. Fre-
quent itemsets discovered at lower minimum support 
are more interesting for recommendation systems 
[42]. In fact, these itemsets represent 80% long-tailed 
items that are not frequently rated but have abso-
lute importance. Recommendation systems have to 
exhibit scale-free behavior [8] to recommend these 
itemsets. Whereas, modern algorithms avoid to dis-
cover them, due to swift growth in their running time 
at lower minsup [28].
To thwart these issues, a novel method, HARnessing 
the Power of Power sets (HARPP) is proposed to find 
frequent itemsets at lower minimum support thresh-
olds. Additionally, a novel measure called agility is 
introduced, which reveals how much accelerative an 
algorithm is. It refers to the number of frequent item-
sets discovered per second with a decrease in mini-
mum support. Three real sparse datasets along with 
one dense dataset have been chosen to compare the 
efficiency and scalability of HARPP with that of the 
FP-Growth and Apriori algorithm. Rigorous experi-
mentation has revealed that a decrease in minimum 
support affects the efficiency of FP-Growth and Apri-
ori to a great extent, whereas HARPP performs even 
better.

3. Basic Concepts
This section presents the concepts related to HARPP. 
Table 1 presents the notations and their descriptions. 
Let I= {i1, i2, i3,..., im } represent the set of all items. 
Let DB ={T1, T2, T3,...,Tn} represent a database that 
contains n transactions, where each Tk  (1 ≤ k ≤ n) is a 
transaction that is a set of items such that Tk is a sub-
set of I. HARPP considers each transaction, T in DB 
as a set, which enables HARPP to perform set-related 
operations (such as union, intersection, and power 
set) on it. X denotes an itemset if X is a set of items. A 
transaction T contains X if and only if X is a Sub-Set of 
T. T may contain one or more itemsets. If T contains 
only one itemset such as {A}, then it contains a single 

Table 1
Notations

Table 2
A database of transactions, DB

itemset / Sub-Set, ‘A’, neglecting empty set. An exam-
ple dataset, DB, is presented in Table 2 that will be 
used for illustration throughout this paper. 
Here, T1, T2, T3, T4, and T5 contain 4, 3, 3, 2, and 3 item-
sets, respectively.   
The power set, P of T is the set containing T and all of 
its Sub-Sets neglecting empty subset. The following 
formula calculates the total number of Sub-Sets in P. 
Total Sub-Sets in P of T =  2 (No. of X in T ) - 1
Sample transactions and their corresponding power 
sets are shown in Table 3. Power set, P of T1, T2, and T3 
contain 7, 3, and 15 Sub-Sets respectively. There exist 
a number of similar/overlapping Sub-Sets (itemsets 
present in more than one power sets) such as {W}, 
{X}, and {W, X}.
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Table 3
Sample transactions with their power sets

5. HARPP: The Proposed Method
HARPP borrows the concept of power set from set 
theory. It iteratively generates power sets to make 
combinations of overlapping varying-sized subsets of 
I, where I is a set of items in a large database. 

Figure 1 
Pseudocode of HARPP  

 
Figure 2  

Flow chart of the procedure Find_Frequent( ) 
 
 

The five distinguishing factors of HARPP are the fol-
lowing:
1 It does not store the entire database in memory for 

mining frequent itemsets. Therefore, it requires 
the least amount of memory.

2 It makes a single pass over the database, and mines 
frequent itemsets on the fly.

3 Efficiency is achieved by using set and dictionary 
data structures. Most of their operations such as 
(itemset containment check and insertion /dele-
tion) take constant running time.

4 HARPP gradually becomes more efficient as mini-
mum support tends to decrease, whereas state-of-
the-art techniques perform inversely.

5 It has presented a novel yet simple approach for 
solving an intricate problem. 

The pseudocode of HARPP is presented in Figure 1. 
HARPP consists of the procedure Find_Frequent( ), 
which does the following tasks.
1.1. Step (1) repeats the subsequent steps for each 

transaction, T.
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1.2. Step (2) checks if T is already present in F. This 
step is referred to as 1st containment check. If T is 
already present then it is considered as a frequent 
itemset and discarded. The procedure then goes 
back to Step (1) to read next T. Otherwise, the 
power set, P of T is generated at Step (3). 

1.3. In Step (4), for each Sub-Set of P, the following 
sub-tasks are done.
1.3.1. Step (5) reads a Sub-Set and checks if it 

exists in F already. This step is called 2nd 
containment check. If a Sub-Set exists in 
F, it is believed to be a frequent itemset, 
discarded, and next Sub-Set is read from 

P-Set. Otherwise, Step (6)-(7) stores this 
Sub-Set as a key in Dict with value (sup-
port) equal to 1, if not present already. If 
Sub-Set is already present in F, then Step 
(8)-(9) increments its existing value by 1. 

1.3.2. After storing the Sub-Set in Dict, its value 
is compared with minsup in Step (10). If 
value becomes equal to minsup, this Sub-
Set is declared frequent itemset. 

1.3.3. Then the frequent itemset (Sub-Set) is de-
leted from Dict and stored in F in Step (11). 

The flow chart of the procedure Find_Frequent ( ) is 
shown in Figure 2.

 

 

 
 

 
 
 
 

Figure 2 
Flow chart of the procedure Find_Frequent( )
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5. An Example
The dataset presented in Table 2 is used for this exam-
ple and minsup is set to 60%. According to this data-
set, if an itemset is present in 3 transactions (60%), it 
will be declared a frequent itemset. HARPP calls the 
procedure, Find_Frequent ( ). Figures 3-8 depict the 
processing of this procedure. 
In Figure 3, it reads T1 and checks its existence in F. 
Since F is empty before reading T1, it means that T1 is 
not frequent so far. Therefore the procedure proceeds 
and power set, P of T1 is created. Then iteratively, one 
Sub-Set of this P-Set at a time is stored into Dict as a 
key with value 1, and a comparison of its value (sup-
port) and minsup is made. If its support becomes 
equal to minsup, it is declared frequent. This is shown 
in Step (10) of the pseudocode given in Figure 1. Be-
cause the support of all Sub-Sets is less than minsup 
so far, none of them is declared frequent. F remains 
empty after reading T1.

Figure 3 
Power set of T1 and states of F and Dict
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In Figure 3, it reads T1 and checks its existence in 
F. Since F is empty before reading T1, it means 
that T1 is not frequent so far. Therefore the 
procedure proceeds and power set, P of T1 is 
created. Then iteratively, one Sub-Set of this P-
Set at a time is stored into Dict as a key with value 
1, and a comparison of its value (support) and 
minsup is made. If its support becomes equal to 
minsup, it is declared frequent. This is shown in 
Step (10) of the pseudocode given in Figure 1. 
Because the support of all Sub-Sets is less than 
minsup so far, none of them is declared frequent. 
F remains empty after reading T1. 
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In Figure 4, HARPP reads T2, checks its existence 
in F. Since F is still empty, the power set of  T2 is 
made. After storing each Sub-Set of T2 as a key 
into Dict, value (support) of some Sub-Sets, {A}, 
{B}, {A,B}, {A,C}, {B,C}, and {A,B,C} 
becomes 2, as they are already present there. This 
is shown by Step (9) of the pseudocode in Figure 
1.  
In Figure 5, HARPP reads T3 and checks whether 
it exists in F or not. Since F is still empty, the 
power set of  T3 is made. After storing each Sub-
Set as a key into Dict, value (support) of some 
Sub-Sets such as, {A}, {B}, and {A, B} becomes 
3, which is equal to minsup. As soon as the value 
of a Sub-Set becomes equal to minsup, it is 
declared frequent, discarded from Dict and stored 
into F. This is shown by Steps (9)-(10) of the 
pseudocode. So these three Sub-Sets are popped 
out and  
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In Figure 6, HARPP reads T4 and checks if it is 
already present in F.  Since T4 is already present 
in F, without doing subsequent processing of this 
iteration, HARPP goes to read next transaction, 
thereby forbidding redundant computations. This 
is shown by Step (2) of the pseudocode given in 
Figure 1. 
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In Figure 6, HARPP reads T4 and checks if it is already 
present in F. Since T4 is already present in F, without 
doing subsequent processing of this iteration, HARPP 
goes to read next transaction, thereby forbidding re-
dundant computations. This is shown by Step (2) of 
the pseudocode given in Figure 1.
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In Figure 7, HARPP reads T5 and then checks its ex-
istence in F. Though F is not empty but it does not 
contain T5. Therefore the power set, P of  T5 is made. 
After storing each Sub-Set as a key into Dict, value 
(support) of some Sub-Sets, {C}, and {D} also becomes 
3, which is equal to minsup. Therefore, both of these 
Sub-Sets are declared frequent, popped out from Dict 
and stored into F. 

Figure 6 
Power set of T4 and states of F and Dict

Figure 7 
Power set of T5 and states of F and Dict

Figure 8 
The state of Dict when HARPP is going to terminate
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In Figure 7, HARPP reads T5 and then checks its 
existence in F. Though F is not empty but it does 
not contain T5. Therefore the power set, P of  T5 
is made. After storing each Sub-Set as a key into 
Dict, value (support) of some Sub-Sets, {C}, and 
{D} also becomes 3, which is equal to minsup. 
Therefore, both of these Sub-Sets are declared 
frequent, popped out from Dict and stored into F.  
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Figure 8 shows the state of Dict when all frequent 
itemsets are deleted from it, added into F, and 
HARPP is going to terminate.  
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6. Experimental Evaluation 
The performance metrics are running time, peak 
memory consumption, and agility. The 
experimental results of HARPP, Apriori, and FP-
Growth are presented. Moreover, the scalability 
of HARPP has been evaluated. 

6.1 Experiment Setup 
Four real-world datasets are chosen for 
performance testing of HARPP. Table 4 
summarizes the features of the datasets.  
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Features of Datasets 

 
Three datasets including PowerC, Online Retail, 
and Skin are available at UCI Repository [10]. For 
mining frequent items, converted versions of 
these datasets are taken from [25]. Extended 
Bakery dataset is taken from [17]. Apriori and FP-
Growth have been chosen as the baseline 
algorithms. FP-Growth has been chosen because 
the efficiency gap between itself and its 
successors on sparse datasets is not significant. 
HARPP is implemented in Python. The Python 
implementation of Apriori is taken from [33]. The 
Python implementation of FP-Growth is taken 
from the pymining library having version 0.2 
[16]. A computer with 8G memory,  Intel Core i7-
3667U, 2.0 GHz processor, and Windows 8 Pro 
x64 Edition is used to perform all the 
experiments. 

6.2. Comparison of Running Time 
The comparison of running times for HARPP, 
Apriori, and FP-Growth are presented in Figures 
9-12. Figure 9 shows the comparison of running 
times of HARPP, Apriori, and FP-Growth on 
PowerC dataset.  
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Three datasets including PowerC, Online Retail, and 
Skin are available at UCI Repository [10]. For mining 
frequent items, converted versions of these datasets 
are taken from [25]. Extended Bakery dataset is tak-
en from [17]. Apriori and FP-Growth have been cho-
sen as the baseline algorithms. FP-Growth has been 
chosen because the efficiency gap between itself and 
its successors on sparse datasets is not significant. 
HARPP is implemented in Python. The Python im-
plementation of Apriori is taken from [33]. The Py-
thon implementation of FP-Growth is taken from the 
pymining library having version 0.2 [16]. A computer 
with 8G memory, Intel Core i7-3667U, 2.0 GHz pro-
cessor, and Windows 8 Pro x64 Edition is used to per-
form all the experiments.

6.2. Comparison of Running Time
The comparison of running times for HARPP, Apriori, 
and FP-Growth are presented in Figures 9-12. Figure 
9 shows the comparison of running times of HARPP, 
Apriori, and FP-Growth on PowerC dataset. 
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The result of Apriori is not plotted because its 
running time exceeds 3,000 seconds at minsup 

The result of Apriori is not plotted because its running 
time exceeds 3,000 seconds at minsup 0.04%, which 
shows that its running time is higher than HARPP 
by more than 2 orders of magnitude. Running time of 
Apriori further deteriorates as minsup is decreased. It 
is evident that the running time of HARPP decreases 
with a decrease in minsup, whereas FP-Growth per-
forms inversely. At minsup 0.001%, HARPP is about 7 
times faster than FP-Growth. 
Figure 10 shows the comparison of the running time 
of HARPP, Apriori, and FP-Growth on Online Retail 
dataset. 

The result of Apriori has not plotted again because its 
running time exceeded 4,500 seconds at minsup 0.15% 
and worsened when minsup is decreased further. This 
is due to the fact that as minsup decreases, more and 
more candidate itemsets are generated, which are then 
processed to check if they are frequent. Performance of 
HARPP is extensively better than FP-Growth at lower 
minsup. At minsup 0.003%, the running time of FP-
Growth begins to grow higher than that of HARPP by 
more than two orders of magnitude. It is evident that 
the running time of HARPP decreases with the de-
crease in minsup, FP-Growth performs inversely. Fig-
ure 11 shows the performance on Skin dataset. 
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The efficiency of HARPP is considerably better 

than the others. At minsup 0.01%, HARPP is 7 
times faster than FP-Growth and faster than 
Apriori by a factor of 30. 
In Figure 12, HARPP succeeded to achieve the 
smallest running times at all minsup thresholds on 
Extended Bakery dataset on a logarithmic scale. 
At minsup 0.01%, HARPP becomes 3 orders of 
magnitude faster than Apriori, and about 6 times 
faster than FP-Growth. 
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6.3. Comparison of Memory Usage 
Figures 13-16 show the peak memory 
consumption of HARPP, Apriori, and FP-Growth 
on four real datasets. In Figure 13, a significant 
difference in memory requirements is evident on 
PowerC dataset. As the dataset is large and sparse 
in nature, FP-Growth takes about 21 times more 
memory. HARPP gets least memory due to its 
distinguishing characteristic of not storing the 
entire dataset in main memory. 
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takes 11 times more memory than taken by 
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The efficiency of HARPP is considerably better than the 
others. At minsup 0.01%, HARPP is 7 times faster than 
FP-Growth and faster than Apriori by a factor of 30.
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In Figure 12, HARPP succeeded to achieve the small-
est running times at all minsup thresholds on Extend-
ed Bakery dataset on a logarithmic scale. At minsup 
0.01%, HARPP becomes 3 orders of magnitude faster 
than Apriori, and about 6 times faster than FP-Growth.

Figure 12
Running time on Extended Bakery dataset
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ory requirements is evident on PowerC dataset. As 
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takes about 21 times more memory. HARPP gets least 
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In Figure 14, on Online Retail dataset, FP-Growth 
takes 11 times more memory than taken by HARPP. 
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Memory consumption on Extended Bakery data set
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In Figure 15, on a dense dataset, HARPP uses the 
least memory for all minsup thresholds. The 
density of data sets means that there exist a 
number of itemsets in the transactions and 
numerous itemsets have support higher than 
minsup residing in main memory [6, 28]. 
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In Figure 16, memory consumption for Extended 
Bakery data set is presented.  
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FP-Growth takes the lead as its FP-tree structure 
gets large. Apriori gets less memory at higher 
minsup but gradually gains larger memory at 
lower minsup due to massive production of 
candidate itemsets. HARPP gets the least 
memory at lower minsup values. 

 
6.4. Comparison of Agility 
In Figures 17-20, comparison of agility of 
HARPP, Apriori, and FP-Growth is presented. In 
Figure 17, HARPP is 6 times more agile than FP-
Growth on PowerC dataset.  
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In Figure 18, FP-Growth shows nearly consistent 
behavior at all minsup thresholds, which means 
that variation in minsup does not affect the speed 
at which frequent itemsets are generated. But the 
agility of HARPP is extraordinary.   At minsup 
0.003%, the agility of HARPP is more than two 
orders of magnitude higher than FP-Growth.  
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In Figure 19, HARPP has proven its 
unprecedented agility on Skin dataset. It is about 
7 times more agile than FP-Growth at 0.01% 
minsup. This is due to its inherent characteristic, 
which states that more and more Sub-Sets become 
frequent sooner at lower minsup. 
In Figure 20, HARPP is six times more agile than 
FP-Growth.  
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Applying HARPP on large datasets at various 
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shown in Figure 21. 
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6.5. Scalability of HARPP
Figure 21 shows the runtime per frequent itemset 
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because there are small repeated patterns. FP-tree 
built is bigger in size and plenty of time is taken by 
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FP-trees. 

3 Due to their inherent characteristics, both Apri-
ori and FP-Growth along with its successors can 
only perform efficiently when the dataset resides 
entirely in main memory [6]. There are no repeat-
ed patterns in real sparse datasets, therefore FP-
Growth builds enormous conditional FP-trees and 
the FP-tree built is bigger in size. This is why its 
memory requirement is high. In contrary, HARPP 
memory consumption is minimal because it does 
not load the entire dataset in memory. In each iter-
ation, HARPP reads a transaction and before read-
ing next transaction, objects residing in memory 
are P containing the power set of currently read 
transaction, Dict storing Sub-Sets, which could not 
become frequent yet, and F.

Applying HARPP on large datasets at various min-
sup thresholds has proven its scalability as shown in  
Figure 21.

7. Conclusions
Modern algorithms are mostly evaluated on dense 
datasets but lack adequate investigation on sparse 
datasets. Performance of these algorithms on sparse 
datasets is below par as their running times increase 
rapidly at lower minimum support thresholds. In-
terestingly, the difference in their running times on 
sparse datasets is almost negligible except for a few 
cases. This paper presents HARPP, a novel algorithm 
that mines frequent itemsets efficiently. HARPP per-
forms exceptionally well on lower minimum support 
thresholds. HARPP does not store the database in 
memory and finds frequent itemsets in a single pass 
over the database. Since HARPP achieves better run-
ning time and unparalleled agility at lower minimum 
support, it can be a preferable option for recommen-
dation systems to discover the long-tailed itemsets. 
Since HARPP considers every transaction as a set 
of items for creating its power set, it has to store 2N 
Sub-Sets, where N is the size (number of items) of a 
transaction. Therefore as future extensions of this 
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work, efforts will be carried out to employ HARPP to 
perform efficiently on datasets having quite a long av-
erage transaction length. Nevertheless, N is negligible 
as compared to |DB| (number of items in a dataset), 
thus makes HARPP a viable solution to mine frequent 
itemsets. HARPP will also be employed for solving 
other problems such as mining closed frequent item-
sets [38, 60], maximal frequent itemsets [9, 14, 59], 
high utility itemset mining [37], top-rank-k frequent 
patterns [18], and frequent weighted itemset mining 

[13]. Furthermore, the HARPP can be extended for 
mining data streams [40]. Finally, due to the escalat-
ing importance of big data, HARPP would be imple-
mented in a parallel / distributed fashion for discov-
ering frequent itemsets [5, 51]. 
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