
415Information Technology and Control 2019/3/48

HARPP: HARnessing the
Power of Power Sets for
Mining Frequent Itemsets

ITC 3/48
Journal of Information Technology
and Control
Vol. 48 / No. 3 / 2019
pp. 415-431
DOI 10.5755/j01.itc.48.3.21137

HARPP: HARnessing the Power of Power Sets for
Mining Frequent Itemsets

Received 2018/11/13 Accepted after revision 2019/07/16

 http://dx.doi.org/10.5755/j01.itc.48.3.21137

Corresponding author: drasif@ntu.edu.pk

Muhammad Yasir
Department of Computer Science, University of Engineering and Technology Lahore, Faisalabad Campus,
Pakistan, phone: +92 333 666 2312; e-mail: muhammadyasir@uet.edu.pk

Muhammad Asif Habib
Department of Computer Science, National Textile University, Faisalabad, Pakistan, Phone: +92 332 333 1979;
e-mail: drasif@ntu.edu.pk

Shahzad Sarwar
Punjab University College of Information Technology, University of the Punjab, Lahore, Pakistan;
e-mail: s.sarwar@pucit.edu.pk

Chaudhry Muhammad Nadeem Faisal, Mudassar Ahmad, Sohail Jabbar
Department of Computer Science, National Textile University, Faisalabad, Pakistan;
e-mails: nadeem.faisal@ntu.edu.pk, mudassar@ntu.edu.pk, sjabbar.research@gmail.com

Modern algorithms for mining frequent itemsets face the noteworthy deterioration of performance when min-
imum support tends to decrease, especially for sparse datasets. Long-tailed itemsets, frequent itemsets found
at lower minimum support, are significant for present-day applications such as recommender systems. In this
study, a novel power set based method named as HARnessing the Power of Power sets (HARPP) for mining
frequent itemsets is developed. HARPP is based on the concept of power set from set theory and incorporates
efficient data structures for mining. Without storing it entirely in memory, HARPP scans the dataset only once
and mines frequent itemsets on the fly. In contrast to state-of-the-art, the efficiency of HARPP increases with a
decrease in minimum support that makes it a viable technique for mining long-tailed itemsets. A performance

mailto:obodovskiy58@gmail.com

Information Technology and Control 2019/3/48416

study shows that HARPP is efficient and scalable. It is faster up to two orders of magnitude than FP-Growth
algorithm at lower minimum support, particularly when datasets are sparse. HARPP memory consumption is
less than that of state-of-the-art by an order of magnitude, on most datasets.
KEYWORDS: Association Rules, Frequent Itemset Mining, Apriori, FP-Growth, Recommendation Systems.

1. Introduction
In data mining, mining association rules is a key
problem that determines associations among items
such that the existence of some items implies the oc-
currence of other items, in the same transaction. Its
maiden use in retails helped companies in making
better business decisions, such as which items should
be put on sale, which items to be placed jointly on
shelves, and how to tailor strategies of marketing [1].
The ever-increasing use of association rule mining
has become an indispensable tool due to its tremen-
dous power of extracting and furnishing profound in-
sights about data. The applications span over various
domains that include medical applications [7, 15, 24,
27, 43], Internet and web security [11, 35, 62, 65], pre-
dicting natural disasters [41], recommender systems
[3, 44, 48, 61], weather forecasting [57], and market
basket analysis [2].
Mining of association rules is a two-step process [1].
In the first step, all frequent itemsets are discovered.
Frequent itemsets are those itemsets that are present
in an adequate number of transactions higher than
the minimum support, a predefined threshold for a
minimum number of transactions. In the second step,
association rules are learned in a straightforward
manner by using the frequent itemsets discovered in
the first step. Thus, the performance of association
rule mining techniques is heavily dependent on dis-
covering frequent itemsets, in the first step.
Frequent itemset mining is regarded as a vital task
due to its wide-ranging use in data mining, such as
mining association rules, correlations, and episodes
[31]. It is a process of finding groups of items from
transactions contained within a database [1]. A trans-
actional database contains a sequence of transactions
where each transaction corresponds to a basket of
items purchased by a customer. Giant retailers such
as Amazon, Netflix, YouTube, and e-Bay additionally
recommend pertinent products/items of interest to
the user, based on frequent itemsets techniques uti-
lizing the history of previous similar users [4].

State-of-the-art algorithms for mining frequent item-
sets have been comprehensively investigated on dense
datasets. Mining performance on these datasets has
been greatly improved over the years. However, these
algorithms have not been adequately validated on
real sparse datasets. Their efficiency is below par on
these datasets and becomes more inferior when the
minimum support threshold is further decreased. In
this paper, a novel method, HARnessing the Power of
Power sets (HARPP) is proposed that efficiently dis-
covers the frequent itemsets at lower minimum sup-
port thresholds especially from real sparse datasets.
The rest of the paper is structured as follows. Section
2 presents related work. Section 3 presents important
definitions and problem description in detail. HARPP
algorithm is presented in Section 4. An example of
HARPP is discussed in Section 5. Section 6 presents
the detailed experimental results and performance
study. Section 7 summarizes the study and highlights
future research issues.

2. Related Work
The naive brute-force frequent itemset mining algo-
rithm [26] generates all possible itemsets first and
then counts their support. It discards the itemsets
whose support is less than minimum support thresh-
old. Brute force algorithm traverses each itemset (ex-
cept empty set) in the database to count its support.
This algorithm is not a complex one but it is quite
inefficient as the number of itemsets grows in expo-
nential order. If I be the set of all distinct items, then
for a reasonably large I, this algorithm wants the
enormous memory to store 2I itemsets which makes
it not viable in veracity. Today’s giant retailers such as
Amazon and Netflix might store thousands of items,
thus I tends to be very large. If one can circumvent the
massive hunger of memory, the performance of min-
ing can be made better significantly.

417Information Technology and Control 2019/3/48

Apriori is a benchmark algorithm for mining frequent
itemsets. It is based on candidate-set generation and
test approach [2]. To improve the performance, Apriori
adheres to the principle of hierarchical monotonicity,
which states that a subset of a frequent itemset must be
frequent too. Similarly, a superset of an infrequent item-
set must be infrequent. For mining, Apriori has to scan
the entire database numerous times to create candidate
itemsets and then to discover frequent itemsets. In the
beginning, all items in the database are declared can-
didate k-itemsets. The entire database is then scanned
and the support count of each candidate itemset is in-
cremented. Based on the minimum support threshold,
the frequent itemsets are then generated. These fre-
quent k-itemsets help in generating the candidate (k+1)
itemsets. A rescanning of the database is performed for
counting the support of each candidate itemset. This
procedure is repeated until frequent k-itemsets can-
not be generated anymore. The number of candidate
k-itemsets generated is reduced because all combina-
tions of k-itemsets are not considered. Therefore, Apri-
ori is better than the brute-force algorithm.
Apriori heuristic-based approaches are adopted by a
number of studies [2, 30, 36, 39, 45, 49-50, 54], how-
ever, they have to deal with the over-abundant gen-
eration of candidate itemsets and then to count their
support. Repetitive scanning of the database [32] is
another substantial limitation. To avoid repetitive
database scanning, many vertical mining techniques
were proposed [14, 52, 63-64]. Each itemset is rep-
resented vertically (such as diff-set or Tid-set). Set
intersection is used for support counting of itemsets,
which is advantageous as the entire database is not
scanned for this purpose.
Highlighting the processing overhead associated with
the generation of a massive amount of candidate item-
sets by Apriori, direct hashing pruning (DHP) algo-
rithm was proposed [47]. It was claimed that most of
the processing overhead occurs during the creation of
large 2-itemsets. Therefore, by improving the initial
generation of candidate itemsets, the performance
of the algorithm can be improved. Second, a perfor-
mance-affecting factor highlighted was the quantity
of the data that were scanned during the discovery
of frequent itemsets. DHP provided frequent itemset
generation in an efficient manner and reduced the
size of the database effectively too. Perfect Hashing
and Pruning (PHP) [46] optimized DHP by using per-
fect hashing while creating hash tables for Cκ+1. This

effectively eliminates the hash table collisions that
were evident in DHP and consequently C κ+1 contains
the actual counts of the Cκ+1 itemsets lessening the
need to recount the occurrence of Cκ+1 itemsets in D.
To further improve the performance, sampling [55]
and the dynamic counting of itemsets [12] were also
proposed, which made the stringent division between
counting and producing candidates a bit softer. As
soon as a candidate itemset qualifies the minimum
support threshold, based on it DIC begins the process
of generating further candidates. DIC employs a pre-
fix tree and performs faster. To devise more efficient
solution following Apriori principle, Cluster-Based
Association Rule (CBAR) algorithm was proposed
that utilized clustering mechanism [56]. CBAR per-
forms database scanning once and then it constructs
cluster tables. During scanning of the database, it
clusters a transaction record, whose length is k to the
k-th cluster table.
The procedure of generating candidate 2-itemsets
in CBAR is similar to that of the Apriori algorithm.
CBAR contrasts candidate 2- itemsets against the 2nd
cluster. If an itemset meets the minimum threshold
requirement, it is believed as frequent itemset and it
is not further checked within the larger clusters. Sim-
ilarly, the candidate 3- itemsets are compared against
the 3rd cluster and so forth. CBAR is advantageous as
it generates frequent itemsets by contrasting with the
partial cluster tables as compared to Apriori where
each itemset is compared with the whole database.
An enhanced cluster based association rule mining
algorithm was proposed and based on this, a recom-
mender system prototype was implemented [23]. It
performed two optimizations in the CBAR algorithm.
Firstly, it minimized the database by eradicating all
the infrequent items before clustering the transac-
tional dataset. It performed two database scans, first
to identify the large 1- itemsets and to discover the in-
frequent itemsets. Another scanning was done to erad-
icate infrequent itemsets from all the transactions to
do their clustering. The second optimization was the
addition of a counter for each transaction. If a transac-
tion comes for the first time, the counter was set to one
and the transaction is added to the appropriate clus-
ter table. But if a certain transaction comes more than
once, then it is not entered into the cluster, instead, the
counter is incremented by one. This optimization re-
duced the size of cluster tables and the counter helped
to identify the frequent large itemsets easily.

Information Technology and Control 2019/3/48418

Based on extended prefix-tree structure, FP-Growth
stores the database in a trie structure and each item has
a linked list going through all transactions in which that
item exists. This data structure is denoted by FP-tree
(Frequent-Pattern tree), which is highly condensed
[32]. A counter is stored in each node to keep track of
the number of transactions sharing the branch through
that node. A link is also stored, which points to the next
existence of that particular itemset in the FP-tree. In
this way, it links together all occurrences of an itemset
in the FP-tree. A header table is also maintained, which
contains each distinct item together with its support
and a connection to the first occurrence of the item
in the FP-tree. It incorporates a divide-and-conquer
strategy for mining frequent itemsets.
Like FP-tree, PPC-trees (Pre-order Post-order Code
trees) were proposed to store the information of fre-
quent itemsets [21]. PPC tree was found to be more
efficient than FP-tree because the algorithm travers-
es the tree once to determine the N-list of frequent
1-itemsets. Whereas algorithms employing FP-tree
have to traverse the tree a number of times. Based on
PPC-tree the PrePost algorithm was proposed [22]. It
first builds a PPC-tree by using a tree construction al-
gorithm, then N-lists corresponding to 1-itemsets are
generated. N-list represents transaction ID list (TID
list) in compressed form, which depicts the features
of an itemset. Then a divide-and-conquer technique
is used to discover frequent itemsets. It is better than
FP-tree because it does not construct further addi-
tional trees in forthcoming iterations.
Nodeset is another itemset representation based
on PPC tree, in which encoding of a node is done by
pre-order or post-order code. An algorithm FIN is
proposed based on Nodeset, which is as efficient as
the PrePost but consumes less memory [19]. PrePost
algorithm has a limitation due to following Aprio-
ri-like approach to mine frequent itemsets, even it
has adopted single-path property of N-list for pruning
search space. To overcome this limitation, PrePost+
algorithm was proposed [20]. To represent frequent
itemsets, PrePost+ uses N-list and mines frequent
itemsets directly. It employs Children-Parent Equiv-
alence pruning to reduce the search space and to
avoid the repetitive search.
The concept of subsume index was proposed to fur-
ther enhance the mining efficiency [53]. The subsume
index of a frequent 1-itemset represents a list contain-

ing frequent 1-itemsets that are co-occurring with it.
Based on subsume index, an algorithm NSFI was pro-
posed [58]. NSFI combined N-Lists and the concept
of subsume index to mine frequent itemsets more
efficiently while capturing less memory. NSFI used a
hash table to create N-lists corresponding to frequent
1-itemsets to gain more efficiency. Furthermore, it
has improved the procedure of N-list intersection and
mined frequent itemsets without determining their
associated N-lists by using subsume index. PrePost+
is found to be the most efficient one.
On dense datasets, state-of-the-art techniques in-
cluding FP-Growth algorithm and its high-flying suc-
cessors such as PrePost [22], FIN [19], PrePost+ [20],
and NSFI [58] achieve great efficiency. In these stud-
ies, the majority of the datasets used for the evalua-
tion are dense and comprised of limited transactions,
having less than 100,000 transactions except Acci-
dents dataset. Further, it is worth mentioning that for
higher minimum support, several million frequent
itemsets are discovered from these datasets. Pre-
dominantly, there is no substantial distinction among
efficiencies of state-of-the-art techniques when ap-
plied on these datasets. However, when the minimum
support is low, the distinction becomes noticeable in
some cases, such as the FIN on dataset connect, the
PrePost on dataset Accidents, and the PrePost+ on
some datasets. But abundant frequent itemsets are
discovered at this minimum support level, whose sig-
nificance is somewhat arguable.
Due to their inherent characteristics, the perfor-
mance of these algorithms is not up to the mark when
applied on sparse datasets [22]. For example, NSFI is
applied to only one sparse dataset (Retail dataset) and
its running time is slightly less than that of PrePost.
FP-Growth, FP-Growth*, and PrePost achieved al-
most the same running time while working on sparse
datasets [22]. Likewise, PrePost+ is applied to only
one sparse dataset (kosarok dataset). Results are ev-
ident that FIN, PrePost, and PrePost+ have achieved
similar running time when applied on this dataset.
Moreover, a drastic increase in their running times
can be seen when minimum support tends to decrease
further (less than 0.4% for kosarok dataset) [20]. The
efficiency of FP-Growth degrades when the patterns
become longer and/or minimum support decreases
because it constructs conditional FP-trees in abun-
dance during mining [29]. This shows that on sparse

419Information Technology and Control 2019/3/48

datasets mining efficiency of these algorithms is far
from a satisfactory level, especially when minimum
support is low.
Moreover, these algorithms make two passes over
the database, therefore, they have to store the entire
database in memory. If the database is too large to be
stored in memory, they are unable to run [28]. Fre-
quent itemsets discovered at lower minimum support
are more interesting for recommendation systems
[42]. In fact, these itemsets represent 80% long-tailed
items that are not frequently rated but have abso-
lute importance. Recommendation systems have to
exhibit scale-free behavior [8] to recommend these
itemsets. Whereas, modern algorithms avoid to dis-
cover them, due to swift growth in their running time
at lower minsup [28].
To thwart these issues, a novel method, HARnessing
the Power of Power sets (HARPP) is proposed to find
frequent itemsets at lower minimum support thresh-
olds. Additionally, a novel measure called agility is
introduced, which reveals how much accelerative an
algorithm is. It refers to the number of frequent item-
sets discovered per second with a decrease in mini-
mum support. Three real sparse datasets along with
one dense dataset have been chosen to compare the
efficiency and scalability of HARPP with that of the
FP-Growth and Apriori algorithm. Rigorous experi-
mentation has revealed that a decrease in minimum
support affects the efficiency of FP-Growth and Apri-
ori to a great extent, whereas HARPP performs even
better.

3. Basic Concepts
This section presents the concepts related to HARPP.
Table 1 presents the notations and their descriptions.
Let I= {i1, i2, i3,..., im } represent the set of all items.
Let DB ={T1, T2, T3,...,Tn} represent a database that
contains n transactions, where each Tk (1 ≤ k ≤ n) is a
transaction that is a set of items such that Tk is a sub-
set of I. HARPP considers each transaction, T in DB
as a set, which enables HARPP to perform set-related
operations (such as union, intersection, and power
set) on it. X denotes an itemset if X is a set of items. A
transaction T contains X if and only if X is a Sub-Set of
T. T may contain one or more itemsets. If T contains
only one itemset such as {A}, then it contains a single

Table 1
Notations

Table 2
A database of transactions, DB

itemset / Sub-Set, ‘A’, neglecting empty set. An exam-
ple dataset, DB, is presented in Table 2 that will be
used for illustration throughout this paper.
Here, T1, T2, T3, T4, and T5 contain 4, 3, 3, 2, and 3 item-
sets, respectively.
The power set, P of T is the set containing T and all of
its Sub-Sets neglecting empty subset. The following
formula calculates the total number of Sub-Sets in P.
Total Sub-Sets in P of T = 2 (No. of X in T) - 1
Sample transactions and their corresponding power
sets are shown in Table 3. Power set, P of T1, T2, and T3
contain 7, 3, and 15 Sub-Sets respectively. There exist
a number of similar/overlapping Sub-Sets (itemsets
present in more than one power sets) such as {W},
{X}, and {W, X}.

Information Technology and Control 2019/3/48420

Table 3
Sample transactions with their power sets

5. HARPP: The Proposed Method
HARPP borrows the concept of power set from set
theory. It iteratively generates power sets to make
combinations of overlapping varying-sized subsets of
I, where I is a set of items in a large database.

Figure 1
Pseudocode of HARPP

Figure 2

Flow chart of the procedure Find_Frequent()

The five distinguishing factors of HARPP are the fol-
lowing:
1 It does not store the entire database in memory for

mining frequent itemsets. Therefore, it requires
the least amount of memory.

2 It makes a single pass over the database, and mines
frequent itemsets on the fly.

3 Efficiency is achieved by using set and dictionary
data structures. Most of their operations such as
(itemset containment check and insertion /dele-
tion) take constant running time.

4 HARPP gradually becomes more efficient as mini-
mum support tends to decrease, whereas state-of-
the-art techniques perform inversely.

5 It has presented a novel yet simple approach for
solving an intricate problem.

The pseudocode of HARPP is presented in Figure 1.
HARPP consists of the procedure Find_Frequent(),
which does the following tasks.
1.1. Step (1) repeats the subsequent steps for each

transaction, T.

421Information Technology and Control 2019/3/48

1.2. Step (2) checks if T is already present in F. This
step is referred to as 1st containment check. If T is
already present then it is considered as a frequent
itemset and discarded. The procedure then goes
back to Step (1) to read next T. Otherwise, the
power set, P of T is generated at Step (3).

1.3. In Step (4), for each Sub-Set of P, the following
sub-tasks are done.
1.3.1. Step (5) reads a Sub-Set and checks if it

exists in F already. This step is called 2nd
containment check. If a Sub-Set exists in
F, it is believed to be a frequent itemset,
discarded, and next Sub-Set is read from

P-Set. Otherwise, Step (6)-(7) stores this
Sub-Set as a key in Dict with value (sup-
port) equal to 1, if not present already. If
Sub-Set is already present in F, then Step
(8)-(9) increments its existing value by 1.

1.3.2. After storing the Sub-Set in Dict, its value
is compared with minsup in Step (10). If
value becomes equal to minsup, this Sub-
Set is declared frequent itemset.

1.3.3. Then the frequent itemset (Sub-Set) is de-
leted from Dict and stored in F in Step (11).

The flow chart of the procedure Find_Frequent () is
shown in Figure 2.

Figure 2
Flow chart of the procedure Find_Frequent()

Information Technology and Control 2019/3/48422

5. An Example
The dataset presented in Table 2 is used for this exam-
ple and minsup is set to 60%. According to this data-
set, if an itemset is present in 3 transactions (60%), it
will be declared a frequent itemset. HARPP calls the
procedure, Find_Frequent (). Figures 3-8 depict the
processing of this procedure.
In Figure 3, it reads T1 and checks its existence in F.
Since F is empty before reading T1, it means that T1 is
not frequent so far. Therefore the procedure proceeds
and power set, P of T1 is created. Then iteratively, one
Sub-Set of this P-Set at a time is stored into Dict as a
key with value 1, and a comparison of its value (sup-
port) and minsup is made. If its support becomes
equal to minsup, it is declared frequent. This is shown
in Step (10) of the pseudocode given in Figure 1. Be-
cause the support of all Sub-Sets is less than minsup
so far, none of them is declared frequent. F remains
empty after reading T1.

Figure 3
Power set of T1 and states of F and Dict

5. An Example
The dataset presented in Table 2 is used for this
example and minsup is set to 60%. According to
this dataset, if an itemset is present in 3
transactions (60%), it will be declared a frequent
itemset. HARPP calls the procedure,
Find_Frequent (). Figures 3-8 depict the
processing of this procedure.
In Figure 3, it reads T1 and checks its existence in
F. Since F is empty before reading T1, it means
that T1 is not frequent so far. Therefore the
procedure proceeds and power set, P of T1 is
created. Then iteratively, one Sub-Set of this P-
Set at a time is stored into Dict as a key with value
1, and a comparison of its value (support) and
minsup is made. If its support becomes equal to
minsup, it is declared frequent. This is shown in
Step (10) of the pseudocode given in Figure 1.
Because the support of all Sub-Sets is less than
minsup so far, none of them is declared frequent.
F remains empty after reading T1.
Figure 3
Power set of T1 and states of F and Dict

In Figure 4, HARPP reads T2, checks its existence
in F. Since F is still empty, the power set of T2 is
made. After storing each Sub-Set of T2 as a key
into Dict, value (support) of some Sub-Sets, {A},
{B}, {A,B}, {A,C}, {B,C}, and {A,B,C}
becomes 2, as they are already present there. This
is shown by Step (9) of the pseudocode in Figure
1.
In Figure 5, HARPP reads T3 and checks whether
it exists in F or not. Since F is still empty, the
power set of T3 is made. After storing each Sub-
Set as a key into Dict, value (support) of some
Sub-Sets such as, {A}, {B}, and {A, B} becomes
3, which is equal to minsup. As soon as the value
of a Sub-Set becomes equal to minsup, it is
declared frequent, discarded from Dict and stored
into F. This is shown by Steps (9)-(10) of the
pseudocode. So these three Sub-Sets are popped
out and

stored into F.
 Figure 4
 Power set of T2 and states of F and Dict

Figure 5
Power set of T3 and states of F and Dict

In Figure 6, HARPP reads T4 and checks if it is
already present in F. Since T4 is already present
in F, without doing subsequent processing of this
iteration, HARPP goes to read next transaction,
thereby forbidding redundant computations. This
is shown by Step (2) of the pseudocode given in
Figure 1.

Figure 6
Power set of T4 and states of F and Dict

In Figure 4, HARPP reads T2, checks its existence in
F. Since F is still empty, the power set of T2 is made.
After storing each Sub-Set of T2 as a key into Dict, val-
ue (support) of some Sub-Sets, {A}, {B}, {A,B}, {A,C},
{B,C}, and {A,B,C} becomes 2, as they are already pres-
ent there. This is shown by Step (9) of the pseudocode
in Figure 1.
In Figure 5, HARPP reads T3 and checks whether it
exists in F or not. Since F is still empty, the power set

of T3 is made. After storing each Sub-Set as a key into
Dict, value (support) of some Sub-Sets such as, {A},
{B}, and {A, B} becomes 3, which is equal to minsup.
As soon as the value of a Sub-Set becomes equal to
minsup, it is declared frequent, discarded from Dict
and stored into F. This is shown by Steps (9)-(10) of
the pseudocode. So these three Sub-Sets are popped
out and stored into F.

Figure 4
Power set of T2 and states of F and Dict

5. An Example
The dataset presented in Table 2 is used for this
example and minsup is set to 60%. According to
this dataset, if an itemset is present in 3
transactions (60%), it will be declared a frequent
itemset. HARPP calls the procedure,
Find_Frequent (). Figures 3-8 depict the
processing of this procedure.
In Figure 3, it reads T1 and checks its existence in
F. Since F is empty before reading T1, it means
that T1 is not frequent so far. Therefore the
procedure proceeds and power set, P of T1 is
created. Then iteratively, one Sub-Set of this P-
Set at a time is stored into Dict as a key with value
1, and a comparison of its value (support) and
minsup is made. If its support becomes equal to
minsup, it is declared frequent. This is shown in
Step (10) of the pseudocode given in Figure 1.
Because the support of all Sub-Sets is less than
minsup so far, none of them is declared frequent.
F remains empty after reading T1.
Figure 3
Power set of T1 and states of F and Dict

In Figure 4, HARPP reads T2, checks its existence
in F. Since F is still empty, the power set of T2 is
made. After storing each Sub-Set of T2 as a key
into Dict, value (support) of some Sub-Sets, {A},
{B}, {A,B}, {A,C}, {B,C}, and {A,B,C}
becomes 2, as they are already present there. This
is shown by Step (9) of the pseudocode in Figure
1.
In Figure 5, HARPP reads T3 and checks whether
it exists in F or not. Since F is still empty, the
power set of T3 is made. After storing each Sub-
Set as a key into Dict, value (support) of some
Sub-Sets such as, {A}, {B}, and {A, B} becomes
3, which is equal to minsup. As soon as the value
of a Sub-Set becomes equal to minsup, it is
declared frequent, discarded from Dict and stored
into F. This is shown by Steps (9)-(10) of the
pseudocode. So these three Sub-Sets are popped
out and

stored into F.
 Figure 4
 Power set of T2 and states of F and Dict

Figure 5
Power set of T3 and states of F and Dict

In Figure 6, HARPP reads T4 and checks if it is
already present in F. Since T4 is already present
in F, without doing subsequent processing of this
iteration, HARPP goes to read next transaction,
thereby forbidding redundant computations. This
is shown by Step (2) of the pseudocode given in
Figure 1.

Figure 6
Power set of T4 and states of F and Dict

Figure 5
Power set of T3 and states of F and Dict

5. An Example
The dataset presented in Table 2 is used for this
example and minsup is set to 60%. According to
this dataset, if an itemset is present in 3
transactions (60%), it will be declared a frequent
itemset. HARPP calls the procedure,
Find_Frequent (). Figures 3-8 depict the
processing of this procedure.
In Figure 3, it reads T1 and checks its existence in
F. Since F is empty before reading T1, it means
that T1 is not frequent so far. Therefore the
procedure proceeds and power set, P of T1 is
created. Then iteratively, one Sub-Set of this P-
Set at a time is stored into Dict as a key with value
1, and a comparison of its value (support) and
minsup is made. If its support becomes equal to
minsup, it is declared frequent. This is shown in
Step (10) of the pseudocode given in Figure 1.
Because the support of all Sub-Sets is less than
minsup so far, none of them is declared frequent.
F remains empty after reading T1.
Figure 3
Power set of T1 and states of F and Dict

In Figure 4, HARPP reads T2, checks its existence
in F. Since F is still empty, the power set of T2 is
made. After storing each Sub-Set of T2 as a key
into Dict, value (support) of some Sub-Sets, {A},
{B}, {A,B}, {A,C}, {B,C}, and {A,B,C}
becomes 2, as they are already present there. This
is shown by Step (9) of the pseudocode in Figure
1.
In Figure 5, HARPP reads T3 and checks whether
it exists in F or not. Since F is still empty, the
power set of T3 is made. After storing each Sub-
Set as a key into Dict, value (support) of some
Sub-Sets such as, {A}, {B}, and {A, B} becomes
3, which is equal to minsup. As soon as the value
of a Sub-Set becomes equal to minsup, it is
declared frequent, discarded from Dict and stored
into F. This is shown by Steps (9)-(10) of the
pseudocode. So these three Sub-Sets are popped
out and

stored into F.
 Figure 4
 Power set of T2 and states of F and Dict

Figure 5
Power set of T3 and states of F and Dict

In Figure 6, HARPP reads T4 and checks if it is
already present in F. Since T4 is already present
in F, without doing subsequent processing of this
iteration, HARPP goes to read next transaction,
thereby forbidding redundant computations. This
is shown by Step (2) of the pseudocode given in
Figure 1.

Figure 6
Power set of T4 and states of F and Dict

In Figure 6, HARPP reads T4 and checks if it is already
present in F. Since T4 is already present in F, without
doing subsequent processing of this iteration, HARPP
goes to read next transaction, thereby forbidding re-
dundant computations. This is shown by Step (2) of
the pseudocode given in Figure 1.

423Information Technology and Control 2019/3/48

In Figure 7, HARPP reads T5 and then checks its ex-
istence in F. Though F is not empty but it does not
contain T5. Therefore the power set, P of T5 is made.
After storing each Sub-Set as a key into Dict, value
(support) of some Sub-Sets, {C}, and {D} also becomes
3, which is equal to minsup. Therefore, both of these
Sub-Sets are declared frequent, popped out from Dict
and stored into F.

Figure 6
Power set of T4 and states of F and Dict

Figure 7
Power set of T5 and states of F and Dict

Figure 8
The state of Dict when HARPP is going to terminate

5. An Example
The dataset presented in Table 2 is used for this
example and minsup is set to 60%. According to
this dataset, if an itemset is present in 3
transactions (60%), it will be declared a frequent
itemset. HARPP calls the procedure,
Find_Frequent (). Figures 3-8 depict the
processing of this procedure.
In Figure 3, it reads T1 and checks its existence in
F. Since F is empty before reading T1, it means
that T1 is not frequent so far. Therefore the
procedure proceeds and power set, P of T1 is
created. Then iteratively, one Sub-Set of this P-
Set at a time is stored into Dict as a key with value
1, and a comparison of its value (support) and
minsup is made. If its support becomes equal to
minsup, it is declared frequent. This is shown in
Step (10) of the pseudocode given in Figure 1.
Because the support of all Sub-Sets is less than
minsup so far, none of them is declared frequent.
F remains empty after reading T1.
Figure 3
Power set of T1 and states of F and Dict

In Figure 4, HARPP reads T2, checks its existence
in F. Since F is still empty, the power set of T2 is
made. After storing each Sub-Set of T2 as a key
into Dict, value (support) of some Sub-Sets, {A},
{B}, {A,B}, {A,C}, {B,C}, and {A,B,C}
becomes 2, as they are already present there. This
is shown by Step (9) of the pseudocode in Figure
1.
In Figure 5, HARPP reads T3 and checks whether
it exists in F or not. Since F is still empty, the
power set of T3 is made. After storing each Sub-
Set as a key into Dict, value (support) of some
Sub-Sets such as, {A}, {B}, and {A, B} becomes
3, which is equal to minsup. As soon as the value
of a Sub-Set becomes equal to minsup, it is
declared frequent, discarded from Dict and stored
into F. This is shown by Steps (9)-(10) of the
pseudocode. So these three Sub-Sets are popped
out and

stored into F.
 Figure 4
 Power set of T2 and states of F and Dict

Figure 5
Power set of T3 and states of F and Dict

In Figure 6, HARPP reads T4 and checks if it is
already present in F. Since T4 is already present
in F, without doing subsequent processing of this
iteration, HARPP goes to read next transaction,
thereby forbidding redundant computations. This
is shown by Step (2) of the pseudocode given in
Figure 1.

Figure 6
Power set of T4 and states of F and Dict

In Figure 7, HARPP reads T5 and then checks its
existence in F. Though F is not empty but it does
not contain T5. Therefore the power set, P of T5
is made. After storing each Sub-Set as a key into
Dict, value (support) of some Sub-Sets, {C}, and
{D} also becomes 3, which is equal to minsup.
Therefore, both of these Sub-Sets are declared
frequent, popped out from Dict and stored into F.
Figure 7
Power set of T5 and states of F and Dict

Figure 8 shows the state of Dict when all frequent
itemsets are deleted from it, added into F, and
HARPP is going to terminate.

Figure 8
The state of Dict when HARPP is going to terminate

6. Experimental Evaluation
The performance metrics are running time, peak
memory consumption, and agility. The
experimental results of HARPP, Apriori, and FP-
Growth are presented. Moreover, the scalability
of HARPP has been evaluated.

6.1 Experiment Setup
Four real-world datasets are chosen for
performance testing of HARPP. Table 4
summarizes the features of the datasets.

Table 4
Features of Datasets

Three datasets including PowerC, Online Retail,
and Skin are available at UCI Repository [10]. For
mining frequent items, converted versions of
these datasets are taken from [25]. Extended
Bakery dataset is taken from [17]. Apriori and FP-
Growth have been chosen as the baseline
algorithms. FP-Growth has been chosen because
the efficiency gap between itself and its
successors on sparse datasets is not significant.
HARPP is implemented in Python. The Python
implementation of Apriori is taken from [33]. The
Python implementation of FP-Growth is taken
from the pymining library having version 0.2
[16]. A computer with 8G memory, Intel Core i7-
3667U, 2.0 GHz processor, and Windows 8 Pro
x64 Edition is used to perform all the
experiments.

6.2. Comparison of Running Time
The comparison of running times for HARPP,
Apriori, and FP-Growth are presented in Figures
9-12. Figure 9 shows the comparison of running
times of HARPP, Apriori, and FP-Growth on
PowerC dataset.

Figure 9
Running time on PowerC dataset

The result of Apriori is not plotted because its
running time exceeds 3,000 seconds at minsup

Figure 8 shows the state of Dict when all frequent
itemsets are deleted from it, added into F, and HARPP
is going to terminate.

In Figure 7, HARPP reads T5 and then checks its
existence in F. Though F is not empty but it does
not contain T5. Therefore the power set, P of T5
is made. After storing each Sub-Set as a key into
Dict, value (support) of some Sub-Sets, {C}, and
{D} also becomes 3, which is equal to minsup.
Therefore, both of these Sub-Sets are declared
frequent, popped out from Dict and stored into F.
Figure 7
Power set of T5 and states of F and Dict

Figure 8 shows the state of Dict when all frequent
itemsets are deleted from it, added into F, and
HARPP is going to terminate.

Figure 8
The state of Dict when HARPP is going to terminate

6. Experimental Evaluation
The performance metrics are running time, peak
memory consumption, and agility. The
experimental results of HARPP, Apriori, and FP-
Growth are presented. Moreover, the scalability
of HARPP has been evaluated.

6.1 Experiment Setup
Four real-world datasets are chosen for
performance testing of HARPP. Table 4
summarizes the features of the datasets.

Table 4
Features of Datasets

Three datasets including PowerC, Online Retail,
and Skin are available at UCI Repository [10]. For
mining frequent items, converted versions of
these datasets are taken from [25]. Extended
Bakery dataset is taken from [17]. Apriori and FP-
Growth have been chosen as the baseline
algorithms. FP-Growth has been chosen because
the efficiency gap between itself and its
successors on sparse datasets is not significant.
HARPP is implemented in Python. The Python
implementation of Apriori is taken from [33]. The
Python implementation of FP-Growth is taken
from the pymining library having version 0.2
[16]. A computer with 8G memory, Intel Core i7-
3667U, 2.0 GHz processor, and Windows 8 Pro
x64 Edition is used to perform all the
experiments.

6.2. Comparison of Running Time
The comparison of running times for HARPP,
Apriori, and FP-Growth are presented in Figures
9-12. Figure 9 shows the comparison of running
times of HARPP, Apriori, and FP-Growth on
PowerC dataset.

Figure 9
Running time on PowerC dataset

The result of Apriori is not plotted because its
running time exceeds 3,000 seconds at minsup

6. Experimental Evaluation
The performance metrics are running time, peak
memory consumption, and agility. The experimental
results of HARPP, Apriori, and FP-Growth are pre-
sented. Moreover, the scalability of HARPP has been
evaluated.

6.1. Experiment Setup
Four real-world datasets are chosen for performance
testing of HARPP. Table 4 summarizes the features of
the datasets.

Table 4
Features of Datasets

Information Technology and Control 2019/3/48424

Three datasets including PowerC, Online Retail, and
Skin are available at UCI Repository [10]. For mining
frequent items, converted versions of these datasets
are taken from [25]. Extended Bakery dataset is tak-
en from [17]. Apriori and FP-Growth have been cho-
sen as the baseline algorithms. FP-Growth has been
chosen because the efficiency gap between itself and
its successors on sparse datasets is not significant.
HARPP is implemented in Python. The Python im-
plementation of Apriori is taken from [33]. The Py-
thon implementation of FP-Growth is taken from the
pymining library having version 0.2 [16]. A computer
with 8G memory, Intel Core i7-3667U, 2.0 GHz pro-
cessor, and Windows 8 Pro x64 Edition is used to per-
form all the experiments.

6.2. Comparison of Running Time
The comparison of running times for HARPP, Apriori,
and FP-Growth are presented in Figures 9-12. Figure
9 shows the comparison of running times of HARPP,
Apriori, and FP-Growth on PowerC dataset.

Figure 9
Running time on PowerC dataset

In Figure 7, HARPP reads T5 and then checks its
existence in F. Though F is not empty but it does
not contain T5. Therefore the power set, P of T5
is made. After storing each Sub-Set as a key into
Dict, value (support) of some Sub-Sets, {C}, and
{D} also becomes 3, which is equal to minsup.
Therefore, both of these Sub-Sets are declared
frequent, popped out from Dict and stored into F.
Figure 7
Power set of T5 and states of F and Dict

Figure 8 shows the state of Dict when all frequent
itemsets are deleted from it, added into F, and
HARPP is going to terminate.

Figure 8
The state of Dict when HARPP is going to terminate

6. Experimental Evaluation
The performance metrics are running time, peak
memory consumption, and agility. The
experimental results of HARPP, Apriori, and FP-
Growth are presented. Moreover, the scalability
of HARPP has been evaluated.

6.1 Experiment Setup
Four real-world datasets are chosen for
performance testing of HARPP. Table 4
summarizes the features of the datasets.

Table 4
Features of Datasets

Three datasets including PowerC, Online Retail,
and Skin are available at UCI Repository [10]. For
mining frequent items, converted versions of
these datasets are taken from [25]. Extended
Bakery dataset is taken from [17]. Apriori and FP-
Growth have been chosen as the baseline
algorithms. FP-Growth has been chosen because
the efficiency gap between itself and its
successors on sparse datasets is not significant.
HARPP is implemented in Python. The Python
implementation of Apriori is taken from [33]. The
Python implementation of FP-Growth is taken
from the pymining library having version 0.2
[16]. A computer with 8G memory, Intel Core i7-
3667U, 2.0 GHz processor, and Windows 8 Pro
x64 Edition is used to perform all the
experiments.

6.2. Comparison of Running Time
The comparison of running times for HARPP,
Apriori, and FP-Growth are presented in Figures
9-12. Figure 9 shows the comparison of running
times of HARPP, Apriori, and FP-Growth on
PowerC dataset.

Figure 9
Running time on PowerC dataset

The result of Apriori is not plotted because its
running time exceeds 3,000 seconds at minsup

The result of Apriori is not plotted because its running
time exceeds 3,000 seconds at minsup 0.04%, which
shows that its running time is higher than HARPP
by more than 2 orders of magnitude. Running time of
Apriori further deteriorates as minsup is decreased. It
is evident that the running time of HARPP decreases
with a decrease in minsup, whereas FP-Growth per-
forms inversely. At minsup 0.001%, HARPP is about 7
times faster than FP-Growth.
Figure 10 shows the comparison of the running time
of HARPP, Apriori, and FP-Growth on Online Retail
dataset.

The result of Apriori has not plotted again because its
running time exceeded 4,500 seconds at minsup 0.15%
and worsened when minsup is decreased further. This
is due to the fact that as minsup decreases, more and
more candidate itemsets are generated, which are then
processed to check if they are frequent. Performance of
HARPP is extensively better than FP-Growth at lower
minsup. At minsup 0.003%, the running time of FP-
Growth begins to grow higher than that of HARPP by
more than two orders of magnitude. It is evident that
the running time of HARPP decreases with the de-
crease in minsup, FP-Growth performs inversely. Fig-
ure 11 shows the performance on Skin dataset.

Figure 10
Running time on Online Retail dataset

Figure 11
Running time on Skin dataset

0.04%, which shows that its running time is
higher than HARPP by more than 2 orders of
magnitude. Running time of Apriori further
deteriorates as minsup is decreased. It is evident
that the running time of HARPP decreases with a
decrease in minsup, whereas FP-Growth
performs inversely. At minsup 0.001%, HARPP
is about 7 times faster than FP-Growth.
Figure 10 shows the comparison of the running
time of HARPP, Apriori, and FP-Growth on
Online Retail dataset.

Figure 10
Running time on Online Retail dataset

The result of Apriori has not plotted again
because its running time exceeded 4,500 seconds
at minsup 0.15% and worsened when minsup is
decreased further. This is due to the fact that as
minsup decreases, more and more candidate
itemsets are generated, which are then processed
to check if they are frequent. Performance of
HARPP is extensively better than FP-Growth at
lower minsup. At minsup 0.003%, the running
time of FP-Growth begins to grow higher than
that of HARPP by more than two orders of
magnitude. It is evident that the running time of
HARPP decreases with the decrease in minsup,
FP-Growth performs inversely. Figure 11 shows
the performance on Skin dataset.

Figure 11
Running time on Skin dataset

The efficiency of HARPP is considerably better

than the others. At minsup 0.01%, HARPP is 7
times faster than FP-Growth and faster than
Apriori by a factor of 30.
In Figure 12, HARPP succeeded to achieve the
smallest running times at all minsup thresholds on
Extended Bakery dataset on a logarithmic scale.
At minsup 0.01%, HARPP becomes 3 orders of
magnitude faster than Apriori, and about 6 times
faster than FP-Growth.

Figure 12
Running time on Extended Bakery dataset

6.3. Comparison of Memory Usage
Figures 13-16 show the peak memory
consumption of HARPP, Apriori, and FP-Growth
on four real datasets. In Figure 13, a significant
difference in memory requirements is evident on
PowerC dataset. As the dataset is large and sparse
in nature, FP-Growth takes about 21 times more
memory. HARPP gets least memory due to its
distinguishing characteristic of not storing the
entire dataset in main memory.

Figure 13
Memory consumption on PowerC data set

In Figure 14, on Online Retail dataset, FP-Growth
takes 11 times more memory than taken by
HARPP.

Figure 14

0.04%, which shows that its running time is
higher than HARPP by more than 2 orders of
magnitude. Running time of Apriori further
deteriorates as minsup is decreased. It is evident
that the running time of HARPP decreases with a
decrease in minsup, whereas FP-Growth
performs inversely. At minsup 0.001%, HARPP
is about 7 times faster than FP-Growth.
Figure 10 shows the comparison of the running
time of HARPP, Apriori, and FP-Growth on
Online Retail dataset.

Figure 10
Running time on Online Retail dataset

The result of Apriori has not plotted again
because its running time exceeded 4,500 seconds
at minsup 0.15% and worsened when minsup is
decreased further. This is due to the fact that as
minsup decreases, more and more candidate
itemsets are generated, which are then processed
to check if they are frequent. Performance of
HARPP is extensively better than FP-Growth at
lower minsup. At minsup 0.003%, the running
time of FP-Growth begins to grow higher than
that of HARPP by more than two orders of
magnitude. It is evident that the running time of
HARPP decreases with the decrease in minsup,
FP-Growth performs inversely. Figure 11 shows
the performance on Skin dataset.

Figure 11
Running time on Skin dataset

The efficiency of HARPP is considerably better

than the others. At minsup 0.01%, HARPP is 7
times faster than FP-Growth and faster than
Apriori by a factor of 30.
In Figure 12, HARPP succeeded to achieve the
smallest running times at all minsup thresholds on
Extended Bakery dataset on a logarithmic scale.
At minsup 0.01%, HARPP becomes 3 orders of
magnitude faster than Apriori, and about 6 times
faster than FP-Growth.

Figure 12
Running time on Extended Bakery dataset

6.3. Comparison of Memory Usage
Figures 13-16 show the peak memory
consumption of HARPP, Apriori, and FP-Growth
on four real datasets. In Figure 13, a significant
difference in memory requirements is evident on
PowerC dataset. As the dataset is large and sparse
in nature, FP-Growth takes about 21 times more
memory. HARPP gets least memory due to its
distinguishing characteristic of not storing the
entire dataset in main memory.

Figure 13
Memory consumption on PowerC data set

In Figure 14, on Online Retail dataset, FP-Growth
takes 11 times more memory than taken by
HARPP.

Figure 14

The efficiency of HARPP is considerably better than the
others. At minsup 0.01%, HARPP is 7 times faster than
FP-Growth and faster than Apriori by a factor of 30.

425Information Technology and Control 2019/3/48

In Figure 12, HARPP succeeded to achieve the small-
est running times at all minsup thresholds on Extend-
ed Bakery dataset on a logarithmic scale. At minsup
0.01%, HARPP becomes 3 orders of magnitude faster
than Apriori, and about 6 times faster than FP-Growth.

Figure 12
Running time on Extended Bakery dataset

0.04%, which shows that its running time is
higher than HARPP by more than 2 orders of
magnitude. Running time of Apriori further
deteriorates as minsup is decreased. It is evident
that the running time of HARPP decreases with a
decrease in minsup, whereas FP-Growth
performs inversely. At minsup 0.001%, HARPP
is about 7 times faster than FP-Growth.
Figure 10 shows the comparison of the running
time of HARPP, Apriori, and FP-Growth on
Online Retail dataset.

Figure 10
Running time on Online Retail dataset

The result of Apriori has not plotted again
because its running time exceeded 4,500 seconds
at minsup 0.15% and worsened when minsup is
decreased further. This is due to the fact that as
minsup decreases, more and more candidate
itemsets are generated, which are then processed
to check if they are frequent. Performance of
HARPP is extensively better than FP-Growth at
lower minsup. At minsup 0.003%, the running
time of FP-Growth begins to grow higher than
that of HARPP by more than two orders of
magnitude. It is evident that the running time of
HARPP decreases with the decrease in minsup,
FP-Growth performs inversely. Figure 11 shows
the performance on Skin dataset.

Figure 11
Running time on Skin dataset

The efficiency of HARPP is considerably better

than the others. At minsup 0.01%, HARPP is 7
times faster than FP-Growth and faster than
Apriori by a factor of 30.
In Figure 12, HARPP succeeded to achieve the
smallest running times at all minsup thresholds on
Extended Bakery dataset on a logarithmic scale.
At minsup 0.01%, HARPP becomes 3 orders of
magnitude faster than Apriori, and about 6 times
faster than FP-Growth.

Figure 12
Running time on Extended Bakery dataset

6.3. Comparison of Memory Usage
Figures 13-16 show the peak memory
consumption of HARPP, Apriori, and FP-Growth
on four real datasets. In Figure 13, a significant
difference in memory requirements is evident on
PowerC dataset. As the dataset is large and sparse
in nature, FP-Growth takes about 21 times more
memory. HARPP gets least memory due to its
distinguishing characteristic of not storing the
entire dataset in main memory.

Figure 13
Memory consumption on PowerC data set

In Figure 14, on Online Retail dataset, FP-Growth
takes 11 times more memory than taken by
HARPP.

Figure 14

6.3. Comparison of Memory Usage
Figures 13-16 show the peak memory consumption
of HARPP, Apriori, and FP-Growth on four real data-
sets. In Figure 13, a significant difference in mem-
ory requirements is evident on PowerC dataset. As
the dataset is large and sparse in nature, FP-Growth
takes about 21 times more memory. HARPP gets least
memory due to its distinguishing characteristic of not
storing the entire dataset in main memory.

Figure 13
Memory consumption on PowerC data set

Figure 14
Memory consumption on Online Retail data set

In Figure 14, on Online Retail dataset, FP-Growth
takes 11 times more memory than taken by HARPP.

Figure 15
Memory consumption on Skin data set

Figure 16
Memory consumption on Extended Bakery data set

0.04%, which shows that its running time is
higher than HARPP by more than 2 orders of
magnitude. Running time of Apriori further
deteriorates as minsup is decreased. It is evident
that the running time of HARPP decreases with a
decrease in minsup, whereas FP-Growth
performs inversely. At minsup 0.001%, HARPP
is about 7 times faster than FP-Growth.
Figure 10 shows the comparison of the running
time of HARPP, Apriori, and FP-Growth on
Online Retail dataset.

Figure 10
Running time on Online Retail dataset

The result of Apriori has not plotted again
because its running time exceeded 4,500 seconds
at minsup 0.15% and worsened when minsup is
decreased further. This is due to the fact that as
minsup decreases, more and more candidate
itemsets are generated, which are then processed
to check if they are frequent. Performance of
HARPP is extensively better than FP-Growth at
lower minsup. At minsup 0.003%, the running
time of FP-Growth begins to grow higher than
that of HARPP by more than two orders of
magnitude. It is evident that the running time of
HARPP decreases with the decrease in minsup,
FP-Growth performs inversely. Figure 11 shows
the performance on Skin dataset.

Figure 11
Running time on Skin dataset

The efficiency of HARPP is considerably better

than the others. At minsup 0.01%, HARPP is 7
times faster than FP-Growth and faster than
Apriori by a factor of 30.
In Figure 12, HARPP succeeded to achieve the
smallest running times at all minsup thresholds on
Extended Bakery dataset on a logarithmic scale.
At minsup 0.01%, HARPP becomes 3 orders of
magnitude faster than Apriori, and about 6 times
faster than FP-Growth.

Figure 12
Running time on Extended Bakery dataset

6.3. Comparison of Memory Usage
Figures 13-16 show the peak memory
consumption of HARPP, Apriori, and FP-Growth
on four real datasets. In Figure 13, a significant
difference in memory requirements is evident on
PowerC dataset. As the dataset is large and sparse
in nature, FP-Growth takes about 21 times more
memory. HARPP gets least memory due to its
distinguishing characteristic of not storing the
entire dataset in main memory.

Figure 13
Memory consumption on PowerC data set

In Figure 14, on Online Retail dataset, FP-Growth
takes 11 times more memory than taken by
HARPP.

Figure 14

Memory consumption on Online Retail data set

In Figure 15, on a dense dataset, HARPP uses the
least memory for all minsup thresholds. The
density of data sets means that there exist a
number of itemsets in the transactions and
numerous itemsets have support higher than
minsup residing in main memory [6, 28].

Figure 15
Memory consumption on Skin data set

In Figure 16, memory consumption for Extended
Bakery data set is presented.

Figure 16
Memory consumption on Extended Bakery data set

FP-Growth takes the lead as its FP-tree structure
gets large. Apriori gets less memory at higher
minsup but gradually gains larger memory at
lower minsup due to massive production of
candidate itemsets. HARPP gets the least
memory at lower minsup values.

6.4. Comparison of Agility
In Figures 17-20, comparison of agility of
HARPP, Apriori, and FP-Growth is presented. In
Figure 17, HARPP is 6 times more agile than FP-
Growth on PowerC dataset.

Figure 17
Agility Comparison on PowerC data set

In Figure 18, FP-Growth shows nearly consistent
behavior at all minsup thresholds, which means
that variation in minsup does not affect the speed
at which frequent itemsets are generated. But the
agility of HARPP is extraordinary. At minsup
0.003%, the agility of HARPP is more than two
orders of magnitude higher than FP-Growth.

Figure 18
Agility Comparison on Online Retail data set

In Figure 19, HARPP has proven its
unprecedented agility on Skin dataset. It is about
7 times more agile than FP-Growth at 0.01%
minsup. This is due to its inherent characteristic,
which states that more and more Sub-Sets become
frequent sooner at lower minsup.
In Figure 20, HARPP is six times more agile than
FP-Growth.

6.5. Scalability of HARPP

In Figure 15, on a dense dataset, HARPP uses the least
memory for all minsup thresholds. The density of data
sets means that there exist a number of itemsets in
the transactions and numerous itemsets have support
higher than minsup residing in main memory [6, 28].
In Figure 16, memory consumption for Extended Bak-
ery data set is presented.

Memory consumption on Online Retail data set

In Figure 15, on a dense dataset, HARPP uses the
least memory for all minsup thresholds. The
density of data sets means that there exist a
number of itemsets in the transactions and
numerous itemsets have support higher than
minsup residing in main memory [6, 28].

Figure 15
Memory consumption on Skin data set

In Figure 16, memory consumption for Extended
Bakery data set is presented.

Figure 16
Memory consumption on Extended Bakery data set

FP-Growth takes the lead as its FP-tree structure
gets large. Apriori gets less memory at higher
minsup but gradually gains larger memory at
lower minsup due to massive production of
candidate itemsets. HARPP gets the least
memory at lower minsup values.

6.4. Comparison of Agility
In Figures 17-20, comparison of agility of
HARPP, Apriori, and FP-Growth is presented. In
Figure 17, HARPP is 6 times more agile than FP-
Growth on PowerC dataset.

Figure 17
Agility Comparison on PowerC data set

In Figure 18, FP-Growth shows nearly consistent
behavior at all minsup thresholds, which means
that variation in minsup does not affect the speed
at which frequent itemsets are generated. But the
agility of HARPP is extraordinary. At minsup
0.003%, the agility of HARPP is more than two
orders of magnitude higher than FP-Growth.

Figure 18
Agility Comparison on Online Retail data set

In Figure 19, HARPP has proven its
unprecedented agility on Skin dataset. It is about
7 times more agile than FP-Growth at 0.01%
minsup. This is due to its inherent characteristic,
which states that more and more Sub-Sets become
frequent sooner at lower minsup.
In Figure 20, HARPP is six times more agile than
FP-Growth.

6.5. Scalability of HARPP

Memory consumption on Online Retail data set

In Figure 15, on a dense dataset, HARPP uses the
least memory for all minsup thresholds. The
density of data sets means that there exist a
number of itemsets in the transactions and
numerous itemsets have support higher than
minsup residing in main memory [6, 28].

Figure 15
Memory consumption on Skin data set

In Figure 16, memory consumption for Extended
Bakery data set is presented.

Figure 16
Memory consumption on Extended Bakery data set

FP-Growth takes the lead as its FP-tree structure
gets large. Apriori gets less memory at higher
minsup but gradually gains larger memory at
lower minsup due to massive production of
candidate itemsets. HARPP gets the least
memory at lower minsup values.

6.4. Comparison of Agility
In Figures 17-20, comparison of agility of
HARPP, Apriori, and FP-Growth is presented. In
Figure 17, HARPP is 6 times more agile than FP-
Growth on PowerC dataset.

Figure 17
Agility Comparison on PowerC data set

In Figure 18, FP-Growth shows nearly consistent
behavior at all minsup thresholds, which means
that variation in minsup does not affect the speed
at which frequent itemsets are generated. But the
agility of HARPP is extraordinary. At minsup
0.003%, the agility of HARPP is more than two
orders of magnitude higher than FP-Growth.

Figure 18
Agility Comparison on Online Retail data set

In Figure 19, HARPP has proven its
unprecedented agility on Skin dataset. It is about
7 times more agile than FP-Growth at 0.01%
minsup. This is due to its inherent characteristic,
which states that more and more Sub-Sets become
frequent sooner at lower minsup.
In Figure 20, HARPP is six times more agile than
FP-Growth.

6.5. Scalability of HARPP

Information Technology and Control 2019/3/48426

FP-Growth takes the lead as its FP-tree structure gets
large. Apriori gets less memory at higher minsup but
gradually gains larger memory at lower minsup due
to massive production of candidate itemsets. HARPP
gets the least memory at lower minsup values.

6.4. Comparison of Agility
In Figures 17-20, comparison of agility of HARPP,
Apriori, and FP-Growth is presented. In Figure 17,
HARPP is 6 times more agile than FP-Growth on
PowerC dataset.

Figure 17
Agility Comparison on PowerC data set

Figure 18
Agility Comparison on Online Retail data set

Figure 19
Agility Comparison on Skin data set

Figure 20
Agility Comparison on Extended Bakery data set

In Figure 19, HARPP has proven its unprecedented
agility on Skin dataset. It is about 7 times more agile
than FP-Growth at 0.01% minsup. This is due to its
inherent characteristic, which states that more and
more Sub-Sets become frequent sooner at lower min-
sup.
In Figure 20, HARPP is six times more agile than FP-
Growth.

Memory consumption on Online Retail data set

In Figure 15, on a dense dataset, HARPP uses the
least memory for all minsup thresholds. The
density of data sets means that there exist a
number of itemsets in the transactions and
numerous itemsets have support higher than
minsup residing in main memory [6, 28].

Figure 15
Memory consumption on Skin data set

In Figure 16, memory consumption for Extended
Bakery data set is presented.

Figure 16
Memory consumption on Extended Bakery data set

FP-Growth takes the lead as its FP-tree structure
gets large. Apriori gets less memory at higher
minsup but gradually gains larger memory at
lower minsup due to massive production of
candidate itemsets. HARPP gets the least
memory at lower minsup values.

6.4. Comparison of Agility
In Figures 17-20, comparison of agility of
HARPP, Apriori, and FP-Growth is presented. In
Figure 17, HARPP is 6 times more agile than FP-
Growth on PowerC dataset.

Figure 17
Agility Comparison on PowerC data set

In Figure 18, FP-Growth shows nearly consistent
behavior at all minsup thresholds, which means
that variation in minsup does not affect the speed
at which frequent itemsets are generated. But the
agility of HARPP is extraordinary. At minsup
0.003%, the agility of HARPP is more than two
orders of magnitude higher than FP-Growth.

Figure 18
Agility Comparison on Online Retail data set

In Figure 19, HARPP has proven its
unprecedented agility on Skin dataset. It is about
7 times more agile than FP-Growth at 0.01%
minsup. This is due to its inherent characteristic,
which states that more and more Sub-Sets become
frequent sooner at lower minsup.
In Figure 20, HARPP is six times more agile than
FP-Growth.

6.5. Scalability of HARPP

Memory consumption on Online Retail data set

In Figure 15, on a dense dataset, HARPP uses the
least memory for all minsup thresholds. The
density of data sets means that there exist a
number of itemsets in the transactions and
numerous itemsets have support higher than
minsup residing in main memory [6, 28].

Figure 15
Memory consumption on Skin data set

In Figure 16, memory consumption for Extended
Bakery data set is presented.

Figure 16
Memory consumption on Extended Bakery data set

FP-Growth takes the lead as its FP-tree structure
gets large. Apriori gets less memory at higher
minsup but gradually gains larger memory at
lower minsup due to massive production of
candidate itemsets. HARPP gets the least
memory at lower minsup values.

6.4. Comparison of Agility
In Figures 17-20, comparison of agility of
HARPP, Apriori, and FP-Growth is presented. In
Figure 17, HARPP is 6 times more agile than FP-
Growth on PowerC dataset.

Figure 17
Agility Comparison on PowerC data set

In Figure 18, FP-Growth shows nearly consistent
behavior at all minsup thresholds, which means
that variation in minsup does not affect the speed
at which frequent itemsets are generated. But the
agility of HARPP is extraordinary. At minsup
0.003%, the agility of HARPP is more than two
orders of magnitude higher than FP-Growth.

Figure 18
Agility Comparison on Online Retail data set

In Figure 19, HARPP has proven its
unprecedented agility on Skin dataset. It is about
7 times more agile than FP-Growth at 0.01%
minsup. This is due to its inherent characteristic,
which states that more and more Sub-Sets become
frequent sooner at lower minsup.
In Figure 20, HARPP is six times more agile than
FP-Growth.

6.5. Scalability of HARPP

In Figure 18, FP-Growth shows nearly consistent
behavior at all minsup thresholds, which means that
variation in minsup does not affect the speed at which
frequent itemsets are generated. But the agility of
HARPP is extraordinary. At minsup 0.003%, the agil-
ity of HARPP is more than two orders of magnitude
higher than FP-Growth.

Figure 21 shows the runtime per frequent itemset
of HARPP. It indicates as the minsup goes down,
the runtime per frequent itemset decreases
dramatically for PowerC and Online Retail
datasets.

Figure 19
Agility Comparison on Skin data set

Figure 20
Agility Comparison on Extended Bakery data set

Figure 21
Run Time of the HARPP per itemset versus minsup

It shows that HARPP has good scalability with
the reduction of minsup. Though the frequent
itemsets emerge in an exponential manner, the
running time of HARPP raises in a much more
conservative way.

6.6. Discussion of Results
The factor which affects the running time of a
frequent itemset mining algorithm most is minsup
[34]. In this study, it has been noted that the
performance of HARPP is better than Apriori and
FP-Growth at lower minsup due to the following
reasons.
1. HARPP's intrinsic way of creating Sub-Sets

is strictly independent of minsup. In fact, the
number of Sub-Sets of currently read
transaction T remains constant regardless of
the value of minsup. Sub-Sets become
frequent early at lower minsup, thereby
improving efficiency. In contrast, candidate
generation and test mechanism by Apriori,
and construction of FP- tree and conditional
FP-trees by FP-Growth are strictly
dependent on minsup.

2. Dual containment check such as checking the
existence of each transaction, T at Step (2)
and its Sub-Sets at Step (5) within F prohibits
their inclusion again into Dict if they have
become frequent already. This prohibition
reduces the running time of the HARPP since
numerous overlapping transactions and their
Sub-Sets arrive every now and then.
Therefore the running time of HARPP is
significantly reduced at lower minsup.
HARPP performs better due to its efficient
operations (taking constant running time)
such as checking containment and insertion
of itemsets in both dictionary and set data
structures. On the other hand, the efficiency
of FP-Growth decreases for sparse datasets,
because there are small repeated patterns.
FP-tree built is bigger in size and plenty of
time is taken by the algorithm to build and
traverse the conditional FP-trees.

3. Due to their inherent characteristics, both
Apriori and FP-Growth along with its
successors can only perform efficiently when
the dataset resides entirely in main memory
[6]. There are no repeated patterns in real
sparse datasets, therefore FP-Growth builds
enormous conditional FP-trees and the FP-
tree built is bigger in size. This is why its
memory requirement is high. In contrary,
HARPP memory consumption is minimal
because it does not load the entire dataset in
memory. In each iteration, HARPP reads a
transaction and before reading next
transaction, objects residing in memory are P
containing the power set of currently read
transaction, Dict storing Sub-Sets, which
could not become frequent yet, and F.

Applying HARPP on large datasets at various
minsup thresholds has proven its scalability as
shown in Figure 21.

7. Conclusions
Modern algorithms are mostly evaluated on dense

Figure 21 shows the runtime per frequent itemset
of HARPP. It indicates as the minsup goes down,
the runtime per frequent itemset decreases
dramatically for PowerC and Online Retail
datasets.

Figure 19
Agility Comparison on Skin data set

Figure 20
Agility Comparison on Extended Bakery data set

Figure 21
Run Time of the HARPP per itemset versus minsup

It shows that HARPP has good scalability with
the reduction of minsup. Though the frequent
itemsets emerge in an exponential manner, the
running time of HARPP raises in a much more
conservative way.

6.6. Discussion of Results
The factor which affects the running time of a
frequent itemset mining algorithm most is minsup
[34]. In this study, it has been noted that the
performance of HARPP is better than Apriori and
FP-Growth at lower minsup due to the following
reasons.
1. HARPP's intrinsic way of creating Sub-Sets

is strictly independent of minsup. In fact, the
number of Sub-Sets of currently read
transaction T remains constant regardless of
the value of minsup. Sub-Sets become
frequent early at lower minsup, thereby
improving efficiency. In contrast, candidate
generation and test mechanism by Apriori,
and construction of FP- tree and conditional
FP-trees by FP-Growth are strictly
dependent on minsup.

2. Dual containment check such as checking the
existence of each transaction, T at Step (2)
and its Sub-Sets at Step (5) within F prohibits
their inclusion again into Dict if they have
become frequent already. This prohibition
reduces the running time of the HARPP since
numerous overlapping transactions and their
Sub-Sets arrive every now and then.
Therefore the running time of HARPP is
significantly reduced at lower minsup.
HARPP performs better due to its efficient
operations (taking constant running time)
such as checking containment and insertion
of itemsets in both dictionary and set data
structures. On the other hand, the efficiency
of FP-Growth decreases for sparse datasets,
because there are small repeated patterns.
FP-tree built is bigger in size and plenty of
time is taken by the algorithm to build and
traverse the conditional FP-trees.

3. Due to their inherent characteristics, both
Apriori and FP-Growth along with its
successors can only perform efficiently when
the dataset resides entirely in main memory
[6]. There are no repeated patterns in real
sparse datasets, therefore FP-Growth builds
enormous conditional FP-trees and the FP-
tree built is bigger in size. This is why its
memory requirement is high. In contrary,
HARPP memory consumption is minimal
because it does not load the entire dataset in
memory. In each iteration, HARPP reads a
transaction and before reading next
transaction, objects residing in memory are P
containing the power set of currently read
transaction, Dict storing Sub-Sets, which
could not become frequent yet, and F.

Applying HARPP on large datasets at various
minsup thresholds has proven its scalability as
shown in Figure 21.

7. Conclusions
Modern algorithms are mostly evaluated on dense

6.5. Scalability of HARPP
Figure 21 shows the runtime per frequent itemset
of HARPP. It indicates as the minsup goes down, the
runtime per frequent itemset decreases dramatically
for PowerC and Online Retail datasets.
It shows that HARPP has good scalability with the
reduction of minsup. Though the frequent itemsets

427Information Technology and Control 2019/3/48

Figure 21
Run Time of the HARPP per itemset versus minsup

emerge in an exponential manner, the running time of
HARPP raises in a much more conservative way.

6.6. Discussion of Results
The factor which affects the running time of a fre-
quent itemset mining algorithm most is minsup [34].
In this study, it has been noted that the performance
of HARPP is better than Apriori and FP-Growth at
lower minsup due to the following reasons.
1 HARPP’s intrinsic way of creating Sub-Sets is

strictly independent of minsup. In fact, the num-
ber of Sub-Sets of currently read transaction T re-
mains constant regardless of the value of minsup.
Sub-Sets become frequent early at lower minsup,
thereby improving efficiency. In contrast, candi-
date generation and test mechanism by Apriori, and
construction of FP- tree and conditional FP-trees
by FP-Growth are strictly dependent on minsup.

2 Dual containment check such as checking the ex-
istence of each transaction, T at Step (2) and its
Sub-Sets at Step (5) within F prohibits their inclu-
sion again into Dict if they have become frequent
already. This prohibition reduces the running time
of the HARPP since numerous overlapping trans-
actions and their Sub-Sets arrive every now and
then. Therefore the running time of HARPP is sig-
nificantly reduced at lower minsup. HARPP per-
forms better due to its efficient operations (taking
constant running time) such as checking contain-
ment and insertion of itemsets in both dictionary
and set data structures. On the other hand, the effi-

Figure 21 shows the runtime per frequent itemset
of HARPP. It indicates as the minsup goes down,
the runtime per frequent itemset decreases
dramatically for PowerC and Online Retail
datasets.

Figure 19
Agility Comparison on Skin data set

Figure 20
Agility Comparison on Extended Bakery data set

Figure 21
Run Time of the HARPP per itemset versus minsup

It shows that HARPP has good scalability with
the reduction of minsup. Though the frequent
itemsets emerge in an exponential manner, the
running time of HARPP raises in a much more
conservative way.

6.6. Discussion of Results
The factor which affects the running time of a
frequent itemset mining algorithm most is minsup
[34]. In this study, it has been noted that the
performance of HARPP is better than Apriori and
FP-Growth at lower minsup due to the following
reasons.
1. HARPP's intrinsic way of creating Sub-Sets

is strictly independent of minsup. In fact, the
number of Sub-Sets of currently read
transaction T remains constant regardless of
the value of minsup. Sub-Sets become
frequent early at lower minsup, thereby
improving efficiency. In contrast, candidate
generation and test mechanism by Apriori,
and construction of FP- tree and conditional
FP-trees by FP-Growth are strictly
dependent on minsup.

2. Dual containment check such as checking the
existence of each transaction, T at Step (2)
and its Sub-Sets at Step (5) within F prohibits
their inclusion again into Dict if they have
become frequent already. This prohibition
reduces the running time of the HARPP since
numerous overlapping transactions and their
Sub-Sets arrive every now and then.
Therefore the running time of HARPP is
significantly reduced at lower minsup.
HARPP performs better due to its efficient
operations (taking constant running time)
such as checking containment and insertion
of itemsets in both dictionary and set data
structures. On the other hand, the efficiency
of FP-Growth decreases for sparse datasets,
because there are small repeated patterns.
FP-tree built is bigger in size and plenty of
time is taken by the algorithm to build and
traverse the conditional FP-trees.

3. Due to their inherent characteristics, both
Apriori and FP-Growth along with its
successors can only perform efficiently when
the dataset resides entirely in main memory
[6]. There are no repeated patterns in real
sparse datasets, therefore FP-Growth builds
enormous conditional FP-trees and the FP-
tree built is bigger in size. This is why its
memory requirement is high. In contrary,
HARPP memory consumption is minimal
because it does not load the entire dataset in
memory. In each iteration, HARPP reads a
transaction and before reading next
transaction, objects residing in memory are P
containing the power set of currently read
transaction, Dict storing Sub-Sets, which
could not become frequent yet, and F.

Applying HARPP on large datasets at various
minsup thresholds has proven its scalability as
shown in Figure 21.

7. Conclusions
Modern algorithms are mostly evaluated on dense

ciency of FP-Growth decreases for sparse datasets,
because there are small repeated patterns. FP-tree
built is bigger in size and plenty of time is taken by
the algorithm to build and traverse the conditional
FP-trees.

3 Due to their inherent characteristics, both Apri-
ori and FP-Growth along with its successors can
only perform efficiently when the dataset resides
entirely in main memory [6]. There are no repeat-
ed patterns in real sparse datasets, therefore FP-
Growth builds enormous conditional FP-trees and
the FP-tree built is bigger in size. This is why its
memory requirement is high. In contrary, HARPP
memory consumption is minimal because it does
not load the entire dataset in memory. In each iter-
ation, HARPP reads a transaction and before read-
ing next transaction, objects residing in memory
are P containing the power set of currently read
transaction, Dict storing Sub-Sets, which could not
become frequent yet, and F.

Applying HARPP on large datasets at various min-
sup thresholds has proven its scalability as shown in
Figure 21.

7. Conclusions
Modern algorithms are mostly evaluated on dense
datasets but lack adequate investigation on sparse
datasets. Performance of these algorithms on sparse
datasets is below par as their running times increase
rapidly at lower minimum support thresholds. In-
terestingly, the difference in their running times on
sparse datasets is almost negligible except for a few
cases. This paper presents HARPP, a novel algorithm
that mines frequent itemsets efficiently. HARPP per-
forms exceptionally well on lower minimum support
thresholds. HARPP does not store the database in
memory and finds frequent itemsets in a single pass
over the database. Since HARPP achieves better run-
ning time and unparalleled agility at lower minimum
support, it can be a preferable option for recommen-
dation systems to discover the long-tailed itemsets.
Since HARPP considers every transaction as a set
of items for creating its power set, it has to store 2N
Sub-Sets, where N is the size (number of items) of a
transaction. Therefore as future extensions of this

Information Technology and Control 2019/3/48428

work, efforts will be carried out to employ HARPP to
perform efficiently on datasets having quite a long av-
erage transaction length. Nevertheless, N is negligible
as compared to |DB| (number of items in a dataset),
thus makes HARPP a viable solution to mine frequent
itemsets. HARPP will also be employed for solving
other problems such as mining closed frequent item-
sets [38, 60], maximal frequent itemsets [9, 14, 59],
high utility itemset mining [37], top-rank-k frequent
patterns [18], and frequent weighted itemset mining

[13]. Furthermore, the HARPP can be extended for
mining data streams [40]. Finally, due to the escalat-
ing importance of big data, HARPP would be imple-
mented in a parallel / distributed fashion for discov-
ering frequent itemsets [5, 51].

Acknowledgment
This research did not receive any specific grant from
funding agencies in the public, commercial, or not-
for-profit sectors.

References
1. Agrawal, R., Imieliński, T., Swami, A. Mining Asso-

ciation Rules Between Sets of Items in Large Data-
bases. Proceedings of ACM SIGMOD Conference
on Management of Data, 1993, 207-216. https://doi.
org/10.1145/170036.170072

2. Agrawal, R., Srikant, R. Fast Algorithms for Mining As-
sociation Rules. Proceedings of International Confer-
ence on Very Large Data Bases, 1994, 487-499.

3. Ali, Z., Khusro, S., Ullah, I. A Hybrid Book Recommend-
er System Based on Table of Contents (ToC) and Asso-
ciation Rule Mining. Proceedings of 10th International
Conference on Informatics and Systems, 2016, 68-74.
https://doi.org/10.1145/2908446.2908481

4. Anand, R., Jeffrey, D. U. Mining of Massive Datasets.
Cambridge, UK, Cambridge University Press, 2014.
https://doi.org/10.1017/CBO9781139924801

5. Apiletti, D., Baralis, E., Cerquitelli, T., Garza, P., Pul-
virenti, F., Michiardi, P. A Parallel MapReduce Algo-
rithm to Efficiently Support Itemset Mining on High
Dimensional Data. Big Data Research, 10, 2017, 53-69.
https://doi.org/10.1016/j.bdr.2017.10.004

6. Apiletti, D., Baralis, E., Cerquitelli, T., Garza, P., Pul-
virenti, F., Venturini, L. Frequent Itemsets Mining for
Big Data: A Comparative Analysis. Big Data Research,
2017, 9, 67-83. https://doi.org/10.1016/j.bdr.2017.06.006

7. Asha, T., Natarajan, S., Murthy, K. B. Associative
Classification in the Prediction of Tuberculosis. Pro-
ceedings of International Conference and Work-
shop on Emerging Trends in Technology, Mumbai,
Maharashtra, India, 2011, 1327-1330. https://doi.
org/10.1145/1980022.1980315

8. Barabási, A. L. Scale-free Networks: A Decade and
Beyond. Science, 2009, 325, 412-413. https://doi.
org/10.1126/science.1173299

9. Bayardo, R. J. Efficiently Mining Long Patterns from
Databases. Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data, Se-
attle, Washington, USA, 1998, 85-93. https://doi.
org/10.1145/276305.276313

10. Blake, C. L., Merz, C. J. UCI Repository of Machine
Learning Databases. University of California Irvine,
1998. http://archive.ics.uci.edu/ml/

11. Brauckhoff, D., Dimitropoulos, X., Wagner, A., Salama-
tian, K. Anomaly Extraction in Backbone Networks
Using Association Rules. Proceedings of ACM SIG-
COMM Internet Measurement Conference, 2009, 28-
34. https://doi.org/10.1109/TNET.2012.2187306

12. Brin, S., Motwani, R., Ullman, J. D., Tsur, S. Dynam-
ic Itemset Counting and Implication Rules for Mar-
ket Basket Data. Proceedings of ACM SIGMOD In-
ternational Conference on Management of Data,
Tucson, Arizona, USA, 1997, 255-264. https://doi.
org/10.1145/253262.253325

13. Bui, H., Vo, B., Nguyen, H., Nguyen-Hoang, T. A., Hong,
T. P. A Weighted N-list-based Method for Mining Fre-
quent Weighted Itemsets. Expert Systems with Appli-
cations, 2018, 96, 388-405. https://doi.org/10.1016/j.
eswa.2017.10.039

14. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu,
T. MAFIA: A Maximal Frequent Itemset Algorithm for
Transactional Databases. Proceedings of the 17th IEEE
International Conference on Data Engineering, 2001,
443-452.

15. Chin, C.Y., Weng, M. Y., Lin, T. C., Cheng, S. Y., Yang, Y.
H. K., Tseng, V. S. Mining Disease Risk Patterns From
Nationwide Clinical Databases for the Assessment of
Early Rheumatoid Arthritis Risk. PLoS One, 2015, 1-20.
https://doi.org/10.1371/journal.pone.0122508

https://doi.org/10.1145/170036.170072
https://doi.org/10.1145/170036.170072
https://doi.org/10.1145/2908446.2908481
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.1016/j.bdr.2017.10.004
https://doi.org/10.1016/j.bdr.2017.06.006
https://doi.org/10.1145/1980022.1980315
https://doi.org/10.1145/1980022.1980315
https://doi.org/10.1126/science.1173299
https://doi.org/10.1126/science.1173299
https://doi.org/10.1145/276305.276313
https://doi.org/10.1145/276305.276313
https://doi.org/10.1109/TNET.2012.2187306
https://doi.org/10.1145/253262.253325
https://doi.org/10.1145/253262.253325
https://doi.org/10.1016/j.eswa.2017.10.039
https://doi.org/10.1016/j.eswa.2017.10.039
https://doi.org/10.1371/journal.pone.0122508

429Information Technology and Control 2019/3/48

16. Dagenais, B. A Few Data Mining Algorithms in Pure Py-
thon. https://github.com/bartdag/pymining

17. Dekhtyar, A., Verburg, J. ExtendedBakery Datasets.
https://wiki.csc.calpoly.edu/datasets/wiki/Extended-
Bakery

18. Deng, Z. H. Fast Mining Top-Rank-k Frequent Pat-
terns by Using Node-lists. Expert Systems with Ap-
plications, 2014, 41(4 PART 2), 1763-1768. https://doi.
org/10.1016/j.eswa.2013.08.075

19. Deng, Z. H., Lv, S. L. Fast Mining Frequent Itemsets
Using Nodesets. Expert Systems with Applications,
2014, 41(10), 4505-4512. https://doi.org/10.1016/j.
eswa.2014.01.025

20. Deng, Z. H., Lv. S. L. PrePost+: An Efficient N-lists-
based Algorithm for Mining Frequent Itemsets via
Children-Parent Equivalence Pruning. Expert Systems
with Applications, 2015, 42(13), 5424-5432. https://doi.
org/10.1016/j.eswa.2015.03.004

21. Deng, Z., Wang, Z. A New Fast Vertical Method for Min-
ing Frequent Patterns. International Journal of Com-
putational Intelligence Systems, 2010, 3(6), 733-744.
https://doi.org/10.1080/18756891.2010.9727736

22. Deng, Z., Wang, Z., Jiang, J. A New Algorithm for Fast
Mining Frequent Itemsets using N-lists. Science China
Information Sciences, 2012, 55(9), 2008-2030. https://
doi.org/10.1007/s11432-012-4638-z

23. Duwairi, R., Ammari, H. An Enhanced CBAR Algorithm
for Improving Recommendation Systems Accuracy.
Simulation Modelling Practice and Theory, 2016, 60,
54-68. https://doi.org/10.1016/j.simpat.2015.10.001

24. Exarchos, T. P., Papaloukas, C., Fotiadis, D. I., Micha-
lis, L. K. An Aassociation Rule Mining-based Meth-
odology for Automated Detection of Ischemic ECG
beats. IEEE Transactions on Biomedical Engineer-
ing, 2006, 53(8), 1531-1540. https://doi.org/10.1109/
TBME.2006.873753

25. Fournier-Viger, P., Lin, C. W., Gomariz, A., Soltani. A.,
Deng, Z., Lam, H. T. The SPMF Open-Source Data Min-
ing Library Version 2. Proceedings of European Con-
ference on Principles of Data Mining and Knowledge
Discovery, 2016, 36-40. https://doi.org/10.1007/978-3-
319-46131-1_8

26. Garcia-Molina, H., Ullman, J. D., Widom, J. Database
Systems: The Complete Book. 2nd Ed. New Jersey:
Pearson; 2009. https://doi.org/10.1145/253262.253287

27. Ghafoor, Y., Huang, Y. P., Liu, S. I. An Intelligent Ap-
proach to Discovering Common Symptoms Among De-
pressed Patients. Soft Computing, 2015, 19(4), 819-827.
https://doi.org/10.1007/s00500-014-1408-4

28. Goethals, B. Memory Issues in Frequent Itemset Min-
ing. Proceedings of ACM Symposium on Applied Com-
puting, Nicosia, Cyprus, 2004, 530-534. https://doi.
org/10.1145/967900.968012

29. Gopalan, R. P., Sucahyo, Y. G. High Performance Fre-
quent Patterns Extraction Using Compressed FP-tree.
Proceedings of SIAM International Workshop on High
Performance and Distributed Mining, Orlando, Florida,
USA, 2004.

30. Grahne, G., Lakshmanan, L. V. S., Wang, X. Efficient
Mining of Constrained Correlated Sets. Proceedings
of 16th International Conference on Data Engineer-
ing, San Diego, CA, USA, 2000, 512-521. https://doi.
org/10.1109/ICDE.2000.839450

31. Han, J., Cheng, H., Xin, D., Yan, X. Frequent Pattern
Mining: Current Status and Future Directions. Data
Mining and Knowledge Discovery, 2007, 15(1), 55-86.
https://doi.org/10.1007/s10618-006-0059-1

32. Han, J., Pei, J., Yin, Y. Mining Frequent Patterns With-
out Candidate Generation. Proceedings of ACM SIG-
MOD International Conference on Management
of data, Dallas, Texas, USA, 2000, 1-12. https://doi.
org/10.1145/342009.335372

33. Harrington, P. Machine Learning in Action. Manning
Publications 2012. https://doi.org/10.1007/s10994-011-
5249-4

34. Heaton, J. Comparing Dataset Characteristics that Fa-
vor the Apriori, Eclat or FP-Growth Frequent Itemset
Mining Algorithms. Proceedings of IEEE Southeast
Conference, 2016, 1-7. https://doi.org/10.1109/SEC-
ON.2016.7506659

35. Jeeva, S. C., Rajsingh, E. B. Intelligent Phishing Url De-
tection Using Association Rule Mining. Human-centric
Computing and Information Sciences, 2016, 6(1), 10.
https://doi.org/10.1186/s13673-016-0064-3

36. Klemettinen, M., Heikki, M., Ronkainen, P., Toivonen,
H., Verkamo, I. Finding Interesting Rules From Large
Sets of Discovered Association Rules. Proceedings
of 3rd International Conference on Information and
Knowledge Management, Gaithersburg, MD, USA,
1994, 401-407. https://doi.org/10.1145/191246.191314

37. Krishnamoorthy, S. HMiner: Efficiently Mining
High Utility Itemsets. Expert Systems with Appli-
cations, 2017, 90, 168-183. https://doi.org/10.1016/j.
eswa.2017.08.028

38. Lee. A. J. T., Wang, C. S., Weng, W. Y., Chen, Y. A., Wu,
H. W. An Efficient Algorithm for Mining Closed In-
ter-Transaction Itemsets. Data and Knowledge Engi-

https://doi.org/10.1016/j.eswa.2013.08.075
https://doi.org/10.1016/j.eswa.2013.08.075
https://doi.org/10.1016/j.eswa.2014.01.025
https://doi.org/10.1016/j.eswa.2014.01.025
https://doi.org/10.1016/j.eswa.2015.03.004
https://doi.org/10.1016/j.eswa.2015.03.004
https://doi.org/10.1080/18756891.2010.9727736
https://doi.org/10.1007/s11432-012-4638-z
https://doi.org/10.1007/s11432-012-4638-z
https://doi.org/10.1016/j.simpat.2015.10.001
https://doi.org/10.1109/TBME.2006.873753
https://doi.org/10.1109/TBME.2006.873753
https://doi.org/10.1007/978-3-319-46131-1_8
https://doi.org/10.1007/978-3-319-46131-1_8
https://doi.org/10.1145/253262.253287
https://doi.org/10.1007/s00500-014-1408-4
https://doi.org/10.1145/967900.968012
https://doi.org/10.1145/967900.968012
https://doi.org/10.1109/ICDE.2000.839450
https://doi.org/10.1109/ICDE.2000.839450
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1145/342009.335372
https://doi.org/10.1145/342009.335372
https://doi.org/10.1007/s10994-011-5249-4
https://doi.org/10.1007/s10994-011-5249-4
https://doi.org/10.1109/SECON.2016.7506659
https://doi.org/10.1109/SECON.2016.7506659
https://doi.org/10.1186/s13673-016-0064-3
https://doi.org/10.1145/191246.191314
https://doi.org/10.1016/j.eswa.2017.08.028
https://doi.org/10.1016/j.eswa.2017.08.028

Information Technology and Control 2019/3/48430

neering, 2008, 66(1), 68-91. https://doi.org/10.1016/j.
datak.2008.02.001

39. Lent, B., Swami, A., Widom, J. Clustering Association
Rules. Proceedings of 13th International Conference
on Data Engineering, Birmingham, UK, 1997, 220-231.
https://doi.org/10.1109/ICDE.1997.581756

40. Li, X., Deng, Z. H. Mining Frequent Itemsets from Net-
work Flows for Monitoring Network. Expert Systems
with Applications, 2010, 37(12), 8850-8860. https://doi.
org/10.1016/j.eswa.2010.06.012

41. Makhtar, M., Harun, N. A., Aziz, A. A., Zakaria, Z. A., Ab-
dullah, F. S., Jusoh, J. A. An Association Rule Mining
Approach in Predicting Flood Areas. Proceedings of
International Conference on Soft Computing and Data
Mining, 2016, 437-446. https://doi.org/10.1007/978-3-
319-51281-5

42. Mobasher, B., Dai, H., Luo, T., Nakagawa, M. Effective
Personalization Based on Association Rule Discovery
from Web Usage Data. Proceedings of 3rd ACM In-
ternational Workshop on Web Information and Data
Management, Atlanta, Georgia, 2001, 9-15. https://doi.
org/10.1145/502932.502935

43. Nahar, J., Imam, T., Tickle, K. S., Chen, Y. P. P. Associa-
tion Rule Mining to Detect Factors Which Contribute
to Heart Disease in Males and Females. Expert Systems
with Applications, 2013, 40(4), 1086-1093. https://doi.
org/10.1016/j.eswa.2012.08.028

44. Najafabadi, M. K., Mahrin, M. N., Chuprat, S., Sarkan, H.
M. Improving the Accuracy of Collaborative Filtering
Recommendations Using Clustering and Association
Rules Mining on Implicit Data. Computers and Human
Behavior, 2017, 67(2), 113-128. https://doi.org/10.1016/j.
chb.2016.11.010

45. Ng, R. T., Lakshmanan, L. V. S., Han, J., Pang, A. Ex-
ploratory Mining and Pruning Optimizations of Con-
strained Associations Rules. Proceedings of ACM
SIGMOD International Conference on Management
of Data, Seattle, Washington, USA, 1998, 13-24. https://
doi.org/10.1145/276305.276307

46. Ozel, S. A., Guvenir, H. A. An Algorithm for Mining Asso-
ciation Rules Using Perfect Hashing and Database Prun-
ing. Proceedings of 10th Turkish Symposium on Artifi-
cial Intelligence and Neural Networks, 2001, 257-264.

47. Park, J., Chen, M., Yu, P. An Effective Hash-based Al-
gorithm for Mining Association Rules. Proceedings of
ACM SIGMOD International Conference on Manage-
ment of Data, SanJose, California, USA, 1995, 175-186.
https://doi.org/10.1145/568271.223813

48. Pera, M. S., Ng, Y. Analyzing Book-Related Features to
Recommend Books for Emergent Readers. Proceedings
of 26th ACM Conference on Hypertext and Social Me-
dia, Guzelyurt, Northern Cyprus, 2015, 221-230. https://
doi.org/10.1145/2700171.2791037

49. Sarawagi, S., Thomas, S., Agrawal, R. Integrating Asso-
ciation Rule Mining with Relational Database Systems:
Alternatives and Implications. Proceedings of ACM
SIGMOD International Conference on Management of
Data, Seattle, Washington, USA, 1998, 343-354. https://
doi.org/10.1145/276304.276335

50. Savasere, A., Omiecinski, E. R., Navathe, S. An Effi-
cient Algorithm for Mining Association Rules in Large
Databases. Proceedings of International Conference
on Very Large Data Bases, 1995, 432-444. https://doi.
org/10.1109/WKDD.2008.33

51. Sethi, K. K., Ramesh, D. HFIM: A Spark-based Hybrid
Frequent Itemset Mining Algorithm for Big Data Pro-
cessing. Journal of Supercomputing, 2017, 73(8), 3652-
3668. https://doi.org/10.1007/s11227-017-1963-4

52. Shenoy, P., Haritsa, J. R., Sundarshan, S., Bhalotia, G.,
Bawa, M., Shah, D. Turbo-Charging Vertical Mining
of Large Databases. Proceedings of the 2000 ACM
SIGMOD International Conference on Management
of Data, Dallas, Texas, USA, 2000, 22-33. https://doi.
org/10.1145/342009.335376

53. Song, W., Yang, B., Xu, Z. Index-BitTableFI: An Improved
Algorithm for Mining Frequent Itemsets. Knowl-
edge-Based Systems, 2008, 21(6), 507-513. https://doi.
org/10.1016/j.knosys.2008.03.011

54. Srikant, R., Vu, Q., Agrawal, R. Mining Association
Rules with Item Constraints. Proceedings of 3rd Inter-
national Conference on Knowledge Discovery and Data
Mining, Newport Beach, USA, 1997, 67-73. https://doi.
org/10.1016/j.ijar.2004.11.006

55. Toivonen, H. Sampling Large Databases for Association
Rules. Proceedings of 22nd International Conference
on Very Large Data Bases, Mumbai (Bombay), India,
1996, 134-145.

56. Tsay, Y. J., Chiang, J. Y. CBAR: An Efficient Method for
Mining Association Rules. Knowledge-Based Systems,
2005, 18(2-3), 99-105. https://doi.org/10.1016/j.kno-
sys.2004.04.010

57. Vathsala, H., Koolagudi, S. G. Prediction model for pen-
insular Indian Summer Monsoon Rainfall using Data
Mining and Statistical Approaches. Computers and
Geosciences, 2017, 98, 55-63. https://doi.org/10.1016/j.
cageo.2016.10.003

https://doi.org/10.1016/j.datak.2008.02.001
https://doi.org/10.1016/j.datak.2008.02.001
https://doi.org/10.1109/ICDE.1997.581756
https://doi.org/10.1016/j.eswa.2010.06.012
https://doi.org/10.1016/j.eswa.2010.06.012
https://doi.org/10.1007/978-3-319-51281-5
https://doi.org/10.1007/978-3-319-51281-5
https://doi.org/10.1145/502932.502935
https://doi.org/10.1145/502932.502935
https://doi.org/10.1016/j.eswa.2012.08.028
https://doi.org/10.1016/j.eswa.2012.08.028
https://doi.org/10.1016/j.chb.2016.11.010
https://doi.org/10.1016/j.chb.2016.11.010
https://doi.org/10.1145/276305.276307
https://doi.org/10.1145/276305.276307
https://doi.org/10.1145/568271.223813
https://doi.org/10.1145/2700171.2791037
https://doi.org/10.1145/2700171.2791037
https://doi.org/10.1145/276304.276335
https://doi.org/10.1145/276304.276335
https://doi.org/10.1109/WKDD.2008.33
https://doi.org/10.1109/WKDD.2008.33
https://doi.org/10.1007/s11227-017-1963-4
https://doi.org/10.1145/342009.335376
https://doi.org/10.1145/342009.335376
https://doi.org/10.1016/j.knosys.2008.03.011
https://doi.org/10.1016/j.knosys.2008.03.011
https://doi.org/10.1016/j.ijar.2004.11.006
https://doi.org/10.1016/j.ijar.2004.11.006
https://doi.org/10.1016/j.knosys.2004.04.010
https://doi.org/10.1016/j.knosys.2004.04.010
https://doi.org/10.1016/j.cageo.2016.10.003
https://doi.org/10.1016/j.cageo.2016.10.003

431Information Technology and Control 2019/3/48

58. Vo, B., Le, T., Coenen, F., Hong, T. P. Mining Frequent
Itemsets Using the N-list and Subsume Concepts. In-
ternational Journal of Machine Learning and Cyber-
netics, 2016, 7(2), 253-265. https://doi.org/10.1007/
s13042-014-0252-2

59. Vo, B., Pham, S., Le, T., Deng, Z. H. A Novel Approach
for Mining Maximal Frequent Patterns. Expert Sys-
tems with Applications. 2017, 73, 178-186. https://doi.
org/10.1016/j.eswa.2016.12.023

60. Wang, J., Han, J., Pei, J. Closet+: Searching for the Best
Strategies for Mining Frequent Closed Itemsets. Pro-
ceedings of Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2003,
236-245. https://doi.org/10.1145/956750.956779

61. Yagci, A. M., Aytekin, T., Gurgen, F. S. Scalable and
Adaptive Collaborative Filtering by Mining Frequent
Item Co-occurrences in a User Feedback Stream. Engi-
neering Applications of Artificial Intelligence, 2017, 58,
171-184. https://doi.org/10.1016/j.engappai.2016.10.011

62. Yoshida, K., Shomura, Y., Watanabe, Y. Visualizing
Network Status. Proceedings of 6th International
Conference on Machine Learning and Cybernetics,
2007, 4, 2094-2099. https://doi.org/10.1109/ICM-
LC.2007.4370490

63. Zaki, M. J. Scalable Algorithms for Association Mining.
IEEE Transactions on Knowledge and Data Engineer-
ing, 2000, 372-390. https://doi.org/10.1109/69.846291

64. Zaki, M. J., Gouda, K. Fast Vertical Mining Using Diffsets.
Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2003, 326-335. https://doi.org/10.1145/956755.956788

65. Zhengbing, H., Zhitang, L., Jumgi, W. A Novel Network
Intrusion Detection System (NIDS) Based on Signa-
tures Search of Data Mining. Proceedings of 1st In-
ternational Conference on Forensic Applications and
Techniques in Telecommunications, Information, and
Multimedia and Workshop, Adelaide, Australia, 2008,
10-16. https://doi.org/10.1109/WKDD.2008.48

https://doi.org/10.1007/s13042-014-0252-2
https://doi.org/10.1007/s13042-014-0252-2
https://doi.org/10.1016/j.eswa.2016.12.023
https://doi.org/10.1016/j.eswa.2016.12.023
https://doi.org/10.1145/956750.956779
https://doi.org/10.1016/j.engappai.2016.10.011
https://doi.org/10.1109/ICMLC.2007.4370490
https://doi.org/10.1109/ICMLC.2007.4370490
https://doi.org/10.1109/69.846291
https://doi.org/10.1145/956755.956788
https://doi.org/10.1109/WKDD.2008.48

