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Sentiment classification has become very popular to analyze opinions about events, products, and so on, espe-
cially for social networks such as Twitter. Due to the size limitation of expressing ideas on social networks, the 
classification performance needs to be boosted by proposing various techniques. In this work, the enhancement 
of feature space with word embedding based features is proposed to deal with the size limitation issues and the 
classification success of sentiment analysis is improved by employing classifier ensembles. The contributions 
of this paper are fivefold. First, the representative capabilities of features are enriched by using a semantic word 
embedding model and followingly the conventional feature selection techniques are compared. Second, tradi-
tional machine learning algorithms, namely naïve Bayes, support vector machine, and random forest are car-
ried out to select baseline classifier for the proposed ensemble system. Third, three ensemble strategies namely, 
bagging, boosting, and random subspace are introduced to ensure the diversity of ensemble learning. Fourth, 
experiments are conducted to compare the performance of the models with the word embedding baseline. 
Eventually, a wide range of comparative experiments on Twitter datasets demonstrate that the classification 
performance of the proposed model significantly outperforms the state-of-the-art studies.
KEYWORDS: Word embedding, ant colony optimization, information gain, sentiment analysis, classifier en-
sembles, extended spaces.
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1. Introduction
Social media has become a very popular resource to 
analyze huge amount of information and detect opin-
ions on many things about various subjects on the 
Internet. As one of the well-known social media plat-
forms, Twitter is preferred by up to 100 million active 
users to express opinions. This means that Twitter 
comprises precious information which can be effec-
tive for market dynamics. For this reason, the senti-
ment analysis is a significant part to understand user 
demands in terms of positive and negative aspects.
Sentiment analysis is a considerable research field  
and can be summarized as the extraction of users’ 
opinions from the text. The traditional machine 
learning techniques such as naїve Bayes, support 
vector machines, and so on are employed to deter-
mine the sentiment polarity such as negative, pos-
itive, or neutral on this domain. The most popular 
and recently used one is deep learning models used to 
achieve higher classification performance compared 
to the conventional machine learning algorithms. 
The fundamental approach of deep learning models 
is to provide automatic feature extraction by training 
complex features with minimum external support 
and acquire the meaningful representation of data 
through deep neural networks for sentiment analysis. 
For this purpose, many networks such as convolu-
tional neural networks (CNN), recurrent neural net-
works (RNN), recursive neural networks, deep belief 
networks (DBN), and various semantic word embed-
ding models such as word2vec, Glove are employed. 
These techniques have been extensively applied by 
researchers in different areas such as computer vi-
sion, image analysis, speech recognition, and natural 
language processing.
As much as the selection of classifier, the individual 
success and diversity of base learners are also deter-
minative factors of the ensemble success. As the di-
versity of base learner increases, the classification 
success of system becomes better. The usage of dif-
ferent or the same base learners is requisite in order 
to provide diversity. Diversity is maintained with sev-
eral conventional ensemble algorithms such as bag-
ging, random subspaces, random forests, and rotation 
forest for the same base learners. For different base 
learners, it is already achieved by blending different 
learning algorithms with various decision making 
techniques such as majority voting, stacking, cascad-

ing. In this work, we focus on the homogeneous clas-
sifier ensembles which utilize the same base learners 
to provide diversity.
This paper proposes to integrate word embedding ap-
proach and ensemble learning models to boost classi-
fication performance of short texts by extending fea-
ture space. In this study, we centered on enhancing 
feature space to advance the classification success of 
short texts because of the size limitation of express-
ing ideas on social networks such as Twitter. In par-
ticular, this work considers an ensemble of classifiers, 
where classifiers are trained with extended feature 
spaces by making use of word embedding based fea-
ture extraction technique, namely word2vec. The ad-
vantage of word embedding based feature extraction 
methods is to employ semantic word embeddings, on 
the contrary, traditional feature selection techniques 
ignore semantically similar words. Followingly, three 
ensemble strategies namely, bagging, boosting, and 
random subspace are carried out to ensure the diver-
sity of ensemble learning by choosing the best clas-
sification performance of baseline classifier among 
multinomial naïve Bayes (MNB), multivariate naïve 
Bayes (MVNB), support vector machine (SVM), and 
random forest (RF) algorithms. To the best of our 
knowledge, this is the very first approach of utilizing 
word embedding based extended spaces with classi-
fier ensembles for short sentiment classification on 
Twitter. For demonstrating the contribution of pro-
posed model, we conduct experiments on Twitter 
datasets. Extensive experiments show that the word 
embedding based proposed model is highly efficient 
for sentiment analysis compared to the traditional 
ensemble models.
The rest of the paper is organized as follows: Section 
2 gives related researches on the use of deep learning 
models and word embeddings, sentiment analysis and 
ensemble systems. In Section 3, the proposed frame-
work is represented. Experiment setup and results 
are demonstrated in Sections 4 and 5. Section 6 con-
cludes the paper with a discussion and conclusions.

2. Related Work
Many researchers focus on deep learning approach to 
ensure more accurate classification models for senti-
ment analysis. Liao et al. [21] propose to comprehend 
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the sentiment analysis of Twitter data employing deep 
learning models. They compose a simple convolutional 
neural network model and present better classifica-
tion performances compared to the traditional learn-
ing algorithms such as SVM and naïve Bayes classifi-
ers. A novel deep convolutional neural network which 
employs from character to sentence level knowledge 
to carry out sentiment analysis on short texts is rec-
ommended by Santos and Gatti [31]. They report that 
their approach outperforms results of state-of-the-art 
studies and achieves sentiment classification accuracy 
with 86.4% on STS corpus. Another work [17] empha-
sizes the significance of keywords to interpret the se-
mantics. Long short memory and gated recurrent unit 
are carried out on IMDB and SemEval-2016 datasets by 
establishing keyword vocabulary. Experiment results 
show that the efficiency of proposed model of them is 
verified with 1%-2% accuracy improvement. Senti-
ment classification of Chinese micro-blogs becomes 
focus of attention by utilizing improved recurrent neu-
ral network model in [11]. They find a way out to solve 
a long-term dependency by substituting the hidden 
layer of recurrent neural network with long short term 
memory structure. Classification success of the system 
outperforms conventional machine learning algorithm 
namely, support vector machine with 3.17% precision 
rate. Another study [39] on sentiment classification 
aims at employing a new recurrent random walk net-
work by making use of posted tweets and social rela-
tions, named as heterogeneous microblog sentiment 
classification (MSC). The proposed model is based on 
deep neural networks with random-walk layer by per-
forming the back-propagation method on the training 
phase. Experiments are carried out on the well-known 
and widely used datasets from Twitter to demonstrate 
the success of their model. The proposed technique 
exhibits better classification performance than other 
state-of-the-art studies. An efficient translation free 
deep neural network architecture is adverted in [6] to 
implement multilingual sentiment analysis on Twitter 
dataset. The significant part of the proposed model is 
based on word and character level embeddings by using 
long short term memory and convolutional networks, 
respectively. They compare character based architec-
ture with long short term memory embedding, convo-
lutional embedding, convolutional embedding freeze, 
convolutional character level embedding, and conven-
tional support vector machine algorithm in terms of 
accuracy and f1-score as evaluation metrics. Extensive 

experiment results represent that the proposed tech-
nique (convolutional character based architecture) is 
efficient for multilingual sentiment analysis compared 
to the state-of-the-art deep neural models. In [35], 
Uysal and Murphey concentrate on the comparison of 
conventional feature selection models and deep learn-
ing approaches for document level sentiment classi-
fication. Two types of feature extraction models are 
exploited in this comparative work. First one is based 
on term frequency without taking into account order of 
terms in the document while second is grounded on the 
term dependencies by making use of semantic word 
embedding. SVM classifier with linear kernel is uti-
lized to demonstrate the classification performance of 
traditional approaches. Furthermore, the authors eval-
uate deep learning based approaches for classification 
task in this study although these are generally used for 
the feature selection step on sentiment classification. 
They report that the proposed deep learning based 
models with one-hot vectors or fine-tuned semantic 
word embeddings achieve better results than the word 
embedding without tuning technique.
There are also several studies on classifier ensem-
bles with extended space. The influential study by 
Amasyalı and Ersoy [3] proposes the extended feature 
space by choosing new features randomly and adding 
them to original feature space. They observe that all 
extended versions outperform original versions for 
all ensemble algorithms. To get higher classification 
performance of ensemble system, they suggest utiliz-
ing the extended space methods. The recent studies 
[1-2] on extended space decision trees propose to in-
crease the ensemble accuracy by suggesting another 
approach. Instead of randomly producing, new fea-
tures with high classification capacity are generated 
by computing the gain ratio of each different candi-
date features. Thus, they combine newly generated 
features and existing features in order to extend fea-
ture space. The authors conclude that the extended 
space forest, which means the usage of one more than 
decision trees, is an effective method to increase pre-
diction accuracy but it can be improved by using sig-
nificant features instead of selecting randomly.
There are limited studies on the combination of en-
semble strategies and word embedding methodology 
for sentiment classification task. The proposed mul-
tilayer perceptron based ensemble model is utilized 
for predicting sentiment score of financial texts as 
optimistic or pessimistic in [14]. For this purpose, the 
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authors use four models namely, CNN, LSTM, vector 
averaging and feature driven to obtain diversity of fea-
ture vector by composing a new feature vector at the 
feature ensembling step. After implementing ensem-
bling step, multilayer perceptron network is utilized as 
a classifier. Experimental results show that the perfor-
mance of ensemble of deep learning and feature based 
models represents remarkable results. Nozza et al. [26] 
propose to address the problem of domain adaptation 
by evaluating deep learning and ensemble techniques 
for sentiment classification. Naїve Bayes, support vec-
tor machine, voted perceptron, decision tree, logistic 
regression, k-nearest neighbour, and random forest are 
considered as base learners. Bagging, boosting, random 
subspace, and simple voting are utilized as ensemble 
methods meantime deep learning part is composed of 
the autoencoder which is a particular class of artificial 
neural network. The authors conclude the study claim-
ing that accuracy results of the proposed approach 
demonstrate considerable enhancement compared to 
the state-of-the-art studies. Another recent work [4] 
on deep learning sentiment analysis with ensemble 
techniques proposes to enhance the success of deep 
learning techniques by combining them with conven-
tional surface models. For this objective, they focus 
on deep learning based classifier using a word embed-
dings model and a linear machine learning algorithm 
which is employed as a base learner of the ensemble 
system. Then, ensemble strategy is implemented to 
combine base learner and other surface classifiers. 
Extensive comparative experiments demonstrate that 
the success of proposed techniques outperforms origi-
nal versions in terms of F1-score.
In this work, the enhancement of feature space with 
word embedding based features is proposed to deal 
with the size limitation issues and the classification 
success of sentiment analysis is improved by em-
ploying classifier ensembles. Our work differs from 
the above mentioned studies in that this is the very 
first attempt of using word embedding based extend-
ed spaces with classifier ensembles on the short-text 
sentiment classification. The details of the proposed 
study can be found in Section 3.

3. Proposed Framework
This section introduces our proposed system for the 
short-text sentiment classification. First, word em-

beddings and traditional feature selection methods 
are introduced for the extended feature spaces. After 
that, the proposed word embedding based model with 
ensemble strategy is represented.

3.1. Word Embedding (WE)
As noted in the previous works [1-3] the enrichment 
of feature space ensures significant contribution to 
the classification performance on the numeric data. 
The studies so far on extended space forests utilize ei-
ther randomly chosen features [3] or the specific fea-
ture selection method such as gain ratio [1-2] to deter-
mine new candidate features to be consolidated to the 
original feature space. In this study, word embeddings 
are utilized for the first time to extend original feature 
space with classifier ensembles using word2vec tool 
instead of conventional feature selection techniques.
Word2vec is a tool that is used to generate word em-
beddings by using a group of models. These models 
propose to reconstruct linguistic contexts of words 
by employing trained two-layer neural networks. In 
other words, word embedding tries to discover better 
word representations of words in a document collec-
tion (corpus). The idea behind all of the word embed-
ding is to capture as much contextual, semantical, and 
syntactical information as possible from documents 
from a corpus. Word embedding is a distributed rep-
resentation of words where each word is represented 
as real-valued vector in a predefined vector space. 
Distributed representation is based on the notion 
of distributional hypothesis in which words with 
similar meaning occur in similar contexts or textual 
vicinity. Distributed vector representation has prov-
en to be useful in many natural language processing 
applications such as named entity recognition, word 
sense disambiguation, machine translation, and pars-
ing [38].
Word2vec is based on two model architectures name-
ly, continuous bag-of-words (CBOW) and continuous 
skip-gram to perform a distributed representation of 
words. CBOW model predicts a word given its sur-
rounding context words by ignoring the order of con-
text like bag-of-words approach. On the other hand, 
continuous skip-gram model aims to predict sur-
rounding context words given a word. In this work, 
we focus on the continuous skip-gram model due to 
its considerable performance for infrequent words 
compared to the CBOW model.
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3.2. Information Gain (IG)
The information gain evaluates the number of bits of 
information obtained for class prediction by knowing 
the occurrence or nonoccurrence of a feature [10, 34, 
40]. In other words, the set of the most significant fea-
tures with high classification success is acquired for 
adding to the original feature space. Indeed, the over-
all feature selection process is to count for score each 
feature in accordance with a certain feature selection 
method, and then pick up the best k features.

vicinity. Distributed vector representation has proven to 
be useful in many natural language processing 
applications such as named entity recognition, word 
sense disambiguation, machine translation, and parsing 
[38].
Word2vec is based on two model architectures namely, 
continuous bag-of-words (CBOW) and continuous skip-
gram to perform a distributed representation of words. 
CBOW model predicts a word given its surrounding 
context words by ignoring the order of context like bag-
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The information gain evaluates the number of bits of 
information obtained for class prediction by knowing the 
occurrence or nonoccurrence of a feature [10, 34, 40]. In 
other words, the set of the most significant features with 
high classification success is acquired for adding to the 
original feature space. Indeed, the overall feature 
selection process is to count for score each feature in 
accordance with a certain feature selection method, and 
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) = ∑ 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖) +𝐶𝐶𝐶𝐶
𝑖𝑖𝑖𝑖=1

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) ∑ 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑡𝑡𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑡𝑡𝑡𝑡) +𝐶𝐶𝐶𝐶
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𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡′) ∑ 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑡𝑡𝑡𝑡′)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑡𝑡𝑡𝑡′),𝐶𝐶𝐶𝐶
𝑖𝑖𝑖𝑖=1

(1)

where C represents the number of classes and P(Ci)
demonstrates the probability of Ci, P(t) and P(t’)
symbolizes the probability of presence and absence of 
term t’, respectively.

3.3.Ant Colony Optimization (ACO)
The ant colony optimization is an optimization technique 
that can be also employed for feature selection on various 
domains. It is based on finding the shortest paths from 
the nest to food source by means of pheromone trails, 
which is an odorous substance and is excreted by ants. 
Therefore, the deposition of pheromone is the 
fundamental factor in order to discover the shortest paths 
over a certain period of time. Ants mark the path from 
the nest to a source of food by means of pheromone once 
they discover a source of food. Then, each isolated ant 
acts by following direction rich in this substance. That is, 
the way excreted pheromone is used by more ants and 
pheromone trails probabilistically enforce to choose the 
previously marked path for each isolated ant. On less 
preferred paths, pheromone evaporates over time and the 
shortest path is discovered by means of the higher ratio 
of ant traversals. For this reason, there is a transition 
probabilistic rule for each ant to determine the 
probability of being selected corresponding path. Hence, 
ant colony optimization (ACO) technique is attractive 
for feature selection process that can direct search to 
optimal subset every time. The probabilistic transition 
rule, expressing the probability of an ant at feature i
choosing to travel to feature j at time t, is as follows:

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘 (𝑡𝑡𝑡𝑡) = � ∑ �τij(t)α��ηij

β�
[τil(t)α]�ηilβ�l∈Ji

k       if j∈ Ji
k,

0                                   otherwise
�, (2)

where k is the number of ants, η ij is the heuristic 

desirability of selecting feature j when at feature i,
Jk

i is the set of ant k’s unvisited features, and τ ij (t)
is the amount of virtual pheromone on edge (i,j), α
provides global information and determines the 
relative importance of the pheromone value, β is 
the heuristic information and presents local 
information. Producing a number of k ants is the 
first step for ACO feature selection process. In this 
study, the number of ants is set equal to the number 
of features within dataset. Thus, each ant begins 
with one random feature and they travel edges 
probabilistically until stopping gauge is fulfilled. 
The subsets are congregated and then evaluated. 
Once the algorithm has performed a certain 
number of times or an optimal subset has attained, 
the overall feature selection process terminates by 
obtaining the best feature output. If neither 
condition holds, it is inevitable to update the 
intensity of pheromone, then new ants are 
produced and the feature selection process 
reiterates once more. The pheromone update is 
realized by the following rule on each edge:
𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡 + 1) = (1 − 𝜌𝜌𝜌𝜌) 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) +  𝜌𝜌𝜌𝜌∆𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡), (3)

where ρ is the pheromone evaporation/update 
coefficient, ∆τ ij(t) denotes quantity of pheromone 
deposited by each ant k.

3.4.Extended Feature Space
After obtaining semantically the most significant 
words and word embeddings with the techniques 
mentioned above, the next step will be to enrich the 
feature space with these methods. Ultimately, three 
types of extended feature space are obtained and 
the first two are constituted with the traditional 
feature selection techniques. The first extended 
feature space comprises the combination of 
original features and significant ones picked up 
with information gain technique (original + IG). 
The second feature space is enhanced with the ant 
colony optimization method (original + ACO). The 
last one is based on the consolidation of word 
embeddings and original features (original + WE). 
The d/2 number of space extension parameter is 
adjusted to extend feature space due to its superior 
performance as stated in [3]. While the first half of 
features are original features, the remaining half is 
composed of significant features chosen with 
ACO, IG, and WE for the ACO-based, IG-based, 
and WE-based extended feature spaces,
respectively. Our proposed approach is described 
in detail below.
WE-based features need some operations to 
consolidate with the original features while ACO-
based and IG-based features are added to the end 
of feature space, directly. At first, d/2 number of 
features are randomly selected to obtain word 
embedding feature vector which includes the 
similarity measures of meaningfully related or 
surrounding words of actual word. After getting 
similarity vectors of d/2 number of randomly 
selected features, the best similarity score is chosen 
and divided into the total score of similarity vector
to associate with the original feature space. This 
procedure mentioned above is repeated for all 
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The ant colony optimization is an optimization technique 
that can be also employed for feature selection on various 
domains. It is based on finding the shortest paths from 
the nest to food source by means of pheromone trails, 
which is an odorous substance and is excreted by ants. 
Therefore, the deposition of pheromone is the 
fundamental factor in order to discover the shortest paths 
over a certain period of time. Ants mark the path from 
the nest to a source of food by means of pheromone once 
they discover a source of food. Then, each isolated ant 
acts by following direction rich in this substance. That is, 
the way excreted pheromone is used by more ants and 
pheromone trails probabilistically enforce to choose the 
previously marked path for each isolated ant. On less 
preferred paths, pheromone evaporates over time and the 
shortest path is discovered by means of the higher ratio 
of ant traversals. For this reason, there is a transition 
probabilistic rule for each ant to determine the 
probability of being selected corresponding path. Hence, 
ant colony optimization (ACO) technique is attractive 
for feature selection process that can direct search to 
optimal subset every time. The probabilistic transition 
rule, expressing the probability of an ant at feature i
choosing to travel to feature j at time t, is as follows:

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘 (𝑡𝑡𝑡𝑡) = � ∑ �τij(t)α��ηij

β�
[τil(t)α]�ηilβ�l∈Ji

k       if j∈ Ji
k,

0                                   otherwise
�, (2)

where k is the number of ants, η ij is the heuristic 

desirability of selecting feature j when at feature i,
Jk

i is the set of ant k’s unvisited features, and τ ij (t)
is the amount of virtual pheromone on edge (i,j), α
provides global information and determines the 
relative importance of the pheromone value, β is 
the heuristic information and presents local 
information. Producing a number of k ants is the 
first step for ACO feature selection process. In this 
study, the number of ants is set equal to the number 
of features within dataset. Thus, each ant begins 
with one random feature and they travel edges 
probabilistically until stopping gauge is fulfilled. 
The subsets are congregated and then evaluated. 
Once the algorithm has performed a certain 
number of times or an optimal subset has attained, 
the overall feature selection process terminates by 
obtaining the best feature output. If neither 
condition holds, it is inevitable to update the 
intensity of pheromone, then new ants are 
produced and the feature selection process 
reiterates once more. The pheromone update is 
realized by the following rule on each edge:
𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡 + 1) = (1 − 𝜌𝜌𝜌𝜌) 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) +  𝜌𝜌𝜌𝜌∆𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡), (3)

where ρ is the pheromone evaporation/update 
coefficient, ∆τ ij(t) denotes quantity of pheromone 
deposited by each ant k.

3.4.Extended Feature Space
After obtaining semantically the most significant 
words and word embeddings with the techniques 
mentioned above, the next step will be to enrich the 
feature space with these methods. Ultimately, three 
types of extended feature space are obtained and 
the first two are constituted with the traditional 
feature selection techniques. The first extended 
feature space comprises the combination of 
original features and significant ones picked up 
with information gain technique (original + IG). 
The second feature space is enhanced with the ant 
colony optimization method (original + ACO). The 
last one is based on the consolidation of word 
embeddings and original features (original + WE). 
The d/2 number of space extension parameter is 
adjusted to extend feature space due to its superior 
performance as stated in [3]. While the first half of 
features are original features, the remaining half is 
composed of significant features chosen with 
ACO, IG, and WE for the ACO-based, IG-based, 
and WE-based extended feature spaces,
respectively. Our proposed approach is described 
in detail below.
WE-based features need some operations to 
consolidate with the original features while ACO-
based and IG-based features are added to the end 
of feature space, directly. At first, d/2 number of 
features are randomly selected to obtain word 
embedding feature vector which includes the 
similarity measures of meaningfully related or 
surrounding words of actual word. After getting 
similarity vectors of d/2 number of randomly 
selected features, the best similarity score is chosen 
and divided into the total score of similarity vector
to associate with the original feature space. This 
procedure mentioned above is repeated for all 
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of k ants is the first step for ACO feature selection pro-
cess. In this study, the number of ants is set equal to 
the number of features within dataset. Thus, each ant 
begins with one random feature and they travel edges 
probabilistically until stopping gauge is fulfilled. The 
subsets are congregated and then evaluated. Once the 
algorithm has performed a certain number of times or 
an optimal subset has attained, the overall feature se-
lection process terminates by obtaining the best fea-
ture output. If neither condition holds, it is inevitable 
to update the intensity of pheromone, then new ants 
are produced and the feature selection process reiter-
ates once more. The pheromone update is realized by 
the following rule on each edge:

vicinity. Distributed vector representation has proven to 
be useful in many natural language processing 
applications such as named entity recognition, word 
sense disambiguation, machine translation, and parsing 
[38].
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continuous bag-of-words (CBOW) and continuous skip-
gram to perform a distributed representation of words. 
CBOW model predicts a word given its surrounding 
context words by ignoring the order of context like bag-
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where C represents the number of classes and P(Ci)
demonstrates the probability of Ci, P(t) and P(t’)
symbolizes the probability of presence and absence of 
term t’, respectively.

3.3.Ant Colony Optimization (ACO)
The ant colony optimization is an optimization technique 
that can be also employed for feature selection on various 
domains. It is based on finding the shortest paths from 
the nest to food source by means of pheromone trails, 
which is an odorous substance and is excreted by ants. 
Therefore, the deposition of pheromone is the 
fundamental factor in order to discover the shortest paths 
over a certain period of time. Ants mark the path from 
the nest to a source of food by means of pheromone once 
they discover a source of food. Then, each isolated ant 
acts by following direction rich in this substance. That is, 
the way excreted pheromone is used by more ants and 
pheromone trails probabilistically enforce to choose the 
previously marked path for each isolated ant. On less 
preferred paths, pheromone evaporates over time and the 
shortest path is discovered by means of the higher ratio 
of ant traversals. For this reason, there is a transition 
probabilistic rule for each ant to determine the 
probability of being selected corresponding path. Hence, 
ant colony optimization (ACO) technique is attractive 
for feature selection process that can direct search to 
optimal subset every time. The probabilistic transition 
rule, expressing the probability of an ant at feature i
choosing to travel to feature j at time t, is as follows:
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i is the set of ant k’s unvisited features, and τ ij (t)
is the amount of virtual pheromone on edge (i,j), α
provides global information and determines the 
relative importance of the pheromone value, β is 
the heuristic information and presents local 
information. Producing a number of k ants is the 
first step for ACO feature selection process. In this 
study, the number of ants is set equal to the number 
of features within dataset. Thus, each ant begins 
with one random feature and they travel edges 
probabilistically until stopping gauge is fulfilled. 
The subsets are congregated and then evaluated. 
Once the algorithm has performed a certain 
number of times or an optimal subset has attained, 
the overall feature selection process terminates by 
obtaining the best feature output. If neither 
condition holds, it is inevitable to update the 
intensity of pheromone, then new ants are 
produced and the feature selection process 
reiterates once more. The pheromone update is 
realized by the following rule on each edge:
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where ρ is the pheromone evaporation/update 
coefficient, ∆τ ij(t) denotes quantity of pheromone 
deposited by each ant k.

3.4.Extended Feature Space
After obtaining semantically the most significant 
words and word embeddings with the techniques 
mentioned above, the next step will be to enrich the 
feature space with these methods. Ultimately, three 
types of extended feature space are obtained and 
the first two are constituted with the traditional 
feature selection techniques. The first extended 
feature space comprises the combination of 
original features and significant ones picked up 
with information gain technique (original + IG). 
The second feature space is enhanced with the ant 
colony optimization method (original + ACO). The 
last one is based on the consolidation of word 
embeddings and original features (original + WE). 
The d/2 number of space extension parameter is 
adjusted to extend feature space due to its superior 
performance as stated in [3]. While the first half of 
features are original features, the remaining half is 
composed of significant features chosen with 
ACO, IG, and WE for the ACO-based, IG-based, 
and WE-based extended feature spaces,
respectively. Our proposed approach is described 
in detail below.
WE-based features need some operations to 
consolidate with the original features while ACO-
based and IG-based features are added to the end 
of feature space, directly. At first, d/2 number of 
features are randomly selected to obtain word 
embedding feature vector which includes the 
similarity measures of meaningfully related or 
surrounding words of actual word. After getting 
similarity vectors of d/2 number of randomly 
selected features, the best similarity score is chosen 
and divided into the total score of similarity vector
to associate with the original feature space. This 
procedure mentioned above is repeated for all 

(3)

where ρ is the pheromone evaporation/update coeffi-
cient, Δτij(t) denotes quantity of pheromone deposited 
by each ant k.

3.4. Extended Feature Space
After obtaining semantically the most significant 
words and word embeddings with the techniques 
mentioned above, the next step will be to enrich the 
feature space with these methods. Ultimately, three 
types of extended feature space are obtained and 
the first two are constituted with the traditional fea-
ture selection techniques. The first extended feature 
space comprises the combination of original features 
and significant ones picked up with information gain 
technique (original + IG). The second feature space 
is enhanced with the ant colony optimization meth-
od (original + ACO). The last one is based on the con-
solidation of word embeddings and original features 
(original + WE). The d/2 number of space extension 
parameter is adjusted to extend feature space due to 
its superior performance as stated in [3]. While the 
first half of features are original features, the remain-
ing half is composed of significant features chosen 
with ACO, IG, and WE for the ACO-based, IG-based, 
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and WE-based extended feature spaces, respectively. 
Our proposed approach is described in detail below.
WE-based features need some operations to con-
solidate with the original features while ACO-based 
and IG-based features are added to the end of feature 
space, directly. At first, d/2 number of features are 
randomly selected to obtain word embedding fea-
ture vector which includes the similarity measures of 
meaningfully related or surrounding words of actual 
word. After getting similarity vectors of d/2 num-
ber of randomly selected features, the best similari-
ty score is chosen and divided into the total score of 
similarity vector to associate with the original feature 
space. This procedure mentioned above is repeated 
for all randomly selected features until we get d/2 
number of new features to be added to the original 
feature space.
Algorithm 1. Extended Space Algorithm
Given: E={xp, yp}p=1…N =[X Y] where X is an N*d matrix 
including the training set and Y is an N dimensional 
column vector covering the class labels. d is the num-
ber of features, N is the number of training samples, T 
is the number of base learners, BLi is the base learner, 
Ei is the extended training set for BLi, EA is an ensem-
ble algorithm.
Initialization: Choose ensemble size T, the base 
learner model BLi, and the ensemble algorithm EA.

Training:
for i=1:T

1. Create new features (EXi) by using feature selection 
techniques (IG, ACO), and word embeddings (WE).
Generate d/2 number of features with IG and 
store in Ri or 
Generate d/2 number of  features with ACO and 
store in Si or 
Generate d/2 significant features with WE and 
store in Wi.

Choose d/2 features, randomly. 
for w=1: d/2

Create similarity vector and store in SVw. Obtain the 
best similarity score from SVw and divide it by the to-
tal score of similarity vector. Then, store in Wi. 

j=1
for z=1:d step by 2 

Create the jth new feature adding significant fea-
tures with the proposed methods to X matrix.

j=j+1 
endfor

2.Construct the new training set (Ei) by concate-
nating the matrix X (original features) and Ri, or X 
and Si, or X and Wi, seperately as Ei =[X RiY], Ei =[X 
SiY], Ei =[X WiY], respectively.
3. Train BLi with Ei according to EA.

endfor

Figure 1 
The process of extended feature space with our proposed technique
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including the training set and Y is an N dimensional 
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Generate d/2 number of  features with ACO and store 
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Choose d/2 features, randomly.   
for w=1: d/2 

Create similarity vector and store in SVw. Obtain the 
best similarity score from SVw and divide it by the 
total score of similarity vector. Then, store in Wi.  

j=1 
for z=1:d step by 2  

Create the jth new feature adding significant features 
with the proposed methods to X matrix. 

 j=j+1  
endfor 

2.Construct the new training set (Ei) by concatenating 
the matrix X (original features) and Ri, or X and Si, or 
X and Wi, seperately as Ei =[X RiY], Ei =[X SiY], Ei 
=[X WiY], respectively. 
3. Train BLi with Ei according to EA. 

endfor 
Testing: 
for i=1:T 

1.Extend the feature space of the test sample. 
2.Classify the extended test sample with BLi. 

endfor 
Combine the base learners’ decisions by the 
combination rule of the chosen ensemble algorithm 
EA. 

After constructing the enriched feature space, 
conventional machine learning algorithms such as 
multinomial naïve Bayes, multivariate naïve Bayes, 
support vector machine, and random forest are 
performed to select baseline classifier for the proposed 

ensemble system. At the next step, ensemble 
strategy is carried out to maintain diversity and to 
obtain final decision of the system. Figure 1 
illustrates the process of extended feature space 
with our proposed technique. 

3.5. Ensemble of Classifiers 
Ensemble algorithms used in this work are briefly 
mentioned. Bagging [3, 8, 18, 23, 27, 33, 36] 
generates new bootstrap samples utilizing 
substitution from the original dataset. Then, 
training is implemented on these samples. After 
that, the majority voting is utilized as an ensemble 
strategy. Random Subspace [3, 16, 18, 19, 25, 27, 
13, 33, 37] exploits fairly simple randomness 
approach for the feature selection. Training is done 
with a subset of the original feature space instead 
of including all features for each base learner in the 
ensemble. Then, the classifier is constructed on 
different feature subsets illustrated randomly from 
the original feature set and associated by applying 
the majority voting. Random Forest [2, 3, 9] 
combines two approaches namely, Bagging and 
Random Subspace algorithms. Majority voting is 
employed for all ensembles to combine the 

decisions of base learners. 

4. Experiment Setup 

We have processed five different English datasets 
in our experiments. The first two datasets (Sts-
Gold and Sts-Test) are utilized in the same way as 
described in [28]. Sts-Gold is manually labeled and 
a subset of tweets are chosen from the Standford 
Twitter Sentiment Corpus [15] and is presented by 
[28]. It contains 13 negative, 27 positive, and 18 
neutral entitites as well as 1,402 negative, 632 
positive, and 77 neutral tweets. It includes 
independent sentiment labels for tweets and 
entities, supporting the evaluation of tweet-based 
Twitter sentiment analysis models. The Standford 
Twitter Sentiment Corpus [15] consists of two 
different sets, training and test. Sts-Test is the test 
set of the Standford Twitter Sentiment Corpus. It is 
also manually annotated and encloses 177 
negative, 182 positive, and 139 neutral tweets. 
Although the Sts-Test dataset is relatively small, it 
has been widely used in literature [5, 7, 15, 29, 30, 
32] in different evaluation tasks. 
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The process of extended feature space with our proposed 
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Testing:
for i=1:T

1.Extend the feature space of the test sample.
2.Classify the extended test sample with BLi.

endfor
Combine the base learners’ decisions by the com-
bination rule of the chosen ensemble algorithm 
EA.

After constructing the enriched feature space, con-
ventional machine learning algorithms such as multi-
nomial naïve Bayes, multivariate naïve Bayes, support 
vector machine, and random forest are performed to 
select baseline classifier for the proposed ensemble 
system. At the next step, ensemble strategy is carried 
out to maintain diversity and to obtain final decision 
of the system. Figure 1 illustrates the process of ex-
tended feature space with our proposed technique.

3.5. Ensemble of Classifiers
Ensemble algorithms used in this work are briefly 
mentioned. Bagging [3, 8, 18, 23, 27, 33, 36] generates 
new bootstrap samples utilizing substitution from 
the original dataset. Then, training is implemented on 
these samples. After that, the majority voting is uti-
lized as an ensemble strategy. Random Subspace [3, 
16, 18, 19, 25, 27, 13, 33, 37] exploits fairly simple ran-
domness approach for the feature selection. Training 
is done with a subset of the original feature space in-
stead of including all features for each base learner in 
the ensemble. Then, the classifier is constructed on 
different feature subsets illustrated randomly from 
the original feature set and associated by applying 
the majority voting. Random Forest [2, 3, 9] combines 
two approaches namely, Bagging and Random Sub-
space algorithms. Majority voting is employed for all 
ensembles to combine the decisions of base learners.

4. Experiment Setup
We have processed five different English datasets in 
our experiments. The first two datasets (Sts-Gold and 
Sts-Test) are utilized in the same way as described 
in [28]. Sts-Gold is manually labeled and a subset of 
tweets are chosen from the Standford Twitter Senti-
ment Corpus [15] and is presented by [28]. It contains 
13 negative, 27 positive, and 18 neutral entitites as 

well as 1,402 negative, 632 positive, and 77 neutral 
tweets. It includes independent sentiment labels 
for tweets and entities, supporting the evaluation of 
tweet-based Twitter sentiment analysis models. The 
Standford Twitter Sentiment Corpus [15] consists 
of two different sets, training and test. Sts-Test is the 
test set of the Standford Twitter Sentiment Corpus. It 
is also manually annotated and encloses 177 negative, 
182 positive, and 139 neutral tweets. Although the 
Sts-Test dataset is relatively small, it has been widely 
used in literature [5, 7, 15, 29, 30, 32] in different eval-
uation tasks.
The last three datasets are publicly available and 
gathered from Twitter in the second half of 2014. 
These are three real English, public and non-encoded 
datasets. Each dataset was labeled as positive or neg-
ative, according to the opinion expressed in respect 
to the object of interest. They are publicly available 
at http://www.dt.fee.unicamp.br/~tiago//sentcollec-
tion/. We evaluate our models by focusing on positive 
and negative tweets similar to the state-of-the-art 
studies [5, 15, 22, 29, 30, 32]. The class distribution of 
and main theme of datasets, when no preprocessing 
is applied, are summarized in Table 1. We don’t apply 
any stemming or stop word filtering in order to avoid 
any bias that can be introduced by stemming algo-
rithms or stop-word lists. Moreover, Sts-Gold dataset 
has an imbalanced class distribution. This is a well-
known fact that machine learning algorithms are 
sensitive to an imbalanced class distribution. We also 
observe the impact of imbalance class distribution on 
the performance of proposed system. Experiments 
are carried out by modifying the training set levels 
and utilizing 5%, 10%, 30%, 50% and 80% percentages 
as the training data. The F-measure and accuracy per-
centage levels are abbreviated with “ts” affix to head a 
commotion off. The algorithms are launched at each 
training set levels by partitioning 10 parts randomly 
and stratified sampling is exploited at this step. 
We have performed a statistical analysis evaluating 
Student’s t-test to ensure that results were not ob-
tained by chance. Significance level is set to 0.05 and 
the difference is accounted as statistically significant 
when the association of probability and Student’s 
t-test is lower. The number of base learners is adjust-
ed to 100 as represented in [1, 3]. As we mentioned be-
fore, feature extension parameter is set to d number 
of features for all datasets for comparing experiment 
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results with impressive work [3]. To combine the de-
cisions of base learners, majority voting is employed 
for all ensembles. By means of the most meaningful 
100 features obtained by the information gain meth-
od, the feature space has been extended by varying the 
number of features in each data set. That is, the fea-
ture space of a dataset with a feature number of 50 is 
extended using 50 of the 100 most significant features 
obtained through information gain technique. 

Table 1
Statistics of the datasets with no preprocessing

Dataset #Positive #Negative Total Theme

Sts-Gold 632 1402 2034 Misc.

Sts-Test 182 177 359 Misc.

Iphone6 371 161 532 Smartphone

Archeage 724 994 1718 Game

Hobbit 354 168 522 Movie

Moreover, it is necessary to specify some parameters 
for ACO feature selection process. First, the number 
of ants is equal to the number of features for each 
dataset. Because of this, the number of ants varies 
according to the dataset. Then, the algorithm has car-
ried out a certain number of times. This is the same 
as the number of base learners, i.e. 100 times. After 
the algorithm has executed 100 times, the pheromone 
density is updated and a new set of ants are composed 
and the process iterates once more. The initial pher-
omone density of each feature is set to 1 at first. Two 
important information, local and global, about the 
traversal of ants are determined with the parameters 
α and β. The choice of α and β is specified experimen-
tally and set to 1 and 0.1, respectively. The pheromone 
trail evaporation coefficient (ρ=0.2) is a parameter to 
update pheromone trails and located in the range be-
tween 0 and 1.
We utilize open source machine learning software 
which is called WEKA for the feature selection pro-
cess. The proposed extended feature space system is 
constructed on this software with Java programming 
language. Besides, this work employs the Python 
3 version of word2vec in the Gensim theme model 
with Pycharm environment, which only carries out 

the continuous skip-gram model and trains with the 
hierarchical softmax method.This model utilizes a 
200-dimensional vector space to demonstrate words 
and the training window is set to 5. Moreover, Google 
has used Google News dataset that contains about 
100 billion words to obtain pre-trained vectors with 
the Word2Vec Skip-gram algorithm [12, 24]. The 
pre-trained model includes word vectors for about 3 
million words and phrases. We use this pre-trained 
model in English to represent documents with 200 
dimensions or features.  

5. Experiment Results
The conducted experiments demonstrate the short 
sentiment classification success of each baseline 
classifier over five datasets in Table 2. Bold values 
demonstrate the best scores. F-measure and accura-
cy results are utilized as evaluation metric to demon-
strate the contribution of our work. Abbreviations are 
employed as follows: BG: Bagging, BS: Boosting, RS: 
Random subspaces, RF: Random forest, XIG: Extended 
feature space with IG-based features for X ensemble 
algorithm, XACO: Extended feature space with ACO-
based features for X ensemble algorithm and XWE: 
Extended feature space with WE-based features for X 
ensemble algorithm.

Table 2
Averaged F-measure results of each baseline classifier at ts80

Dataset MNB MVNB SVM RF

Sts-Gold 82.15±0.07 81.36±0.04 83.44±0.02 82.90±0.06

Sts-Test 81.30±0.05 80.12±0.02 82.96±0.01 81.75±0.04

Iphone6 70.42±0.03 74.48±0.05 73.66±0.03 72.15±0.09

Archeage 85.13±0.02 85.91±0.05 86.20±0.03 84.30±0.04

Hobbit 87.10±0.04 84.36±0.02 90.45±0.02 88.23±0.08

avg 81.22±0.04 81.25±0.03 83.34±0.02 81.87±0.06

As it can be seen in Table 2, the best F-score perfor-
mance is achieved by SVM by assessing averaged 
F-score values of each baseline classifier. RF has a 
slightly better performance than MNB and MVNB 
while MNB and MVNB have almost the same classi-
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fication success. Hence, SVM as a base learner will be 
a good choice in terms of classification performance 
because of the highest F-measure values. Eventually, 
the classification success of the base learners is or-
dered as SVM > RF > MVNB > MNB.

Table 3
Averaged F-measure results of the combination of ensemble 
algorithms and SVM baseline classifier on original data at ts80

Dataset SVM BGo BSo RSo RFo

Sts-Gold 83.44 83.47 83.70 83.65 82.90

Sts-Test 82.96 82.51 82.94 83.03 81.75

Iphone6 73.66 73.82 74.05 74.18 72.15

Archeage 86.20 85.26 85.48 86.43 84.30

Hobbit 90.45 89.82 90.17 90.06 88.23

avg 83.34 82.98 83.27 83.47 81.87

In Table 3, the F-measure results of ensemble algo-
rithms are represented on the original data when the 
baseline classifier is set to SVM. By observing the sys-
tem performance of the only ensemble algorithms on 
the original data, we can make sure that the extended 
feature spaces based classifier ensembles are worth 
improving system success. It is clearly seen that the 
baseline classifier SVM generally performs well with-
out using any ensemble algorithm. The combination of 
baseline classifier and random subspace as an ensem-
ble method exhibit better success than the baseline 
classifier in view of the fact that the averaged F-mea-

Table 4
Averaged F-measure results of the proposed method on extended feature spaces at ts80

sure results are considered. The success of homoge-
neous classifier ensembles on original data is summa-
rized as RSo > SVM > BSo > BGo > RFo even if averaged 
F-measure results are very close each other except RF. 
The results demonstrate that the proposed WE-
based ensemble systems evidently present an overall 
superior performance to any of the other evaluated 
extended feature space based ensemble system in Ta-
ble 4. The classification success is ordered as RSWE > 
BSWE > BGWE > RSACO > BSACO > BGACO > RSIG > BSIG > 
BGIG > SVM at ts80. All versions of the enhanced space 
based ensemble systems significantly contribute to 
the classification performance by improving up to 
5% compared to the baseline classifiers. The perfor-
mance of ensemble algorithms is RS > BS > BG for all 
extended space versions in terms of averaged F-mea-
sure results. Moreover, space is extended with word 
embedding based features due to its superior success. 
The classification success of extension techniques is 
ordered as WE > ACO > IG for all datasets when the 
ensemble algorithm is set to RS. The classification 
performance of IG and ACO-based extended feature 
space is competitive but not enough to claim statisti-
cally significant because of the closeness of results in 
terms of ensemble algorithms. Thus, the combination 
of random subspace as an ensemble algorithm and 
WE-based extended feature space yields by far the 
highest results at ts80. In other words, our proposed 
method with 88.76% result (RSWE) is the best model to 
enhance the classification performance for all data-
sets in terms of averaged F-measure results.
When the averaged F-measure results of Table 3 and 
Table 4 are compared, extended spaces based classi-

Method SVM BGIG BSIG RSIG BGACO BSACO RSACO BGWE BSWE RSWE

Sts-Gold 83.44 83.40 83.45 83.88 83.72 83.91 84.20 86.46 86.95 88.44

Sts-Test 82.96 82.80 82.91 83.14 82.95 83.12 83.77 85.90 86.53 87.45

Iphone6 73.66 74.10 74.25 74.40 74.75 74.82 75.10 77.23 78.67 79.95

Archeage 86.20 86.53 86.70 86.80 86.75 86.90 87.05 89.21 90.23 91.55

Hobbit 90.45 90.12 90.20 90.55 90.44 90.73 91.33 94.22 95.88 96.41

avg 83.34 83.39 83.50 83.75 83.72 83.90 84.29 86.60 87.65 88.76
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fier ensembles always exhibit superior performance 
compared to the combination of baseline classifi-
er and ensemble algorithms on the original data in 
terms of ensemble methods. The combination of the 
IG-based and ACO-based extended spaces and bag-
ging as an ensemble algorithm performs almost 1% 
better classification performance than the BGo which 
is the combination of baseline classifier and bagging 
algorithm on the original data.  Moreover, the per-
formance enhancement of the consolidation of WE-
based extended space and bagging method (86.60%) 
nearly reaches 4% in comparison to the BGo with 
82.98% classification success. To summarize, the 
classification success is ordered as BGWE (86.60%) >  
BGACO (83.72) > BGIG (83.39) > BGo (82.98) in terms of 
bagging algorithm. This order of success also applies 
for the other ensemble algorithms when extended 
space and original versions of data are considered. 
These noticeable results clearly demonstrate the 
contribution made by the combination of the ensem-
ble algorithms with extended feature spaces to overall 
system performance.
In Figure 2, the classification performance of exten-
sion techniques is presented by varying the number 
of base learners when the ensemble algorithm is ad-
justed to RS. It is obviously seen that the number of 
base learners which varies from 10 to 150 is also a sig-
nificant measure to observe the classification success 
of extended space based techniques. When the num-
ber of base learners is raised up to 100, the accuracy 
results also boost for each extended space method. 
However, as the number of base learners continues to 
increase after 100, the classification success consid-
erably decreases as inversely proportional. For this 
reason, it is determined as 100 in experiments and 
these results are consistent with the literature [3, 20]. 
In Figure 3, classification performance of random 
subspace algorithm is evaluated in terms of the pro-
posed extended spaces. WE-based extended space 
model outperforms traditional feature selection tech-
niques at all training set percentages. The difference 
of results between WE-based and IG-based models is 
prominently observed up to 10% at smaller training set 
sizes. On the other hand, ACO-based extended space 
model is more competitive than IG-based model in 
terms of averaged accuracy results. The ACO-based 
model achieves an improvement of 2% more than 
the IG based model. Thus, the difference between the 
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ACO-based model and the WE-based model reaches 
a maximum of 8% at smaller training set percentages. 
Although the ACO-based model exhibits about 1% en-
hancement compared to the IG-based model at ts80, 
the classification success of two models is generally 
very close to each other at all training set levels. As a 
result, the best technique to extend the feature space 
is to integrate word embedding based features (WE) 
and original ones. 
In Figure 4, the classification success of SVM as a base 
learner and WE-based extended spaces are analyzed 
in terms of ensemble algorithms. Extending the fea-
ture space with the WE-based model and using en-
semble algorithms ensures minimum 3% - maximum 
10% improvement compared to the classification per-
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Figure 4
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formance of base learner at ts80 and ts5, respectively. 
That is, the difference between the proposed models 
and base learner increases at smaller percentages and 
vice versa. As the training set percentage decreases, the 
difference between the classification success of each 
ensemble algorithm also becomes more pronounced. 
For example, the BS method demonstrates 1% better 
performance than BG while the RS model present 1% 
better enhancement compared to BS at ts80. RS and 
BS improve the classification performance of system 
by approximately 4% and 2%, respectively, compared 
to the BG at smaller percentages.
As a result, extending feature space with word em-
bedding based techniques and combining this feature 
space with ensemble algorithms presents much bet-
ter classification performance compared to a single 
classifier. Figures 3 and 4 clearly show that the feature 
space extended by word embedding based features in 
short text classification will provide the best classifi-
cation performance by diversifying random subspace 
as an ensemble algorithm. 
It is considerable to compare experiment results with 
the state-of-the-art studies [4, 22] on extended spac-
es to demonstrate the contribution of our proposed 
technique. Lochter et al. [22] employ nine datasets 
and four of them are common with ours as seen in Ta-
ble 5. The superiority of our proposed method  is ob-
viously observed for all datasets when the same train-
ing settings are adjusted.
The other study [4] proposes nine different methods 
for the ensemble system. Araque et al. [4] employ 

six datasets and one of them is common with ours as 
seen in Table 6. Our proposed method outperforms 
all methods of them except MSG+bg technique. The 
slightest difference between ours (88.4%) and theirs 
(89.2%) can be arisen from differences in experimen-
tal settings and not be enough to claim statistically 
considerable because of the closeness of averaged 
F-scores. Thus, it is noteworthy to specify that the 
combination of our proposed technique (RSWE) pre-
dominantly surpasses state-of-the-art studies.

Table 5
Comparison of the classification success of our proposed 
method vs study1 [22] in terms of F-measure results

Method Sts-Test Iphone6 Archeage Hobbit

RSWE 87.4 79.9 91.5 96.4

Study1 86.3 73.8 86.9 92.1

Table 6
Comparison of the classification success of our proposed 
method vs study2 [4] in terms of F-measure results

Method Sts-Gold

RSWE 88.4

MG 83.4

CEMSG
Vo 83.5

CEMSG
ME 84.5

MSG 84.7

MSG+bg 89.2

MGA 85.2

MSGA+bg 85.2

CEMSGA
Vo 87.0

CEMSGA
ME 85.5

6. Discussion and Conclusion
The superiority of ensemble systems is a widely ac-
cepted assumption in machine learning domain as 
mentioned before. Owing to this approach, it is rec-
ommended to produce more accurate and robust 
models. In this work, we propose to investigate the 
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contribution of extended spaces to the classification 
performance by employing ensemble algorithms. For 
this purpose, we take the concept one step further in 
extended spaces by utilizing word embedding based 
features (WE) which have not been consolidated be-
fore. Moreover, this is the first research for the extend-
ed spaces with classifier ensembles in terms of using 
both traditional feature selection techniques and 
word embedding based feature extraction method. 
Features chosen with IG, ACO, and WE are blended 
with the original features to constitute a new extend-
ed feature space. Then, the enriched feature space 
is carried out on three popular ensemble algorithms 
(bagging, boosting, and random subspaces) by utiliz-
ing SVM as a baseline classifier. Finally, the extended 
spaces developed by our proposed method maintain 
noteworthy enhancement to the classification per-
formance in comparison to the original version and 
various extended versions of recent state-of-the-art 
studies. Considering the overall classification perfor-
mances, feature spaces with the original ones have 
the lowest classification performance at all training 

set levels and this is an indicator that the original fea-
ture spaces need to develop.
As well as the classification success of proposed sys-
tem, the analysis of execution time is also evaluated 
in terms of training time. More training time is need-
ed for the enhanced spaces compared to the original 
ones. Because, the enhanced space features effect the 
search time of the features owing to covering more fea-
tures. The training time for Twitter corpus is around 
1h25min using 12 threads in an Intel® Xeon® E5-2643 
3.30 GHz machine. We consider that performing our 
proposed model for a GPU environment can have a 
great influence on the training time performance.
To sum up, the extended spaces with our proposed ap-
proach advance the classification success of system 
compared to the original versions. Over and above, it 
is observed that the enhancement of extended spac-
es with classifier ensembles using word embeddings 
exhibits better classification performance in com-
parison to the other enhanced space techniques. In 
future, we plan to apply different base learners to the 
classification problems.
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