
Information Technology and Control 2018/4/47668

Genetic Programming
Algorithm for Designing of
Control Systems

ITC 4/47
Journal of Information Technology
and Control
Vol. 47 / No. 4 / 2018
pp. 668-683
DOI 10.5755/j01.itc.47.4.20795

Genetic Programming Algorithm for
Designing of Control Systems

Received 2018/05/14 Accepted after revision 2018/09/26

 http://dx.doi.org/10.5755/j01.itc.47.4.20795

Corresponding author: krzysztof.cpalka@iisi.pcz.pl

Krystian Łapa, Krzysztof Cpałka, Andrzej Przybył
Institute of Computational Intelligence; Częstochowa University of Technology;
Al. Armii Krajowej 36, 42-200 Częstochowa, Poland; phone: +48343250546;
fax: +48343250546; e mails: {krystian.lapa,krzysztof.cpalka,andrzej.przybyl}@iisi.pcz.pl

Genetic programming algorithms and other population-based methods are a convenient tool for solving com-
plex interdisciplinary problems. Their characteristic feature is that they flexibly adapt to the problem and ex-
pectations of a designer. In this paper, they are used for designing complex control systems. In particular, a new
approach for automatic designing of PID-based controllers which are resistant to noises in the measuring
path is proposed. It is based on the knowledge about an object model and capabilities of the genetic algorithm
and genetic programming. Not only do these make it possible to tune parameters and select the structure of
PID-based controllers, but they also tune parameters of some additional components of a complex controller
structure, like parameters of finite impulse response (FIR) filters. The idea of the proposed approach relies on
proper encoding of the controller and a dedicated way of evolutionary processing of encoded solutions. The ap-
proach proposed in this paper has been tested using a typical control problem, i.e. a DC motor control problem.
KEYWORDS: artificial intelligence, controller, PID, selection of structure, selection of parameters, genetic
programming.

1. Introduction
In this paper, a few possibilities of using popula-
tion-based algorithms in control systems are present-
ed. Moreover, a new dedicated variation of genetic
programming (GP) for designing of control systems
is proposed. This method makes it possible to design

systems that can adapt to a given problem and expec-
tations with which a designer is faced.
Controllers play an important role in control systems.
Their aim is to influence the control object in such
a way so as to make that object operate in the way it

669Information Technology and Control 2018/4/47

is expected to. In the literature many types of control
methods can be found including: adaptive control
[37], fuzzy control [12, 31], neuro-fuzzy control [29],
fuzzy-integral-sliding [50], type-2 fuzzy control [48],
internal model control [33], model predictive control
[41], neural network control [20], nonlinear feed-
back linearization control [32], nonlinear optimal
control [18], sliding mode control [24], etc. Although
new types of controllers are still being sought for,
controllers based on correction terms (proportion-
al-integral-derivative-based controllers) still have
an important place in control problems. A number of
simple PID controllers can be interconnected to form
a more complex controller structure, e.g. a cascade
structure. Such controllers are considered in this pa-
per and will be referred from now on as PIDCs. Such
controllers have a clear structure (the function of the
correcting elements is easily interpretable), work
well in most control systems [36], mostly have practi-
cal applications [39], and have many simple methods
for tuning theirs parameters (in the case of a strictly
defined structure) [5, 52]. Among the methods used
for parameter tuning, computational intelligence

based methods (population-based algorithms in par-
ticular) take an important place in the literature [9,
14, 42, 47, 51]. This group of methods also includes ge-
netic programming [15, 16, 25, 35, 46]. The GP is based
on processing of the population of individuals (by us-
ing evolutionary operators) and its evaluation. Ulti-
mately, the GP algorithm selects from the population
an individual that best suits the defined evaluation
criteria for the problem under consideration. Each
individual from the population represents a single
solution (e.g. one PIDC) which is encoded in the form
of a tree that consists of nodes and leaves. In the tree
each leaf has an assigned value (e.g. a numeric value
or index of controller input signal) and each node has
an assigned mathematic operator for calculating the
values of nodes and leaves attached under it.
Most typical controller designing methods work on
rigidly defined PIDC structures. What distinguishes
the GP is the capabilities of producing dynamic struc-
tures in the form of a tree. The choice of proper struc-
ture could prove to be a significant problem (despite
the indications given in the literature), especially for

Table 1
The main properties of controller designing methods

method f1 f2 f3 f4 f5 f6 f7 f8

Agharkakli et al. [3] no no no no yes yes no no

Cheon et al. [11] yes no no no no no no no

Choi et al. [13] yes no no no yes no yes no

Duan et al. [19] no no no no no no yes no

Gil et al. [22] no no no no no no yes no

Ko and Wu [26] yes no no no yes no no no

Lai et al. [27] no no no no yes no no no

Łapa and Cpałka [28] yes yes no yes yes yes yes yes

Łapa and Cpałka [29] yes yes yes yes yes yes yes no

Łapa et al. [30] yes yes yes yes yes no yes no

Petkovic et al. [40] no no no no no no yes no

proposed method yes yes yes yes yes yes yes yes

f1 -Is a nature-inspired population-based algorithm used? f2 - Can the controller structure be dynamically selected?
f3 -Are signal filters used (and signals noise)? f4 -Are the oscillations of the control signal minimized? f5 -Are any specific criteria of
the considered problem included and minimized (e.g. over- shooting)? f6 -Is the method verified on different signals than those used
during the controller design? f7 -Are the presented results

Information Technology and Control 2018/4/47670

unconventional applications, and it is usually done
by the trial and error method. This demonstrates the
GP’s advantage over the traditional methods. None-
theless, the GP cannot be used directly for designing
PID-based controllers, but it can be used for the selec-
tion of a structure and parameters of tree structures
(computer programs) that can be used as controllers.
In order to create a specific type of a controller (e.g.
a PIDC), the GP must be modified accordingly.
In paper [15], we considered a concept of a PIDC
whose structure and parameters could be adjusted
automatically using the proposed modification of the
GP algorithm. The results obtained and presented in
the paper were promising. In this paper, we also con-
sider the problem of choosing the structure and tun-
ing parameters of the PIDC (Fig. 2) on the basis of the
model of a control object (Fig. 1). The control system
considered in this paper (Fig. 1) works in three phases,
i.e.: learning, testing, and verification. In the learning
phase (which includes the selection of a structure and
tuning parameters) a model of the con- trolled object
is used. If a satisfactory PIDC is found in this phase
(in terms of the assumed evaluation criteria), then
the learning can be stopped. The PIDCs designed and
optimized in the learning phase are then tested under
conditions similar to those in the learning phase (the
testing phase) and verified (the verification phase)
under conditions other than those in the learning
phase (including using a different test signal). After
a positive completion of these phases (learning, test-
ing and verification) an implementation on the target
hardware platform can be done. The goal of the pro-
posed approach is to choose a simple structure and
parameters of the PIDC that meets the accepted eval-
uation criteria for the problem under consideration.
The elements of a novelty presented in this paper are
as follows:
 _ The PIDC structure includes a number of

control blocks (CB, Fig. 3) (each composed of
a few programmable switches and a single PID
controller) and operation blocks (OP, Fig. 4) (each
of them includes of a number of programmable
switches and a single finite impulse response filter).
The proposed genetic programming automatically
tunes parameters of these PID controllers and
filters (i.e. their order and cut-off frequency) as well
as the states of their programmable switches. Such
approach shows great possibilities of using genetic

programming combined with the genetic algorithm
in the design of automatic control systems (both
controllers and their supporting elements).

 _ A new way of designing a PIDC structure: an
aggregating operator (OP, Fig. 4) is introduced.
Thus, we show that the GP algorithm can be very
easily adapted to solve unusual optimization
problems.

 _ The way in which the population is processed by
the GP algorithm is improved in comparison to
[15]. In addition, the way in which the evolutionary
operators are used to search the solution space is
updated by introducing intensity of evolutionary
operators. This shows that the GP is a flexible
algorithm that can be extended by using
unconventional evolutionary operators (often
adjusted to the problem).

 _ A new procedure of initial population initialization
is proposed. We have specifically simplified the way
of generating a population in comparison to [15].

 _ A new way of aggregating of the components of
the evaluation function is applied. This method
was introduced to evaluate the population of
individuals in the evolutionary algorithm [29],
but it has not been used yet when combined with
the algorithm of genetic programming. Thus, we
show that the GP algorithm can be easily adapted
to solve practical problems in the field of multi-
criteria (multi-objective) optimization.

The elements of novelty presented in this paper and
those considered in the context of control theory and
the problem of controller design have been included in
Table 1.
The structure of this paper is as follows: in Section 2,
the proposed structure is described. Section 3 pres-
ents the proposed GP algorithm. Section 4 includes
simulation results, and the conclusions are drawn in
Section 5.

Figure 1
The control system (CS) considered in this paper

refe-
rence
signals feedback signals

u k()e()k
PIDC

model or
controlled object

671Information Technology and Control 2018/4/47

2. PIDC Structure and Its Encoding
for the GP Algorithm
In this paper a control system (CS, Fig. 1) based on
a PIDC (Fig. 2) is considered. The PIDC structure had
to be designed in such a way so that it could be selec-
ted using the GP algorithm. Therefore, aggregating
blocks (OP, Fig. 4) and control blocks (CB, Fig. 3) were
separated. CBs are in practice single PID controllers.
The OP+CB combinations called a node (see Fig. 2).
Such approach shows that the way of aggregation of
signals in the GP does not have to rely on basic ope-
rators (e.g. basic mathematical operators), but it can
be more complex and can have its own interpretation.

2.1. Control Blocks (CB)
The control blocks perform typical PID activities:
proportional (P element, Fig. 3), integral (I element,
Fig. 3) and differential (D element, Fig. 3) the in-
put signal. The output signal from the CB can be de-
scribed as follows:

()

() ()
()

()

() ()()

CB CB

CB CB CB
P P

CB 2
CB CB CBCB
I I

2 0

CB CB CB CB
D D

1

,
2

1

k k

k

C e k

C K e k
u k

C K e kC

C K e k e k

=

=

 − ⋅ +
 
  ⋅ ⋅ +
  =   + ⋅ ⋅ ++ ⋅  
  

  + ⋅ ⋅ − −  

∑

(1)

where ()CBe k stands for CB input signal (see Fig. 3);
()CBu k stands for CB output signal; CB

PK is the en-
forcement parameter of P element; CB

I S I/K T T= (IT
stands for the integral time constant, and ST -for the
control time step); CB

D D S/K T T= (DT stands for the dif-
ferential time constant); { }CB

P 0,1C ∈ decides on acti-
vation of P term (P term is active if CB

P 1C = , see Fig. 3);
{ }CB

I 0,1C ∈ decides on activation of I term; { }CB
D 0,1C ∈

decides on activation of D term; { }CB 0,1C ∈ decides
on activation of the CB (CB is active if CB 1C = , oth-
erwise () ()CB CBu k e k= , see Fig. 3). Parameters CB

PK ,
CB
IK , CB

DK , CB
PC , CB

IC , CB
DC , CBC are selected automat-

ically by the GP algorithm.

2.2. Aggregation Blocks (OP)
OP blocks aggregate signals from CB blocks or control-
ler input signals () () () ()0 1, , , ,l nk e k e k e k− = … … e .

Figure 2
The general structure of the PIDC controller considered in
this paper

blocks associated
with signals

-OP

� �ke
blocks associated
with signals from CB

-OP

CB

OP

� �u k

CB

OP

CB

OP

CB

OP

CB

OP

node

leaf

root node, N

The output signal of the OP blocks is defined as follows:

()

() ()()
() ()()
() ()()
() ()()
()
()

()

OP OP

OP OP

CB

CB CB OP CB
L R

CB CB OP CB
L R

CB CB OP CB
L ROP

CB CB OP CB
L R

OP OP FIL

FIL OP FIL

sgn

if 1and 0

if 1and 1

if 1and 2

if 1and 3

if 1and 0

if 1and 1

1

l l l l

l l l l

o

u k u k l o

u k u k l o

u k u k l o
u k

u k u k l o

e k l C

e k l C
= =

= =

 + = − =

 − = − =

 − + = − == 
− − = − =


> − =


> − =

−

=

()
()

() ()
()

() ()

CB

OP OP

OP OP

1.5 +1
CB2 OPL

%2 CB
R

FIL FIL

FIL OP

if 1
1

otherwise,
1

o

l l l l

l l l l

u k l
u k

C e k

C e k

−

= =

= =

 
 ⋅ + = − 
  + − ⋅ 
  ⋅ +
 
  + − ⋅  

(2)

Figure 3
The structure of the control block (CB)

1
I

P

D

CB

PC

CB

IC

CB

DC

CB
C

+

+

+

+

+P

K

K

CB

PK

CB

I

CB

D

� �CB
e k � �CB

u k

1

1

1

0

Information Technology and Control 2018/4/47672

where { }OP 1,0, , 1l n∈ − … − indicates the OP objec-
tive: it can be used for aggregation of signals ()OP

Lu k
and ()OP

Ru k from other CB (OP 1l = − , see Fig. 4), or
to attach the controller input signal ()le k to PIDC
(OP 1l > −) (see Fig. 4), OPo decides on aggregation
of ()OP

Lu k and ()OP
Ru k (() ()OP OP

L Ru k u k+ for OP 0o = ,
() ()OP OP

L Ru k u k− for OP 1o = , () ()OP OP
L Ru k u k− + for

OP 2o = , and () ()OP OP
L Ru k u k− − for OP 3o =); ()sgn ⋅

stands for the signum function; % stands for the
modulo operator; ()FIL

le k stands for input signal
()OP

le k after passing through the filter block; ()OPu k
stands for the OP output signal; { }FIL 0,1lC ∈ stands for
activation of the FIR for OP 1l > − (the filter is active
if FIL 1lC = , otherwise () ()OP OP

lu k e k=). The parame-
ters OPl , OPo , and FIL 1lC = are selected automatically
by the GP algorithm. Occurred in Eq. (2) and on Fig. 4
marks ()OP

Lu k and ()OP
Ru k are used to indicate these

input signals of the OP block that come from child
nodes (L-left, R-right) in case of OP 1l = − .

2.3. Filtration Blocks (FIL)

The filtration blocks (FIL, Fig. 4) are part of the OP
blocks used to filter input signals of the PIDC. For the
purpose of this paper finite impulse response (FIR)
filters were used. FIRs are one of the most commonly
used filters. The purpose of FIR filters is to smoothen
signal values. It is achieved by averaging weighted val-
ues from consecutive time steps. The output value of
the filter depends on the filter length and its weights.
Although FIR filters are used to improve the quality
of control and to reduce impact of signal noise, they
might decrease the controller efficiency if used incor-
rectly [4, 45]. This is due to the fact that filtration adds
a side-effect-phase delay of the filtered signal.
The output signal of the FIL can be described as fol-
lows:

() ()
FIL 1

FIL FIL OP
, 2

2 0
2 ,

ls

l l l l
l

e k b e k l
−

=

= ⋅ −∑ (3)

where FIL
ls stands for odd length of the filter (the filter

has to have a middle element), ()OP 2le k l− stands for
input signal l from 2k l− time step, FIL

, 2l lb stands for
the weight of the signal for 2k l− time step calculated
as follows [23]:

()
()()()

()()

FIL FIL

FIL FIL
FIL
, 2

FIL

2 if 2 0.5 1

sin 2 2 0.5 1

2 0.5 1

otherwise,

l l

l l
l l

l

ft l s

ft l s
b

l s

π

π

 ⋅ = ⋅ −

 ⋅ ⋅ ⋅ − ⋅ −= 
 ⋅ − ⋅ −



(4)

where FIL
lft stands for filter frequency. The parameters

FIL
ls and FIL

lft are selected automatically by the GP al-
gorithm. It should be emphasized that Eq. (4) describes
an exemplary form of FIL

, 2l lb , considered in [23]. The
other approaches are described in e.g. [10, 17, 38, 44].

3. GP Algorithm Adjusted to the
Proposed PIDC Structure
The proposed GP algorithm can be used for the prob-
lems where some structure and structure parameters
have to be found (e.g. for problems that can be solved
using a neural network or a fuzzy system). Therefore,
it has a universal character. The idea presented in this
paper combines the genetic algorithm (GA) (used for
numeric parameter tuning) and genetic programming
(GP) (used for parameter tuning and structure selec-
tion). The combination of these methods required
a change in the process of evolution and adaptation of
the evolutionary operators used to search the space of
the problem under consideration. This combination of
the algorithms, however, has enabled an effective pop-
ulation processing in which both integer (including bi-
nary) and real parameters are used simultaneously.

� �OP

Lu k

� �OP

Ru k

++

++
� �

OP %2
1

o

�

� � � �� �OP1
sgn 1.5 +1

21
o� �

�

�

si
g
n
al

s
fr

o
m

o
th

er
 n

o
d
es

� �OP

0e k FIL
FIL

0C

+

+

++

0
1

� �OP

n-1e k FIL
FIL

n-1C
+

+

0
1

�in
p
u
t

si
g
n
al

s

FIL FIL

-1 -1,n ns f

FIL FIL,0 0s f
-1

0

n-1

OPl

� �OPu k

�

�

� �FIL

0e k

� �FIL

n-1e k

Figure 4
The structure of the operation block (OP) and the FIL
filters used to filter input signals

673Information Technology and Control 2018/4/47

The further part of this section describes: the struc-
ture of an individual in the population(Section 3.1),
an initialization of the population in the GP algorithm
(Section 3.2), evolutionary operators used by the pro-
posed GP algorithm (Section 3.3), a description of the
idea of the proposed algorithm (Section 3.4) and a me-
thod of evaluation of the individuals in the population
(Section 3.5).

3.1. The Structure of an Individual in the
Population
Each individual of population chX is encoded in the
form of the tree presented on Fig. 2:

CB CB CB
P I D

CB CB CB CB
P I D

OP OP FIL

OP OP
L R
FIL FIL

, , ,
, , , ,

{ } ,, , ,
, ,
,

ch l

l l

K K K
C C C C

l o C
u u
s ft

 
 
  = =  
 
 
  

X N (5)

where N is the root of tree (Fig. 2), OP
Lu and OP

Ru are
references to child nodes (if they occur – see Fig. 2).
Their structure is analogical to node N . A detailed in-
terpretation of the parameters appearing in formula
(5) is given in Sections 2.12.3.
The structure (length, complexity) of individual chX
of the proposed GP is therefore not predetermined,
but it can be selected depending on the problem under
consideration. It this paper, it is assumed that a tree
height cannot be greater than TreeHeight (see Step 6
in Section 3.4).

3.2. Population Initialization
Initialization of each individual N proceeds as fol-
lows:
Step 1. Creation of collection G containing elements
of the tree (according to Figs 2-4). It consists of J
leaves (J is a parameter of the algorithm).
Step 2. Random assignment to each J element input
signal ()ie k (0,1,..., 1i n= − , where a positive value
indicates that a given element is a leaf) and the rest
of the parameters (it takes into account the ranges
of values of these parameters which depend on the
problem under consideration, including filter param-
eters).
Step 3. Selecting and removing from collection G

two randomly chosen elements of the tree. If they are
associated with the same input signal (parameters

OPl has the same value), then one of parameters OPl
is changed randomly.
Step 4. Creating node (OP 1l = −) that has the elements
selected in Step 3 attached to it. The other parameters
of the node are initialized randomly as described in
Step 2.
Step 5. Putting the node created in Step 4 in collec-
tion G .
Step 6. If collection G contains two or more ele-
ments, go back to Step 3; otherwise go to Step 7.
Step 7. Selecting from collection G the last node, and
marking it as the root of the tree.
Step 8. Marking the root of the tree (with all nodes
and leaves) as a single individual.
The initialization procedure should be repeated for
all individuals of the GP population. The created pop-
ulation is then processed according to the procedure
described in Section 3.4.

3.3. GP Evolutionary Operators
The GP algorithm is dedicated to the PIDC process-
ing and it combines the GA and GP evolutionary op-
erators that have been additionally adjusted to the
specification of the problem under consideration. It
includes the following operators:
Tuning. This operator processes the real number val-
ues of the PIDC (CB

PK , CB
IK , CB

DK , FIL
ls , FIL

lf). It works
analogically to the GA mutation operator. If an as-
sumption that vf stands for the vector of real num-
ber values of the PIDC is made, then, the elements of
this vector are modified as follows:

() ()tuning: 1,1 ,i i i ivf vf U vfMax vfMinα= + ⋅ − ⋅ − (6)

where []tuning 0,1α ∈ is an algorithm parameter
that stands for tuning intensity; ()1,1U − gener-
ates a random number from the range of []1,1− ;

,i ivfMin vfMax   stands for the ranges of number val-
ues ivf . This operator modifies only these elements
of vf for which condition (0,1) tuningU p< is met.
The parameter ()0,1tuningp ∈ of the GP algorithm is
called tuning probability. Because the values gener-
ated under Eq. (6) can go beyond the allowable range

,i ivfMin vfMax   , the proposed GP algorithm carries

Information Technology and Control 2018/4/47674

out the repair procedure described in the next section
(Step 6).
Mutation. This operator processes the integer pa-
rameters (CB

PC , CB
IC , CB

DC , CBC , OPl , OPo , FIL
lC). If an

assumption that vi stands for the vector of integer
number values of the PIDC is made, then, the ele-
ments of this vector are modified as follows:

(): , ,i i ivi Ui viMin viMax= (7)

where (),i iUi viMin viMax generates a random integer
number from the range of ,i iviMin viMax   . The op-
erator modifies only these elements of vi for which
condition (0,1) mutationU p< is met. The parameter

()0,1mutationp ∈ of the GP algorithm is called mutation
probability.
Insertion. This operator selects randomly one node or
leaf of the tree (excluding the root node) and replaces
it with the root of a new randomly generated tree. The
new tree is generated according to the procedure de-
scribed in Section 3.2 on collection of insertionJ leaves,
where insertionJ J< . Due to that, the tree does not grow
significantly. The insertion is done only if condition:

(0,1) insertU p< is met. The parameter ()0,1insertp ∈ of
the GP algorithm is called insertion probability.
Pruning. This operator selects randomly one node
of the tree (excluding the root node) and replaces it
with a randomly generated leaf (OPl is set randomly
to a value from the range of []0, 1n −). The pruning is
carried out only if condition (0,1) pruningU p< is met.
Parameter ()0,1pruningp ∈ of the GP algorithm is called
pruning probability.
Crossover. This operator works on the basis of two
PIDCs. From each of them a random node (except the
root node) is selected, and the nodes are swapped. The
crossover is done only if condition (0,1) crossoverU p< is
met. Parameter ()0,1crossoverp ∈ of the GP algorithm is
called crossover probability.

3.4. Description of the Proposed GP
Algorithm
The GP algorithm is based on a typical schema of
a population-based algorithm (see e.g. [2, 42, 43, 49]).
It uses two populations, i.e. the main one- P and an
additional one- ′P and works according to the follow-
ing steps:
Step 1. Initialization of population P with Ninit in-

model:
() () () ()()

() () () () ()()

1

1

s
t

s
e

Tk k K i k b k
J

Ti k i k u k R i k K k
L

ω ω ω

ω

 + = + ⋅ ⋅ − ⋅

 + = + ⋅ − ⋅ − ⋅


parameters of
model:

0.01J = , 0.10b = , 0.01tK = ,
1.00R = , 0.50L = , 0.01eK =

()0e t , ()1e t , ()2e t : () ()* t kω ω− , ()kω , ()i k

set signal: *()tω

goal of the control
process: achieving a certain speed

*()kω

S
S

, , TsimT Tsim nIter
T

= : 0.005 ,5 ,1000s s

,uMin uMax : 50,50−

Table 2
The description of the problem considered in the simulations

dividuals
jX (1,2, ,j Ninit= …) (see Section 3.2. Each

individual encodes the whole structure and parame-
ters of the PIDC.
Step 2. Evaluation of population P . Each individual
is evaluated according to the criteria of the simula-
tion problem. In the algorithm an assumption that the
criteria are minimized is made. The evaluations are
calculated on the basis of fitness function ()ff jX (see
Section 3.5).
Step 3. Decreasing the size of P to Npop Ninit< by
removing the individuals with worse fitness function
values ()ff jX .
Step 4. Creating a copy of population P marked as ′P .
Step 5. Modification of population ′P . In this step the
following operations are performed: tuning, mutation,
insertion, pruning, and crossover (see Section 3.3). Be-
cause the crossover operator requires two individuals,
the second one is drawn from population P .
Step 6. Repair of population ′P . The repair proce-
dure includes two types of actions. First of all, the
values of the real parameters coded in the population
are reduced to their permissible ranges. Second, the
trees that are taller than TreeHeight are cut to the
TreeHeight value (redundant nodes are turned into
leaves). The TreeHeight is a parameter of the GP al-
gorithm.
Step 7. Evaluation of ′P .

675Information Technology and Control 2018/4/47

Step 8. Creation of a new population P . It combines
best Npop individuals (according to the fitness func-
tion) from populations P and ′P .
Step 9. Correction of the intensity of the GP algo-
rithm. This facilitates moving from exploration to
exploitation of the search space and is implemented
as follows:

{ }
{ }

{ }
{ }
{ }

: max ,

: max ,
: max ,

: max ,

: max , ,

tuning tuning tuning

mutation mutation mutation

insert insert insert

pruning pruning pruning

crossover crossover crossover

p pMin p

p pMin p
p pMin p

p pMin p

p pMin p

β

β
β

β

β

 = ⋅


= ⋅
 = ⋅
 = ⋅
 = ⋅

(8)

where ()0,1β ∈ is a reduction factor for the intensity
of evolutionary operators.
Step 10. Checking the algorithm stop condition. If

Table 3
The ranges of PIDC parameters adopted in the simulations

parameter type min max

CB
PK real 0 5000

CB
IK real 0 10000

CB
DK real 0 10000

CB
PC integer 0 1

CB
IC integer 0 1

CB
DC integer 0 1

CBC integer 0 1

OPl integer &-1 2

OPo integer 0 3

FIL
lf real 0.1 0.5

FIL
ls integer 2 10

FIL
lC integer 0 1

Table 4
The values of the GP algorithm parameters adopted in the
simulations (Nrepeats means the number of performed
repetitions of each simulation)

parameter value

J [5, 12]

insertionJ [3, 7]

TreeHeight 5

Ninit 256

Npop 64

tuningα 0.2

tuningp 0.8

mutationp 0.4

insertp 0.2

pruningp 0.4

crosoverp 0.9

β 0.990

tuningpMin 0.025

mutationpMin 0.050

insertpMin 0.025

pruningpMin 0.050

crosoverpMin 0.025

Nsteps 500

Nrepeats 40

the GP algorithm has performed a certain number
of steps Nsteps (this is a parameter of the GP algo-
rithm), then, the best individual from population P
is presented and the algorithm stops. Otherwise, the
algorithm goes back to Step 4.

3.5. Evaluating Individuals
In the GP algorithm each individual chX
(1,2, ,ch nPop= …) is evaluated by the fitness func-
tion. The goal of the GP algorithm assumed in this
paper is to minimize the value of this function. The
evaluation function can aggregate many different
criteria that are dependent on the problem and user
expectations. Their number will be further marked as

Information Technology and Control 2018/4/47676

nFF . In this paper the criteria used for aggregation
are normalized to the unit interval. The fitness func-
tion is defined as follows:

() ()*

1

ff ,
ff sig ; ,

,

nFF
f ch

ch ff
f f

T w
p q=

   =       

X
X (9)

where ()ff f chX defines component f of fitness func-
tion (1,2, ,f nFF= …); []0,1fw ∈ stands for compo-
nent weights; ()sig ⋅ stands for the function used for
normalization of components to the range of []0,1 ;

fp , fq are normalization parameters; {}*T ⋅ is the
t-norm with weights of arguments used for aggrega-
tion of the fitness function components.
The components of ff ()chX considered in this paper
are shown in Section 4 (including the parameters-see
Table 5). The function used to normalize the compo-
nents (sigmoid) is defined as follows:

component definition description weights (formula (9))

()1ff chX (ACC)

()
()

2*

0

nIter

k

k

k
nIter

ω

ω=

 +
  − 

∑ difference between set signal *()tω and
signal ()tω

1

1

1

1.00,
10.00,
0.30

w
p
q

=
=
=

()2ff chX (OSC)

1

1
1

M

m m
m

r r

uMax uMin

−

+
=

−

−

∑
oscillations of a controller expressed
as the sum of the differences between
successive oscillations (Fig. 5) related to
the range [],uMax uMin of the chances of
controller output u

2

2

2

0.20,
1.00,
20.00

w
p
q

=
=
=

()3ff chX (CMP)
100%Nkeys

MaxNkeys
⋅

complexity of a controller
expressed as a proportion of the
number of active elements to the
maximum number of elements

15 5 75MaxNkeys nodes keys= ⋅ = , where
15 nodes is a number resulting from the
acceptable height of the tree TreeHeight

3

3

3

0.20,
10.00,
0.50

w
p
q

=
=
=

()4ff chX (NFIL) Nfilters number of active filters FIR in PIDC
4

4

4

0.10,
0.01,
1.50

w
p
q

=
=
=

()5ff chX (OVH)
()
()*1,...,

max
k nIter

k
k

ω
ω=

 − 
 +  

stands for overshooting expressed as
a maximum difference between signal
()kω and desired signal ()* kω

5

5

5

0.10,
10.00,
0.30

w
p
q

=
=
=

Table 5
The evaluation criteria of fitness function ()ff ⋅ (5nFF =)

() ()()() 1
sig , , 1 exp ,x p q p q x

−
= + ⋅ − (10)

where q is the center of the acceptable range
[],xMin xMax of the changes of the domain of x pa-
rameter (therefore ()sig , , 0.5q p q =)), and p is used
to determine the angle of inclination of the central
part of function graph ()sig ⋅ with respect to abscissa.
The t-norm with weights of the arguments is defined
as follows:

{ } (){ } ()()*

1
1

; 1 1 1 1 ,
nFFnFF

f f f ff
f

T T w a w a
=

=

= − ⋅ − = − ⋅ −∏a w

(11)

where values []0,1fw ∈ mean weights of impor-
tance of the arguments []0,1fa ∈ . Please note that

{ } { }*
1 2 1 2, ;1,1 ,T a a T a a= and { }*

1 2 1, ;1,0T a a a= .

677Information Technology and Control 2018/4/47

Table 6
Averaged simulation results (each simulation variant was
repeated 40Nrepeats = times)

variants ACC OSC CMP NFIL OVH ()ff ⋅

N0+F0 0.0684 5.9756 0.1610 0.0000 0.0051 0.1449

N0+F1 0.0684 5.9748 0.1710 1.0250 0.0051 0.1457

N0+F2 0.0684 5.9729 0.1800 3.0000 0.0052 0.1467

N1+F0 0.0776 6.6790 0.1780 0.0000 0.0600 0.1561

N1+F1 0.0743 7.0941 0.1690 1.4250 0.0739 0.1541

N1+F2 0.0743 6.9947 0.1830 3.0000 0.0743 0.1554

N2+F0 0.0894 4.0407 0.1945 0.0000 0.1029 0.1706

N2+F1 0.0835 4.8588 0.1770 1.5250 0.0889 0.1634

N2+F2 0.0837 4.5800 0.1840 3.0000 0.0884 0.1643

It is worth mentioning that other approaches for cri-
teria aggregation might be also used. However, the
approach expressed in formula (9) is simple to imple-
ment and easy to expand. In addition, it allows one to
give aggregated components a specific validity. This is
a significant element for problems with multiple eva-
luation criteria.

4. Simulation Results
Comments on the simulations carried out can be
summarized as follows (Fig. 6, Fig. 7).
In the simulations a DC Motor (DCM) problem was
considered [11]. This is a control problem in which
the goal of the control is to achieve as fast as possible
an angular velocity set by the motor shaft *ω . A de-
scription of this problem has been shown in Table 2.
It is worth noting that the problem considered in the
simulations can be seen from a practical point of view
as an interesting benchmark in the optimization field.

Figure 5
The way of determining mr values for function ()OSCff ⋅ (see
Table 4)

t

u()t

0 r1

r2

r3

r4

r5

r6

r7

r8

Figure 6
Exemplary results obtained for the F1 simulation variant
(filters selected dynamically) and different noise values:
a) N0, b) N1, and c) N2. The dashed line indicates the set
signal

Figure 7
Exemplary results obtained for the F1 simulation variant
and verification set signal (different set signal than used
in the learning and testing phases) and different noise
values: a) N0, b) N1, and c) N2. The dashed line indicates
the set signal

a)

t [s]

�
(

)t

0 1 4 5

1.0
0.8
0.6
0.4
0.2
0.0

t [s]

u
t(
)

0 1 4 5

50
30
10

-10
-30
-50

b)

t [s]

�
(

)t

0 1 4 5

1.0
0.8
0.6
0.4
0.2
0.0

t [s]

u
t(
)

0 1 4 5

50
30
10

-10
-30
-50

c)

t [s]

�
(

)t

0 1 4 5

1.0
0.8
0.6
0.4
0.2
0.0

t [s]

u
t(
)

0 1 4 5

50
30
10

-10
-30
-50

a)

t [s]

�
(

)t

0 1 4 5

1.2
1.0
0.8
0.6
0.4
0.2
0.0

t [s]

u
t(
)

0 1 4 5

50
30
10

-10
-30
-50

b)

t [s]

�
(

)t

0 1 4 5

1.2
1.0
0.8
0.6
0.4
0.2
0.0

t [s]

u
t(
)

0 1 4 5

50
30
10

-10
-30
-50

c)

t [s]

�
(

)t

0 1 4 5

1.2
1.0
0.8
0.6
0.4
0.2
0.0

t [s]

u
t(
)

0 1 4 5

50
30
10

-10
-30
-50

Information Technology and Control 2018/4/47678

a)

CB

-

+

� �u k

� �1e k � �0e k

b)

CB

-

-

� �u k

� �0e k � �2e k

FIR

0.134�
FIL

2f

9�
FIL

2s
P 143.1K �
CB

CB

P 546.7K �
CB

c)

CB

+

+

� �u k

P 89.23K �
CB

-

-

� �0e k � �2e k

FIR

9�

0.324�
FIL

2f
FIL

2s

� �1e k

D 260.0K
CB�

D 1626K �
CB

I 6188K �
CB

D 1628K �CB

b)

t [s]

�
(

)t

0 1 4 5

1.0
0.8
0.6
0.4
0.2
0.0

t [s]

u
t(
)

0 1 4 5

50
30
10

-10
-30
-50

c)

t [s]

�
(

)t

0 1 4 5

1.0
0.8
0.6
0.4
0.2
0.0

t [s]

u
t(
)

0 1 4 5

50
30
10

-10
-30
-50

a)

t [s]

�
(

)t

0 1 4 5

1.0
0.8
0.6
0.4
0.2
0.0

t [s]

u
t(
)

0 1 4 5

50
30
10

-10
-30
-50

 _ The simulations were performed in different
variants in which the assumed noise level of the
signals measured from the object varied in the
following ways: 0.0% (variant N0), 0.1% (variant N1),
and 0.5% (variant N2). The aim of such an approach
is to provide simulations with the conditions as
close to the real conditions (prevailing in real
CSs) as possible. In addition, variants of the PIDC
structure, which differed in the way in which the
filters were activated: filters not active (variant F0),
dynamically activated filters (variant F1), filters
active (variant F2) are taken into account.

 _ In the simulations the GP algorithm was used,
whose parameters are shown in Table 4. The
purpose of this algorithm was to find the PIDC
structure and parameters. The GP algorithm
searched for parameter values considering the
ranges shown in Table 3.

 _ In the simulation the solutions (individuals of
populations) were evaluated using fitness function

()ff ⋅ in the form of (9) with the criteria presented
in Table 4. The criteria taken into account include:
control error, oscillations (the way in which
they are calculated is shown in Fig. 5; it is worth
pointing out that the noise is not included-little
oscillations are not taken into account), complexity

Figure 8
The exemplary results obtained with taking only RMSE
as the fitness function for the PIDC for the F1 simulation
variant (ACC 1.0,w = OSC 0.0,w = CMP 0.0,w = NFIL 0.0,w =

OVH 0.0w =) and different noise values: a) N0, b) N1, and
c) N2. The dashed line indicates the set signal

and overshooting. In Table 4 the following
additional markings were used: Nkeys that
stands for the number of active keys (CB

PC , CB
IC ,

CB
DC , CBC and FIL

lC are treated as keys that allow for
reduction of controller elements) in the CB and OP
blocks; MaxNkeys is the number of active keys in
the CB and OP blocks in the PIDC structure with
the highest allowable TreeHeight value; Nfilters
is the number of active FIR filters in the PIDC
structure. In Table 4 weights of criteria w and
values of p , q used for criteria normalization by
function (10) are given. The values of p and q
have been selected in such a way that the function
(10) suits/covers in a best way the widest range of
possible values of the corresponding criteria.

Figure 9
The exemplary structures of the PIDC, whose way of
peration is shown in Figs 6 and 7

679Information Technology and Control 2018/4/47

 _ Each simulation variant has been repeated
a certain number of times (40Nrepeats =), and the
results were averaged (Table 6). Sample waveforms
and the corresponding PIDCs structures are shown
in Figs 6-9.

The conclusions from the performed simulations can
be summed up as follows:
 _ The results obtained in the simulations are

satisfactory. The GP algorithm found a sufficient
PIDC structure and parameters for the considered
control problem in the sense of the adopted
evaluation criteria.

 _ Taking into account the noise of signals (N1 and
N2 variants) coming from the object contributed
to the activation of filters in F1 variants (Table 6,
column NFIL; Fig. 9). For these variants, the best
values of the evaluation function (positive) were
obtained (Table 6, column ()ff ⋅).

 _ Activation of the filters slightly increased the
control accuracy in variants N1 and N2 (Table 6,
column ACC). On the other hand, the activation of
the filters in variants N0 (no noise) caused a slight
increase in the value of the evaluation function
(Table 6, column ()ff ⋅).

 _ In the simulations, an additional case was
considered when only the RMSE was taken into
account in the evaluation function (ACC 1.0w = ,

OSC 0.0w = , CMP 0.0w = , NFIL 0.0w = , OVH 0.0w =). This
resulted in a significant increase of oscillations
of the control signal, increase in the value of the
evaluation function, a reduction in overshooting
(this phenomenon is beneficial), and only a slight
increase in accuracy compared to the accuracy
presented in Table 6. These results were considered
as negative and are not included in this article. In
Fig. 8 only an example of the result of such selected
PIDC is presented.

 _ PIDCs designed automatically by the GP work
properly also for verification tests with the set
signals other than those used in the learning phase
(Fig. 7). This is an additional advantage of the
approach proposed in this paper.

When comparing the results obtained in this paper
with the results obtained by other authors, it is advis-
able to take into account various assumptions made
in the learning phase, various simulation variants and
various methods of results presentation (e.g. showing

only the best achieved results). This comparison can
be summarized as follows:
 _ The authors in [1] used a different desired signal

and the noise of the input signals has not been
taken into account. The results obtained for them
for neural network with 10 inputs (RMSE=0.4582)
are worse than the results obtained in this paper
(RMSE=0.1209). At the same time, the results
obtained for a neural network with 15 input
neurons (RMSE=0.0387) are better than the
results obtained in this paper. It is worth noting
that in paper [1] an identical testing and verifying
set signal was used (in this work different set
signals were used), which simplifies the problem
under consideration.

 _ The authors in [21] used a neural network sliding
mode controller and took into account disturbance,
load torque and uncertainties of the model with
a purpose of improving the control process.
The authors in [11] also considered a controller
based on a neural network. The presented ideas
of using neural networks are interesting, but
the interpretation of their mode of operation is
difficult. Neural network weights do not have their
interpretation, unlike the P/I/D elements used in
the PIDC.

 _ The authors in [6] compared different controllers
(PID-, state-space-, cascade ones) and obtained
the settling time of the signal at the level of 0.6 s.
The settling time for the PIDC selected by the GP
was close to 0.35 s (see Fig. 7.a) and it was obtained
for a more complex set signal (in [6] the set signal
had a constant value). The authors in [34] also
considered the problem of shortening the settling
time. They proposed a hybrid-type controller:
PID+ANN (artificial neural network) for which the
obtained settling time was about 0.5 s.

 _ The authors in [7] considered a controller based on
a fuzzy system with 25 fuzzy rules. The obtained
settling time was about 3 seconds; however,
different parameters for the DCM were set. In
addition, a large number of rules may be difficult
to interpret. In the literature, descriptions of
fuzzy controllers with even more fuzzy rules can
be found [8]. In paper [29], we considered a fuzzy
system controller (FFPIDC) based on a maximum
of 5 fuzzy rules. It combines a fuzzy system with
P/I/D terms and FIR filters. The results obtained

Information Technology and Control 2018/4/47680

for this controller (whose structure was, however,
more complex than the PIDC’s) were therefore
slightly better than those obtained in this paper
(the accuracy of the FFPIDC without filters is
equal to 0.0710, and accuracy of the PIDC without
filters is equal to 0.0776-8.5% worse; the accuracy
of the FFPIDC with filters is equal to 0.0690, and
the accuracy of the PIDC with filters is equal to
0.0743-7.2% worse). It is worth noting, however,
that the FFPIDC worked with about 3 times less
overshooting compared to the PIDC (FFPIDC
overshooting is about 0.37, and PIDC overshooting
does not exceed 0.1).

 _ It can be concluded that the solution proposed
in this paper works with a good accuracy and it
is characterized by simple implementation and
a clear structure (this results from an unambiguous
use of P/I/D). In addition, the obtained controllers
were resistant to the noise of measuring signals
and are able to function in changing operating
conditions (see Fig. 7).

5. Conclusions
In this paper possibilities of using genetic program-
ming (GP) for solving complex optimization prob-
lems was shown. Such complexity results, among
others, from the aim of the algorithm, which is selec-
tion of structure and tuning parameters (in a typical
approach only parameters of a fixed structure are
tuned). Due to that the proposed GP has a universal
character and can be used e.g. for designing of neu-
ral network structures and their weights, selection
of fuzzy system structures and tuning parameters of
fuzzy rules, selection of evolutionary operators and

tuning their parameters, selection of a model and tun-
ing its parameters, etc.
Moreover, this paper shows that the GP algorithm is
a very flexible method. It allows for a simple adjust-
ment of the algorithm, its operators and the method
used for evaluating individuals to a given problem.
What is more, a method of combining the GP with an-
other algorithm, i.e. the genetic algorithm, has been
presented. Thanks to that, the GP algorithm can effi-
ciently process solutions with parameters encoded not
only in real number values, but also in integral values.
The solutions proposed in this paper have an interdis-
ciplinary character, because they concern the theory
of population algorithms and the control theory. The
detailed purpose of these solutions is to support de-
signers of controllers based on proven and almost per-
fectly functioning PID controllers. We have proposed
a new approach to designing of complex controllers
built on the basis of PID controllers with the filtration
of signals coming from the object. The purpose of the
used filters with a finite impulse response is to improve
the properties of those controllers (e.g. by elimination
of controller output oscillations). This is particularly
important when there is noise in measuring signals
coming from a controlled object. The results obtained
in the simulations were very satisfactory.
In the future, it is planned to use the proposed algo-
rithm of genetic programming in other application
areas related to complex adaptive systems. Moreover,
hardware implementation of the proposed controllers
and their testing in real control systems is also planned.

Acknowledgments
The authors would like to thank the reviewers for
their very helpful suggestions and comments in the
revision process.

References
1. Aamir, M. On Replacing PID Controller with ANN Con-

troller for DC Motor Position Control. International
Journal of Research Studies in Computing, 2013, 2(1),
21-29. https://doi.org/10.5861/ijrsc.2013.236

2. Abdelbari, H., Shafi, K. Learning Structures of Con-
ceptual Models from Observed Dynamics Using Evo-
lutionary Echo State Networks. Journal of Artificial

Intelligence and Soft Computing Research, 2018, 8(2),
133-154. https://doi.org/10.1515/jaiscr-2018-0010

3. Agharkakli, A., Sabet, G. S., Barouz, A. Simulation and
Analysis of Passive and Active Suspension System
Using Quarter Car Model for Different Road Profile. In-
ternational Journal of Engineering Trends and Techno-
logy, 2012, 3(5), 636-644.

681Information Technology and Control 2018/4/47

4. Alia, M. A. K., Younes, T. M., Alsabbah, S. A. A Design of
a PID Self-Tuning Controller Using LabVIEW. Journal
of Software Engineering and Applications, 2011, 4, 161-
171.https://doi.org/10.4236/jsea.2011.43018

5. Åström, K., Hägglund, T. Automatic Tuning of Simple
Regulators with Specifications on Phase and Amplitude
Margins. Automatica, 1984, 20(5), 645-651. https://doi.
org/10.1016/0005-1098(84)90014-1

6. Baćac, N., Slukić, V., Puškarić, M., Štih, B., Kamenar,
E., Zelenika, S. Comparison of Different DC Motor Po-
sitioning Control Algorithms. Proceedings of the MI-
PRO 2014, 2014, 26-30. https://doi.org/10.1109/MI-
PRO.2014.6859832

7. Bansal, U. K., Narvey, R. Speed Control of DC Motor
Using Fuzzy PID Controller. Advance in Electronic and
Electric Engineering, 2013, 3(9), 1209-1220.

8. Bature, A. A., Muhammad, M., Abdullahi, A. M. Position
Control of a DC Motor: An Experimental Comparative
Assessment Between Fuzzy and State Feedback Con-
troller. ARPN Journal of Engineering and Applied Sci-
ences, 2013, 8(12), 984-987.

9. Caraveo, C., Valdez, F., Castillo, O. Optimization of
Fuzzy Controller Design Using a New Bee Colony Al-
gorithm with Fuzzy Dynamic Parameter Adaptation.
Applied Soft Computing, 2016, 43, 131-142. https://doi.
org/10.1016/j.asoc.2016.02.033

10. Chandra A., Chattopadhyay, S. Design of Hardware Effi-
cient FIR FILTER: A REVIEW of the State-of-the-Art
Approaches. Engineering Science and Technology, an
International Journal, 2016, 19, 212-226.

11. Cheon, K., Kim, J., Haamadache, M., Lee, D. On Replacing
PID Controller with Deep Learning Controller for DC Mo-
tor System. Journal of Automation and Control Engineer-
ing, 2015, 3(6). https://doi.org/10.12720/joace.3.6.452-456

12. Choi, H. H., Jung, J.-W. Discrete-Time Fuzzy Speed
Regulator Design for PM Synchronous Motor. IEEE
Transactions on Industrial Electronics, 2013, 60(2),
600-607. https://doi.org/10.1109/TIE.2012.2205361

13. Choi, H. H., Yun, H. M., Kim, Y. Implementation of Evo-
lutionary Fuzzy PID Speed Controller for PM Synchro-
nous Motor. IEEE Transactions on Industrial Infor-
matics, 2015, 11(2), 540-547. https://doi.org/10.1109/
TII.2013.2284561

14. Cpałka, K. Design of Interpretable Fuzzy Systems. Spring-
er, 2017. https://doi.org/10.1007/978-3-319-52881-6

15. Cpałka, K., Łapa, K., Przybył, A. A New Approach to De-
sign of Control Systems Using Genetic Programming.

Information Technology and Control, 2015, 44(4), 433-
442. https://doi.org/10.5755/j01.itc.44.4.10214

16. Das, S., Pan, I., Das, S., Gupta, A. Genetic Algorithm
Based Improved Sub-Optimal Model Reduction in
Nyquist Plane for Optimal Tuning Rule Extraction of
PID and Controllers via Genetic Programming. Proce-
edings of the 2011 International Conference on Process
Automation, Control and Computing, PACC 2011, 2011,
5978962. https://doi.org/10.1109/PACC.2011.5978962

17. Dinesh, P. S., Manikandan, M. Survey on Reconfigu-
rable Fir Filter Architecture. Proceedings of the 2017
Fourth International Conference on Signal Processing,
Communication and Networking (ICSCN), Chennai,
2017, 1-3. https://doi.org/10.1109/ICSCN.2017.8085685

18. Do, T. D., Choi, H. H., Jung, J.-W. SDRE-Based Near
Optimal Control System Design for PM Synchronous
Motor. IEEE Transactions on Industrial Electroni-
cs, 2012, 59(11), 4063-4074.https://doi.org/10.1109/
TIE.2011.2174540

19. Duan, X. G., Deng, H., Li, H. X. A Saturation-Based Tun-
ing Method for Fuzzy PID Controller. IEEE Transac-
tions on Industrial Electronics, 2013, 60(11), 5177-5185.
https://doi.org/10.1109/TIE.2012.2222858

20. El-Sousy, F. F. M. Intelligent Optimal Recurrent Wave-
let Elman Neural Network Control System for Perma-
nent-Magnet Synchronous Motor Servo Derive. IEEE
Transactions on Industrial Informatics, 2013, 9(4),
1986-2003. https://doi.org/10.1109/TII.2012.2230638

21. Fallahi, M., Azadi, S. Adaptive Control of a DC Motor
Using Neural Network Sliding Mode Control. Proceed-
ings of the International Multi Conference of Engineers
and Computer Scientists (IMECS 2009), 2009, 2.

22. Gil, P., Lucena, C., Cardoso, A., Palma, L. B. Gain Tuning
of Fuzzy PID Controllers for MIMO Systems: A Perfor-
mance-Driven Approach. IEEE Transactions on Fuzzy
Systems, 2015, 23(4), 757-768. https://doi.org/10.1109/
TFUZZ.2014.2327990

23. Greensted, A. FIR Filters by Windowing. The Lab Book
Pages: An Online Collection of Electronics Informa-
tion, available online: http://www.labbookpages.co.uk/
audio/firWindowing.html, 2010.

24. Jezernik, K., Horvat, R., Curkovic, M. A Switching Control
Strategy for the Reduction of Torque Ripple for PMSM.
IEEE Transactions on Industrial Informatics, 2013, 9(3),
1272-1279. https://doi.org/10.1109/TII.2012.2222037

25. Kadlic, B., Sekaj, I., Pernecka, D. Design of Contin-
uous-Time Controllers Using Cartesian Genetic

Information Technology and Control 2018/4/47682

Programming. Proceedings of the 19th World Con-
gress, The International Federation of Automatic
Control Cape Town, South Africa, 2014. https://doi.
org/10.3182/20140824-6-ZA-1003.00915

26. Ko, C. N., Wu, C. J. A PSO-Tuning Method for Design of
Fuzzy PID Controllers. Journal of Vibration and Con-
trol OnlineFirst, 2007, 14, 1-21.

27. Lai, J. G., Zhou, H., Hu, W. S. A New Adaptive Fuzzy PID
Control Method and Its Application in FCBTM. Inter-
national Journal of Computers Communications &
Control, 2016, 11(3), 394-404. https://doi.org/10.15837/
ijccc.2016.3.753

28. Łapa, K., Cpałka, K. On the Application of a Hybrid
Genetic-Firework Algorithm for Controllers Struc-
ture and Parameters Selection. Advances in Intelligent
Systems and Computing, Springer, 2016, 429, 111-123.
https://doi.org/10.1007/978-3-319-28555-9_10

29. Łapa, K., Cpałka, K. Flexible Fuzzy PID Controller
(FFPIDC) and a Nature-Inspired Method for Its Con-
struction. IEEE Transactions on Industrial Infor-
matics, 2018, 14, 1078-1088. https://doi.org/10.1109/
TII.2017.2771953

30. Łapa, K., Cpałka, K., Przybył, A., Saito, T. Fuzzy PID
Controllers with FIR Filtering and a Method for Their
Construction. LNCS, Springer, 2017, 10245, 761-772.
https://doi.org/10.1007/978-3-319-59060-8_27

31. Łapa, K., Cpałka, K., Wang, L. New Method for Design of
Fuzzy Systems for Nonlinear Modelling Using Different
Criteria of Interpretability. LNCS, Springer, 2014, 8467,
212-227. https://doi.org/10.1007/978-3-319-07173-2_20

32. Lin, C.-K., Liu, T.-H., Yang, S.-H. Nonlinear Position Con-
troller Design with Input-Output Linearisation Tech-
nique for an Interior Permanent Magnet Synchronous
Motor Control System. IET Power Electronics, 2008,
1(1), 14-26. https://doi.org/10.1049/iet-pel:20070177

33. Liu, G., Chen, L., Zhao, W., Jiang, Y., Qu, L. Internal Mod-
el Control of Permanent Magnet Synchronized Motor
Using SVM Generalized Inverse. IEEE Transactions on
Industrial Informatics, 2013, 9(2), 890-898. https://doi.
org/10.1109/TII.2012.2222652

34. Madheswaran, M., Muruganandam, M., Simulation
and Implementation of PID-ANN Controller for Chop-
per Fed Embedded PMDC Motor. ICTACT Journal
on Soft Computing, 2012, 2(3), 319-324. https://doi.
org/10.21917/ijsc.2012.0049

35. Maher, R. A., Mohamed, M. J., An Enhanced Genetic Pro-
gramming Algorithm for Optimal Controller Design, In-
telligent Control and Automation, vol. 4, pp. 94-101, 2013.

36. Malhotra, R., Sodh, R. Boiler Flow Control Using PID
and Fuzzy Logic Controller. Proceedings of the IJCSET,
2011, 1(6), 315-31.

37. Morawiec, M. The Adaptive Backstepping Control of
Permanent Magnet Synchronous Motor Supplied by
Current Source Inverter. IEEE Transactions on In-
dustrial Informatics, 2013, 9(2), 1047-1055. https://doi.
org/10.1109/TII.2012.2223478

38. NagaJyothi, G., SriDevi, S. Distributed Arithmetic Ar-
chitectures for FIR Filters-A Comparative Review.
Proceedings of the 2017 International Conference on
Wireless Communications, Signal Processing and Net-
working (WiSPNET), Chennai, 2017, 2684-2690.

39. Perng, J.-W., Chen, G.-Y., Hsieh, S.-C. Optimal PID Con-
troller Design Based on PSO-RBFNN for Wind Tur-
bine Systems. Energies, 2014, 7, 191-209. https://doi.
org/10.3390/en7010191

40. Petkovic, D., Pavlovic, N. D., Cojbašic, Z., Pavlovic, N.
T. Adaptive Neuro-Fuzzy Estimation of Underactu-
ated Robotic Gripper Contact Forces. Expert Sys-
tems with Applications, 2013, 40, 281-286. https://doi.
org/10.1016/j.eswa.2012.07.076

41. Preindl, M., Bolognani, S. Model Predictive Direct Speed
Control with Finite Control Set of PMSM Drive Systems.
IEEE Transactions on Power Electronics, 2013, 28(2),
1007-1015. https://doi.org/10.1109/TPEL.2012.2204277

42. Rutkowski, L. Computational Intelligence, Springer,
2008. https://doi.org/10.1007/978-3-540-76288-1

43. Sadiqbatcha, S., Jafarzadeh, S., Ampatzidis, Y. Particle
Swarm Optimization for Solving a Class of Type-1 And
Type-2 Fuzzy Nonlinear Equations. Journal of Artifi-
cial Intelligence and Soft Computing Research, 2018,
8(2), 103-110. https://doi.org/10.1515/jaiscr-2018-0007

44. Sandhiya, V., Karthick, S., Valarmathy, M. A Survey of
New Reconfigurable Architectures for Implementing
FIR Filters with Low Complexity. Proceedings of the
2014 International Conference on Computer Commu-
nication and Informatics, Coimbatore, 2014, 1-9.
https://doi.org/10.1109/ICCCI.2014.6921804

45. Segovia, R. V., Hsgglund, T., Astrom, K. J. Noise Filte-
ring in PI and PID Control. Proceedings of the Ameri-
can Control Conference, 2013, 1763-1770. https://doi.
org/10.1109/ACC.2013.6580091

46. Soltoggio, A. A Comparison of Genetic Programming
and Genetic Algorithms in the Design of a Robust, Sa-
turated Control System. Proceedings of the Genetic and
Evolutionary Computation-GECCO 2004. Lecture No-
tes in Computer Science, 2004, 3103, 174-185.

683Information Technology and Control 2018/4/47

47. Szczypta, J., Przybył, A., Cpałka, K. Some Aspects of
Evolutionary Designing Optimal Controllers. Artifici-
al Intelligence and Soft Computing. LNCS, Springer,
2013, 7895, 91-100.

48. Tai, K., El-Sayed, A. R., Biglarbegian, M., Gonzalez, C. I.,
Castillo, O., Mahmud, S. Review of Recent Type-2 Fuzzy
Controller Applications. Algorithms, 2016, 9(2). https://
doi.org/10.3390/a9020039

49. Tambouratzis, G. Using Particle Swarm Optimization
to Accurately Identify Syntactic Phrases in Free Text.
Journal of Artificial Intelligence and Soft Computing

Research, 2018, 8(1), 63-67. https://doi.org/10.1515/
jaiscr-2018-0004

50. Tao, C. W., Taur, J. S., Chang, Y. H., Chang, C. W. A Novel
Fuzzy-Sliding and Fuzzy-Integral-Sliding Controller
for the Twin-Rotor Multi-Input–Multi-Output System.
IEEE Transactions on Fuzzy Systems, 2010, 18(5), 893-
905. https://doi.org/10.1109/TFUZZ.2010.2051447

51. Yang, X.-S. Nature-Inspired Optimization Algorithms.
Elsevier, 2016.

52. Ziegler, J., Nichols, N. Optimum Settings for Automatic
Controllers. Transactions ASME, 1942, 64(11), 759-765.

