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Genetic programming algorithms and other population-based methods are a convenient tool for solving com-
plex interdisciplinary problems. Their characteristic feature is that they flexibly adapt to the problem and ex-
pectations of a designer. In this paper, they are used for designing complex control systems. In particular, a new 
approach for automatic designing of PID-based controllers which are resistant to noises in the measuring 
path is proposed. It is based on the knowledge about an object model and capabilities of the genetic algorithm 
and genetic programming. Not only do these make it possible to tune parameters and select the structure of 
PID-based controllers, but they also tune parameters of some additional components of a complex controller 
structure, like parameters of finite impulse response (FIR) filters. The idea of the proposed approach relies on 
proper encoding of the controller and a dedicated way of evolutionary processing of encoded solutions. The ap-
proach proposed in this paper has been tested using a typical control problem, i.e. a DC motor control problem.
KEYWORDS: artificial intelligence, controller, PID, selection of structure, selection of parameters, genetic 
programming.

1. Introduction
In this paper, a  few possibilities of using popula-
tion-based algorithms in control systems are present-
ed. Moreover, a  new dedicated variation of genetic 
programming (GP) for designing of control systems 
is proposed. This method makes it possible to design 

systems that can adapt to a given problem and expec-
tations with which a designer is faced.
Controllers play an important role in control systems. 
Their aim is to influence the control object in such 
a way so as to make that object operate in the way it 
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is expected to. In the literature many types of control 
methods can be found including: adaptive control 
[37], fuzzy control [12, 31], neuro-fuzzy control [29], 
fuzzy-integral-sliding [50], type-2 fuzzy control [48], 
internal model control [33], model predictive control 
[41], neural network control [20], nonlinear feed-
back linearization control [32], nonlinear optimal 
control [18], sliding mode control [24], etc. Although 
new types of controllers are still being sought for, 
controllers based on correction terms (proportion-
al-integral-derivative-based controllers) still have 
an important place in control problems. A number of 
simple PID controllers can be interconnected to form 
a  more complex controller structure, e.g. a  cascade 
structure. Such controllers are considered in this pa-
per and will be referred from now on as PIDCs. Such 
controllers have a clear structure (the function of the 
correcting elements is easily interpretable), work 
well in most control systems [36], mostly have practi-
cal applications [39], and have many simple methods 
for tuning theirs parameters (in the case of a strictly 
defined structure) [5, 52]. Among the methods used 
for parameter tuning, computational intelligence 

based methods (population-based algorithms in par-
ticular) take an important place in the literature [9, 
14, 42, 47, 51]. This group of methods also includes ge-
netic programming [15, 16, 25, 35, 46]. The GP is based 
on processing of the population of individuals (by us-
ing evolutionary operators) and its evaluation. Ulti-
mately, the GP algorithm selects from the population 
an individual that best suits the defined evaluation 
criteria for the problem under consideration. Each 
individual from the population represents a  single 
solution (e.g. one PIDC) which is encoded in the form 
of a tree that consists of nodes and leaves. In the tree 
each leaf has an assigned value (e.g. a numeric value 
or index of controller input signal) and each node has 
an assigned mathematic operator for calculating the 
values of nodes and leaves attached under it.
Most typical controller designing methods work on 
rigidly defined PIDC structures. What distinguishes 
the GP is the capabilities of producing dynamic struc-
tures in the form of a tree. The choice of proper struc-
ture could prove to be a significant problem (despite 
the indications given in the literature), especially for 

Table 1
The main properties of controller designing methods

method f1 f2 f3 f4 f5 f6 f7 f8

Agharkakli et al. [3] no no no no yes yes no no

Cheon et al. [11] yes no no no no no no no

Choi et al. [13] yes no no no yes no yes no

Duan et al. [19] no no no no no no yes no

Gil et al. [22] no no no no no no yes no

Ko and Wu [26] yes no no no yes no no no

Lai et al. [27] no no no no yes no no no

Łapa and Cpałka [28] yes yes no yes yes yes yes yes

Łapa and Cpałka [29] yes yes yes yes yes yes yes no

Łapa et al. [30] yes yes yes yes yes no yes no

Petkovic et al. [40] no no no no no no yes no

proposed method yes yes yes yes yes yes yes yes

f1 -Is a nature-inspired population-based algorithm used? f2 - Can the controller structure be dynamically selected?  
f3 -Are signal filters used (and signals noise)? f4 -Are the oscillations of the control signal minimized? f5 -Are any specific criteria of 
the considered problem included and minimized (e.g. over- shooting)? f6 -Is the method verified on different signals than those used 
during the controller design? f7 -Are the presented results
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unconventional applications, and it is usually done 
by the trial and error method. This demonstrates the 
GP’s advantage over the traditional methods. None-
theless, the GP cannot be used directly for designing 
PID-based controllers, but it can be used for the selec-
tion of a structure and parameters of tree structures 
(computer programs) that can be used as controllers. 
In order to create a  specific type of a  controller (e.g. 
a PIDC), the GP must be modified accordingly.
In paper [15], we considered a  concept of a  PIDC 
whose structure and parameters could be adjusted 
automatically using the proposed modification of the 
GP algorithm. The results obtained and presented in 
the paper were promising. In this paper, we also con-
sider the problem of choosing the structure and tun-
ing parameters of the PIDC (Fig. 2) on the basis of the 
model of a control object (Fig. 1). The control system 
considered in this paper (Fig. 1) works in three phases, 
i.e.: learning, testing, and verification. In the learning 
phase (which includes the selection of a structure and 
tuning parameters) a model of the con- trolled object 
is used. If a  satisfactory PIDC is found in this phase 
(in terms of the assumed evaluation criteria), then 
the learning can be stopped. The PIDCs designed and 
optimized in the learning phase are then tested under 
conditions similar to those in the learning phase (the 
testing phase) and verified (the verification phase) 
under conditions other than those in the learning 
phase (including using a  different test signal). After 
a positive completion of these phases (learning, test-
ing and verification) an implementation on the target 
hardware platform can be done. The goal of the pro-
posed approach is to choose a  simple structure and 
parameters of the PIDC that meets the accepted eval-
uation criteria for the problem under consideration. 
The elements of a novelty presented in this paper are 
as follows:
 _ The PIDC structure includes a  number of 

control blocks (CB, Fig.  3) (each composed of 
a  few programmable switches and a  single PID 
controller) and operation blocks (OP, Fig. 4) (each 
of them includes of a  number of programmable 
switches and a single finite impulse response filter). 
The proposed genetic programming automatically 
tunes parameters of these PID controllers and 
filters (i.e. their order and cut-off frequency) as well 
as the states of their programmable switches. Such 
approach shows great possibilities of using genetic 

programming combined with the genetic algorithm 
in the design of automatic control systems (both 
controllers and their supporting elements).

 _ A new way of designing a  PIDC structure: an 
aggregating operator (OP, Fig.  4) is introduced. 
Thus, we show that the GP algorithm can be very 
easily adapted to solve unusual optimization 
problems.

 _ The way in which the population is processed by 
the GP algorithm is improved in comparison to 
[15]. In addition, the way in which the evolutionary 
operators are used to search the solution space is 
updated by introducing intensity of evolutionary 
operators. This shows that the GP is a  flexible 
algorithm that can be extended by using 
unconventional evolutionary operators (often 
adjusted to the problem).

 _ A new procedure of initial population initialization 
is proposed. We have specifically simplified the way 
of generating a population in comparison to [15].

 _ A new way of aggregating of the components of 
the evaluation function is applied. This method 
was introduced to evaluate the population of 
individuals in the evolutionary algorithm [29], 
but it has not been used yet when combined with 
the algorithm of genetic programming. Thus, we 
show that the GP algorithm can be easily adapted 
to solve practical problems in the field of multi-
criteria (multi-objective) optimization.

The elements of novelty presented in this paper and 
those considered in the context of control theory and 
the problem of controller design have been included in 
Table 1.
The structure of this paper is as follows: in Section 2, 
the proposed structure is described. Section  3 pres-
ents the proposed GP algorithm. Section  4 includes 
simulation results, and the conclusions are drawn in 
Section 5.

Figure 1
The control system (CS) considered in this paper
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2. PIDC Structure and Its Encoding 
for the GP Algorithm
In this paper a  control system (CS, Fig.  1) based on 
a PIDC (Fig. 2) is considered. The PIDC structure had 
to be designed in such a way so that it could be selec-
ted using the GP algorithm. Therefore, aggregating 
blocks (OP, Fig. 4) and control blocks (CB, Fig. 3) were 
separated. CBs are in practice single PID controllers. 
The OP+CB combinations called a  node (see Fig.  2). 
Such approach shows that the way of aggregation of 
signals in the GP does not have to rely on basic ope-
rators (e.g. basic mathematical operators), but it can 
be more complex and can have its own interpretation.

2.1. Control Blocks (CB)
The control blocks perform typical PID activities: 
proportional (P element, Fig.  3), integral (I element, 
Fig.  3) and differential (D element, Fig.  3) the in-
put signal. The output signal from the CB can be de-
scribed as follows:

( )
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where ( )CBe k  stands for CB input signal (see Fig. 3); 
( )CBu k  stands for CB output signal; CB

PK  is the en-
forcement parameter of P element; CB

I S I/K T T=  ( IT  
stands for the integral time constant, and ST -for the 
control time step); CB

D D S/K T T=  ( DT  stands for the dif-
ferential time constant); { }CB

P 0,1C ∈  decides on acti-
vation of P term (P term is active if CB

P 1C = , see Fig. 3); 
{ }CB

I 0,1C ∈  decides on activation of I term; { }CB
D 0,1C ∈  

decides on activation of D term; { }CB 0,1C ∈  decides 
on activation of the CB (CB is active if CB 1C = , oth-
erwise ( ) ( )CB CBu k e k= , see Fig. 3). Parameters CB

PK , 
CB
IK , CB

DK , CB
PC , CB

IC , CB
DC , CBC  are selected automat-

ically by the GP algorithm.

2.2. Aggregation Blocks (OP)
OP blocks aggregate signals from CB blocks or control-
ler input signals ( ) ( ) ( ) ( )0 1, , , ,l nk e k e k e k− = … … e . 

Figure 2
The general structure of the PIDC controller considered in 
this paper
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Figure 3
The structure of the control block (CB)
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where { }OP 1,0, , 1l n∈ − … −  indicates the OP objec-
tive: it can be used for aggregation of signals ( )OP

Lu k  
and ( )OP

Ru k  from other CB ( OP 1l = − , see Fig.  4), or 
to attach the controller input signal ( )le k  to PIDC 
( OP 1l > − ) (see Fig.  4), OPo  decides on aggregation 
of ( )OP

Lu k  and ( )OP
Ru k  ( ( ) ( )OP OP

L Ru k u k+  for OP 0o = , 
( ) ( )OP OP

L Ru k u k−  for OP 1o = , ( ) ( )OP OP
L Ru k u k− +  for 

OP 2o = , and ( ) ( )OP OP
L Ru k u k− −  for OP 3o = ); ( )sgn ⋅  

stands for the signum function; %  stands for the 
modulo operator; ( )FIL

le k  stands for input signal 
( )OP

le k  after passing through the filter block; ( )OPu k  
stands for the OP output signal; { }FIL 0,1lC ∈  stands for 
activation of the FIR for OP 1l > −  (the filter is active 
if FIL 1lC = , otherwise ( ) ( )OP OP

lu k e k= ). The parame-
ters OPl , OPo , and FIL 1lC =  are selected automatically 
by the GP algorithm. Occurred in Eq. (2) and on Fig. 4 
marks ( )OP

Lu k  and ( )OP
Ru k  are used to indicate these 

input signals of the OP block that come from child 
nodes (L-left, R-right) in case of OP 1l = − .

2.3. Filtration Blocks (FIL)

The filtration blocks (FIL, Fig.  4) are part of the OP 
blocks used to filter input signals of the PIDC. For the 
purpose of this paper finite impulse response (FIR) 
filters were used. FIRs are one of the most commonly 
used filters. The purpose of FIR filters is to smoothen 
signal values. It is achieved by averaging weighted val-
ues from consecutive time steps. The output value of 
the filter depends on the filter length and its weights. 
Although FIR filters are used to improve the quality 
of control and to reduce impact of signal noise, they 
might decrease the controller efficiency if used incor-
rectly [4, 45]. This is due to the fact that filtration adds 
a side-effect-phase delay of the filtered signal.
The output signal of the FIL can be described as fol-
lows:

( ) ( )
FIL 1

FIL FIL OP
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2 0
2 ,
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l l l l
l

e k b e k l
−

=

= ⋅ −∑ (3)

where FIL
ls  stands for odd length of the filter (the filter 

has to have a middle element), ( )OP 2le k l−  stands for 
input signal l  from 2k l−  time step, FIL

, 2l lb  stands for 
the weight of the signal for 2k l−  time step calculated 
as follows [23]:
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(4)

where FIL
lft  stands for filter frequency. The parameters 

FIL
ls  and FIL

lft  are selected automatically by the GP al-
gorithm. It should be emphasized that Eq. (4) describes 
an exemplary form of FIL

, 2l lb , considered in [23]. The 
other approaches are described in e.g. [10, 17, 38, 44].

3. GP Algorithm Adjusted to the 
Proposed PIDC Structure
The proposed GP algorithm can be used for the prob-
lems where some structure and structure parameters 
have to be found (e.g. for problems that can be solved 
using a neural network or a fuzzy system). Therefore, 
it has a universal character. The idea presented in this 
paper combines the genetic algorithm (GA) (used for 
numeric parameter tuning) and genetic programming 
(GP) (used for parameter tuning and structure selec-
tion). The combination of these methods required 
a change in the process of evolution and adaptation of 
the evolutionary operators used to search the space of 
the problem under consideration. This combination of 
the algorithms, however, has enabled an effective pop-
ulation processing in which both integer (including bi-
nary) and real parameters are used simultaneously.
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The further part of this section describes: the struc-
ture of an individual in the population(Section  3.1), 
an initialization of the population in the GP algorithm 
(Section 3.2), evolutionary operators used by the pro-
posed GP algorithm (Section 3.3), a description of the 
idea of the proposed algorithm (Section 3.4) and a me-
thod of evaluation of the individuals in the population 
(Section 3.5).

3.1. The Structure of an Individual in the 
Population
Each individual of population chX  is encoded in the 
form of the tree presented on Fig. 2:

CB CB CB
P I D

CB CB CB CB
P I D

OP OP FIL

OP OP
L R
FIL FIL

, , ,
, , , ,

{ } ,, , ,
, ,
,

ch l

l l

K K K
C C C C

l o C
u u
s ft

 
 
  = =  
 
 
  

X N (5)

where N  is the root of tree (Fig. 2), OP
Lu  and OP

Ru  are 
references to child nodes (if they occur – see Fig. 2). 
Their structure is analogical to node N . A detailed in-
terpretation of the parameters appearing in formula 
(5) is given in Sections 2.12.3.
The structure (length, complexity) of individual chX  
of the proposed GP is therefore not predetermined, 
but it can be selected depending on the problem under 
consideration. It this paper, it is assumed that a tree 
height cannot be greater than TreeHeight  (see Step 6 
in Section 3.4).

3.2. Population Initialization
Initialization of each individual N  proceeds as fol-
lows:
Step 1. Creation of collection G  containing elements 
of the tree (according to Figs 2-4). It consists of J  
leaves ( J  is a parameter of the algorithm).
Step 2. Random assignment to each J  element input 
signal ( )ie k  ( 0,1,..., 1i n= − , where a  positive value 
indicates that a  given element is a  leaf ) and the rest 
of the parameters (it takes into account the ranges 
of values of these parameters which depend on the 
problem under consideration, including filter param-
eters).
Step 3. Selecting and removing from collection G  

two randomly chosen elements of the tree. If they are 
associated with the same input signal (parameters 

OPl  has the same value), then one of parameters OPl  
is changed randomly.
Step 4. Creating node ( OP 1l = − ) that has the elements 
selected in Step 3 attached to it. The other parameters 
of the node are initialized randomly as described in 
Step 2.
Step 5. Putting the node created in Step  4 in collec-
tion G .
Step 6. If collection G  contains two or more ele-
ments, go back to Step 3; otherwise go to Step 7.
Step 7. Selecting from collection G  the last node, and 
marking it as the root of the tree.
Step 8. Marking the root of the tree (with all nodes 
and leaves) as a single individual.
The initialization procedure should be repeated for 
all individuals of the GP population. The created pop-
ulation is then processed according to the procedure 
described in Section 3.4.

3.3. GP Evolutionary Operators
The GP algorithm is dedicated to the PIDC process-
ing and it combines the GA and GP evolutionary op-
erators that have been additionally adjusted to the 
specification of the problem under consideration. It 
includes the following operators:
Tuning. This operator processes the real number val-
ues of the PIDC ( CB

PK , CB
IK , CB

DK , FIL
ls , FIL

lf ). It works 
analogically to the GA mutation operator. If an as-
sumption that vf  stands for the vector of real num-
ber values of the PIDC is made, then, the elements of 
this vector are modified as follows:

( ) ( )tuning: 1,1 ,i i i ivf vf U vfMax vfMinα= + ⋅ − ⋅ − (6)

where [ ]tuning 0,1α ∈  is an algorithm parameter 
that stands for tuning intensity; ( )1,1U −  gener-
ates a  random number from the range of [ ]1,1− ; 

,i ivfMin vfMax    stands for the ranges of number val-
ues ivf . This operator modifies only these elements 
of vf  for which condition (0,1) tuningU p<  is met. 
The parameter ( )0,1tuningp ∈  of the GP algorithm is 
called tuning probability. Because the values gener-
ated under Eq. (6) can go beyond the allowable range 

,i ivfMin vfMax   , the proposed GP algorithm carries 
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out the repair procedure described in the next section 
(Step 6).
Mutation. This operator processes the integer pa-
rameters ( CB

PC , CB
IC , CB

DC , CBC , OPl , OPo , FIL
lC ). If an 

assumption that vi  stands for the vector of integer 
number values of the PIDC is made, then, the ele-
ments of this vector are modified as follows:

( ): , ,i i ivi Ui viMin viMax= (7)

where ( ),i iUi viMin viMax  generates a random integer 
number from the range of ,i iviMin viMax   . The op-
erator modifies only these elements of vi  for which 
condition (0,1) mutationU p<  is met. The parameter 

( )0,1mutationp ∈  of the GP algorithm is called mutation 
probability.
Insertion. This operator selects randomly one node or 
leaf of the tree (excluding the root node) and replaces 
it with the root of a new randomly generated tree. The 
new tree is generated according to the procedure de-
scribed in Section 3.2 on collection of insertionJ  leaves, 
where insertionJ J< . Due to that, the tree does not grow 
significantly. The insertion is done only if condition: 

(0,1) insertU p<  is met. The parameter ( )0,1insertp ∈  of 
the GP algorithm is called insertion probability.
Pruning. This operator selects randomly one node 
of the tree (excluding the root node) and replaces it 
with a  randomly generated leaf ( OPl  is set randomly 
to a value from the range of [ ]0, 1n − ). The pruning is 
carried out only if condition (0,1) pruningU p<  is met. 
Parameter ( )0,1pruningp ∈  of the GP algorithm is called 
pruning probability.
Crossover. This operator works on the basis of two 
PIDCs. From each of them a random node (except the 
root node) is selected, and the nodes are swapped. The 
crossover is done only if condition (0,1) crossoverU p<  is 
met. Parameter ( )0,1crossoverp ∈  of the GP algorithm is 
called crossover probability.

3.4. Description of the Proposed GP 
Algorithm
The GP algorithm is based on a  typical schema of 
a population-based algorithm (see e.g. [2, 42, 43, 49]). 
It uses two populations, i.e. the main one- P  and an 
additional one- ′P  and works according to the follow-
ing steps:
Step 1. Initialization of population P  with Ninit  in-

model:
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1

1

s
t

s
e

Tk k K i k b k
J

Ti k i k u k R i k K k
L

ω ω ω

ω

 + = + ⋅ ⋅ − ⋅

 + = + ⋅ − ⋅ − ⋅


parameters of 
model: 

0.01J = , 0.10b = , 0.01tK = , 
1.00R = , 0.50L = , 0.01eK =

( )0e t , ( )1e t , ( )2e t : ( ) ( )* t kω ω− , ( )kω , ( )i k

set signal: *( )tω

goal of the control 
process: achieving a certain speed 

*( )kω

S
S

, , TsimT Tsim nIter
T

= : 0.005 ,5 ,1000s s

,uMin uMax : 50,50−

Table 2
The description of the problem considered in the simulations

dividuals 
jX  ( 1,2, ,j Ninit= … ) (see Section 3.2. Each 

individual encodes the whole structure and parame-
ters of the PIDC.
Step 2. Evaluation of population P . Each individual 
is evaluated according to the criteria of the simula-
tion problem. In the algorithm an assumption that the 
criteria are minimized is made. The evaluations are 
calculated on the basis of fitness function ( )ff jX  (see 
Section 3.5).
Step 3. Decreasing the size of P  to Npop Ninit<  by 
removing the individuals with worse fitness function 
values ( )ff jX .
Step 4. Creating a copy of population P  marked as ′P .
Step 5. Modification of population ′P . In this step the 
following operations are performed: tuning, mutation, 
insertion, pruning, and crossover (see Section 3.3). Be-
cause the crossover operator requires two individuals, 
the second one is drawn from population P .
Step 6. Repair of population ′P . The repair proce-
dure includes two types of actions. First of all, the 
values of the real parameters coded in the population 
are reduced to their permissible ranges. Second, the 
trees that are taller than TreeHeight  are cut to the 
TreeHeight  value (redundant nodes are turned into 
leaves). The TreeHeight  is a  parameter of the GP al-
gorithm.
Step 7. Evaluation of ′P .
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Step 8. Creation of a new population P . It combines 
best Npop  individuals (according to the fitness func-
tion) from populations P  and ′P .
Step 9. Correction of the intensity of the GP algo-
rithm. This facilitates moving from exploration to 
exploitation of the search space and is implemented 
as follows:

{ }
{ }

{ }
{ }
{ }

: max ,

: max ,
: max ,

: max ,

: max , ,

tuning tuning tuning

mutation mutation mutation

insert insert insert

pruning pruning pruning

crossover crossover crossover

p pMin p

p pMin p
p pMin p

p pMin p

p pMin p

β

β
β

β

β

 = ⋅


= ⋅
 = ⋅
 = ⋅
 = ⋅

(8)

where ( )0,1β ∈  is a reduction factor for the intensity 
of evolutionary operators.
Step 10. Checking the algorithm stop condition. If 

Table 3
The ranges of PIDC parameters adopted in the simulations

parameter type min max

CB
PK real 0 5000

CB
IK real 0 10000

CB
DK real 0 10000

CB
PC integer 0 1

CB
IC integer 0 1

CB
DC integer 0 1

CBC integer 0 1

OPl integer &-1 2

OPo integer 0 3

FIL
lf real 0.1 0.5

FIL
ls integer 2 10

FIL
lC integer 0 1

Table 4
The values of the GP algorithm parameters adopted in the 
simulations ( Nrepeats  means the number of performed 
repetitions of each simulation)

parameter value

J [5, 12]

insertionJ [3, 7]

TreeHeight 5

Ninit 256

Npop 64

tuningα 0.2

tuningp 0.8

mutationp 0.4

insertp 0.2

pruningp 0.4

crosoverp 0.9

β 0.990

tuningpMin 0.025

mutationpMin 0.050

insertpMin 0.025

pruningpMin 0.050

crosoverpMin 0.025

Nsteps 500

Nrepeats 40

the GP algorithm has performed a  certain number 
of steps Nsteps  (this is a  parameter of the GP algo-
rithm), then, the best individual from population P  
is presented and the algorithm stops. Otherwise, the 
algorithm goes back to Step 4.

3.5. Evaluating Individuals
In the GP algorithm each individual chX   
( 1,2, ,ch nPop= … ) is evaluated by the fitness func-
tion. The goal of the GP algorithm assumed in this 
paper is to minimize the value of this function. The 
evaluation function can aggregate many different 
criteria that are dependent on the problem and user 
expectations. Their number will be further marked as 
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nFF . In this paper the criteria used for aggregation 
are normalized to the unit interval. The fitness func-
tion is defined as follows:

( ) ( )*

1

ff ,
ff sig ; ,

,

nFF
f ch

ch ff
f f

T w
p q=

   =       

X
X (9)

where ( )ff f chX  defines component f  of fitness func-
tion ( 1,2, ,f nFF= … ); [ ]0,1fw ∈  stands for compo-
nent weights; ( )sig ⋅  stands for the function used for 
normalization of components to the range of [ ]0,1 ; 

fp , fq  are normalization parameters; {}*T ⋅  is the 
t-norm with weights of arguments used for aggrega-
tion of the fitness function components.
The components of ff ( )chX  considered in this paper 
are shown in Section 4 (including the parameters-see 
Table 5). The function used to normalize the compo-
nents (sigmoid) is defined as follows:

component definition description weights (formula (9))

( )1ff chX (ACC)

( )
( )

2*

0

nIter

k

k

k
nIter

ω

ω=

 +
  − 

∑ difference between set signal *( )tω  and 
signal ( )tω

1

1

1

1.00,
10.00,
0.30

w
p
q

=
=
=

( )2ff chX (OSC)

1

1
1

M

m m
m

r r

uMax uMin

−

+
=

−

−

∑
oscillations of a controller expressed 
as the sum of the differences between 
successive oscillations (Fig. 5) related to 
the range [ ],uMax uMin  of the chances of 
controller output u

2

2

2

0.20,
1.00,
20.00

w
p
q

=
=
=

( )3ff chX (CMP)
100%Nkeys

MaxNkeys
⋅

complexity of a controller 
expressed as a proportion of the 
number of active elements to the 
maximum number of elements 

15 5 75MaxNkeys nodes keys= ⋅ = , where 
15 nodes is a number resulting from the 
acceptable height of the tree TreeHeight

3

3

3

0.20,
10.00,
0.50

w
p
q

=
=
=

( )4ff chX (NFIL) Nfilters number of active filters FIR in PIDC
4

4

4

0.10,
0.01,
1.50

w
p
q

=
=
=

( )5ff chX (OVH)
( )
( )*1,...,

max
k nIter

k
k

ω
ω=

 − 
 +  

stands for overshooting expressed as 
a maximum difference between signal 
( )kω  and desired signal ( )* kω

5

5

5

0.10,
10.00,
0.30

w
p
q

=
=
=

Table 5
The evaluation criteria of fitness function ( )ff ⋅  ( 5nFF = )

( ) ( )( )( ) 1
sig , , 1 exp ,x p q p q x

−
= + ⋅ − (10)

where q  is the center of the acceptable range 
[ ],xMin xMax  of the changes of the domain of x  pa-
rameter (therefore ( )sig , , 0.5q p q = )), and p  is used 
to determine the angle of inclination of the central 
part of function graph ( )sig ⋅  with respect to abscissa. 
The t-norm with weights of the arguments is defined 
as follows:

{ } ( ){ } ( )( )*

1
1

;  1 1 1 1 ,
nFFnFF

f f f ff
f

T T w a w a
=

=

= − ⋅ − = − ⋅ −∏a w

(11)

where values [ ]0,1fw ∈  mean weights of impor-
tance of the arguments [ ]0,1fa ∈ . Please note that 

{ } { }*
1 2 1 2, ;1,1 ,T a a T a a=  and { }*

1 2 1, ;1,0T a a a= .
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Table 6
Averaged simulation results (each simulation variant was 
repeated 40Nrepeats =  times)

variants ACC OSC CMP NFIL OVH ( )ff ⋅

N0+F0 0.0684 5.9756 0.1610 0.0000 0.0051 0.1449

N0+F1 0.0684 5.9748 0.1710 1.0250 0.0051 0.1457

N0+F2 0.0684 5.9729 0.1800 3.0000 0.0052 0.1467

N1+F0 0.0776 6.6790 0.1780 0.0000 0.0600 0.1561

N1+F1 0.0743 7.0941 0.1690 1.4250 0.0739 0.1541

N1+F2 0.0743 6.9947 0.1830 3.0000 0.0743 0.1554

N2+F0 0.0894 4.0407 0.1945 0.0000 0.1029 0.1706

N2+F1 0.0835 4.8588 0.1770 1.5250 0.0889 0.1634

N2+F2 0.0837 4.5800 0.1840 3.0000 0.0884 0.1643

It is worth mentioning that other approaches for cri-
teria aggregation might be also used. However, the 
approach expressed in formula (9) is simple to imple-
ment and easy to expand. In addition, it allows one to 
give aggregated components a specific validity. This is 
a significant element for problems with multiple eva-
luation criteria.

4. Simulation Results
Comments on the simulations carried out can be 
summarized as follows (Fig. 6, Fig. 7).
In the simulations a  DC Motor (DCM) problem was 
considered [11]. This is a  control problem in which 
the goal of the control is to achieve as fast as possible 
an angular velocity set by the motor shaft *ω . A  de-
scription of this problem has been shown in Table 2. 
It is worth noting that the problem considered in the 
simulations can be seen from a practical point of view 
as an interesting benchmark in the optimization field.

Figure 5
The way of determining mr  values for function ( )OSCff ⋅  (see 
Table 4)

t

u( )t

0 r1

r2

r3

r4
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r8

Figure 6
Exemplary results obtained for the F1 simulation variant 
(filters selected dynamically) and different noise values: 
a) N0, b) N1, and c) N2. The dashed line indicates the set 
signal

Figure 7
Exemplary results obtained for the F1 simulation variant 
and verification set signal (different set signal than used 
in the learning and testing phases) and different noise 
values: a) N0, b) N1, and c) N2. The dashed line indicates 
the set signal
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 _ The simulations were performed in different 
variants in which the assumed noise level of the 
signals measured from the object varied in the 
following ways: 0.0% (variant N0), 0.1% (variant N1), 
and 0.5% (variant N2). The aim of such an approach 
is to provide simulations with the conditions as 
close to the real conditions (prevailing in real 
CSs) as possible. In addition, variants of the PIDC 
structure, which differed in the way in which the 
filters were activated: filters not active (variant F0), 
dynamically activated filters (variant F1), filters 
active (variant F2) are taken into account.

 _ In the simulations the GP algorithm was used, 
whose parameters are shown in Table  4. The 
purpose of this algorithm was to find the PIDC 
structure and parameters. The GP algorithm 
searched for parameter values considering the 
ranges shown in Table 3.

 _ In the simulation the solutions (individuals of 
populations) were evaluated using fitness function 

( )ff ⋅  in the form of (9) with the criteria presented 
in Table 4. The criteria taken into account include: 
control error, oscillations (the way in which 
they are calculated is shown in Fig.  5; it is worth 
pointing out that the noise is not included-little 
oscillations are not taken into account), complexity 

Figure 8
The exemplary results obtained with taking only RMSE 
as the fitness function for the PIDC for the F1 simulation 
variant ( ACC 1.0,w =  OSC 0.0,w =  CMP 0.0,w =  NFIL 0.0,w =  

OVH 0.0w = ) and different noise values: a) N0, b) N1, and  
c) N2. The dashed line indicates the set signal

and overshooting. In Table  4 the following 
additional markings were used: Nkeys  that 
stands for the number of active keys ( CB

PC , CB
IC , 

CB
DC , CBC  and FIL

lC  are treated as keys that allow for 
reduction of controller elements) in the CB and OP 
blocks; MaxNkeys  is the number of active keys in 
the CB and OP blocks in the PIDC structure with 
the highest allowable TreeHeight  value; Nfilters  
is the number of active FIR filters in the PIDC 
structure. In Table  4 weights of criteria w  and 
values of p , q  used for criteria normalization by 
function (10) are given. The values of p  and q  
have been selected in such a way that the function 
(10) suits/covers in a best way the widest range of 
possible values of the corresponding criteria.

Figure 9
The exemplary structures of the PIDC, whose way of 
peration is shown in Figs 6 and 7
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 _ Each simulation variant has been repeated 
a certain number of times ( 40Nrepeats = ), and the 
results were averaged (Table 6). Sample waveforms 
and the corresponding PIDCs structures are shown 
in Figs 6-9.

The conclusions from the performed simulations can 
be summed up as follows:
 _ The results obtained in the simulations are 

satisfactory. The GP algorithm found a  sufficient 
PIDC structure and parameters for the considered 
control problem in the sense of the adopted 
evaluation criteria.

 _ Taking into account the noise of signals (N1 and 
N2 variants) coming from the object contributed 
to the activation of filters in F1 variants (Table  6, 
column NFIL; Fig.  9). For these variants, the best 
values of the evaluation function (positive) were 
obtained (Table 6, column ( )ff ⋅ ).

 _ Activation of the filters slightly increased the 
control accuracy in variants N1 and N2 (Table  6, 
column ACC). On the other hand, the activation of 
the filters in variants N0 (no noise) caused a slight 
increase in the value of the evaluation function 
(Table 6, column ( )ff ⋅ ).

 _ In the simulations, an additional case was 
considered when only the RMSE was taken into 
account in the evaluation function ( ACC 1.0w = , 

OSC 0.0w = , CMP 0.0w = , NFIL 0.0w = , OVH 0.0w = ). This 
resulted in a  significant increase of oscillations 
of the control signal, increase in the value of the 
evaluation function, a  reduction in overshooting 
(this phenomenon is beneficial), and only a  slight 
increase in accuracy compared to the accuracy 
presented in Table 6. These results were considered 
as negative and are not included in this article. In 
Fig. 8 only an example of the result of such selected 
PIDC is presented.

 _ PIDCs designed automatically by the GP work 
properly also for verification tests with the set 
signals other than those used in the learning phase 
(Fig.  7). This is an additional advantage of the 
approach proposed in this paper.

When comparing the results obtained in this paper 
with the results obtained by other authors, it is advis-
able to take into account various assumptions made 
in the learning phase, various simulation variants and 
various methods of results presentation (e.g. showing 

only the best achieved results). This comparison can 
be summarized as follows:
 _ The authors in [1] used a  different desired signal 

and the noise of the input signals has not been 
taken into account. The results obtained for them 
for neural network with 10 inputs (RMSE=0.4582) 
are worse than the results obtained in this paper 
(RMSE=0.1209). At the same time, the results 
obtained for a  neural network with 15 input 
neurons (RMSE=0.0387) are better than the 
results obtained in this paper. It is worth noting 
that in paper [1] an identical testing and verifying 
set signal was used (in this work different set 
signals were used), which simplifies the problem 
under consideration.

 _ The authors in [21] used a neural network sliding 
mode controller and took into account disturbance, 
load torque and uncertainties of the model with 
a  purpose of improving the control process. 
The authors in [11] also considered a  controller 
based on a  neural network. The presented ideas 
of using neural networks are interesting, but 
the interpretation of their mode of operation is 
difficult. Neural network weights do not have their 
interpretation, unlike the P/I/D elements used in 
the PIDC.

 _ The authors in [6] compared different controllers 
(PID-, state-space-, cascade ones) and obtained 
the settling time of the signal at the level of 0.6 s. 
The settling time for the PIDC selected by the GP 
was close to 0.35 s (see Fig. 7.a) and it was obtained 
for a more complex set signal (in [6] the set signal 
had a  constant value). The authors in [34] also 
considered the problem of shortening the settling 
time. They proposed a  hybrid-type controller: 
PID+ANN (artificial neural network) for which the 
obtained settling time was about 0.5 s.

 _ The authors in [7] considered a controller based on 
a  fuzzy system with 25 fuzzy rules. The obtained 
settling time was about 3 seconds; however, 
different parameters for the DCM were set. In 
addition, a  large number of rules may be difficult 
to interpret. In the literature, descriptions of 
fuzzy controllers with even more fuzzy rules can 
be found [8]. In paper [29], we considered a fuzzy 
system controller (FFPIDC) based on a maximum 
of 5 fuzzy rules. It combines a  fuzzy system with 
P/I/D terms and FIR filters. The results obtained 
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for this controller (whose structure was, however, 
more complex than the PIDC’s) were therefore 
slightly better than those obtained in this paper 
(the accuracy of the FFPIDC without filters is 
equal to 0.0710, and accuracy of the PIDC without 
filters is equal to 0.0776-8.5% worse; the accuracy 
of the FFPIDC with filters is equal to 0.0690, and 
the accuracy of the PIDC with filters is equal to 
0.0743-7.2% worse). It is worth noting, however, 
that the FFPIDC worked with about 3 times less 
overshooting compared to the PIDC (FFPIDC 
overshooting is about 0.37, and PIDC overshooting 
does not exceed 0.1).

 _ It can be concluded that the solution proposed 
in this paper works with a  good accuracy and it 
is characterized by simple implementation and 
a clear structure (this results from an unambiguous 
use of P/I/D). In addition, the obtained controllers 
were resistant to the noise of measuring signals 
and are able to function in changing operating 
conditions (see Fig. 7).

5. Conclusions
In this paper possibilities of using genetic program-
ming (GP) for solving complex optimization prob-
lems was shown. Such complexity results, among 
others, from the aim of the algorithm, which is selec-
tion of structure and tuning parameters (in a typical 
approach only parameters of a  fixed structure are 
tuned). Due to that the proposed GP has a  universal 
character and can be used e.g. for designing of neu-
ral network structures and their weights, selection 
of fuzzy system structures and tuning parameters of 
fuzzy rules, selection of evolutionary operators and 

tuning their parameters, selection of a model and tun-
ing its parameters, etc.
Moreover, this paper shows that the GP algorithm is 
a  very flexible method. It allows for a  simple adjust-
ment of the algorithm, its operators and the method 
used for evaluating individuals to a  given problem. 
What is more, a method of combining the GP with an-
other algorithm, i.e. the genetic algorithm, has been 
presented. Thanks to that, the GP algorithm can effi-
ciently process solutions with parameters encoded not 
only in real number values, but also in integral values.
The solutions proposed in this paper have an interdis-
ciplinary character, because they concern the theory 
of population algorithms and the control theory. The 
detailed purpose of these solutions is to support de-
signers of controllers based on proven and almost per-
fectly functioning PID controllers. We have proposed 
a  new approach to designing of complex controllers 
built on the basis of PID controllers with the filtration 
of signals coming from the object. The purpose of the 
used filters with a finite impulse response is to improve 
the properties of those controllers (e.g. by elimination 
of controller output oscillations). This is particularly 
important when there is noise in measuring signals 
coming from a controlled object. The results obtained 
in the simulations were very satisfactory.
In the future, it is planned to use the proposed algo-
rithm of genetic programming in other application 
areas related to complex adaptive systems. Moreover, 
hardware implementation of the proposed controllers 
and their testing in real control systems is also planned.
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