
503Information Technology and Control 2018/3/47

A New Hybrid Genetic
Algorithm for the Grey Pattern
Quadratic Assignment Problem

ITC 3/47
Journal of Information Technology
and Control
Vol. 47 / No. 3 / 2018
pp. 503-520
DOI 10.5755/j01.itc.47.3.20728
© Kaunas University of Technology

A New Hybrid Genetic Algorithm for the Grey Pattern
Quadratic Assignment Problem

Received 2018/05/02 Accepted after revision 2018/07/16

 http://dx.doi.org/10.5755/j01.itc.47.3.20728

Corresponding author: alfonsas.misevicius@ktu.lt

Alfonsas Misevičius
Kaunas University of Technology, Department of Multimedia Engineering, Studentų st. 50-416a/400,
LT-51368 Kaunas, Lithuania, tel. + 370-37-300372, alfonsas.misevicius@ktu.lt

Evelina Stanevičienė
Kaunas University of Technology, Department of Multimedia Engineering, Studentų st. 50-416a/408,
LT-51368 Kaunas, Lithuania, tel. + 370-37-300373, evelina.staneviciene@ktu.lt

In this paper, we propose an improved hybrid genetic algorithm for the solution of the grey pattern quadratic as-
signment problem (GP-QAP). The novelty is the hybridization of the genetic algorithm with the so-called hierar-
chical iterated tabu search algorithm. Very fast exploration of the neighbouring solutions within the tabu search
algorithm is used. In addition, a smart combination of the tabu search and adaptive perturbation is adopted, which
enables a good balance between diversification and intensification during the iterative optimization process. The
results from the experiments with the GP-QAP instances show that our algorithm is superior to other heuristic
algorithms. Many best known solutions have been discovered for the large-scaled GP-QAP instances.
KEYWORDS: computational intelligence, heuristics, hybrid genetic algorithms, tabu search, combinatorial
optimization, grey pattern quadratic assignment problem.

Introduction
The grey pattern quadratic assignment problem (GP-
QAP) is a special case of the well-known combinato-
rial optimization problem, the quadratic assignment
problem (QAP) [2]. GP-QAP can be formulated as fol-
lows [15]. Given two matrices A = (aij)n×n and B = (bkl)n×n

and the set Πn of permutations of the integers from 1
to n, find a permutation p ∈ Πn that minimizes

A New Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment
Problem

Alfonsas Misevičius1, Evelina Stanevičienė2

Kaunas University of Technology, Department of Multimedia Engineering,
Studentų st. 50−{416a/4001, 4082}, LT−51368 Kaunas, Lithuania

tel. {+ 370-37-3003721, + 370-37-3003732},
{alfonsas.misevicius@ktu.lt1, evelina.staneviciene@ktu.lt2}

Corresponding author: alfonsas.misevicius@ktu.lt

In this paper, we propose an improved hybrid genetic algorithm for the solution of the grey pattern quadratic assignment problem
(GP-QAP). The novelty is the hybridization of the genetic algorithm with the so-called hierarchical iterated tabu search algorithm.
Very fast exploration of the neighbouring solutions within the tabu search algorithm is used. In addition, a smart combination of the
tabu search and adaptive perturbation is adopted, which enables a good balance between diversification and intensification during the
iterative optimization process. The results from the experiments with the GP-QAP instances show that our algorithm is superior to
other heuristic algorithms. Many best known solutions have been discovered for the large-scaled GP-QAP instances.

KEYWORDS: computational intelligence, heuristics, hybrid genetic algorithms, tabu search, combinatorial optimization, grey
pattern quadratic assignment problem.

Introduction
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 (1)

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are defined according to the following rule [15]:

𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2 + (𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2)⁄ } (2)

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the
intensities of the repulsion forces is minimized.

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where
the black points are distributed in the most uniform possible way along the grid.

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (considered as an objective function

of the GP-QAP) is as minimal as possible, that is:

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (3)

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚},
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚.

Exchanging two black (or two white) squares with each other does not change the value of the objective function,
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions.

1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ .

(1)

Information Technology and Control 2018/3/47504

where aij= 1 for i, j = 1, ..., m (1 ≤ m < n)1 and aij= 0 oth-
erwise. The values of the matrix (bkl)n×n may be seen as
distances between every pair of n objects (elements),
bkl = blk, bkk = 0, k, l = 1, ..., n. In the context of the GP-
QAP, the values bkl are defined according to the fol-
lowing rule [15]:

A New Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment
Problem

Alfonsas Misevičius1, Evelina Stanevičienė2

Kaunas University of Technology, Department of Multimedia Engineering,
Studentų st. 50−{416a/4001, 4082}, LT−51368 Kaunas, Lithuania

tel. {+ 370-37-3003721, + 370-37-3003732},
{alfonsas.misevicius@ktu.lt1, evelina.staneviciene@ktu.lt2}

Corresponding author: alfonsas.misevicius@ktu.lt

In this paper, we propose an improved hybrid genetic algorithm for the solution of the grey pattern quadratic assignment problem
(GP-QAP). The novelty is the hybridization of the genetic algorithm with the so-called hierarchical iterated tabu search algorithm.
Very fast exploration of the neighbouring solutions within the tabu search algorithm is used. In addition, a smart combination of the
tabu search and adaptive perturbation is adopted, which enables a good balance between diversification and intensification during the
iterative optimization process. The results from the experiments with the GP-QAP instances show that our algorithm is superior to
other heuristic algorithms. Many best known solutions have been discovered for the large-scaled GP-QAP instances.

KEYWORDS: computational intelligence, heuristics, hybrid genetic algorithms, tabu search, combinatorial optimization, grey
pattern quadratic assignment problem.

Introduction
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes

 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 (1)

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are defined according to the following rule [15]:

 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟−𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2+ (𝑟𝑟𝑟𝑟−𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛)2)⁄ } (2)

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the
intensities of the repulsion forces is minimized.

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where
the black points are distributed in the most uniform possible way along the grid.

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (considered as an objective function

of the GP-QAP) is as minimal as possible, that is:

 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (3)

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚},
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚.

Exchanging two black (or two white) squares with each other does not change the value of the objective function,
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions.

1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ .

2 2

A New Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment
Problem

Alfonsas Misevičius1, Evelina Stanevičienė2

Kaunas University of Technology, Department of Multimedia Engineering,
Studentų st. 50−{416a/4001, 4082}, LT−51368 Kaunas, Lithuania

tel. {+ 370-37-3003721, + 370-37-3003732},
{alfonsas.misevicius@ktu.lt1, evelina.staneviciene@ktu.lt2}

Corresponding author: alfonsas.misevicius@ktu.lt

In this paper, we propose an improved hybrid genetic algorithm for the solution of the grey pattern quadratic assignment problem
(GP-QAP). The novelty is the hybridization of the genetic algorithm with the so-called hierarchical iterated tabu search algorithm.
Very fast exploration of the neighbouring solutions within the tabu search algorithm is used. In addition, a smart combination of the
tabu search and adaptive perturbation is adopted, which enables a good balance between diversification and intensification during the
iterative optimization process. The results from the experiments with the GP-QAP instances show that our algorithm is superior to
other heuristic algorithms. Many best known solutions have been discovered for the large-scaled GP-QAP instances.

KEYWORDS: computational intelligence, heuristics, hybrid genetic algorithms, tabu search, combinatorial optimization, grey
pattern quadratic assignment problem.

Introduction
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes

 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 (1)

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are defined according to the following rule [15]:

 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟−𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2+ (𝑟𝑟𝑟𝑟−𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛)2)⁄ } (2)

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the
intensities of the repulsion forces is minimized.

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where
the black points are distributed in the most uniform possible way along the grid.

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (considered as an objective function

of the GP-QAP) is as minimal as possible, that is:

 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (3)

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚},
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚.

Exchanging two black (or two white) squares with each other does not change the value of the objective function,
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions.

1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ .

2 2

(2)

where r, t = 1, ..., n1, s, u = 1, ..., n2, n1× n2 = n . The in-
terpretation of the quantity ωrstu is as follows (see also
[15]). We may consider m electrons that have to be put
on grid’s squares. Then, ωrstu may be thought of as a
quantity proportional to repulsion force between two
electrons i and j (i, j = 1, ..., n) located in the grid posi-
tions k = p(i) and l = p(j) with the coordinates (r, s) and
(t, u). The electrons are to be arranged in such a way
that the sum of the intensities of the repulsion forces
is minimized.
So, there is a grid of dimensions n1 by n2. In the grid,
there are n = n1× n squares: there are m black squares
while the rest of the squares are white. This forms a
grey pattern of density m/n. We seek to have a grey
pattern where the black points are distributed in the
most uniform possible way along the grid.
According to the above formulation, p denotes a
permutation and p(i), p(j) denote the correspond-
ing items (elements) of the permutation. The first m
items of every feasible permutation may be consid-
ered as a solution of the GP-QAP. In this way, the ob-
jective is to find the best available, optimal solution,
i.e., the permutation items p(1), ..., p(m) (1 ≤ p(i) ≤ n,
i = 1, ..., m) such that the sum

A New Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment
Problem

Alfonsas Misevičius1, Evelina Stanevičienė2

Kaunas University of Technology, Department of Multimedia Engineering,
Studentų st. 50−{416a/4001, 4082}, LT−51368 Kaunas, Lithuania

tel. {+ 370-37-3003721, + 370-37-3003732},
{alfonsas.misevicius@ktu.lt1, evelina.staneviciene@ktu.lt2}

Corresponding author: alfonsas.misevicius@ktu.lt

In this paper, we propose an improved hybrid genetic algorithm for the solution of the grey pattern quadratic assignment problem
(GP-QAP). The novelty is the hybridization of the genetic algorithm with the so-called hierarchical iterated tabu search algorithm.
Very fast exploration of the neighbouring solutions within the tabu search algorithm is used. In addition, a smart combination of the
tabu search and adaptive perturbation is adopted, which enables a good balance between diversification and intensification during the
iterative optimization process. The results from the experiments with the GP-QAP instances show that our algorithm is superior to
other heuristic algorithms. Many best known solutions have been discovered for the large-scaled GP-QAP instances.

KEYWORDS: computational intelligence, heuristics, hybrid genetic algorithms, tabu search, combinatorial optimization, grey
pattern quadratic assignment problem.

Introduction
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 (1)

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are defined according to the following rule [15]:

𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2 + (𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2)⁄ } (2)

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the
intensities of the repulsion forces is minimized.

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where
the black points are distributed in the most uniform possible way along the grid.

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (considered as an objective function

of the GP-QAP) is as minimal as possible, that is:

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (3)

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚},
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚.

Exchanging two black (or two white) squares with each other does not change the value of the objective function,
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions.

1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ .

 (con-
sidered as an objective function of the GP-QAP) is as
minimal as possible, that is:

A New Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment
Problem

Alfonsas Misevičius1, Evelina Stanevičienė2

Kaunas University of Technology, Department of Multimedia Engineering,
Studentų st. 50−{416a/4001, 4082}, LT−51368 Kaunas, Lithuania

tel. {+ 370-37-3003721, + 370-37-3003732},
{alfonsas.misevicius@ktu.lt1, evelina.staneviciene@ktu.lt2}

Corresponding author: alfonsas.misevicius@ktu.lt

In this paper, we propose an improved hybrid genetic algorithm for the solution of the grey pattern quadratic assignment problem
(GP-QAP). The novelty is the hybridization of the genetic algorithm with the so-called hierarchical iterated tabu search algorithm.
Very fast exploration of the neighbouring solutions within the tabu search algorithm is used. In addition, a smart combination of the
tabu search and adaptive perturbation is adopted, which enables a good balance between diversification and intensification during the
iterative optimization process. The results from the experiments with the GP-QAP instances show that our algorithm is superior to
other heuristic algorithms. Many best known solutions have been discovered for the large-scaled GP-QAP instances.

KEYWORDS: computational intelligence, heuristics, hybrid genetic algorithms, tabu search, combinatorial optimization, grey
pattern quadratic assignment problem.

Introduction
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 (1)

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are defined according to the following rule [15]:

𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2 + (𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2)⁄ } (2)

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the
intensities of the repulsion forces is minimized.

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where
the black points are distributed in the most uniform possible way along the grid.

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (considered as an objective function

of the GP-QAP) is as minimal as possible, that is:

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (3)

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚},
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚.

Exchanging two black (or two white) squares with each other does not change the value of the objective function,
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions.

1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ .

(1)

In formulation (3), only the matrix B and the values
of n, m are necessary; meanwhile, the matrix A is not
needed at all. In our work, we use this formulation,
rather than the general formulation (1). Also, note

1 In our work, we will consider m ≤ n /2.

that the GP-QAP-solution (the elements p(1),…,p(m))
can be associated with an m-(sub)set M such that M=
{p(i) : i = 1 ,…, m}, |M| = m (see [5]). Analogously, the el-
ements p(m + 1),…,p(n) can be related to an n – m-(sub)
set N, where N = {p(i) : i = m + 1, …, n}, |N| = n - m.
Exchanging two black (or two white) squares with
each other does not change the value of the objective
function, thus many permutations with the same ob-
jective value, z(p), may exist. So, there exist at least m!
optimal solutions.
There can be other contexts of the problem defined by
formula (1). For example, we can consider n points in
the plane or n nodes of a network and we then may wish
to find a cluster of m points, which minimizes the total
distance between all pairs of points in the cluster. This
cluster can be interpreted as the tightest cluster of m
points [5]. This is similar to the max-cover problem [3]
where one wishes to find the location of several facili-
ties which cover the maximum number of points.
The other example of applications includes the selec-
tion of a group of m people out of n available people
[5]. The distance between a pair of persons is a mea-
sure of compatibility (a measure of the ability to work
together). The ideal group will have the most mutual
compatibility and the least potential for tension.
For the solution of the GP-QAP, the computational
intelligence approaches are well applicable, includ-
ing the exact and heuristic algorithms. The exact al-
gorithms are suited only for small-sized problems [5,
6]. For larger problem instances, heuristic algorithms
are used: single-solution-based algorithms (local
search, tabu search [5, 15]), population-based algo-
rithms (genetic/evolutionary algorithms [5, 15, 16].
Among heuristic algorithms, hybrid genetic/evolu-
tionary algorithms have been shown to be very effec-
tive [5, 11, 12, 14].
In this paper, we are attempting to further improve
the performance of hybrid genetic algorithms by pro-
posing some more new enhancements2. The main
contributions are as follows.
1 The so-called hierarchical iterated tabu search

(ITS) algorithm and its hybridization with the ge-
netic algorithm are applied to the grey pattern qua-
dratic assignment problem for the first time.

2 We assume that the reader is familiar with the most basic
concepts of the genetic algorithms [9] and also the local search-
based, tabu search-based heuristic algorithms [1, 8].

505Information Technology and Control 2018/3/47

2 Very fast evaluation of the neighbouring solutions
within the tabu search algorithm is used.

3 Smart combination of the tabu search and greedy
adaptive perturbation is adopted. This enables to
achieve the beneficial synergy of diversification
and intensification during the iterative optimiza-
tion process.

The paper is organized as follows. In Section 1, some
preliminaries are given. In Section 2, we describe a
novel hybrid genetic algorithm for the grey pattern
quadratic assignment problem. The results of the
computational experiments with the proposed algo-
rithm are presented in Section 3. The paper is com-
pleted with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩: Π� → 2�� assigns for each
𝑝𝑝 𝑝 Π� a set 𝛩𝛩𝛩𝑝𝑝𝛩 𝛩 Π� — the set of neighbouring
solutions of 𝑝𝑝. With the permutation-based problems, a
common practice is to use the 2-exchange
neighbourhood function 𝛩𝛩� which is defined in the
following way: 𝛩𝛩�𝛩𝑝𝑝𝛩 = �𝑝𝑝�: 𝑝𝑝� 𝑝 Π�, 𝛿𝛿�𝛩𝑝𝑝, 𝑝𝑝�𝛩 = 2� ,
where 𝛿𝛿�𝛩𝑝𝑝, 𝑝𝑝�𝛩 is the Hamming distance between the
permutations 𝑝𝑝 and 𝑝𝑝𝑝. (Remind that the Hamming
distance between two permutations 𝑝𝑝� and 𝑝𝑝� can be
declared as 𝛿𝛿�𝛩𝑝𝑝�, 𝑝𝑝�𝛩 = ��𝑖𝑖: 𝑝𝑝�𝛩𝑖𝑖𝛩 ≠ 𝑝𝑝�𝛩𝑖𝑖𝛩��.) However,
the order of the elements 𝑝𝑝𝛩1𝛩, … , 𝑝𝑝𝛩𝑝𝑝𝛩 is not
important in the GP-QAP, so we have to formulate the
neighbourhood function in a more appropriate way.
The 1-interchange neighbourhood function 𝛩𝛩� is
defined such that every neighbouring solution 𝑝𝑝� 𝑝
𝛩𝛩�𝛩𝑝𝑝𝛩 is obtained from the current solution 𝑝𝑝 by simply
interchanging one element of �𝑝𝑝𝛩𝑖𝑖𝛩: 𝑖𝑖 = 1, … , 𝑝𝑝� with
another element of �𝑝𝑝𝛩𝑗𝑗𝛩: 𝑗𝑗 = 𝑝𝑝 𝑗 1, … , 𝑗𝑗�. Clearly, this
neighbourhood function maintains solution feasibility,
i.e., ∀𝑝𝑝 𝑝 Π�: 𝑝𝑝� 𝑝 𝛩𝛩�𝛩𝑝𝑝𝛩 ⟹ 𝑝𝑝� 𝑝 Π�. More formally:

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the
maximum number of points.

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal
group will have the most mutual compatibility and the least potential for tension.

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary
algorithms have been shown to be very effective [5, 11, 12, 14].

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing
some more new enhancements2. The main contributions are as follows.

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm
are applied to the grey pattern quadratic assignment problem for the first time.

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used.
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the

beneficial synergy of diversification and intensification during the iterative optimization process.
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally:

𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4)

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined
in the following way:

𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝑚𝑚𝑚𝑚 − |{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∩ {𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}| (5)

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1).
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝.
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula:

Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6)

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances):

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7)

2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local
search-based, tabu search-based heuristic algorithms [1, 8].

(4)

where δ denotes the distance between solutions. The
distance between two GP-QAP-solutions p1 and p2
can be defined in the following way:

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the
maximum number of points.

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal
group will have the most mutual compatibility and the least potential for tension.

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary
algorithms have been shown to be very effective [5, 11, 12, 14].

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing
some more new enhancements2. The main contributions are as follows.

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm
are applied to the grey pattern quadratic assignment problem for the first time.

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used.
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the

beneficial synergy of diversification and intensification during the iterative optimization process.
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally:

 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4)

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined
in the following way:

 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2)=𝑚𝑚𝑚𝑚−|{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖=1, … ,𝑚𝑚𝑚𝑚}∩{𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖=1,… ,𝑚𝑚𝑚𝑚}| (5)

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) =𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1) .
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝.
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula:

 Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6)

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances):

 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7)

2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local

search-based, tabu search-based heuristic algorithms [1, 8].

(5)

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the
maximum number of points.

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal
group will have the most mutual compatibility and the least potential for tension.

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary
algorithms have been shown to be very effective [5, 11, 12, 14].

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing
some more new enhancements2. The main contributions are as follows.

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm
are applied to the grey pattern quadratic assignment problem for the first time.

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used.
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the

beneficial synergy of diversification and intensification during the iterative optimization process.
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally:

𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4)

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined
in the following way:

𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝑚𝑚𝑚𝑚 − |{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∩ {𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}| (5)

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1).
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝.
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula:

Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6)

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances):

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7)

2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local
search-based, tabu search-based heuristic algorithms [1, 8].

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the
maximum number of points.

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal
group will have the most mutual compatibility and the least potential for tension.

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary
algorithms have been shown to be very effective [5, 11, 12, 14].

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing
some more new enhancements2. The main contributions are as follows.

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm
are applied to the grey pattern quadratic assignment problem for the first time.

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used.
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the

beneficial synergy of diversification and intensification during the iterative optimization process.
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally:

𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4)

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined
in the following way:

𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝑚𝑚𝑚𝑚 − |{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∩ {𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}| (5)

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1).
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝.
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula:

Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6)

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances):

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7)

2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local
search-based, tabu search-based heuristic algorithms [1, 8].

(6)

where c(x) is a contribution of the element x (the sum
of related distances):

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the
maximum number of points.

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal
group will have the most mutual compatibility and the least potential for tension.

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary
algorithms have been shown to be very effective [5, 11, 12, 14].

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing
some more new enhancements2. The main contributions are as follows.

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm
are applied to the grey pattern quadratic assignment problem for the first time.

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used.
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the

beneficial synergy of diversification and intensification during the iterative optimization process.
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally:

𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4)

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined
in the following way:

𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝑚𝑚𝑚𝑚 − |{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∩ {𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}| (5)

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1).
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝.
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula:

Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6)

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances):

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7)

2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local
search-based, tabu search-based heuristic algorithms [1, 8].

(7)

After the exchange, the contributions are updated ac-
cording to the expression:

After the exchange, the contributions are updated according to the expression:

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = �
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) + 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) − 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) + 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) − 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑥𝑥𝑥𝑥 ≠ 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑥𝑥𝑥𝑥 ≠ 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)

, 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (8)

The elements of the found solution determine the locations in the grid where the black squares have to be placed in.
The coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) of the black squares are derived according to these formulas:
𝑟𝑟𝑟𝑟 = ⌊(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) 𝑛𝑛𝑛𝑛2⁄ ⌋ + 1, 𝑠𝑠𝑠𝑠 = �(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) mod 𝑛𝑛𝑛𝑛2� + 1 (see also Figure 1).

Figure 1. A graphical illustration of correspondence of the analytical solution to the graphical image

Let us also introduce the concept of an opposition-based solution (opposite solution), which is in connection with
what is known as an opposition-based learning (OBL) [17]. The rationale of opposition-based solutions is based on an
assumption that it is more advantageous to consider an opposite solution with respect to the current solution from a
search space, rather than a pure random solution generated in a blind random way. The helpfulness of using the
opposition-based solutions has been confirmed by solving the maximum diversity problem (MDP) [19], which may be
seen as a "sister problem" of the GP-QAP.

Definition 1. The GP-QAP-solution 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 is an opposition-based solution (opposite solution) with respect to the
solution 𝑝𝑝𝑝𝑝 if 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 𝑚𝑚𝑚𝑚.

Finally, we are defining a backbone solution (see also [19]).
Definition 2. The GP-QAP-solution 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 is a backbone solution (with respect to two underlying solutions 𝑝𝑝𝑝𝑝1,

𝑝𝑝𝑝𝑝2) if simultaneously 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝1� ≤ ⌈𝑚𝑚𝑚𝑚 2⁄ ⌉ and 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝2� ≤ ⌈𝑚𝑚𝑚𝑚 2⁄ ⌉.
Roughly speaking, the backbone solution shares information with its both underlying solutions and is close enough

to both of them (or possibly "equivalent" to the underlying solution(s) in the sense that 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝1� = 0 and/or
𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝2� = 0).

Within the genetic algorithm, the solution 𝑝𝑝𝑝𝑝 = �𝑝𝑝𝑝𝑝(1), … 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)� is associated with an individual (in fact, the
individual's chromosome). Then, the single element 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) corresponds to a gene of the current chromosome.

2. Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment Problem
Our algorithm is based on the general hybrid genetic algorithm framework where the population-based

evolutionary search (i.e., explorative search) is combined with the local improvement of the offspring (i.e., exploitative
search) to enhance the overall search performance.

The hybrid genetic algorithm consists of six main components: a) creation of an initial (starting) population;
b) parent selection; c) a crossover operator; d) an improvement of the produced offspring; e) updating of the population;
and f) restart from the new population (if necessary). The high-level description of the hybrid genetic algorithm is
presented in Figure 2.

The algorithm starts with creation of the initial population of fixed size 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by paying attention to both the quality
(fitness) of the population individuals and the mutual variability (i.e., mutual distance) between all the population
members. The algorithm then performs iterations called generations until the pre-defined number of generations, 𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛,
has been accomplished. At every generation, the standard genetic operations — selection, crossover, population
replacement — take place (with the exception of mutation). The mutation procedure is integrated into the improvement
algorithm — the hierarchical iterated tabu search (HITS). Our genetic algorithm also incorporates the restart mechanism
in the cases of observed stagnation of the evolutionary process.

The components of the hybrid genetic algorithm are discussed in more detail in the subsequent sections.

2.1. Initial Population Construction
The initial population is generated as follows.
1. Let 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’OFF’, 𝑃𝑃𝑃𝑃 = ∅, 𝑘𝑘𝑘𝑘 = 1, 𝑙𝑙𝑙𝑙 = 1. (𝑙𝑙𝑙𝑙 is the lexicographic index of the generated solution.)

1 4 6 9 16 2 3 5 7 8 10 11 12 13 14 15

n1 = 4, n2 = 4, n = n1 × n2 = 16, m = 5

← s →

↑
r
↓

After the exchange, the contributions are updated according to the expression:

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = �
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) + 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) − 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) + 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) − 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑥𝑥𝑥𝑥 ≠ 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑥𝑥𝑥𝑥 ≠ 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)

, 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (8)

The elements of the found solution determine the locations in the grid where the black squares have to be placed in.
The coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) of the black squares are derived according to these formulas:
𝑟𝑟𝑟𝑟 = ⌊(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) 𝑛𝑛𝑛𝑛2⁄ ⌋ + 1, 𝑠𝑠𝑠𝑠 = �(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) mod 𝑛𝑛𝑛𝑛2� + 1 (see also Figure 1).

Figure 1. A graphical illustration of correspondence of the analytical solution to the graphical image

Let us also introduce the concept of an opposition-based solution (opposite solution), which is in connection with
what is known as an opposition-based learning (OBL) [17]. The rationale of opposition-based solutions is based on an
assumption that it is more advantageous to consider an opposite solution with respect to the current solution from a
search space, rather than a pure random solution generated in a blind random way. The helpfulness of using the
opposition-based solutions has been confirmed by solving the maximum diversity problem (MDP) [19], which may be
seen as a "sister problem" of the GP-QAP.

Definition 1. The GP-QAP-solution 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 is an opposition-based solution (opposite solution) with respect to the
solution 𝑝𝑝𝑝𝑝 if 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 𝑚𝑚𝑚𝑚.

Finally, we are defining a backbone solution (see also [19]).
Definition 2. The GP-QAP-solution 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 is a backbone solution (with respect to two underlying solutions 𝑝𝑝𝑝𝑝1,

𝑝𝑝𝑝𝑝2) if simultaneously 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝1� ≤ ⌈𝑚𝑚𝑚𝑚 2⁄ ⌉ and 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝2� ≤ ⌈𝑚𝑚𝑚𝑚 2⁄ ⌉.
Roughly speaking, the backbone solution shares information with its both underlying solutions and is close enough

to both of them (or possibly "equivalent" to the underlying solution(s) in the sense that 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝1� = 0 and/or
𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝2� = 0).

Within the genetic algorithm, the solution 𝑝𝑝𝑝𝑝 = �𝑝𝑝𝑝𝑝(1), … 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)� is associated with an individual (in fact, the
individual's chromosome). Then, the single element 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) corresponds to a gene of the current chromosome.

2. Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment Problem
Our algorithm is based on the general hybrid genetic algorithm framework where the population-based

evolutionary search (i.e., explorative search) is combined with the local improvement of the offspring (i.e., exploitative
search) to enhance the overall search performance.

The hybrid genetic algorithm consists of six main components: a) creation of an initial (starting) population;
b) parent selection; c) a crossover operator; d) an improvement of the produced offspring; e) updating of the population;
and f) restart from the new population (if necessary). The high-level description of the hybrid genetic algorithm is
presented in Figure 2.

The algorithm starts with creation of the initial population of fixed size 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by paying attention to both the quality
(fitness) of the population individuals and the mutual variability (i.e., mutual distance) between all the population
members. The algorithm then performs iterations called generations until the pre-defined number of generations, 𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛,
has been accomplished. At every generation, the standard genetic operations — selection, crossover, population
replacement — take place (with the exception of mutation). The mutation procedure is integrated into the improvement
algorithm — the hierarchical iterated tabu search (HITS). Our genetic algorithm also incorporates the restart mechanism
in the cases of observed stagnation of the evolutionary process.

The components of the hybrid genetic algorithm are discussed in more detail in the subsequent sections.

2.1. Initial Population Construction
The initial population is generated as follows.
1. Let 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’OFF’, 𝑃𝑃𝑃𝑃 = ∅, 𝑘𝑘𝑘𝑘 = 1, 𝑙𝑙𝑙𝑙 = 1. (𝑙𝑙𝑙𝑙 is the lexicographic index of the generated solution.)

1 4 6 9 16 2 3 5 7 8 10 11 12 13 14 15

n1 = 4, n2 = 4, n = n1 × n2 = 16, m = 5

← s →

↑
r
↓

(8)

It can be seen that 0 ≤ 𝛿𝛿 ≤ 𝛿𝛿, 𝛿𝛿(𝑝𝑝𝑝 𝑝𝑝) = 0, 𝛿𝛿(𝑝𝑝�𝑝 𝑝𝑝�) =
𝛿𝛿(𝑝𝑝�𝑝 𝑝𝑝�).
To be more precise, let 𝑝𝑝(𝑝𝑝) (𝑢𝑢 = 𝑢𝑝 𝑢 𝑝 𝛿𝛿) and 𝑝𝑝(𝑝𝑝)
(𝑝𝑝 = 𝛿𝛿 𝑣 𝑢𝑝 𝑢 𝑝 𝑣𝑣) be two items to be swapped. Then, a
short notation of the form 𝑝𝑝�𝑝� can be used such that

𝑝𝑝�𝑝�(𝑖𝑖) = �
𝑝𝑝(𝑖𝑖)𝑝 𝑖𝑖 𝑖 𝑝𝑝𝑝 𝑝𝑝
𝑝𝑝(𝑝𝑝)𝑝 𝑖𝑖 = 𝑝𝑝
𝑝𝑝(𝑝𝑝)𝑝 𝑖𝑖 = 𝑝𝑝

. This means that 𝑝𝑝�𝑝� is

obtained from 𝑝𝑝 by interchanging the items 𝑝𝑝(𝑝𝑝) and
𝑝𝑝(𝑝𝑝) (𝑝𝑝 is said to move to 𝑝𝑝�𝑝�). Of course, 𝛿𝛿(𝑝𝑝𝑝 𝑝𝑝�𝑝�) =
𝑢 , 𝑝𝑝�𝑝� = 𝑝𝑝, (𝑝𝑝�𝑝�)�𝑝� = 𝑝𝑝. It is of high importance to
efficiently calculate the difference in the objective
values when interchanging the items 𝑝𝑝(𝑝𝑝) and 𝑝𝑝(𝑝𝑝) .
The difference is calculated in O(1) time by this
formula:

Let us also introduce the concept of an opposi-
tion-based solution (opposite solution), which is
in connection with what is known as an opposi-
tion-based learning (OBL) [17]. The rationale of op-
position-based solutions is based on an assumption
that it is more advantageous to consider an opposite
solution with respect to the current solution from

The elements of the found solution determine the loca-
tions in the grid where the black squares have to be
placed in. The coordinates (𝑟𝑟𝑟 𝑟𝑟𝑟 of the black squares
are derived according to these formulas:
𝑟𝑟 𝑟 ⌊(𝑝𝑝(𝑖𝑖𝑟 − 1𝑟 𝑛𝑛�⁄ ⌋ + 1, 𝑟𝑟 𝑟 �(𝑝𝑝(𝑖𝑖𝑟 − 1𝑟 mod 𝑛𝑛�� + 1
(see also Figure 1).

Information Technology and Control 2018/3/47506

Figure 1
A graphical illustration of correspondence of the analytical
solution to the graphical image

After the exchange, the contributions are updated according to the expression:

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = �
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) + 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) − 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) + 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) − 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑥𝑥𝑥𝑥 ≠ 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑥𝑥𝑥𝑥 ≠ 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)

, 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (8)

The elements of the found solution determine the locations in the grid where the black squares have to be placed in.
The coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) of the black squares are derived according to these formulas:
𝑟𝑟𝑟𝑟 = ⌊(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) 𝑛𝑛𝑛𝑛2⁄ ⌋ + 1, 𝑠𝑠𝑠𝑠 = �(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) mod 𝑛𝑛𝑛𝑛2� + 1 (see also Figure 1).

Figure 1. A graphical illustration of correspondence of the analytical solution to the graphical image

Let us also introduce the concept of an opposition-based solution (opposite solution), which is in connection with
what is known as an opposition-based learning (OBL) [17]. The rationale of opposition-based solutions is based on an
assumption that it is more advantageous to consider an opposite solution with respect to the current solution from a
search space, rather than a pure random solution generated in a blind random way. The helpfulness of using the
opposition-based solutions has been confirmed by solving the maximum diversity problem (MDP) [19], which may be
seen as a "sister problem" of the GP-QAP.

Definition 1. The GP-QAP-solution 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 is an opposition-based solution (opposite solution) with respect to the
solution 𝑝𝑝𝑝𝑝 if 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 𝑚𝑚𝑚𝑚.

Finally, we are defining a backbone solution (see also [19]).
Definition 2. The GP-QAP-solution 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 is a backbone solution (with respect to two underlying solutions 𝑝𝑝𝑝𝑝1,

𝑝𝑝𝑝𝑝2) if simultaneously 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝1� ≤ ⌈𝑚𝑚𝑚𝑚 2⁄ ⌉ and 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝2� ≤ ⌈𝑚𝑚𝑚𝑚 2⁄ ⌉.
Roughly speaking, the backbone solution shares information with its both underlying solutions and is close enough

to both of them (or possibly "equivalent" to the underlying solution(s) in the sense that 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝1� = 0 and/or
𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝2� = 0).

Within the genetic algorithm, the solution 𝑝𝑝𝑝𝑝 = �𝑝𝑝𝑝𝑝(1), … 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)� is associated with an individual (in fact, the
individual's chromosome). Then, the single element 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) corresponds to a gene of the current chromosome.

2. Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment Problem
Our algorithm is based on the general hybrid genetic algorithm framework where the population-based

evolutionary search (i.e., explorative search) is combined with the local improvement of the offspring (i.e., exploitative
search) to enhance the overall search performance.

The hybrid genetic algorithm consists of six main components: a) creation of an initial (starting) population;
b) parent selection; c) a crossover operator; d) an improvement of the produced offspring; e) updating of the population;
and f) restart from the new population (if necessary). The high-level description of the hybrid genetic algorithm is
presented in Figure 2.

The algorithm starts with creation of the initial population of fixed size 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by paying attention to both the quality
(fitness) of the population individuals and the mutual variability (i.e., mutual distance) between all the population
members. The algorithm then performs iterations called generations until the pre-defined number of generations, 𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛,
has been accomplished. At every generation, the standard genetic operations — selection, crossover, population
replacement — take place (with the exception of mutation). The mutation procedure is integrated into the improvement
algorithm — the hierarchical iterated tabu search (HITS). Our genetic algorithm also incorporates the restart mechanism
in the cases of observed stagnation of the evolutionary process.

The components of the hybrid genetic algorithm are discussed in more detail in the subsequent sections.

2.1. Initial Population Construction
The initial population is generated as follows.
1. Let 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’OFF’, 𝑃𝑃𝑃𝑃 = ∅, 𝑘𝑘𝑘𝑘 = 1, 𝑙𝑙𝑙𝑙 = 1. (𝑙𝑙𝑙𝑙 is the lexicographic index of the generated solution.)

1 4 6 9 16 2 3 5 7 8 10 11 12 13 14 15

n1 = 4, n2 = 4, n = n1 × n2 = 16, m = 5

← s →

↑
r
↓

2. Hybrid Genetic Algorithm for the
Grey Pattern Quadratic Assignment
Problem
Our algorithm is based on the general hybrid genet-
ic algorithm framework where the population-based

a search space, rather than a pure random solution
generated in a blind random way. The helpfulness of
using the opposition-based solutions has been con-
firmed by solving the maximum diversity problem
(MDP) [19], which may be seen as a "sister problem"
of the GP-QAP.
Definition 1. The GP-QAP-solution 𝑝𝑝 ∈ Π� is an oppo-
sition-based solution (opposite solution) with respect
to the solution 𝑝𝑝 if 𝛿𝛿(𝑝𝑝𝑝 𝑝𝑝) = 𝑚𝑚.

Finally, we are defining a backbone solution (see also
[19]).

Definition 2. The GP-QAP-solution 𝑝𝑝 ∈ Π� is a back-
bone solution (with respect to two underlying solutions
𝑝𝑝�, 𝑝𝑝�) if simultaneously 𝛿𝛿�𝑝𝑝𝑝 𝑝𝑝�� � ⌈𝑚𝑚 𝑚⁄ ⌉ and
𝛿𝛿�𝑝𝑝𝑝 𝑝𝑝�� � ⌈𝑚𝑚 𝑚⁄ ⌉.

Roughly speaking, the backbone solution shares infor-
mation with its both underlying solutions and is close
enough to both of them (or possibly "equivalent" to the
underlying solution(s) in the sense that 𝛿𝛿�𝑝𝑝𝑝 𝑝𝑝�� = �
and/or 𝛿𝛿�𝑝𝑝𝑝 𝑝𝑝�� = �).

Within the genetic algorithm, the solution 𝑝𝑝 =
�𝑝𝑝(1)𝑝 … 𝑝𝑝(𝑚𝑚)� is associated with an individual (in fact,
the individual's chromosome). Then, the single element
𝑝𝑝(𝑝𝑝) corresponds to a gene of the current chromosome.

Definition 1.

Definition 2.

evolutionary search (i.e., explorative search) is com-
bined with the local improvement of the offspring
(i.e., exploitative search) to enhance the overall search
performance.
The hybrid genetic algorithm consists of six main
components: a) creation of an initial (starting) popu-
lation; b) parent selection; c) a crossover operator; d)
an improvement of the produced offspring; e) updat-
ing of the population; and f) restart from the new pop-
ulation (if necessary). The high-level description of
the hybrid genetic algorithm is presented in Figure 2.
The algorithm starts with creation of the initial pop-
ulation of fixed size PS by paying attention to both
the quality (fitness) of the population individuals
and the mutual variability (i.e., mutual distance) be-
tween all the population members. The algorithm
then performs iterations called generations until the
pre-defined number of generations, Ngen, has been
accomplished. At every generation, the standard ge-
netic operations — selection, crossover, population
replacement — take place (with the exception of mu-
tation). The mutation procedure is integrated into the
improvement algorithm — the hierarchical iterated
tabu search (HITS). Our genetic algorithm also in-
corporates the restart mechanism in the cases of ob-
served stagnation of the evolutionary process.
The components of the hybrid genetic algorithm are
discussed in more detail in the subsequent sections.

2.1. Initial Population Construction
The initial population is generated as follows.
1 Let flag=’OFF’, P=∅, k=1, l=1. (l is the lexicographic

index of the generated solution.)
2 If flag=’OFF’, then generate a random permuta-

tion (solution) p_1; otherwise, generate an opposi
llllllllll

3 Apply the hierarchical iterated tabu search algo-
rithm to the generated solution and get the im-
proved solution p_l^∅.

4 If (flag=’OFF’) and (k=1), then: a) include the solu-
tion p_1^∅ into the population P; b) flag=’ON’; c) go
to Step 2.

5 If (flag=’ON’) and (k=1) and (z(p_l^∅)<z(p): p∅P),
then: a) replace the 1st member of the population
by the solution p_l^∅ ; b) go to Step 2.

6 If ((z(p_l^∅)≠z(p):∅p∅P) and (min∅(p∅P)∅{∅(p_

Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓, 𝑃𝑃 𝑓 𝑃, 𝑘𝑘 𝑓 𝑘, 𝑓𝑓 𝑓 𝑘. (𝑓𝑓 is the lexico-
graphic index of the generated solution.)
If 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓, then generate a random permuta-
tion (solution) 𝑝𝑝�; otherwise, generate an opposi-
tion-based random permutation 𝑝𝑝� . 𝑓𝑓 𝑓 𝑓𝑓 𝑙 𝑘.
Apply the hierarchical iterated tabu search algo-
rithm to the generated solution and get the im-
proved solution 𝑝𝑝�.
If (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓) and (𝑘𝑘 𝑓 𝑘), then: a) include the
solution 𝑝𝑝� into the population 𝑃𝑃; b) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓;
c) go to Step 2.
If (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓) and (𝑘𝑘 𝑓 𝑘) and (𝑧𝑧(𝑝𝑝�) <
𝑧𝑧(𝑝𝑝): 𝑝𝑝 𝑝 𝑃𝑃), then: a) replace the 1st member of the
population by the solution 𝑝𝑝� ; b) go to Step 2.

If �(𝑧𝑧(𝑝𝑝�) ≠ 𝑧𝑧(𝑝𝑝): ∀𝑝𝑝 𝑝 𝑃𝑃) and �min�𝑝�
�𝛿𝛿(𝑝𝑝�, 𝑝𝑝)� ≥

𝐷𝐷𝐷𝐷�� �� �𝑧𝑧(𝑝𝑝�) < min�𝑝�
�𝑧𝑧(𝑝𝑝)��, then include the so-

lution 𝑝𝑝� into the population 𝑃𝑃. Otherwise, include
the random solution 𝑝𝑝� into the population 𝑃𝑃.

 𝑘𝑘 𝑓 𝑘𝑘 𝑙 𝑘. If 𝑘𝑘 𝑘 𝑃𝑃𝑘𝑘, then go to Step 2; otherwise,
the initial population formation is finished.

tions, an easy way to operationalize this is to maintain a
long-term frequency array (memory) 𝑓𝑓, where 𝑓𝑓(𝑓𝑓) rec-
ords the number of times the item 𝑓𝑓 has appeared in a
solution. The array 𝑓𝑓 is operated in a very simple way:
all one needs is to initialize it with zeros and update its
values each time a new solution is generated, i.e.,
𝑓𝑓�𝑝𝑝�(𝑓𝑓)� 𝑓 𝑓𝑓�𝑝𝑝�(𝑓𝑓)� 𝑙 𝑘, where 𝑝𝑝� is the currently gen-
erated solution. To obtain the opposition-based ran-
dom solution, it is sufficient to pick up 𝑚𝑚 items with the
smallest frequency (ties are broken randomly). Obvi-
ously, this ensures that 𝛿𝛿(𝑝𝑝�, 𝑝𝑝���) 𝑓 𝑚𝑚 (𝑓𝑓 𝑓 𝑙, 𝑙, 𝑙),
where 𝑝𝑝�, 𝑝𝑝��� are solutions consecutively generated
one after another.

Each generated solution is subject to improvement by
the hierarchical ITS. After improvement, it is checked
if the distance between the improved solution 𝑝𝑝� and
the population 𝑃𝑃 (𝛿𝛿(𝑝𝑝�, 𝑃𝑃) 𝑓 min

�𝑝�
�𝛿𝛿(𝑝𝑝�, 𝑝𝑝)�) is greater

than or equal to the pre-defined distance threshold, 𝐷𝐷𝐷𝐷.
If it is the case, the improved solution is included into
the population. The same is true if the improved solu-
tion is better than the best population member. Other-
wise, the randomly generated solution enters the popu-
lation. This ensures both the quality and genetic vari-
ance of the initial population.

507Information Technology and Control 2018/3/47

l^∅,p)}≥DT)) or (z(p_l^∅)<min∅(p∅P)∅{z(p)}), then
include the solution p_l^∅ into the population P.
Otherwise, include the random solution p_l into
the population P.

7 k=k+1. If k≤PS, then go to Step 2; otherwise, the ini-
tial population formation is finished.

Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓, 𝑃𝑃 𝑓 𝑃, 𝑘𝑘 𝑓 𝑘, 𝑓𝑓 𝑓 𝑘. (𝑓𝑓 is the lexico-
graphic index of the generated solution.)
If 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓, then generate a random permuta-
tion (solution) 𝑝𝑝�; otherwise, generate an opposi-
tion-based random permutation 𝑝𝑝� . 𝑓𝑓 𝑓 𝑓𝑓 𝑙 𝑘.
Apply the hierarchical iterated tabu search algo-
rithm to the generated solution and get the im-
proved solution 𝑝𝑝�.
If (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓) and (𝑘𝑘 𝑓 𝑘), then: a) include the
solution 𝑝𝑝� into the population 𝑃𝑃; b) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓;
c) go to Step 2.
If (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓) and (𝑘𝑘 𝑓 𝑘) and (𝑧𝑧(𝑝𝑝�) <
𝑧𝑧(𝑝𝑝): 𝑝𝑝 𝑝 𝑃𝑃), then: a) replace the 1st member of the
population by the solution 𝑝𝑝� ; b) go to Step 2.

If �(𝑧𝑧(𝑝𝑝�) ≠ 𝑧𝑧(𝑝𝑝): ∀𝑝𝑝 𝑝 𝑃𝑃) and �min�𝑝�
�𝛿𝛿(𝑝𝑝�, 𝑝𝑝)� ≥

𝐷𝐷𝐷𝐷�� �� �𝑧𝑧(𝑝𝑝�) < min�𝑝�
�𝑧𝑧(𝑝𝑝)��, then include the so-

lution 𝑝𝑝� into the population 𝑃𝑃. Otherwise, include
the random solution 𝑝𝑝� into the population 𝑃𝑃.

 𝑘𝑘 𝑓 𝑘𝑘 𝑙 𝑘. If 𝑘𝑘 𝑘 𝑃𝑃𝑘𝑘, then go to Step 2; otherwise,
the initial population formation is finished.

tions, an easy way to operationalize this is to maintain a
long-term frequency array (memory) 𝑓𝑓, where 𝑓𝑓(𝑓𝑓) rec-
ords the number of times the item 𝑓𝑓 has appeared in a
solution. The array 𝑓𝑓 is operated in a very simple way:
all one needs is to initialize it with zeros and update its
values each time a new solution is generated, i.e.,
𝑓𝑓�𝑝𝑝�(𝑓𝑓)� 𝑓 𝑓𝑓�𝑝𝑝�(𝑓𝑓)� 𝑙 𝑘, where 𝑝𝑝� is the currently gen-
erated solution. To obtain the opposition-based ran-
dom solution, it is sufficient to pick up 𝑚𝑚 items with the
smallest frequency (ties are broken randomly). Obvi-
ously, this ensures that 𝛿𝛿(𝑝𝑝�, 𝑝𝑝���) 𝑓 𝑚𝑚 (𝑓𝑓 𝑓 𝑙, 𝑙, 𝑙),
where 𝑝𝑝�, 𝑝𝑝��� are solutions consecutively generated
one after another.

Each generated solution is subject to improvement by
the hierarchical ITS. After improvement, it is checked
if the distance between the improved solution 𝑝𝑝� and
the population 𝑃𝑃 (𝛿𝛿(𝑝𝑝�, 𝑃𝑃) 𝑓 min

�𝑝�
�𝛿𝛿(𝑝𝑝�, 𝑝𝑝)�) is greater

than or equal to the pre-defined distance threshold, 𝐷𝐷𝐷𝐷.
If it is the case, the improved solution is included into
the population. The same is true if the improved solu-
tion is better than the best population member. Other-
wise, the randomly generated solution enters the popu-
lation. This ensures both the quality and genetic vari-
ance of the initial population.

2.2. Parent Selection
At each generation, two solutions (permutations) p'
and p'' are randomly selected in the population P to
serve as parents for reproduction.

2.3. Crossover Operator
The goal of crossover (recombination) operator is to
produce an offspring from a pair of parents. The prin-
ciple of functioning of our crossover is based on two
concepts: backbone solution and opposition-based
(opposite) solution (see also [19]). This allows both
to preserve the common elements (genes) in two se-
lected parents and introduce completely new genes.
Note that, in addition, the backbone solution is par-
tially optimized to ensure a higher quality of the off-

Regarding the generation of opposition-based solu-
tions, an easy way to operationalize this is to maintain a
long-term frequency array (memory) 𝑓𝑓, where 𝑓𝑓𝑓𝑓𝑓𝑓 rec-
ords the number of times the item 𝑓𝑓 has appeared in a
solution. The array 𝑓𝑓 is operated in a very simple way:
all one needs is to initialize it with zeros and update its
values each time a new solution is generated, i.e.,
𝑓𝑓�𝑝𝑝�𝑓𝑓𝑓𝑓� = 𝑓𝑓�𝑝𝑝�𝑓𝑓𝑓𝑓� � �, where 𝑝𝑝� is the currently gen-
erated solution. To obtain the opposition-based ran-
dom solution, it is sufficient to pick up 𝑚𝑚 items with the
smallest frequency (ties are broken randomly). Obvi-
ously, this ensures that 𝛿𝛿𝑓𝑝𝑝�, 𝑝𝑝���𝑓 = 𝑚𝑚𝑚 (𝑙𝑙 = 𝑙, 𝑙, 𝑙),
where 𝑝𝑝�, 𝑝𝑝���𝑚 are solutions consecutively generated
one after another.

Each generated solution is subject to improvement by
the hierarchical ITS. After improvement, it is checked
if the distance between the improved solution 𝑝𝑝�𝑚𝑚 and
the population 𝑃𝑃 (𝛿𝛿𝑓𝑝𝑝�, 𝑃𝑃𝑓=min����𝛿𝛿𝑓𝑝𝑝�, 𝑝𝑝𝑓�) is greater
than or equal to the pre-defined distance threshold, 𝐷𝐷𝐷𝐷.
If it is the case, the improved solution is included into
the population. The same is true if the improved solu-
tion is better than the best population member. Other-
wise, the randomly generated solution enters the popu-
lation. This ensures both the quality and genetic vari-
ance of the initial population.

Regarding the generation of opposition-based solu-
tions, an easy way to operationalize this is to maintain a
long-term frequency array (memory) 𝑓𝑓, where 𝑓𝑓𝑓𝑓𝑓𝑓 rec-
ords the number of times the item 𝑓𝑓 has appeared in a
solution. The array 𝑓𝑓 is operated in a very simple way:
all one needs is to initialize it with zeros and update its
values each time a new solution is generated, i.e.,
𝑓𝑓�𝑝𝑝�𝑓𝑓𝑓𝑓� = 𝑓𝑓�𝑝𝑝�𝑓𝑓𝑓𝑓� � �, where 𝑝𝑝� is the currently gen-
erated solution. To obtain the opposition-based ran-
dom solution, it is sufficient to pick up 𝑚𝑚 items with the
smallest frequency (ties are broken randomly). Obvi-
ously, this ensures that 𝛿𝛿𝑓𝑝𝑝�, 𝑝𝑝���𝑓 = 𝑚𝑚𝑚 (𝑙𝑙 = 𝑙, 𝑙, 𝑙),
where 𝑝𝑝�, 𝑝𝑝���𝑚 are solutions consecutively generated
one after another.

Each generated solution is subject to improvement by
the hierarchical ITS. After improvement, it is checked
if the distance between the improved solution 𝑝𝑝�𝑚𝑚 and
the population 𝑃𝑃 (𝛿𝛿𝑓𝑝𝑝�, 𝑃𝑃𝑓=min����𝛿𝛿𝑓𝑝𝑝�, 𝑝𝑝𝑓�) is greater
than or equal to the pre-defined distance threshold, 𝐷𝐷𝐷𝐷.
If it is the case, the improved solution is included into
the population. The same is true if the improved solu-
tion is better than the best population member. Other-
wise, the randomly generated solution enters the popu-
lation. This ensures both the quality and genetic vari-
ance of the initial population.

Figure 2
Pseudo-code of the hybrid genetic algorithm

2. If 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’OFF’, then generate a random permutation (solution) 𝑝𝑝𝑝𝑝1; otherwise, generate an opposition-based
random permutation 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 . 𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙 + 1.

3. Apply the hierarchical iterated tabu search algorithm to the generated solution and get the improved solution 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗.
4. If (𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’OFF’) and (𝑘𝑘𝑘𝑘 = 1), then: a) include the solution 𝑝𝑝𝑝𝑝1∗ into the population 𝑃𝑃𝑃𝑃; b) 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’ON’; c) go to

Step 2.
5. If (𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’ON’) and (𝑘𝑘𝑘𝑘 = 1) and (𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗) < 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝): 𝑝𝑝𝑝𝑝 ∈ 𝑃𝑃𝑃𝑃), then: a) replace the 1st member of the population by

the solution 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗ ; b) go to Step 2.

6. If �(𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗) ≠ 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝):∀𝑝𝑝𝑝𝑝 ∈ 𝑃𝑃𝑃𝑃) and �min
𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃

{𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗, 𝑝𝑝𝑝𝑝)} ≥ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�� or �𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗) < min
𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃

{𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝)}�, then include the solution

𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗ into the population 𝑃𝑃𝑃𝑃. Otherwise, include the random solution 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 into the population 𝑃𝑃𝑃𝑃.
7. 𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑘𝑘 + 1. If 𝑘𝑘𝑘𝑘 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, then go to Step 2; otherwise, the initial population formation is finished.
Regarding the generation of opposition-based solutions, an easy way to operationalize this is to maintain a long-

term frequency array (memory) 𝑓𝑓𝑓𝑓, where 𝑓𝑓𝑓𝑓(𝑖𝑖𝑖𝑖) records the number of times the item 𝑖𝑖𝑖𝑖 has appeared in a solution. The
array 𝑓𝑓𝑓𝑓 is operated in a very simple way: all one needs is to initialize it with zeros and update its values each time a new
solution is generated, i.e., 𝑓𝑓𝑓𝑓�𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓�𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 is the currently generated solution. To obtain the
opposition-based random solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency (ties are broken
randomly). Obviously, this ensures that 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 , 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘−1) = 𝑚𝑚𝑚𝑚 (𝑙𝑙𝑙𝑙 = 2, 3, …), where 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 , 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘−1 are solutions consecutively
generated one after another.

Each generated solution is subject to improvement by the hierarchical ITS. After improvement, it is checked if the
distance between the improved solution 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗ and the population 𝑃𝑃𝑃𝑃 (𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗,𝑃𝑃𝑃𝑃) = min

𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃
{𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗, 𝑝𝑝𝑝𝑝)}) is greater than or equal to

the pre-defined distance threshold, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. If it is the case, the improved solution is included into the population. The same
is true if the improved solution is better than the best population member. Otherwise, the randomly generated solution
enters the population. This ensures both the quality and genetic variance of the initial population.

procedure Hybrid_Genetic_Algorithm; // hybrid genetic algorithm for the grey pattern quadratic assignment problem
// input: n, m, B
// output: p − the best found solution
// parameters: PS − population size, Ngen − number of generations, Lidle_gen − idle generations limit, DT − distance threshold

begin
 get data, parameters; initialize algorithm variables;
 create initial population P of size PS; // see Section 2.1
 𝑝𝑝𝑝𝑝: = argmin

𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃
{𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝)}; // the best so far solution is memorized

 for gen_index := 1 to Ngen do begin
 randomly select the parents p′, p′′ ∈ P for reproduction;
 produce the offspring p°, p°° ∈ Πn;
 apply Hierarchical_Iterated_Tabu_Search to the offspring p°, get an (improved) solution p ;
 if z(p) < z(p) then p := z(p); // the best so far solution is updated
 update the current population P; // see Section 2.5
 apply Hierarchical_Iterated_Tabu_Search to the offspring p°°, get an (improved) solution p ;
 if z(p) < z(p) then p := z(p); // the best so far solution is updated
 update the current population P;
 if idle generation limit Lidle_gen is exceeded then begin
 restart from the random population;
 if min

𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃
{𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝)} < z(p) then 𝑝𝑝𝑝𝑝: = argmin

𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃
{𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝)}

 endif
 endfor
end.

Figure 2. Pseudo-code of the hybrid genetic algorithm

2.2. Parent Selection

At each generation, two solutions (permutations) 𝑝𝑝𝑝𝑝′ and 𝑝𝑝𝑝𝑝′′ are randomly selected in the population 𝑃𝑃𝑃𝑃 to serve as
parents for reproduction.

2.3. Crossover Operator
The goal of crossover (recombination) operator is to produce an offspring from a pair of parents. The principle of

functioning of our crossover is based on two concepts: backbone solution and opposition-based (opposite) solution (see
also [19]). This allows both to preserve the common elements (genes) in two selected parents and introduce completely
new genes. Note that, in addition, the backbone solution is partially optimized to ensure a higher quality of the
offspring. A so-called greedy adaptive procedure (GAP) is applied for this purpose. Thus, two offspring solutions are

Information Technology and Control 2018/3/47508

spring. A so-called greedy adaptive procedure (GAP)
is applied for this purpose. Thus, two offspring solu-
tions are generated: the optimized offspring solution
and its counterpart (the opposite offspring solution).
The crossover is called the backbone and opposi-
tion-based crossover and its high-level description is
given in Figure 3. Some specific details are as follows.
The values of the short-term array (gene frequencies)
fST

cross are calculated by this expression:

where 𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 are the corresponding parental solutions.
The m genes with the most frequency are then chosen
to form the backbone solution 𝑝𝑝. After this, we apply
the greedy adaptive procedure, which respects only
𝑚𝑚 𝑚⁄ genes with the largest frequency. So, the GAP re-
ceives a partial solution 𝑝𝑝 (the elements 𝑝𝑝(1), …,
𝑝𝑝(𝑚𝑚 𝑚⁄)) as an input. The GAP chooses the element,
one at a time, and adds it to the current partial solution.
In particular, GAP adds, at each iteration 𝑞𝑞 (𝑞𝑞 𝑞
1, … , 𝑚𝑚 𝑚⁄), the element from the set of unselected ele-
ments �𝑗𝑗𝑗 𝑗𝑗 𝑞 1, … , 𝑗𝑗� ∖ �𝑝𝑝(𝑖𝑖)𝑗 𝑖𝑖 𝑞 1, … , 𝑚𝑚 𝑚⁄ + 𝑞𝑞 𝑞 1�
with the minimum contribution value (see formula (7))
across all the unselected elements, i.e.,

𝑗𝑗 𝑞 𝑗𝑗𝑗𝑗𝑗𝑗
����𝑗���,…,��∖��(�)𝑗���,…,� �⁄ �����

�𝑐𝑐�𝑝𝑝(𝑗𝑗)�� . This is contin-

ued until the solution has been completed (see Fig-
ure 4). Note that the objective function value 𝑧𝑧 can be
obtained from the 𝑐𝑐 values by the equation: 𝑧𝑧 𝑞
𝑚 ∑ 𝑐𝑐�𝑝𝑝(𝑗𝑗)��

��� . The complexity of the GAP algorithm is
𝑂𝑂(𝑚𝑚𝑗𝑗).

Figure 3
Pseudo-code of the backbone and opposition-based crossover

Figure 4
Pseudo-code of the greedy adaptive procedure

generated: the optimized offspring solution and its counterpart (the opposite offspring solution). The crossover is called
the backbone and opposition-based crossover and its high-level description is given in Figure 3. Some specific details
are as follows.

The values of the short-term array (gene frequencies) 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are calculated by this expression:

 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖) = ��𝑗𝑗𝑗𝑗: 𝑗𝑗𝑗𝑗 ∈ �𝑝𝑝𝑝𝑝′(𝑘𝑘𝑘𝑘):𝑘𝑘𝑘𝑘 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑗𝑗𝑗𝑗 ∈ �𝑝𝑝𝑝𝑝′′(𝑘𝑘𝑘𝑘): 𝑘𝑘𝑘𝑘 = 1, … ,𝑚𝑚𝑚𝑚���, 𝑖𝑖𝑖𝑖 = 1, … 𝑛𝑛𝑛𝑛 (9)

where 𝑝𝑝𝑝𝑝′, 𝑝𝑝𝑝𝑝′′ are the corresponding parental solutions. The m genes with the most frequency are then chosen to form the
backbone solution 𝑝𝑝𝑝𝑝. After this, we apply the greedy adaptive procedure, which respects only 𝑚𝑚𝑚𝑚 2⁄ genes with the
largest frequency. So, the GAP receives a partial solution 𝑝𝑝𝑝𝑝 (the elements 𝑝𝑝𝑝𝑝(1), …, 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 2⁄)) as an input. The
GAP chooses the element, one at a time, and adds it to the current partial solution. In particular, GAP adds, at each
iteration 𝑞𝑞𝑞𝑞 (𝑞𝑞𝑞𝑞 = 1, … ,𝑚𝑚𝑚𝑚 2⁄), the element from the set of unselected elements {𝑗𝑗𝑗𝑗: 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛} ∖ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚 2⁄ +
𝑞𝑞𝑞𝑞 − 1} with the minimum contribution value (see formula (7)) across all the unselected elements, i.e.,

𝑗𝑗𝑗𝑗 = argmin
𝑖𝑖𝑖𝑖∈{𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖=1,…,𝑛𝑛𝑛𝑛}∖{𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖):𝑖𝑖𝑖𝑖=1,…,𝑚𝑚𝑚𝑚 2⁄ +𝑞𝑞𝑞𝑞−1}

�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗)�� . This is continued until the solution has been completed (see Figure 4). Note

that the objective function value 𝑧𝑧𝑧𝑧 can be obtained from the 𝑐𝑐𝑐𝑐 values by the equation: 𝑧𝑧𝑧𝑧 = 2∑ 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗)�𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 . The

complexity of the GAP algorithm is 𝑂𝑂𝑂𝑂(𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛).

procedure Backbone_and_Opposition_Based_Crossover; // backbone and opposition-based crossover for the GP-QAP
// input: n, m,
// p′, p′′ − parents
// output: 𝑝𝑝𝑝𝑝° − partially optimized offspring solution, 𝑝𝑝𝑝𝑝°°− opposition-based offspring solution

begin
 // construction of the backbone solution with respect to the parental solutions p′, p′′
 calculate the values of the short-term array (gene frequencies) 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖), i = 1, …, n; // see formula(9)
 pick up m genes with the largest frequency (break ties randomly),
 the chosen m genes form the backbone solution 𝑝𝑝𝑝𝑝;
 // partial optimization of the backbone solution
 disregard 𝑚𝑚𝑚𝑚 2⁄ genes of the backbone solution 𝑝𝑝𝑝𝑝

 (the genes with the smallest frequency are disregarded (ties are resolved randomly));
 apply Greedy_Adaptive_Procedure to the partial backbone solution 𝑝𝑝𝑝𝑝,
 get a partially optimized complete offspring solution 𝑝𝑝𝑝𝑝°;
 // construction of the opposition-based solution
 generate an opposition-based offspring solution 𝑝𝑝𝑝𝑝°° with respect to 𝑝𝑝𝑝𝑝°, i.e., 𝑝𝑝𝑝𝑝°° = 𝑝𝑝𝑝𝑝°
end.

Figure 3. Pseudo-code of the backbone and opposition-based crossover

procedure Greedy_Adaptive_Procedure; // greedy adaptive procedure for the GP-QAP
// input: n, m, B,
// p − partial solution, where the elements p(𝑚𝑚𝑚𝑚 2⁄ + 1), …, p(m) are disregarded
// output: p − feasible (complete) solution

begin
 for i := 1 to n do begin c(i) := 0; Selected(i) := FALSE endfor;
 for i := 1 to n do for j := 1 to 𝑚𝑚𝑚𝑚 2⁄ − 1 do c(i) := c(i) + B(i, p(j)); // calculation of contributions (c)
 for i := 1 to 𝑚𝑚𝑚𝑚 2⁄ do Selected(p(i)) := TRUE; // initialization of Selected
 i := 𝑚𝑚𝑚𝑚 2⁄ ; k := p(𝑚𝑚𝑚𝑚 2⁄);
 for q := 1 to 𝑚𝑚𝑚𝑚 2⁄ do begin // cycle is repeated until the solution has been completed
 minimum_contribution := ∞;
 for j := 1 to n do
 if Selected(j) = FALSE then begin
 c(j) := c(j) + B(j, k); if c(j) < minimum_contribution then begin minimum_contribution := c(j); jmin := j endif
 endif;
 i := i + 1; p(i) := jmin; // the element with the minimum contribution is added to the solution
 Selected(p(i)) := TRUE; k := jmin
 endfor;
 i := m + 1; for j := 1 to n do // assigning values to the elements p(m + 1), …, p(n)
 if Selected(j) = FALSE then begin p(i) := j; i := i + 1 endif
end.

Figure 4. Pseudo-code of the greedy adaptive procedure

The principle of greedy adaptive algorithm is not new and it is in its nature similar to "greedy randomized adaptive
search procedures" (GRASP) [7]. GAP is adaptive since it selects the current element with respect to the already

generated: the optimized offspring solution and its counterpart (the opposite offspring solution). The crossover is called
the backbone and opposition-based crossover and its high-level description is given in Figure 3. Some specific details
are as follows.

The values of the short-term array (gene frequencies) 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are calculated by this expression:

 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖) = ��𝑗𝑗𝑗𝑗: 𝑗𝑗𝑗𝑗 ∈ �𝑝𝑝𝑝𝑝′(𝑘𝑘𝑘𝑘):𝑘𝑘𝑘𝑘 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑗𝑗𝑗𝑗 ∈ �𝑝𝑝𝑝𝑝′′(𝑘𝑘𝑘𝑘): 𝑘𝑘𝑘𝑘 = 1, … ,𝑚𝑚𝑚𝑚���, 𝑖𝑖𝑖𝑖 = 1, … 𝑛𝑛𝑛𝑛 (9)

where 𝑝𝑝𝑝𝑝′, 𝑝𝑝𝑝𝑝′′ are the corresponding parental solutions. The m genes with the most frequency are then chosen to form the
backbone solution 𝑝𝑝𝑝𝑝. After this, we apply the greedy adaptive procedure, which respects only 𝑚𝑚𝑚𝑚 2⁄ genes with the
largest frequency. So, the GAP receives a partial solution 𝑝𝑝𝑝𝑝 (the elements 𝑝𝑝𝑝𝑝(1), …, 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 2⁄)) as an input. The
GAP chooses the element, one at a time, and adds it to the current partial solution. In particular, GAP adds, at each
iteration 𝑞𝑞𝑞𝑞 (𝑞𝑞𝑞𝑞 = 1, … ,𝑚𝑚𝑚𝑚 2⁄), the element from the set of unselected elements {𝑗𝑗𝑗𝑗: 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛} ∖ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚 2⁄ +
𝑞𝑞𝑞𝑞 − 1} with the minimum contribution value (see formula (7)) across all the unselected elements, i.e.,

𝑗𝑗𝑗𝑗 = argmin
𝑖𝑖𝑖𝑖∈{𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖=1,…,𝑛𝑛𝑛𝑛}∖{𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖):𝑖𝑖𝑖𝑖=1,…,𝑚𝑚𝑚𝑚 2⁄ +𝑞𝑞𝑞𝑞−1}

�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗)�� . This is continued until the solution has been completed (see Figure 4). Note

that the objective function value 𝑧𝑧𝑧𝑧 can be obtained from the 𝑐𝑐𝑐𝑐 values by the equation: 𝑧𝑧𝑧𝑧 = 2∑ 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗)�𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 . The

complexity of the GAP algorithm is 𝑂𝑂𝑂𝑂(𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛).

procedure Backbone_and_Opposition_Based_Crossover; // backbone and opposition-based crossover for the GP-QAP
// input: n, m,
// p′, p′′ − parents
// output: 𝑝𝑝𝑝𝑝° − partially optimized offspring solution, 𝑝𝑝𝑝𝑝°°− opposition-based offspring solution

begin
 // construction of the backbone solution with respect to the parental solutions p′, p′′
 calculate the values of the short-term array (gene frequencies) 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖), i = 1, …, n; // see formula(9)
 pick up m genes with the largest frequency (break ties randomly),
 the chosen m genes form the backbone solution 𝑝𝑝𝑝𝑝;
 // partial optimization of the backbone solution
 disregard 𝑚𝑚𝑚𝑚 2⁄ genes of the backbone solution 𝑝𝑝𝑝𝑝

 (the genes with the smallest frequency are disregarded (ties are resolved randomly));
 apply Greedy_Adaptive_Procedure to the partial backbone solution 𝑝𝑝𝑝𝑝,
 get a partially optimized complete offspring solution 𝑝𝑝𝑝𝑝°;
 // construction of the opposition-based solution
 generate an opposition-based offspring solution 𝑝𝑝𝑝𝑝°° with respect to 𝑝𝑝𝑝𝑝°, i.e., 𝑝𝑝𝑝𝑝°° = 𝑝𝑝𝑝𝑝°
end.

Figure 3. Pseudo-code of the backbone and opposition-based crossover

procedure Greedy_Adaptive_Procedure; // greedy adaptive procedure for the GP-QAP
// input: n, m, B,
// p − partial solution, where the elements p(𝑚𝑚𝑚𝑚 2⁄ + 1), …, p(m) are disregarded
// output: p − feasible (complete) solution

begin
 for i := 1 to n do begin c(i) := 0; Selected(i) := FALSE endfor;
 for i := 1 to n do for j := 1 to 𝑚𝑚𝑚𝑚 2⁄ − 1 do c(i) := c(i) + B(i, p(j)); // calculation of contributions (c)
 for i := 1 to 𝑚𝑚𝑚𝑚 2⁄ do Selected(p(i)) := TRUE; // initialization of Selected
 i := 𝑚𝑚𝑚𝑚 2⁄ ; k := p(𝑚𝑚𝑚𝑚 2⁄);
 for q := 1 to 𝑚𝑚𝑚𝑚 2⁄ do begin // cycle is repeated until the solution has been completed
 minimum_contribution := ∞;
 for j := 1 to n do
 if Selected(j) = FALSE then begin
 c(j) := c(j) + B(j, k); if c(j) < minimum_contribution then begin minimum_contribution := c(j); jmin := j endif
 endif;
 i := i + 1; p(i) := jmin; // the element with the minimum contribution is added to the solution
 Selected(p(i)) := TRUE; k := jmin
 endfor;
 i := m + 1; for j := 1 to n do // assigning values to the elements p(m + 1), …, p(n)
 if Selected(j) = FALSE then begin p(i) := j; i := i + 1 endif
end.

The principle of greedy

search procedures" (GRASP) [7]. GAP is adaptive since it selects the current element with respect to the already

,
, (9)

509Information Technology and Control 2018/3/47

2.4. Improvement of the Offspring: A
Hierarchical Iterated Tabu Search Algorithm
2.4.1. Hierarchical Iterated Tabu Search
Algorithm
Our proposed hierarchical iterated tabu search algo-
rithm follows the hierarchical iterated local search
paradigm [10]. The central idea is that the further
enhancement of local search-based algorithms is
achieved by intelligently developing the inner struc-
ture (architecture) of the algorithms and creating
hierarchically structured (hierarchical) algorithms
(HAs). The basic principle behind HA is the multi-
ple utilization (reuse) of the well-known heuristic
algorithm (like the local search (LS) or tabu search
(TS)). In the case of TS, we firstly obtain an iterated
tabu search — ITS — by combining tabu search and
some perturbations. Further, the ITS algorithm itself
is combined with the other ITS algorithm, which re-

where 𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 are the corresponding parental solutions.
The m genes with the most frequency are then chosen
to form the backbone solution 𝑝𝑝. After this, we apply
the greedy adaptive procedure, which respects only
𝑚𝑚 𝑚⁄ genes with the largest frequency. So, the GAP re-
ceives a partial solution 𝑝𝑝 (the elements 𝑝𝑝(1), …,
𝑝𝑝(𝑚𝑚 𝑚⁄)) as an input. The GAP chooses the element,
one at a time, and adds it to the current partial solution.
In particular, GAP adds, at each iteration 𝑞𝑞 (𝑞𝑞 𝑞
1, … , 𝑚𝑚 𝑚⁄), the element from the set of unselected ele-
ments �𝑗𝑗𝑗 𝑗𝑗 𝑞 1, … , 𝑗𝑗� ∖ �𝑝𝑝(𝑖𝑖)𝑗 𝑖𝑖 𝑞 1, … , 𝑚𝑚 𝑚⁄ + 𝑞𝑞 𝑞 1�
with the minimum contribution value (see formula (7))
across all the unselected elements, i.e.,

𝑗𝑗 𝑞 𝑗𝑗𝑗𝑗𝑗𝑗
����𝑗���,…,��∖��(�)𝑗���,…,� �⁄ �����

�𝑐𝑐�𝑝𝑝(𝑗𝑗)�� . This is contin-

ued until the solution has been completed (see Fig-
ure 4). Note that the objective function value 𝑧𝑧 can be
obtained from the 𝑐𝑐 values by the equation: 𝑧𝑧 𝑞
𝑚 ∑ 𝑐𝑐�𝑝𝑝(𝑗𝑗)��

��� . The complexity of the GAP algorithm is
𝑂𝑂(𝑚𝑚𝑗𝑗).
 The principle of greedy adaptive algorithm is not new
and it is in its nature similar to "greedy randomized
adaptive search procedures" (GRASP) [7]. GAP is
adaptive since it selects the current element with re-
spect to the already selected elements and the set of
selected elements is updated at every iteration. The
greedy component of GAP is that it always chooses
the element with the minimum possible contribution.
However, randomization is absent in GAP.
For the generation of opposite solution, we utilize a long
term frequency array 𝑓𝑓�������. The initialization of 𝑓𝑓�������
is done before running the genetic algorithm. The val-
ues of 𝑓𝑓������� are updated each time the new optimized
backbone solution is constructed, i.e., 𝑓𝑓��������𝑝𝑝�𝑖𝑖�� �
𝑓𝑓��������𝑝𝑝�𝑖𝑖�� � �, where 𝑝𝑝 is the optimized backbone
solution. To get the opposition-based solution, it is suf-
ficient to pick up 𝑚𝑚 items with the smallest frequency.

sults in the "ITS-ITS" algorithm. This can be further
iterated. Thus, we can define a hierarchy of many
"copies" of the ITS algorithms embedded within each
other. Each copy contains the three main ingredients:
1) invocation of the iterated tabu search procedure;
2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the
hierarchical ITS algorithm. In the simplest way, the TS
procedure uses the 1-exchange neighbourhood Θ1. In
particular, TS starts with the current solution and iter-
atively swaps an element of the set M = {p(i) : i = 1, …, m}
with an element of the set N = {p(i) : i = m + 1, …, n} such
that the objective function value is minimized taking
into account the tabu condition and aspiration criterion.
To reduce the computational time, we use the mod-
ified neighbourhood Θ1

*, which is defined as follows
(see also [18]):

selected elements and the set of selected elements is updated at every iteration. The greedy component of GAP is that it
always chooses the element with the minimum possible contribution. However, randomization is absent in GAP.

For the generation of opposite solution, we utilize a long term frequency array 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The initialization of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is
done before running the genetic algorithm. The values of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are updated each time the new optimized backbone
solution is constructed, i.e., 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝° is the optimized backbone solution. To get
the opposition-based solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency.

2.4. Improvement of the Offspring: A Hierarchical Iterated Tabu Search Algorithm

2.4.1. Hierarchical Iterated Tabu Search Algorithm
Our proposed hierarchical iterated tabu search algorithm follows the hierarchical iterated local search paradigm

[10]. The central idea is that the further enhancement of local search-based algorithms is achieved by intelligently
developing the inner structure (architecture) of the algorithms and creating hierarchically structured (hierarchical)
algorithms (HAs). The basic principle behind HA is the multiple utilization (reuse) of the well-known heuristic
algorithm (like the local search (LS) or tabu search (TS)). In the case of TS, we firstly obtain an iterated tabu search —
ITS — by combining tabu search and some perturbations. Further, the ITS algorithm itself is combined with the other
ITS algorithm, which results in the "ITS-ITS" algorithm. This can be further iterated. Thus, we can define a hierarchy of
many "copies" of the ITS algorithms embedded within each other. Each copy contains the three main ingredients:
1) invocation of the iterated tabu search procedure; 2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the hierarchical ITS algorithm. In the simplest way, the TS

procedure uses the 1-exchange neighbourhood 𝛩𝛩𝛩𝛩1. In particular, TS starts with the current solution and iteratively swaps
an element of the set 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with an element of the set 𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛} such that the
objective function value is minimized taking into account the tabu condition and aspiration criterion.

To reduce the computational time, we use the modified neighbourhood 𝛩𝛩𝛩𝛩1∗, which is defined as follows (see also
[18]):

𝛩𝛩𝛩𝛩1∗(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′:𝑝𝑝𝑝𝑝′ ∈ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∖ {𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)} ∪ {𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)}, 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) ∈ 𝑀𝑀𝑀𝑀′, 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) ∈ 𝑁𝑁𝑁𝑁′} (10)

where 𝑣𝑣𝑣𝑣 = 1, … , |𝑀𝑀𝑀𝑀′|, 𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑚𝑚𝑚𝑚 + |𝑀𝑀𝑀𝑀′|. Sets 𝑀𝑀𝑀𝑀′, 𝑁𝑁𝑁𝑁′ are formed in the following way:

𝑀𝑀𝑀𝑀′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≥ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑁𝑁𝑁𝑁′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≤ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2, 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� (11)

where c is the contribution array, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1 = max�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚� − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2 = min�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max{𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘: 𝑘𝑘𝑘𝑘 = 1, … 𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙 = 1, …𝑛𝑛𝑛𝑛}, 𝜌𝜌𝜌𝜌 (𝜌𝜌𝜌𝜌 > 0) is a parameter (a neighbourhood size
factor).

The tabu list 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is organized as a matrix, where the tabu list entry 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) stores the current
iteration number plus the tabu tenure h, i.e., the number of the iteration starting at which the corresponding elements
(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) may again be interchanged. The tabu tenure is fixed at the pre-defined value (ℎ = ⌊0.3𝑚𝑚𝑚𝑚⌋). The
interchange of elements 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) is not allowed if the value of 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� is equal or greater than the
current iteration number. The tabu status is ignored if the aspiration criterion is met, i.e., the interchange results in a
solution that is better than the best so far solution. In addition, we disregard the tabu status with a small probability 𝛼𝛼𝛼𝛼,
(𝛼𝛼𝛼𝛼 = 0.02) even if the aspiration criterion does not hold. This slightly increases the number of accepted moves and
helps avoiding potential stagnation of the search.

In addition to the tabu list, we also use a long-term memory like mechanism to maintain an archive of good solutions
that were evaluated but not chosen [4]. The goal is to diversify the search process and explore more regions of the search
space. To implement this mechanism, a list called an archive (𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) is used, which is composed of so-called "second"
solutions. In particular, at each iteration, the best chosen solution becomes the current solution, while the second best
solution 𝑝𝑝𝑝𝑝~ is included in 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟. The tabu search restarts from one of these solutions when the best found solution is
not improved for 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 iterations (𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 is called an idle iterations limit). In our algorithm, 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 = ⌊0.2𝜏𝜏𝜏𝜏⌋,
where 𝜏𝜏𝜏𝜏 is the number of tabu search iterations. Note that it is required to save the whole information, i.e., the current
solution 𝑝𝑝𝑝𝑝, the contributions 𝑐𝑐𝑐𝑐, and the indices of the elements which generate 𝑝𝑝𝑝𝑝~. 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is emptied after finishing the
TS procedure. The pseudo-code of the tabu search procedure is shown in Figure 5.

B. Iterated tabu search
In the iterated tabu search algorithm, the self-contained tabu search described above is combined with some sort of

perturbations (see Section 2.4.3). The TS procedure transforms the current solution into the optimized solution.
Perturbation is applied to chosen optimized candidate solution that is selected by a defined candidate acception rule (see
Section 2.4.2). The perturbed solution serves as an input for the self-contained TS procedure, which starts immediately
after the perturbation procedure has been executed. TS again returns an improved solution. This solution (or possibly
some other previously optimized solution), in turn, is perturbed, and so on. The best found solution is regarded as the
resulting solution of ITS. The overall process continues until a pre-defined number of iterations have been performed
(see Figure 6).

selected elements and the set of selected elements is updated at every iteration. The greedy component of GAP is that it
always chooses the element with the minimum possible contribution. However, randomization is absent in GAP.

For the generation of opposite solution, we utilize a long term frequency array 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The initialization of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is
done before running the genetic algorithm. The values of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are updated each time the new optimized backbone
solution is constructed, i.e., 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝° is the optimized backbone solution. To get
the opposition-based solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency.

2.4. Improvement of the Offspring: A Hierarchical Iterated Tabu Search Algorithm

2.4.1. Hierarchical Iterated Tabu Search Algorithm
Our proposed hierarchical iterated tabu search algorithm follows the hierarchical iterated local search paradigm

[10]. The central idea is that the further enhancement of local search-based algorithms is achieved by intelligently
developing the inner structure (architecture) of the algorithms and creating hierarchically structured (hierarchical)
algorithms (HAs). The basic principle behind HA is the multiple utilization (reuse) of the well-known heuristic
algorithm (like the local search (LS) or tabu search (TS)). In the case of TS, we firstly obtain an iterated tabu search —
ITS — by combining tabu search and some perturbations. Further, the ITS algorithm itself is combined with the other
ITS algorithm, which results in the "ITS-ITS" algorithm. This can be further iterated. Thus, we can define a hierarchy of
many "copies" of the ITS algorithms embedded within each other. Each copy contains the three main ingredients:
1) invocation of the iterated tabu search procedure; 2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the hierarchical ITS algorithm. In the simplest way, the TS

procedure uses the 1-exchange neighbourhood 𝛩𝛩𝛩𝛩1. In particular, TS starts with the current solution and iteratively swaps
an element of the set 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with an element of the set 𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛} such that the
objective function value is minimized taking into account the tabu condition and aspiration criterion.

To reduce the computational time, we use the modified neighbourhood 𝛩𝛩𝛩𝛩1∗, which is defined as follows (see also
[18]):

𝛩𝛩𝛩𝛩1∗(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′:𝑝𝑝𝑝𝑝′ ∈ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∖ {𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)} ∪ {𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)}, 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) ∈ 𝑀𝑀𝑀𝑀′, 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) ∈ 𝑁𝑁𝑁𝑁′} (10)

where 𝑣𝑣𝑣𝑣 = 1, … , |𝑀𝑀𝑀𝑀′|, 𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑚𝑚𝑚𝑚 + |𝑀𝑀𝑀𝑀′|. Sets 𝑀𝑀𝑀𝑀′, 𝑁𝑁𝑁𝑁′ are formed in the following way:

𝑀𝑀𝑀𝑀′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≥ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑁𝑁𝑁𝑁′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≤ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2, 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� (11)

where c is the contribution array, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1 = max�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚� − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2 = min�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max{𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘: 𝑘𝑘𝑘𝑘 = 1, … 𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙 = 1, …𝑛𝑛𝑛𝑛}, 𝜌𝜌𝜌𝜌 (𝜌𝜌𝜌𝜌 > 0) is a parameter (a neighbourhood size
factor).

The tabu list 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is organized as a matrix, where the tabu list entry 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) stores the current
iteration number plus the tabu tenure h, i.e., the number of the iteration starting at which the corresponding elements
(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) may again be interchanged. The tabu tenure is fixed at the pre-defined value (ℎ = ⌊0.3𝑚𝑚𝑚𝑚⌋). The
interchange of elements 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) is not allowed if the value of 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� is equal or greater than the
current iteration number. The tabu status is ignored if the aspiration criterion is met, i.e., the interchange results in a
solution that is better than the best so far solution. In addition, we disregard the tabu status with a small probability 𝛼𝛼𝛼𝛼,
(𝛼𝛼𝛼𝛼 = 0.02) even if the aspiration criterion does not hold. This slightly increases the number of accepted moves and
helps avoiding potential stagnation of the search.

In addition to the tabu list, we also use a long-term memory like mechanism to maintain an archive of good solutions
that were evaluated but not chosen [4]. The goal is to diversify the search process and explore more regions of the search
space. To implement this mechanism, a list called an archive (𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) is used, which is composed of so-called "second"
solutions. In particular, at each iteration, the best chosen solution becomes the current solution, while the second best
solution 𝑝𝑝𝑝𝑝~ is included in 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟. The tabu search restarts from one of these solutions when the best found solution is
not improved for 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 iterations (𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 is called an idle iterations limit). In our algorithm, 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 = ⌊0.2𝜏𝜏𝜏𝜏⌋,
where 𝜏𝜏𝜏𝜏 is the number of tabu search iterations. Note that it is required to save the whole information, i.e., the current
solution 𝑝𝑝𝑝𝑝, the contributions 𝑐𝑐𝑐𝑐, and the indices of the elements which generate 𝑝𝑝𝑝𝑝~. 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is emptied after finishing the
TS procedure. The pseudo-code of the tabu search procedure is shown in Figure 5.

B. Iterated tabu search
In the iterated tabu search algorithm, the self-contained tabu search described above is combined with some sort of

perturbations (see Section 2.4.3). The TS procedure transforms the current solution into the optimized solution.
Perturbation is applied to chosen optimized candidate solution that is selected by a defined candidate acception rule (see
Section 2.4.2). The perturbed solution serves as an input for the self-contained TS procedure, which starts immediately
after the perturbation procedure has been executed. TS again returns an improved solution. This solution (or possibly
some other previously optimized solution), in turn, is perturbed, and so on. The best found solution is regarded as the
resulting solution of ITS. The overall process continues until a pre-defined number of iterations have been performed
(see Figure 6).

(10)

where v =1, … ,|M'|, w = m + 1, …, m + |M' |. Sets M', N' are
formed in the following way:

selected elements and the set of selected elements is updated at every iteration. The greedy component of GAP is that it
always chooses the element with the minimum possible contribution. However, randomization is absent in GAP.

For the generation of opposite solution, we utilize a long term frequency array 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The initialization of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is
done before running the genetic algorithm. The values of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are updated each time the new optimized backbone
solution is constructed, i.e., 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝° is the optimized backbone solution. To get
the opposition-based solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency.

2.4. Improvement of the Offspring: A Hierarchical Iterated Tabu Search Algorithm

2.4.1. Hierarchical Iterated Tabu Search Algorithm
Our proposed hierarchical iterated tabu search algorithm follows the hierarchical iterated local search paradigm

[10]. The central idea is that the further enhancement of local search-based algorithms is achieved by intelligently
developing the inner structure (architecture) of the algorithms and creating hierarchically structured (hierarchical)
algorithms (HAs). The basic principle behind HA is the multiple utilization (reuse) of the well-known heuristic
algorithm (like the local search (LS) or tabu search (TS)). In the case of TS, we firstly obtain an iterated tabu search —
ITS — by combining tabu search and some perturbations. Further, the ITS algorithm itself is combined with the other
ITS algorithm, which results in the "ITS-ITS" algorithm. This can be further iterated. Thus, we can define a hierarchy of
many "copies" of the ITS algorithms embedded within each other. Each copy contains the three main ingredients:
1) invocation of the iterated tabu search procedure; 2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the hierarchical ITS algorithm. In the simplest way, the TS

procedure uses the 1-exchange neighbourhood 𝛩𝛩𝛩𝛩1. In particular, TS starts with the current solution and iteratively swaps
an element of the set 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with an element of the set 𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛} such that the
objective function value is minimized taking into account the tabu condition and aspiration criterion.

To reduce the computational time, we use the modified neighbourhood 𝛩𝛩𝛩𝛩1∗, which is defined as follows (see also
[18]):

𝛩𝛩𝛩𝛩1∗(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′:𝑝𝑝𝑝𝑝′ ∈ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∖ {𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)} ∪ {𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)}, 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) ∈ 𝑀𝑀𝑀𝑀′, 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) ∈ 𝑁𝑁𝑁𝑁′} (10)

where 𝑣𝑣𝑣𝑣 = 1, … , |𝑀𝑀𝑀𝑀′|, 𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑚𝑚𝑚𝑚 + |𝑀𝑀𝑀𝑀′|. Sets 𝑀𝑀𝑀𝑀′, 𝑁𝑁𝑁𝑁′ are formed in the following way:

𝑀𝑀𝑀𝑀′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≥ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑁𝑁𝑁𝑁′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≤ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2, 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� (11)

where c is the contribution array, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1 = max�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚� − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2 = min�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max{𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘: 𝑘𝑘𝑘𝑘 = 1, … 𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙 = 1, …𝑛𝑛𝑛𝑛}, 𝜌𝜌𝜌𝜌 (𝜌𝜌𝜌𝜌 > 0) is a parameter (a neighbourhood size
factor).

The tabu list 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is organized as a matrix, where the tabu list entry 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) stores the current
iteration number plus the tabu tenure h, i.e., the number of the iteration starting at which the corresponding elements
(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) may again be interchanged. The tabu tenure is fixed at the pre-defined value (ℎ = ⌊0.3𝑚𝑚𝑚𝑚⌋). The
interchange of elements 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) is not allowed if the value of 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� is equal or greater than the
current iteration number. The tabu status is ignored if the aspiration criterion is met, i.e., the interchange results in a
solution that is better than the best so far solution. In addition, we disregard the tabu status with a small probability 𝛼𝛼𝛼𝛼,
(𝛼𝛼𝛼𝛼 = 0.02) even if the aspiration criterion does not hold. This slightly increases the number of accepted moves and
helps avoiding potential stagnation of the search.

In addition to the tabu list, we also use a long-term memory like mechanism to maintain an archive of good solutions
that were evaluated but not chosen [4]. The goal is to diversify the search process and explore more regions of the search
space. To implement this mechanism, a list called an archive (𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) is used, which is composed of so-called "second"
solutions. In particular, at each iteration, the best chosen solution becomes the current solution, while the second best
solution 𝑝𝑝𝑝𝑝~ is included in 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟. The tabu search restarts from one of these solutions when the best found solution is
not improved for 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 iterations (𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 is called an idle iterations limit). In our algorithm, 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 = ⌊0.2𝜏𝜏𝜏𝜏⌋,
where 𝜏𝜏𝜏𝜏 is the number of tabu search iterations. Note that it is required to save the whole information, i.e., the current
solution 𝑝𝑝𝑝𝑝, the contributions 𝑐𝑐𝑐𝑐, and the indices of the elements which generate 𝑝𝑝𝑝𝑝~. 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is emptied after finishing the
TS procedure. The pseudo-code of the tabu search procedure is shown in Figure 5.

B. Iterated tabu search
In the iterated tabu search algorithm, the self-contained tabu search described above is combined with some sort of

perturbations (see Section 2.4.3). The TS procedure transforms the current solution into the optimized solution.
Perturbation is applied to chosen optimized candidate solution that is selected by a defined candidate acception rule (see
Section 2.4.2). The perturbed solution serves as an input for the self-contained TS procedure, which starts immediately
after the perturbation procedure has been executed. TS again returns an improved solution. This solution (or possibly
some other previously optimized solution), in turn, is perturbed, and so on. The best found solution is regarded as the
resulting solution of ITS. The overall process continues until a pre-defined number of iterations have been performed
(see Figure 6).

selected elements and the set of selected elements is updated at every iteration. The greedy component of GAP is that it
always chooses the element with the minimum possible contribution. However, randomization is absent in GAP.

For the generation of opposite solution, we utilize a long term frequency array 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The initialization of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is
done before running the genetic algorithm. The values of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are updated each time the new optimized backbone
solution is constructed, i.e., 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝° is the optimized backbone solution. To get
the opposition-based solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency.

2.4. Improvement of the Offspring: A Hierarchical Iterated Tabu Search Algorithm

2.4.1. Hierarchical Iterated Tabu Search Algorithm
Our proposed hierarchical iterated tabu search algorithm follows the hierarchical iterated local search paradigm

[10]. The central idea is that the further enhancement of local search-based algorithms is achieved by intelligently
developing the inner structure (architecture) of the algorithms and creating hierarchically structured (hierarchical)
algorithms (HAs). The basic principle behind HA is the multiple utilization (reuse) of the well-known heuristic
algorithm (like the local search (LS) or tabu search (TS)). In the case of TS, we firstly obtain an iterated tabu search —
ITS — by combining tabu search and some perturbations. Further, the ITS algorithm itself is combined with the other
ITS algorithm, which results in the "ITS-ITS" algorithm. This can be further iterated. Thus, we can define a hierarchy of
many "copies" of the ITS algorithms embedded within each other. Each copy contains the three main ingredients:
1) invocation of the iterated tabu search procedure; 2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the hierarchical ITS algorithm. In the simplest way, the TS

procedure uses the 1-exchange neighbourhood 𝛩𝛩𝛩𝛩1. In particular, TS starts with the current solution and iteratively swaps
an element of the set 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with an element of the set 𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛} such that the
objective function value is minimized taking into account the tabu condition and aspiration criterion.

To reduce the computational time, we use the modified neighbourhood 𝛩𝛩𝛩𝛩1∗, which is defined as follows (see also
[18]):

𝛩𝛩𝛩𝛩1∗(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′:𝑝𝑝𝑝𝑝′ ∈ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∖ {𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)} ∪ {𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)}, 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) ∈ 𝑀𝑀𝑀𝑀′, 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) ∈ 𝑁𝑁𝑁𝑁′} (10)

where 𝑣𝑣𝑣𝑣 = 1, … , |𝑀𝑀𝑀𝑀′|, 𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑚𝑚𝑚𝑚 + |𝑀𝑀𝑀𝑀′|. Sets 𝑀𝑀𝑀𝑀′, 𝑁𝑁𝑁𝑁′ are formed in the following way:

𝑀𝑀𝑀𝑀′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≥ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑁𝑁𝑁𝑁′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≤ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2, 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� (11)

where c is the contribution array, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1 = max�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚� − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2 = min�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max{𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘: 𝑘𝑘𝑘𝑘 = 1, … 𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙 = 1, …𝑛𝑛𝑛𝑛}, 𝜌𝜌𝜌𝜌 (𝜌𝜌𝜌𝜌 > 0) is a parameter (a neighbourhood size
factor).

The tabu list 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is organized as a matrix, where the tabu list entry 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) stores the current
iteration number plus the tabu tenure h, i.e., the number of the iteration starting at which the corresponding elements
(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) may again be interchanged. The tabu tenure is fixed at the pre-defined value (ℎ = ⌊0.3𝑚𝑚𝑚𝑚⌋). The
interchange of elements 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) is not allowed if the value of 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� is equal or greater than the
current iteration number. The tabu status is ignored if the aspiration criterion is met, i.e., the interchange results in a
solution that is better than the best so far solution. In addition, we disregard the tabu status with a small probability 𝛼𝛼𝛼𝛼,
(𝛼𝛼𝛼𝛼 = 0.02) even if the aspiration criterion does not hold. This slightly increases the number of accepted moves and
helps avoiding potential stagnation of the search.

In addition to the tabu list, we also use a long-term memory like mechanism to maintain an archive of good solutions
that were evaluated but not chosen [4]. The goal is to diversify the search process and explore more regions of the search
space. To implement this mechanism, a list called an archive (𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) is used, which is composed of so-called "second"
solutions. In particular, at each iteration, the best chosen solution becomes the current solution, while the second best
solution 𝑝𝑝𝑝𝑝~ is included in 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟. The tabu search restarts from one of these solutions when the best found solution is
not improved for 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 iterations (𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 is called an idle iterations limit). In our algorithm, 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 = ⌊0.2𝜏𝜏𝜏𝜏⌋,
where 𝜏𝜏𝜏𝜏 is the number of tabu search iterations. Note that it is required to save the whole information, i.e., the current
solution 𝑝𝑝𝑝𝑝, the contributions 𝑐𝑐𝑐𝑐, and the indices of the elements which generate 𝑝𝑝𝑝𝑝~. 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is emptied after finishing the
TS procedure. The pseudo-code of the tabu search procedure is shown in Figure 5.

B. Iterated tabu search
In the iterated tabu search algorithm, the self-contained tabu search described above is combined with some sort of

perturbations (see Section 2.4.3). The TS procedure transforms the current solution into the optimized solution.
Perturbation is applied to chosen optimized candidate solution that is selected by a defined candidate acception rule (see
Section 2.4.2). The perturbed solution serves as an input for the self-contained TS procedure, which starts immediately
after the perturbation procedure has been executed. TS again returns an improved solution. This solution (or possibly
some other previously optimized solution), in turn, is perturbed, and so on. The best found solution is regarded as the
resulting solution of ITS. The overall process continues until a pre-defined number of iterations have been performed
(see Figure 6).

(11)

where c is the contribution array, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
max�𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑘𝑘𝑘 𝑘𝑚𝑚� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
m���𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑚𝑚 � 𝑘𝑘𝑘 𝑘 𝑘𝑘� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
max�𝑏𝑏��: 𝑘𝑘 = 𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡 = 𝑘𝑘𝑘𝑘𝑘�, 𝜌𝜌 (𝜌𝜌 𝜌 𝜌) is a parame-
ter (a neighbourhood size factor).
The tabu list 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡 is organized as a matrix, where the
tabu list entry 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) stores the current
iteration number plus the tabu tenure h, i.e., the number
of the iteration starting at which the corresponding ele-
ments (𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) may again be interchanged. The
tabu tenure is fixed at the pre-defined value (𝑡 =
⌊𝜌.3𝑚𝑚⌋). The interchange of elements 𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝) is not
allowed if the value of 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)� is equal or
greater than the current iteration number. The tabu
status is ignored if the aspiration criterion is met, i.e.,
the interchange results in a solution that is better than
the best so far solution. In addition, we disregard the
tabu status with a small probability 𝛼𝛼, (𝛼𝛼 = 𝜌.𝜌𝛼) even
if the aspiration criterion does not hold. This slightly in-
creases the number of accepted moves and helps avoid-
ing potential stagnation of the search.
In addition to the tabu list, we also use a long-term
memory like mechanism to maintain an archive of good
solutions that were evaluated but not chosen [4]. The goal
is to diversify the search process and explore more re-
gions of the search space. To implement this mechanism,
a list called an archive (𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡) is used, which is com-
posed of so-called "second" solutions. In particular, at
each iteration, the best chosen solution becomes the
current solution, while the second best solution 𝑇𝑇~ is
included in 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡. The tabu search restarts from one
of these solutions when the best found solution is not
improved for 𝑇𝑇��������� iterations (𝑇𝑇��������� is called an
idle iterations limit). In our algorithm, 𝑇𝑇��������� =
⌊𝜌.𝛼𝜏𝜏⌋, where 𝜏𝜏 is the number of tabu search iterations.
Note that it is required to save the whole information,
i.e., the current solution 𝑇𝑇, the contributions 𝐴𝐴, and the
indices of the elements which generate 𝑇𝑇~. 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡 is
emptied after finishing the TS procedure. The pseudo-
code of the tabu search procedure is shown in Figure 5.

Information Technology and Control 2018/3/47510

where c is the contribution array, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
max�𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑘𝑘𝑘 𝑘𝑚𝑚� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
m���𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑚𝑚 � 𝑘𝑘𝑘 𝑘 𝑘𝑘� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
max�𝑏𝑏��: 𝑘𝑘 = 𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡 = 𝑘𝑘𝑘𝑘𝑘�, 𝜌𝜌 (𝜌𝜌 𝜌 𝜌) is a parame-
ter (a neighbourhood size factor).
The tabu list 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡 is organized as a matrix, where the
tabu list entry 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) stores the current
iteration number plus the tabu tenure h, i.e., the number
of the iteration starting at which the corresponding ele-
ments (𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) may again be interchanged. The
tabu tenure is fixed at the pre-defined value (𝑡 =
⌊𝜌.3𝑚𝑚⌋). The interchange of elements 𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝) is not
allowed if the value of 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)� is equal or
greater than the current iteration number. The tabu
status is ignored if the aspiration criterion is met, i.e.,
the interchange results in a solution that is better than
the best so far solution. In addition, we disregard the
tabu status with a small probability 𝛼𝛼, (𝛼𝛼 = 𝜌.𝜌𝛼) even
if the aspiration criterion does not hold. This slightly in-
creases the number of accepted moves and helps avoid-
ing potential stagnation of the search.
In addition to the tabu list, we also use a long-term
memory like mechanism to maintain an archive of good
solutions that were evaluated but not chosen [4]. The goal
is to diversify the search process and explore more re-
gions of the search space. To implement this mechanism,
a list called an archive (𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡) is used, which is com-
posed of so-called "second" solutions. In particular, at
each iteration, the best chosen solution becomes the
current solution, while the second best solution 𝑇𝑇~ is
included in 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡. The tabu search restarts from one
of these solutions when the best found solution is not
improved for 𝑇𝑇��������� iterations (𝑇𝑇��������� is called an
idle iterations limit). In our algorithm, 𝑇𝑇��������� =
⌊𝜌.𝛼𝜏𝜏⌋, where 𝜏𝜏 is the number of tabu search iterations.
Note that it is required to save the whole information,
i.e., the current solution 𝑇𝑇, the contributions 𝐴𝐴, and the
indices of the elements which generate 𝑇𝑇~. 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡 is
emptied after finishing the TS procedure. The pseudo-
code of the tabu search procedure is shown in Figure 5.

where c is the contribution array, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
max�𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑘𝑘𝑘 𝑘𝑚𝑚� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
m���𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑚𝑚 � 𝑘𝑘𝑘 𝑘 𝑘𝑘� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
max�𝑏𝑏��: 𝑘𝑘 = 𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡 = 𝑘𝑘𝑘𝑘𝑘�, 𝜌𝜌 (𝜌𝜌 𝜌 𝜌) is a parame-
ter (a neighbourhood size factor).
The tabu list 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡 is organized as a matrix, where the
tabu list entry 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) stores the current
iteration number plus the tabu tenure h, i.e., the number
of the iteration starting at which the corresponding ele-
ments (𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) may again be interchanged. The
tabu tenure is fixed at the pre-defined value (𝑡 =
⌊𝜌.3𝑚𝑚⌋). The interchange of elements 𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝) is not
allowed if the value of 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)� is equal or
greater than the current iteration number. The tabu
status is ignored if the aspiration criterion is met, i.e.,
the interchange results in a solution that is better than
the best so far solution. In addition, we disregard the
tabu status with a small probability 𝛼𝛼, (𝛼𝛼 = 𝜌.𝜌𝛼) even
if the aspiration criterion does not hold. This slightly in-
creases the number of accepted moves and helps avoid-
ing potential stagnation of the search.
In addition to the tabu list, we also use a long-term
memory like mechanism to maintain an archive of good
solutions that were evaluated but not chosen [4]. The goal
is to diversify the search process and explore more re-
gions of the search space. To implement this mechanism,
a list called an archive (𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡) is used, which is com-
posed of so-called "second" solutions. In particular, at
each iteration, the best chosen solution becomes the
current solution, while the second best solution 𝑇𝑇~ is
included in 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡. The tabu search restarts from one
of these solutions when the best found solution is not
improved for 𝑇𝑇��������� iterations (𝑇𝑇��������� is called an
idle iterations limit). In our algorithm, 𝑇𝑇��������� =
⌊𝜌.𝛼𝜏𝜏⌋, where 𝜏𝜏 is the number of tabu search iterations.
Note that it is required to save the whole information,
i.e., the current solution 𝑇𝑇, the contributions 𝐴𝐴, and the
indices of the elements which generate 𝑇𝑇~. 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡 is
emptied after finishing the TS procedure. The pseudo-
code of the tabu search procedure is shown in Figure 5.

procedure Tabu_Search; // tabu search algorithm for the GP-QAP
// input: n, m, B,
// p − current solution
// output: p• − the best found solution (along with the corresponding contributions)
// parameters: τ − number of tabu search iterations, h − tabu tenure, α − randomization coefficient,
// ρ − parameter used to regulate the neighbourhood size,
// Lidle_iter − idle iterations limit

begin
 clear tabu list TabuList;
 p• := p; k := 1; k′ := 1; archive_counter := 0; improved := FALSE;
 while (k ≤ τ) or (improved = TRUE) then begin // main cycle
 determine sets M′, N′; m′ := | M′ |; n′ := m + | N′ | (rearrange p accordingly);
 ∆′min := ∞; ∆′′min := ∞; v′ := 1; w′ := m + 1;
 for i := 1 to m′ do
 for j := m + 1 to n′ do begin // m′(n′ − m) neighbours of p are scanned
 ∆ := 2(c(p(j)) − c(p(i)) − B(p(i), p(j)));
 forbidden := iif(((TabuList(p(i), p(j)) ≥ k) and (random() ≥ α)), TRUE, FALSE);
 aspired := iif(z(p) + ∆ < z(p•), TRUE, FALSE);
 if ((∆ < ∆′min) and (forbidden = FALSE)) or (aspired = TRUE) then begin
 if ∆ < ∆′min then begin ∆′′min := ∆′min; v′′ := v′; w′′ := w′; ∆′min := ∆; v′ := i; w′ := j endif
 else if ∆ < ∆′′min then begin ∆′′min := ∆; v′′ := i; w′′ := j endif
 endif
 endfor;
 if ∆′′min < ∞ then begin // archiving second solution, c, v′′, w′′
 archive_counter := archive_counter + 1; Archive(archive_counter) ← p, c, v′′, w′′
 endif;
 if ∆′min < ∞ then begin // replacement of the current solution and recalculation of c
 𝑝𝑝𝑝𝑝 ≔ 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣′,𝑤𝑤𝑤𝑤′

; for i := 1 to n do c(i) := c(i) + B(i, p(v′)) − B(i, p(w′));
 if z(p) < z(p•) then begin p• := p; k′ := k endif; // the best so far solution is memorized
 TabuList(p(v′), p(w′)) := k + h; TabuList(p(w′), p(v′)) := k + h // the elements p(v′), p(w′) become tabu
 endif;
 improved := iif(∆′min < 0, TRUE, FALSE);
 if (improved = FALSE) and (k − k′ > Lidle_iter) and (k <τ − Lidle_iter) then begin // retrieving solution from the archive
 random_access_index := random(archive_counter ∗ 0.8, archive_counter);
 p, c, v′′, w′′ ← Archive(random_access_index);
 𝑝𝑝𝑝𝑝 := 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣′′,𝑤𝑤𝑤𝑤′′

; for i := 1 to n do c(i) := c(i) + B(i, p(v′′)) − B(i, p(w′′));
 clear tabu list TabuList;
 TabuList(p(v′′), p(w′′)) := k + h; TabuList(p(w′′), p(v′′)) := k + h; // the elements p(v′′), p(w′′) become tabu
 k′ := k
 endif;
 k := k + 1
 endwhile
end.

Notes. 1. The immediate if function iif(x, y1, y2) returns y1 if x = TRUE, otherwise it returns y2. 2. The function random() returns a pseudo-
random number uniformly distributed in [0, 1]. 3. The function random(x1, x2) returns a pseudo-random number in [x1, x2].

procedure Iterated_Tabu_ -
// input: p − current solution
// output: p∇ − the best found solution (along with the corresponding contributions)
// parameter: Q − number of iterations

begin
 p∇ := p;
 for q := 1 to Q do begin
 apply Tabu_Search to p and get p•;
 if z(p•) < z(p∇) p∇ := p•; // the best found solution is memorized
 if q < Q then begin
 p := Candidate_Acceptance(p•, p∇); apply Perturbation to p
 endif
 endfor
end.

Figure 6. Pseudo-code of the iterated tabu search algorithm

Figure 5
Pseudo-code of the tabu search algorithm

511Information Technology and Control 2018/3/47

B. Iterated tabu search
In the iterated tabu search algorithm, the self-con-
tained tabu search described above is combined with
some sort of perturbations (see Section 2.4.3). The TS
procedure transforms the current solution into the
optimized solution. Perturbation is applied to chosen
optimized candidate solution that is selected by a de-
fined candidate acception rule (see Section 2.4.2). The
perturbed solution serves as an input for the self-con-
tained TS procedure, which starts immediately after
the perturbation procedure has been executed. TS
again returns an improved solution. This solution (or
possibly some other previously optimized solution),
in turn, is perturbed, and so on. The best found solu-

Figure 6
Pseudo-code of the iterated tabu search algorithm

procedure Tabu_Search; // tabu search algorithm for the GP-QAP
// input: n, m, B,
// p − current solution
// output: p• − the best found solution (along with the corresponding contributions)
// parameters: τ − number of tabu search iterations, h − tabu tenure, α − randomization coefficient,
// ρ − parameter used to regulate the neighbourhood size,
// Lidle_iter − idle iterations limit

begin
 clear tabu list TabuList;
 p• := p; k := 1; k′ := 1; archive_counter := 0; improved := FALSE;
 while (k ≤ τ) or (improved = TRUE) then begin // main cycle
 determine sets M′, N′; m′ := | M′ |; n′ := m + | N′ | (rearrange p accordingly);
 ∆′min := ∞; ∆′′min := ∞; v′ := 1; w′ := m + 1;
 for i := 1 to m′ do
 for j := m + 1 to n′ do begin // m′(n′ − m) neighbours of p are scanned
 ∆ := 2(c(p(j)) − c(p(i)) − B(p(i), p(j)));
 forbidden := iif(((TabuList(p(i), p(j)) ≥ k) and (random() ≥ α)), TRUE, FALSE);
 aspired := iif(z(p) + ∆ < z(p•), TRUE, FALSE);
 if ((∆ < ∆′min) and (forbidden = FALSE)) or (aspired = TRUE) then begin
 if ∆ < ∆′min then begin ∆′′min := ∆′min; v′′ := v′; w′′ := w′; ∆′min := ∆; v′ := i; w′ := j endif
 else if ∆ < ∆′′min then begin ∆′′min := ∆; v′′ := i; w′′ := j endif
 endif
 endfor;
 if ∆′′min < ∞ then begin // archiving second solution, c, v′′, w′′
 archive_counter := archive_counter + 1; Archive(archive_counter) ← p, c, v′′, w′′
 endif;
 if ∆′min < ∞ then begin // replacement of the current solution and recalculation of c
 𝑝𝑝𝑝𝑝 ≔ 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣′,𝑤𝑤𝑤𝑤′

; for i := 1 to n do c(i) := c(i) + B(i, p(v′)) − B(i, p(w′));
 if z(p) < z(p•) then begin p• := p; k′ := k endif; // the best so far solution is memorized
 TabuList(p(v′), p(w′)) := k + h; TabuList(p(w′), p(v′)) := k + h // the elements p(v′), p(w′) become tabu
 endif;
 improved := iif(∆′min < 0, TRUE, FALSE);
 if (improved = FALSE) and (k − k′ > Lidle_iter) and (k <τ − Lidle_iter) then begin // retrieving solution from the archive
 random_access_index := random(archive_counter ∗ 0.8, archive_counter);
 p, c, v′′, w′′ ← Archive(random_access_index);
 𝑝𝑝𝑝𝑝 := 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣′′,𝑤𝑤𝑤𝑤′′

; for i := 1 to n do c(i) := c(i) + B(i, p(v′′)) − B(i, p(w′′));
 clear tabu list TabuList;
 TabuList(p(v′′), p(w′′)) := k + h; TabuList(p(w′′), p(v′′)) := k + h; // the elements p(v′′), p(w′′) become tabu
 k′ := k
 endif;
 k := k + 1
 endwhile
end.

Notes. 1. The immediate if function iif(x, y1, y2) returns y1 if x = TRUE, otherwise it returns y2. 2. The function random() returns a pseudo-
random number uniformly distributed in [0, 1]. 3. The function random(x1, x2) returns a pseudo-random number in [x1, x2].

Figure 5. Pseudo-code of the tabu search algorithm

procedure Iterated_Tabu_Search; // iterated tabu search algorithm for the GP-QAP
// input: p − current solution
// output: p∇ − the best found solution (along with the corresponding contributions)
// parameter: Q − number of iterations

begin
 p∇ := p;
 for q := 1 to Q do begin
 apply Tabu_Search to p and get p•;
 if z(p•) < z(p∇) p∇ := p•; // the best found solution is memorized
 if q < Q then begin
 p := Candidate_Acceptance(p•, p∇); apply Perturbation to p
 endif
 endfor
end.

Figure 6. Pseudo-code of the iterated tabu search algorithm

tion is regarded as the resulting solution of ITS. The
overall process continues until a pre-defined number
of iterations have been performed (see Figure 6).

C. Hierarchical iterated tabu search
The 1-level hierarchical iterated tabu search (1-HITS)
algorithm can be obtained from the ITS algorithm.
The structure of the algorithm remains practically
unchanged, except that the ITS algorithm (instead of
the TS algorithm) is used for the solution improve-
ment (see Figure 7).
It is possible to further extend the 1-HITS algorithm in
a very gentle way. New extension is entitled as 2-HITS.
The pseudo-code of 2-HITS is almost identical to

Figure 7
Pseudo-code of the 1-level hierarchical iterated tabu search algorithm

C. Hierarchical iterated tabu search
The 1-level hierarchical iterated tabu search (1-HITS) algorithm can be obtained from the ITS algorithm. The

structure of the algorithm remains practically unchanged, except that the ITS algorithm (instead of the TS algorithm) is
used for the solution improvement (see Figure 7).

It is possible to further extend the 1-HITS algorithm in a very gentle way. New extension is entitled as 2-HITS. The
pseudo-code of 2-HITS is almost identical to the one of 1-HITS, except that the invocation of the ITS procedure is
substituted by the invocation of the 1-HITS procedure. Continuing in the above manner, one can create a cascade of
self-similar algorithms: 3-HITS, 4-HITS, and so on. It is not difficult, only one should be careful and patient. Our most
latest version of HITS is, in particular, 7-HITS. The description of 7-HITS is presented in Figure 8. It is a high level
template of the algorithm, rather than a detailed pseudo-code. Some parts are omitted for the sake of brevity.

procedure 1-Hierarchical_Iterated_Tabu_Search; // 1-level hierarchical iterated tabu search algorithm for the GP-QAP
// input: p − current solution
// output: p〈1〉 − the best found solution (along with the corresponding contributions)
// parameters: Q1 − number of iterations

begin
 p〈1〉 := p;
 for q1 := 1 to Q1 do begin
 apply Iterated_Tabu_Search to p and get p∇;
 if z(p∇) < z(p〈1〉) p〈1〉 := p∇; // the best found solution is memorized
 if q1 < Q1 then begin
 p := Candidate_Acceptance(p∇, p〈1〉); apply Perturbation to p
 endif
 endfor
end.

Figure 7. Pseudo-code of the 1-level hierarchical iterated tabu search algorithm

procedure Hierarchical_Iterated_Tabu_Search; // seven-level hierarchical iterated tabu search for the GP-QAP
// input: n, m, B,
// p − current solution
// output: p − the best found solution
// parameters: Q, Q1, . . . , Q7 − numbers of iterations

begin
 for i := 1 to n do begin c(i) := 0;
 for i := 1 to n do for j := 1 to m do c(i) := c(i) + B(i, p(j)); // initialization of contributions (c)
 p〈7〉 := p;
 for q7 := 1 to Q7 do begin
 . . .
 p〈1〉 := p;
 for q1 := 1 to Q1 do begin
 p∇ := p;
 for q := 1 to Q do begin
 apply Tabu_Search to p and get p•;
 if z(p•) < z(p∇) then p∇ := p•; // new better solution is memorized
 if q < Q then begin
 p := Candidate_Acceptance(p•, p∇); apply Perturbation to p
 endif
 endfor; Iterated_Tabu_Search
 if z(p∇) < z(p〈1〉) then p〈1〉 := p∇; // new better solution is memorized
 if q1 < Q1 then begin
 p := Candidate_Acceptance(p∇, p〈1〉); apply Perturbation to p
 endif
 endfor; 1-Hierarchical_Iterated_Tabu_Search
 . . .
 if z(p〈6〉) < z(p〈7〉) then p〈7〉 := p〈6〉; // the best solution is memorized
 if q7 < Q7 then begin
 p := Candidate_Acceptance(p〈6〉, p〈7〉); apply Perturbation to p
 endif
 endfor;
 p := p〈7〉
end. 7-Hierarchical_Iterated_Tabu_Search

Figure 8. Template of the seven-level hierarchical iterated tabu search algorithm

Information Technology and Control 2018/3/47512

the one of 1-HITS, except that the invocation of the
ITS procedure is substituted by the invocation of the
1-HITS procedure. Continuing in the above manner,
one can create a cascade of self-similar algorithms:
3-HITS, 4-HITS, and so on. It is not difficult, only one
should be careful and patient. Our most latest version
of HITS is, in particular, 7-HITS. The description of
7-HITS is presented in Figure 8. It is a high level tem-
plate of the algorithm, rather than a detailed pseu-
do-code. Some parts are omitted for the sake of brevity.

2.4.2. Candidate Acception
The function Candidate_Acceptance can be imple-

Figure 8
Template of the seven-level hierarchical iterated tabu search algorithm

C. Hierarchical iterated tabu search
The 1-level hierarchical iterated tabu search (1-HITS) algorithm can be obtained from the ITS algorithm. The

structure of the algorithm remains practically unchanged, except that the ITS algorithm (instead of the TS algorithm) is
used for the solution improvement (see Figure 7).

It is possible to further extend the 1-HITS algorithm in a very gentle way. New extension is entitled as 2-HITS. The
pseudo-code of 2-HITS is almost identical to the one of 1-HITS, except that the invocation of the ITS procedure is
substituted by the invocation of the 1-HITS procedure. Continuing in the above manner, one can create a cascade of
self-similar algorithms: 3-HITS, 4-HITS, and so on. It is not difficult, only one should be careful and patient. Our most
latest version of HITS is, in particular, 7-HITS. The description of 7-HITS is presented in Figure 8. It is a high level
template of the algorithm, rather than a detailed pseudo-code. Some parts are omitted for the sake of brevity.

procedure 1-Hierarchical_Iterated_Tabu_Search; // 1-level hierarchical iterated tabu search algorithm for the GP-QAP
// input: p − current solution
// output: p〈1〉 − the best found solution (along with the corresponding contributions)
// parameters: Q1 − number of iterations

begin
 p〈1〉 := p;
 for q1 := 1 to Q1 do begin
 apply Iterated_Tabu_Search to p and get p∇;
 if z(p∇) < z(p〈1〉) p〈1〉 := p∇; // the best found solution is memorized
 if q1 < Q1 then begin
 p := Candidate_Acceptance(p∇, p〈1〉); apply Perturbation to p
 endif
 endfor
end.

Figure 7. Pseudo-code of the 1-level hierarchical iterated tabu search algorithm

procedure Hierarchical_Iterated_Tabu_Search; // seven-level hierarchical iterated tabu search for the GP-QAP
// input: n, m, B,
// p − current solution
// output: p − the best found solution
// parameters: Q, Q1, . . . , Q7 − numbers of iterations

begin
 for i := 1 to n do begin c(i) := 0;
 for i := 1 to n do for j := 1 to m do c(i) := c(i) + B(i, p(j)); // initialization of contributions (c)
 p〈7〉 := p;
 for q7 := 1 to Q7 do begin
 . . .
 p〈1〉 := p;
 for q1 := 1 to Q1 do begin
 p∇ := p;
 for q := 1 to Q do begin
 apply Tabu_Search to p and get p•;
 if z(p•) < z(p∇) then p∇ := p•; // new better solution is memorized
 if q < Q then begin
 p := Candidate_Acceptance(p•, p∇); apply Perturbation to p
 endif
 endfor; Iterated_Tabu_Search
 if z(p∇) < z(p〈1〉) then p〈1〉 := p∇; // new better solution is memorized
 if q1 < Q1 then begin
 p := Candidate_Acceptance(p∇, p〈1〉); apply Perturbation to p
 endif
 endfor; 1-Hierarchical_Iterated_Tabu_Search
 . . .
 if z(p〈6〉) < z(p〈7〉) then p〈7〉 := p〈6〉; // the best solution is memorized
 if q7 < Q7 then begin
 p := Candidate_Acceptance(p〈6〉, p〈7〉); apply Perturbation to p
 endif
 endfor;
 p := p〈7〉
end. 7-Hierarchical_Iterated_Tabu_Search

Figure 8. Template of the seven-level hierarchical iterated tabu search algorithm

mented in many different ways. We utilize the so-
called "where-you-are" rule, which means that we
always choose the first candidate from the function
parameters' list. For example, in the case of Candi-
date_Acceptance(p•, p∆), p• is accepted.

2.4.3. Perturbation
The perturbation procedure is very simple in its struc-
ture and it consists of two parts: a) random mutation
(shuffling) and b) re-construction of the mutated solu-
tion by fast greedy adaptive procedure (see Figure 9).
Firstly, the accepted candidate solution undergoes a
random mutation process; in particular, the solution is

513Information Technology and Control 2018/3/47

procedure Perturbation; // perturbation procedure for the GP-QAP
// input: p − current solution
// output: p − the resulting (perturbed) solution
// parameter: µ − mutation rate (number of disregarded elements)

begin
 apply Mutation to p using mutation rate µ, get partial (mutated) solution p─;
 apply Fast_Greedy_Adaptive_Procedure to the partial solution p─,
 get a perturbed complete solution 𝑝𝑝𝑝𝑝
 // the solution p is then to be improved by tabu search
end.

Figure 9. Pseudo-code of the perturbation procedure

procedure Mutation; // random mutation procedure for the GP-QAP
// input: m,
// p − current (complete) solution
// output: p─ − resulting (partial) solution

begin
 for i := 1 to m − 1 do begin // shuffling the items p(1), …, p(m)
 generate an integer j randomly, uniformly, i ≤ j ≤ m;
 𝑝𝑝𝑝𝑝 ≔ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 // the items p(i) and p(j) are interchanged
 endfor;
 // after shuffling, the items p(m − µ + 1), …, p(m) are disregarded (no action is needed)
 p─ := p
end.

Figure 10. Pseudo-code of the random mutation procedure

procedure Fast_Greedy_Adaptive_Procedure; // fast greedy adaptive procedure for the GP-QAP
// input: n, m, B,
// p − partial solution, where the elements p(m − µ + 1), …, p(m) are disregarded
// output: p − feasible (complete) solution
// parameter: µ − mutation rate (1 ≤ µ < m)

begin
 for i := 1 to n do for j := m − µ + 1 to m do c(i) := c(i) − B(i, p(j)); // fast (re)calculation of contributions (c)
 for i := 1 to n do Selected(i) := FALSE; for i := 1 to m − µ do Selected(p(i)) := TRUE; // initialization of Selected
 i := m − µ; k := p(m − µ);
 for q := 1 to µ do begin // cycle is repeated until the solution has been completed
 minimum_contribution := ∞;
 for j := 1 to n do
 if Selected(j) = FALSE then begin
 c(j) := c(j) + B(j, k); if c(j) < minimum_contribution then begin minimum_contribution := c(j); jmin := j endif
 endif;
 i := i + 1; p(i) := jmin; // the element with the minimum contribution is added to the solution
 Selected(p(i)) := TRUE; k := jmin
 endfor;
 i := m + 1; for j := 1 to n do if Selected(j) = FALSE then begin p(i) := j; i := i + 1 endif
end.

Figure 11. Pseudo-code of the fast greedy adaptive procedure

2. 4. 2. Candidate Acception
The function Candidate_Acceptance can be implemented in many different ways. We utilize the so-called "where-

you-are" rule, which means that we always choose the first candidate from the function parameters' list. For example, in
the case of Candidate_Acceptance(p•, p∇), p• is accepted.

2. 4. 3. Perturbation
The perturbation procedure is very simple in its structure and it consists of two parts: a) random mutation

(shuffling) and b) re-construction of the mutated solution by fast greedy adaptive procedure (see Figure 9).
Firstly, the accepted candidate solution undergoes a random mutation process; in particular, the solution is

"disintegrated" by disregarding (removing) 𝜇𝜇𝜇𝜇 elements from the current solution (𝜇𝜇𝜇𝜇 is a parameter called mutation rate).
The 𝜇𝜇𝜇𝜇 elements are chosen in a random way (see Figure 10). The value of 𝜇𝜇𝜇𝜇 is relatively small in our algorithm
(𝜇𝜇𝜇𝜇 = ⌊0.15𝑚𝑚𝑚𝑚⌋), so only a minor fraction of elements is involved in the mutation procedure.

Secondly, the mutated partial solution is subject to re-construction (partial optimization) by the fast greedy adaptive
procedure (FGAP), which is identical to that used in the crossover operator, except that the more effective calculation of

procedure Perturbation; // perturbation procedure for the GP-QAP
// input: p − current solution
// output: p − the resulting (perturbed) solution
// parameter: µ − mutation rate (number of disregarded elements)

begin
 apply Mutation to p using mutation rate µ, get partial (mutated) solution p─;
 apply Fast_Greedy_Adaptive_Procedure to the partial solution p─,
 get a perturbed complete solution 𝑝𝑝𝑝𝑝
 // the solution p is then to be improved by tabu search
end.

Figure 9. Pseudo-code of the perturbation procedure

procedure Mutation; // random mutation procedure for the GP-QAP
// input: m,
// p − current (complete) solution
// output: p─ − resulting (partial) solution

begin
 for i := 1 to m − 1 do begin // shuffling the items p(1), …, p(m)
 generate an integer j randomly, uniformly, i ≤ j ≤ m;
 𝑝𝑝𝑝𝑝 ≔ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 // the items p(i) and p(j) are interchanged
 endfor;
 // after shuffling, the items p(m − µ + 1), …, p(m) are disregarded (no action is needed)
 p─ := p
end.

Figure 10. Pseudo-code of the random mutation procedure

procedure Fast_Greedy_Adaptive_Procedure; // fast greedy adaptive procedure for the GP-QAP
// input: n, m, B,
// p − partial solution, where the elements p(m − µ + 1), …, p(m) are disregarded
// output: p − feasible (complete) solution
// parameter: µ − mutation rate (1 ≤ µ < m)

begin
 for i := 1 to n do for j := m − µ + 1 to m do c(i) := c(i) − B(i, p(j)); // fast (re)calculation of contributions (c)
 for i := 1 to n do Selected(i) := FALSE; for i := 1 to m − µ do Selected(p(i)) := TRUE; // initialization of Selected
 i := m − µ; k := p(m − µ);
 for q := 1 to µ do begin // cycle is repeated until the solution has been completed
 minimum_contribution := ∞;
 for j := 1 to n do
 if Selected(j) = FALSE then begin
 c(j) := c(j) + B(j, k); if c(j) < minimum_contribution then begin minimum_contribution := c(j); jmin := j endif
 endif;
 i := i + 1; p(i) := jmin; // the element with the minimum contribution is added to the solution
 Selected(p(i)) := TRUE; k := jmin
 endfor;
 i := m + 1; for j := 1 to n do if Selected(j) = FALSE then begin p(i) := j; i := i + 1 endif
end.

Figure 11. Pseudo-code of the fast greedy adaptive procedure

2. 4. 2. Candidate Acception
The function Candidate_Acceptance can be implemented in many different ways. We utilize the so-called "where-

you-are" rule, which means that we always choose the first candidate from the function parameters' list. For example, in
the case of Candidate_Acceptance(p•, p∇), p• is accepted.

2. 4. 3. Perturbation
The perturbation procedure is very simple in its structure and it consists of two parts: a) random mutation

(shuffling) and b) re-construction of the mutated solution by fast greedy adaptive procedure (see Figure 9).
Firstly, the accepted candidate solution undergoes a random mutation process; in particular, the solution is

"disintegrated" by disregarding (removing) 𝜇𝜇𝜇𝜇 elements from the current solution (𝜇𝜇𝜇𝜇 is a parameter called mutation rate).
The 𝜇𝜇𝜇𝜇 elements are chosen in a random way (see Figure 10). The value of 𝜇𝜇𝜇𝜇 is relatively small in our algorithm
(𝜇𝜇𝜇𝜇 = ⌊0.15𝑚𝑚𝑚𝑚⌋), so only a minor fraction of elements is involved in the mutation procedure.

Secondly, the mutated partial solution is subject to re-construction (partial optimization) by the fast greedy adaptive
procedure (FGAP), which is identical to that used in the crossover operator, except that the more effective calculation of

Figure 9
Pseudo-code of the perturbation procedure

Figure 10
Pseudo-code of the random mutation procedure

"disintegrated" by disregarding (removing) μ elements
from the current solution (μ is a parameter called mu-
tation rate). The μ elements are chosen in a random
way (see Figure 10). The value of μ is relatively small
in our algorithm (μ=⌊0.15m⌋), so only a minor fraction
of elements is involved in the mutation procedure.
Secondly, the mutated partial solution is subject to
re-construction (partial optimization) by the fast
greedy adaptive procedure (FGAP), which is identi-
cal to that used in the crossover operator, except that
the more effective calculation of the contributions is
applied (see Figure 11). The calculation takes O(μn)
time. The overall complexity of the FGAP algorithm is
also O(μn). This results in a very fast execution of both
FGAP and HITS as long as the value of μ is not large.

After the offspring is improved by HITS, it is tested if
the new solution (𝑝𝑝) differs from the other solutions in
population. If it is the case, it is checked if the new
solution is better than the best solution in the
population or the distance between the new solution
and population (𝛿𝛿�𝑝𝑝 , 𝑃𝑃�= min�∈��𝛿𝛿�𝑝𝑝 , 𝑝𝑝��) is grea-
ter than or equal to the distance threshold 𝐷𝐷𝑇𝑇. If this is
true, then the new solution replaces the worst solution
in the current population (𝑃𝑃 = 𝑃𝑃 ∪ �𝑝𝑝 � ∖ �𝑝𝑝������,
where 𝑝𝑝�����= argma

 �∈��𝑧𝑧�𝑝𝑝��). (Otherwise, the
population remains unaltered and the algorithm
continues with the next generation.) This rule is to
maintain both the high-quality and sufficient diversity
of the members of population.

x

2.5. Population Management

Information Technology and Control 2018/3/47514

procedure Perturbation; // perturbation procedure for the GP-QAP
// input: p − current solution
// output: p − the resulting (perturbed) solution
// parameter: µ − mutation rate (number of disregarded elements)

begin
 apply Mutation to p using mutation rate µ, get partial (mutated) solution p─;
 apply Fast_Greedy_Adaptive_Procedure to the partial solution p─,
 get a perturbed complete solution 𝑝𝑝𝑝𝑝
 // the solution p is then to be improved by tabu search
end.

Figure 9. Pseudo-code of the perturbation procedure

procedure Mutation; // random mutation procedure for the GP-QAP
// input: m,
// p − current (complete) solution
// output: p─ − resulting (partial) solution

begin
 for i := 1 to m − 1 do begin // shuffling the items p(1), …, p(m)
 generate an integer j randomly, uniformly, i ≤ j ≤ m;
 𝑝𝑝𝑝𝑝 ≔ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 // the items p(i) and p(j) are interchanged
 endfor;
 // after shuffling, the items p(m − µ + 1), …, p(m) are disregarded (no action is needed)
 p─ := p
end.

Figure 10. Pseudo-code of the random mutation procedure

procedure Fast_Greedy_Adaptive_Procedure; // fast greedy adaptive procedure for the GP-QAP
// input: n, m, B,
// p − partial solution, where the elements p(m − µ + 1), …, p(m) are disregarded
// output: p − feasible (complete) solution
// parameter: µ − mutation rate (1 ≤ µ < m)

begin
 for i := 1 to n do for j := m − µ + 1 to m do c(i) := c(i) − B(i, p(j)); // fast (re)calculation of contributions (c)
 for i := 1 to n do Selected(i) := FALSE; for i := 1 to m − µ do Selected(p(i)) := TRUE; // initialization of Selected
 i := m − µ; k := p(m − µ);
 for q := 1 to µ do begin // cycle is repeated until the solution has been completed
 minimum_contribution := ∞;
 for j := 1 to n do
 if Selected(j) = FALSE then begin
 c(j) := c(j) + B(j, k); if c(j) < minimum_contribution then begin minimum_contribution := c(j); jmin := j endif
 endif;
 i := i + 1; p(i) := jmin; // the element with the minimum contribution is added to the solution
 Selected(p(i)) := TRUE; k := jmin
 endfor;
 i := m + 1; for j := 1 to n do if Selected(j) = FALSE then begin p(i) := j; i := i + 1 endif
end.

Figure 11. Pseudo-code of the fast greedy adaptive procedure

2. 4. 2. Candidate Acception
The function Candidate_Acceptance can be implemented in many different ways. We utilize the so-called "where-

you-are" rule, which means that we always choose the first candidate from the function parameters' list. For example, in
the case of Candidate_Acceptance(p•, p∇), p• is accepted.

2. 4. 3. Perturbation
The perturbation procedure is very simple in its structure and it consists of two parts: a) random mutation

(shuffling) and b) re-construction of the mutated solution by fast greedy adaptive procedure (see Figure 9).
Firstly, the accepted candidate solution undergoes a random mutation process; in particular, the solution is

"disintegrated" by disregarding (removing) 𝜇𝜇𝜇𝜇 elements from the current solution (𝜇𝜇𝜇𝜇 is a parameter called mutation rate).
The 𝜇𝜇𝜇𝜇 elements are chosen in a random way (see Figure 10). The value of 𝜇𝜇𝜇𝜇 is relatively small in our algorithm
(𝜇𝜇𝜇𝜇 = ⌊0.15𝑚𝑚𝑚𝑚⌋), so only a minor fraction of elements is involved in the mutation procedure.

Secondly, the mutated partial solution is subject to re-construction (partial optimization) by the fast greedy adaptive
procedure (FGAP), which is identical to that used in the crossover operator, except that the more effective calculation of

Figure 11
Pseudo-code of the fast greedy adaptive procedure

2.6. Restart
The restart of the genetic algorithm takes place if the
solutions of the population are not improved for Li-

dle_gen generations (Lidle_gen is an idle generations limit,
which is set to ⌊0.15Ngen⌋, Ngen is the number of genera-
tions). The restart is performed by simply construct-
ing the new population (see Section 2.1).

3. Results of Computational
Experiments
Our new hybrid genetic algorithm (NHGA) was im-
plemented by using C# programming language. The
computational experiments have been carried out on
a 3 GHz personal computer running Windows 7 En-
terprise.
We have tested our algorithm on the medium and
large-scaled GP-QAP instances with n = 256 and n =
1024, respectively. The instances are generated ac-
cording to the method described in [15]3 . The grids

are of dimensions 16×16 (n1 = n2 = 16) and 32×32 (n1 =
n2 = 32), respectively. The grey density parameter m
varies from 2 to 128 and from 2 to 512.
The values of the control parameters of NHGA used
in the experiments are shown in Table 1. (Note that
the calibration of the parameters was not performed.)
Firstly, we have experimented with the problems
of size 256 and we have compared our algorithm
with the improved genetic-evolutionary algorithm
(IGEA) presented in [12]. To our knowledge, IGEA
seems very likely to be the most efficient (to date)
heuristic algorithm for the problems of this size. As
the algorithms IGEA and NHGA constantly find the
best known (pseudo-optimal) solutions (BKSs), we
compare the run time performance, rather than the
quality of solutions.
Thus, the experimentation was designed in such a
way that the algorithms IGEA and NHGA were run
10 and 100 times, respectively. At every run, the al-
gorithms are applied to a given m, each time starting
from new random solutions. The current run is fin-
ished as soon as BKS has been found (even without

13

3 These instances can also be found at the website: http://www.
personalas.ktu.lt/~alfmise/.

515Information Technology and Control 2018/3/47

Table 1
Values of the control parameters of the hybrid genetic algorithm

Parameter Value Remarks

Population size, PS 20

Number of generations, Ngen 40

Idle generations limit, Lidle_gen ⌊0.15Ngen ⌋ 0 < Lidle_gen ≤ Ngen

Distance threshold, DT ⌊0.25m⌋ 0 ≤ DT ≤ m

Number of hierarchical tabu search iterations, QHIER 384 QHIER = Q × Q1 × Q2 × Q3 ×Q4 × Q5 ×Q6 ×Q7
†

Number of tabu search iterations, τ 80

Tabu tenure, h ⌊0.3m⌋ h > 0

Idle iterations limit, Lidle_iter ⌊0.2τ⌋ 0 < Lidle_iter ≤ τ

Neighbourhood size factor, ρ 0.4 ρ >0

Randomization coefficient, α 0.02 0 < α < 1

Mutation rate, μ ⌊0.15m⌋ 0 < μ < m

† Q = Q1= Q2 = Q3 = Q4 = Q5 = Q6 = 2, Q7=3.

reaching the limit of generations Ngen). The obtained
run times (CPU times) of the algorithms to achieve
the BKS for every m are reported in Table 2. For
the algorithm IGEA, the run time averaged over 10
runs is presented. For the algorithm NHGA, the run
time of the shortest run out of 100 runs is given. The
comparison thus seems to be slightly unfair — we
just wanted to bring to the light how fast our algo-
rithm can run.
On the whole, the results demonstrate that NHGA
clearly dominates IGEA. IGEA was able to slight-
ly outperform NHGA in very few cases only
(m=26,101,102,103). Figure 12 illustrates the in-
credible overall speed improvement of NHGA
for m's varying from 30 to 100. It can be observed
that, for some instances, the computation time is
reduced by a factor of over 100 (!). Such small run
times of NHGA indicate that NHGA is capable to
obtain pseudo-optimal solutions at very early stag-
es of the construction of the initial population with
the help of the stand-alone hierarchical tabu search
only. Very probably, the efficiency of NHGA could
be improved even more by an accurate tuning of the

values of the control parameters.

During the additional extensive, long-lasting ex-
perimentation, we were examining the algorithm
NGHA on the large-sized problems (n=1024), which
are much more difficult and time-consuming. It
should be stressed that, nevertheless, we were suc-
cessful in discovering new record breaking solu-
tions for more than 190 values of m. The results are
presented in Table 3. The CPU times are omitted.
The new BKVs are in bold face. All the remaining
values are from [13].

The further thorough experiments are needed to
show (verify) the pseudo-optimality of the newly ob-
tained best known solutions.

We also provide several visual representations (grey
frames) corresponding to some of the new best known
solutions (in particular, m=401,402,403,404,405,40
6,407,408) (see Figure 13). In the graphical illustra-
tions, each

1024-square-grid is replicated 8 times horizontally
and 8 times vertically for the visibility convenience.

Information Technology and Control 2018/3/47516

m Best known
value (BKV)

Dev.
from
BKV

CPU time (sec)
m

Best known
value

(BKV)

Dev.
from
BKV

CPU time (sec)
m Best known

value (BKV)

Dev.
from
BKV

CPU time (sec)

IGEA NHGA IGEA NHGA IGEA NHGA

2 1562 0 0.0 0.00 45 8674910 0 150 5.91 87 39389054 0 25.0 0.19
3 7810 0 0.0 0.00 46 9129192 0 64 11.38 88 40416536 0 23.0 0.15
4 15620 0 0.0 0.00 47 9575736 0 3.1 0.29 89 41512742 0 183 6.98
5 38072 0 0.0 0.00 48 10016256 0 2.0 0.16 90 42597626 0 165 4.76
6 63508 0 0.0 0.00 49 10518838 0 3.4 0.56 91 43676474 0 224 17.64
7 97178 0 0.0 0.00 50 11017342 0 2.8 0.56 92 44759294 0 157 7.94
8 131240 0 0.0 0.00 51 11516840 0 7.5 0.83 93 45870244 0 214 19.18
9 183744 0 0.0 0.00 52 12018388 0 6.3 0.39 94 46975856 0 190 21.52

10 242266 0 0.0 0.00 53 12558226 0 4.6 0.54 95 48081112 0 169 2.14
11 304722 0 0.1 0.00 54 13096646 0 4.0 0.03 96 49182368 0 216 6.58
12 368952 0 0.1 0.00 55 13661614 0 10.1 0.12 97 50344050 0 213 23.88
13 457504 0 0.1 0.00 56 14229492 0 2.8 0.15 98 51486642 0 188 63.40
14 547522 0 0.1 0.00 57 14793682 0 2.2 0.37 99 52660116 0 201 50.53
15 644036 0 0.1 0.00 58 15363628 0 2.3 0.09 100 53838088 0 117 48.18
16 742480 0 0.1 0.00 59 15981086 0 3.5 0.71 101 55014262 0 84 156
17 878888 0 0.2 0.00 60 16575644 0 2.4 0.95 102 56202826 0 40.0 115
18 1012990 0 0.1 0.00 61 17194812 0 2.2 0.01 103 57417112 0 73 84.00
19 1157992 0 0.2 0.00 62 17822806 0 3.6 0.01 104 58625240 0 62 51.14
20 1305744 0 0.3 0.08 63 18435790 0 1.9 0.00 105 59854744 0 38.0 32.41
21 1466210 0 0.5 0.00 64 19050432 0 2.3 0.00 106 61084902 0 33.0 10.85
22 1637794 0 0.3 0.00 65 19848790 0 3.1 0.00 107 62324634 0 21.0 0.73
23 1820052 0 0.2 0.00 66 20648754 0 4.5 0.02 108 63582416 0 12.6 0.65
24 2010846 0 0.6 0.02 67 21439396 0 9.7 0.08 109 64851966 0 11.1 1.02
25 2215714 0 3.2 0.31 68 22234020 0 18.0 0.23 110 66120434 0 10.7 0.41
26 2426298 0 16.5 22.98 69 23049732 0 27.0 0.64 111 67392724 0 8.2 0.46
27 2645436 0 1.1 0.02 70 23852796 0 26.0 0.98 112 68666416 0 7.7 0.17
28 2871704 0 0.9 0.03 71 24693608 0 78 0.43 113 69984758 0 10.2 0.13
29 3122510 0 0.7 0.03 72 25522408 0 490 64.80 114 71304194 0 6.3 0.18
30 3373854 0 0.5 0.00 73 26375828 0 298 5.81 115 72630764 0 5.1 0.37
31 3646344 0 0.6 0.00 74 27235240 0 304 2.50 116 73962220 0 5.3 0.21
32 3899744 0 0.5 0.02 75 28114952 0 41.0 0.85 117 75307424 0 4.0 0.03
33 4230950 0 0.7 0.03 76 29000908 0 121 1.30 118 76657014 0 3.6 0.06
34 4560162 0 2.6 0.36 77 29894452 0 145 4.81 119 78015914 0 2.3 0.03
35 4890132 0 3.2 0.41 78 30797954 0 117 1.15 120 79375832 0 1.7 0.05
36 5222296 0 2.0 0.44 79 31702182 0 11.6 0.81 121 80756852 0 1.6 0.07
37 5565236 0 1.8 0.34 80 32593088 0 3.3 0.47 122 82138768 0 1.4 0.03
38 5909202 0 0.9 0.14 81 33544628 0 3.9 0.26 123 83528554 0 1.0 0.04
39 6262248 0 1.1 0.08 82 34492592 0 70 3.33 124 84920540 0 0.7 0.01
40 6613472 0 0.9 0.02 83 35443938 0 57.0 1.41 125 86327812 0 0.4 0.00
41 7002794 0 0.6 0.11 84 36395172 0 61 2.77 126 87736646 0 0.3 0.00
42 7390586 0 0.7 0.16 85 37378800 0 151 1.20 127 89150166 0 0.2 0.00
43 7794422 0 3.2 0.20 86 38376438 0 94 0.32 128 90565248 0 0.2 0.00
44 8217264 0 16.0 0.87

Table 2
Results of the experiments with the medium-sized GP-QAP instances (n = 256)

The deviation from BKV (Dev. from BKV) is calculated as the ratio (z*- BKV)/BKV, where z* denotes the algorithms' best
found solution. The best known values of the objective function corresponding to the best known solutions are from [12].

517Information Technology and Control 2018/3/47

m BKV m BKV m BKV m BKV m BKV m BKV m BKV m BKV

2 390 66 5132250 130 23460170 194 57086766 258 106260632 322 176518174 386 262819150 450 363665156

3 1954 67 5312762 131 23897592 195 57739124 259 107273354 323 177756358 387 264317294 451 365361310

4 3908 68 5493398 132 24335656 196 58392270 260 108286116 324 178959204 388 265791714 452 367056444

5 9488 69 5675784 133 24773832 197 59055298 261 109299348 325 180158842 389 267231448 453 368754728

6 15882 70 5868614 134 25213730 198 59710314 262 110313464 326 181377560 390 268698768 454 370451410

7 24290 71 6061636 135 25653062 199 60357328 263 111323160 327 182598340 391 270205824 455 372157104

8 32808 72 6253544 136 26091040 200 61005880 264 112349256 328 183826382 392 271688930 456 373863658

9 45844 73 6451748 137 26536474 201 61656140 265 113366358 329 185039942 393 273203922 457 375575430

10 60310 74 6658646 138 26980064 202 62313154 266 114381534 330 186245648 394 274660438 458 377289052

11 75878 75 6866464 139 27426740 203 62979360 267 115403394 331 187480294 395 276180114 459 379005274

12 91852 76 7077272 140 27873238 204 63648372 268 116415772 332 188702624 396 277670456 460 380724964

13 114040 77 7287952 141 28319430 205 64329116 269 117454596 333 189934056 397 279172978 461 382449898

14 136706 78 7497962 142 28761578 206 65021762 270 118462682 334 191134986 398 280677404 462 384174962

15 160770 79 7708934 143 29211334 207 65721964 271 119472414 335 192370030 399 282179032 463 385902750

16 185552 80 7919112 144 29649520 208 66422364 272 120505424 336 193596576 400 283712492 464 387628048

17 218392 81 8147012 145 30118164 209 67136312 273 121574572 337 194844496 401 285211916 465 389368514

18 251618 82 8363950 146 30588480 210 67852496 274 122629730 338 196104848 402 286746076 466 391105794

19 288006 83 8600584 147 31065948 211 68585494 275 123626322 339 197349714 403 288238662 467 392843892

20 324794 84 8839620 148 31546098 212 69315338 276 124716364 340 198600114 404 289784468 468 394587900

21 365546 85 9079818 149 32025690 213 70050648 277 125741472 341 199870596 405 291260654 469 396332818

22 407406 86 9322672 150 32508848 214 70789536 278 126807112 342 201181102 406 292833208 470 398083462

23 451448 87 9563920 151 32992712 215 71527862 279 127842588 343 202519622 407 294387042 471 399837320

24 496888 88 9818424 152 33479148 216 72259864 280 128937048 344 203834574 408 295934120 472 401592882

25 549180 89 10074140 153 33968988 217 72990332 281 130003342 345 205167090 409 297474388 473 403351666

26 603368 90 10331422 154 34461110 218 73726832 282 131077338 346 206544390 410 298998414 474 405112104

27 659044 91 10600710 155 34955468 219 74466810 283 132132040 347 207925194 411 300564200 475 406875344

28 716280 92 10871062 156 35450196 220 75201458 284 133187012 348 209234904 412 302129606 476 408637620

29 777436 93 11138470 157 35944108 221 75953890 285 134287484 349 210612178 413 303688980 477 410409038

30 837798 94 11411510 158 36437606 222 76713866 286 135364426 350 211922934 414 305224788 478 412182568

31 907090 95 11679880 159 36933614 223 77465610 287 136441394 351 213304876 415 306845268 479 413959340

32 975008 96 11944352 160 37426912 224 78218352 288 137549224 352 214686716 416 308393388 480 415733856

33 1050792 97 12237102 161 37947342 225 78977922 289 138637260 353 216044260 417 309969764 481 417519180

34 1125558 98 12523996 162 38464394 226 79744456 290 139677068 354 217376574 418 311420318 482 419302686

35 1203646 99 12813836 163 38982592 227 80520900 291 140801272 355 218738658 419 313094242 483 421092758

36 1281132 100 13103420 164 39500208 228 81287994 292 141875610 356 220109066 420 314652760 484 422883164

37 1368444 101 13398254 165 40025416 229 82061894 293 142916356 357 221526988 421 316172166 485 424678088

38 1456842 102 13691306 166 40550006 230 82837128 294 144026694 358 222888300 422 317825280 486 426473544

39 1547598 103 13988062 167 41078930 231 83613898 295 145175322 359 224268836 423 319428868 487 428272184

40 1638808 104 14288780 168 41606240 232 84406568 296 146290048 360 225646838 424 321022500 488 430071632

41 1736236 105 14593444 169 42140968 233 85225404 297 147454448 361 227020504 425 322637088 489 431876322

42 1834074 106 14899130 170 42673974 234 86030804 298 148527002 362 228390592 426 324266210 490 433683572

43 1935946 107 15216394 171 43219476 235 86829778 299 149672540 363 229827232 427 325898680 491 435492454

44 2042792 108 15537796 172 43787404 236 87618540 300 150827224 364 231201722 428 327457994 492 437303524

Table 3
Results of the experiments with the large-sized GP-QAP instances (n = 1024)

Information Technology and Control 2018/3/47518

m BKV m BKV m BKV m BKV m BKV m BKV m BKV m BKV

45 2147200 109 15857934 173 44361196 237 88445972 301 151952048 365 232578308 429 328993270 493 439118116

46 2260650 110 16177106 174 44933388 238 89239062 302 153122860 366 233960416 430 330616714 494 440933678

47 2373506 111 16504524 175 45511224 239 90075414 303 154282700 367 235302078 431 332246332 495 442752278

48 2482832 112 16837956 176 46091442 240 90875504 304 155417120 368 236712932 432 333874768 496 444570032

49 2607474 113 17174378 177 46680202 241 91698908 305 156547208 369 238200964 433 335514106 497 446397066

50 2730510 114 17508602 178 47274350 242 92523578 306 157684310 370 239582944 434 337154026 498 448224550

51 2857088 115 17849756 179 47871440 243 93371894 307 158836480 371 241044336 435 338796402 499 450053654

52 2988998 116 18191920 180 48462430 244 94187252 308 159999648 372 242479798 436 340435998 500 451883116

53 3120248 117 18535442 181 49056670 245 95044544 309 161157378 373 243893396 437 342076542 501 453718668

54 3257234 118 18902942 182 49654614 246 95865322 310 162344014 374 245361204 438 343718980 502 455554546

55 3398018 119 19272770 183 50258968 247 96720682 311 163515706 375 246783270 439 345362184 503 457391626

56 3535048 120 19631156 184 50876864 248 97531736 312 164641724 376 248246874 440 347009592 504 459230104

57 3684478 121 20001764 185 51494526 249 98361638 313 165838280 377 249710800 441 348669786 505 461073188

58 3829950 122 20370638 186 52115066 250 99225594 314 167015058 378 251141622 442 350325606 506 462916382

59 3984538 123 20746696 187 52731636 251 100062350 315 168180928 379 252535872 443 351981700 507 464761614

60 4136400 124 21117234 188 53348334 252 100898116 316 169354960 380 254011358 444 353638456 508 466607612

61 4291962 125 21484868 189 53959660 253 101733670 317 170529852 381 255486362 445 355296090 509 468457260

62 4447434 126 21852518 190 54571808 254 102566006 318 171723964 382 256914322 446 356954184 510 470307298

63 4604860 127 22218924 191 55185346 255 103399158 319 172910768 383 258421702 447 358612252 511 472158510

64 4762688 128 22581376 192 55788864 256 104232704 320 174113066 384 259861698 448 360270272 512 474010112

65 4949042 129 23021790 193 56452088 257 105247082 321 175343494 385 261377866 449 361968220

Table 3 (continued)

Figure 12. Illustration of the run time improvement. In the y-axis, we present the ratio of CPUIGEA to CPUNHGA,
where CPUIGEA, CPUNHGA denote the run times of IGEA and NHGA, respectively

Figure 13. Examples of (pseudo-)optimal grey frames (𝑛𝑛𝑛𝑛 = 1024):
(a) 𝑚𝑚𝑚𝑚 = 401, (b) 𝑚𝑚𝑚𝑚 = 402, (c) 𝑚𝑚𝑚𝑚 = 403, (d) 𝑚𝑚𝑚𝑚 = 404, (e) 𝑚𝑚𝑚𝑚 = 405, (f) 𝑚𝑚𝑚𝑚 = 406, (g) 𝑚𝑚𝑚𝑚 = 407, (h) 𝑚𝑚𝑚𝑚 = 408

4. Concluding Remarks
In this paper, we have proposed a new improved hybrid genetic algorithm for solving the grey pattern quadratic

assignment problem. In particular, the genetic algorithm is hybridized with the hierarchical iterated tabu search and this
is adopted for the GP-QAP for the first time. The compacted, reduced neighbourhood is used. This enables very fast
execution of the hierarchical ITS algorithm and the hybrid GA. In addition, we apply a smart combination of the
iterated tabu search and the greedy adaptive perturbations. This allows beneficial balance between diversification and
intensification during the iterative search process.

Our algorithm has been computationally tested on the medium and large-sized instances of the GP-QAP, where the
instances size is equal to 256 and 1024, respectively. The results obtained from the conducted experiments demonstrate
that the new hybridized GA is extremely effective and outperforms other the-state-of-the-art heuristic algorithms. The
high efficiency is confirmed by the numerous best known solutions achieved for the challenging GP-QAP instances of
size 1024.

Regarding the future work, it might be worthy to improve the population initialization and management
mechanisms within hybrid GA to avoid presumable stagnation of the genetic process. It is also worth to try to further
enhance the performance of HGA by developing new architecture of the genetic algorithm itself.

Additionally, our proposed new HGA might be adapted for other types of combinatorial optimization problems.

(a) (b) (c) (d)

(e) (f) (g) (h)

0

50

100

150

200

250

300

350

400

450

500

30 40 50 60 70 80 90 100
Grey density parameter, m

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂�

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈
trendline

Figure 12
Illustration of the run time improvement. In the y-axis, we present the ratio of CPUIGEA to CPUNHGA, where CPUIGEA, CPUNHGA
denote the run times of IGEA and NHGA, respectively

519Information Technology and Control 2018/3/47

Figure 13
Examples of (pseudo-)optimal grey frames (n = 1024): (a) m =4 01, (b) m =4 02, (c) m = 403, (d) m = 404, (e) m = 405, (f) m = 406,
(g) m =4 07, (h) m = 408

Figure 12. Illustration of the run time improvement. In the y-axis, we present the ratio of CPUIGEA to CPUNHGA,
where CPUIGEA, CPUNHGA denote the run times of IGEA and NHGA, respectively

Figure 13. Examples of (pseudo-)optimal grey frames (𝑛𝑛𝑛𝑛 = 1024):
(a) 𝑚𝑚𝑚𝑚 = 401, (b) 𝑚𝑚𝑚𝑚 = 402, (c) 𝑚𝑚𝑚𝑚 = 403, (d) 𝑚𝑚𝑚𝑚 = 404, (e) 𝑚𝑚𝑚𝑚 = 405, (f) 𝑚𝑚𝑚𝑚 = 406, (g) 𝑚𝑚𝑚𝑚 = 407, (h) 𝑚𝑚𝑚𝑚 = 408

4. Concluding Remarks
In this paper, we have proposed a new improved hybrid genetic algorithm for solving the grey pattern quadratic

assignment problem. In particular, the genetic algorithm is hybridized with the hierarchical iterated tabu search and this
is adopted for the GP-QAP for the first time. The compacted, reduced neighbourhood is used. This enables very fast
execution of the hierarchical ITS algorithm and the hybrid GA. In addition, we apply a smart combination of the
iterated tabu search and the greedy adaptive perturbations. This allows beneficial balance between diversification and
intensification during the iterative search process.

Our algorithm has been computationally tested on the medium and large-sized instances of the GP-QAP, where the
instances size is equal to 256 and 1024, respectively. The results obtained from the conducted experiments demonstrate
that the new hybridized GA is extremely effective and outperforms other the-state-of-the-art heuristic algorithms. The
high efficiency is confirmed by the numerous best known solutions achieved for the challenging GP-QAP instances of
size 1024.

Regarding the future work, it might be worthy to improve the population initialization and management
mechanisms within hybrid GA to avoid presumable stagnation of the genetic process. It is also worth to try to further
enhance the performance of HGA by developing new architecture of the genetic algorithm itself.

Additionally, our proposed new HGA might be adapted for other types of combinatorial optimization problems.

(a) (b) (c) (d)

(e) (f) (g) (h)

0

50

100

150

200

250

300

350

400

450

500

30 40 50 60 70 80 90 100
Grey density parameter, m

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂�

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈
trendline

a

e f g h

b c d

4. Concluding Remarks
In this paper, we have proposed a new improved hy-
brid genetic algorithm for solving the grey pattern
quadratic assignment problem. In particular, the
genetic algorithm is hybridized with the hierarchi-
cal iterated tabu search and this is adopted for the
GP-QAP for the first time. The compacted, reduced
neighbourhood is used. This enables very fast execu-
tion of the hierarchical ITS algorithm and the hybrid
GA. In addition, we apply a smart combination of the
iterated tabu search and the greedy adaptive pertur-
bations. This allows beneficial balance between di-
versification and intensification during the iterative
search process.
Our algorithm has been computationally tested on
the medium and large-sized instances of the GP-QAP,
where the instances size is equal to 256 and 1024, re-
spectively. The results obtained from the conducted

experiments demonstrate that the new hybridized
GA is extremely effective and outperforms other
the-state-of-the-art heuristic algorithms. The high
efficiency is confirmed by the numerous best known
solutions achieved for the challenging GP-QAP in-
stances of size 1024.
Regarding the future work, it might be worthy to im-
prove the population initialization and management
mechanisms within hybrid GA to avoid presumable
stagnation of the genetic process. It is also worth to
try to further enhance the performance of HGA by
developing new architecture of the genetic algo-
rithm itself.
Additionally, our proposed new HGA might be
adapted for other types of combinatorial optimiza-
tion problems.

Information Technology and Control 2018/3/47520

References
1. Aarts, E. H. L., Lenstra, J.K. (Eds.). Local Search in

Combinatorial Optimization, Wiley, 1997.

2. Çela, E. The Quadratic Assignment Problem: Theory and
Algorithms, Kluwer, 1998. https://doi.org/10.1007/978-
1-4757-2787-6

3. Daskin, M. Network and Discrete Location: Models, Al-
gorithms and Applications, John Wiley, 1995. https://
doi.org/10.1002/9781118032343

4. Dell'Amico, M., Trubian, M. Solution of Large Weight-
ed Equicut Problems. European Journal of Opera-
tional Research, 1998, 106(2-3), 500-521. https://doi.
org/10.1016/S0377-2217(97)00287-7

5. Drezner, Z. Finding a Custer of Points and the Grey
Pattern Quadratic Assignment Problem. OR Spectrum,
2006, 28(3), 417-436. https://doi.org/10.1007/s00291-
005-0010-7

6. Drezner, Z., Misevičius, A., Palubeckis, G. Exact Algo-
rithms for the Solution of the Grey Pattern Quadrat-
ic Assignment Problem. Mathematical Methods of
Operations Research, 2015, 82(1), 85-105. https://doi.
org/10.1007/s00186-015-0505-1

7. Feo, T. A., Resende, M. G. C. Greedy Randomized Adap-
tive Search Procedures. Journal of Global Optimization,
1995, 6(2), 109-133. https://doi.org/10.1007/BF01096763

8. Glover, F., Laguna, M. Tabu Search, Kluwer, 1997.
https://doi.org/10.1007/978-1-4615-6089-0

9. Goldberg, D. E. Genetic Algorithms in Search, Optimi-
zation and Machine Learning. Addison-Wesley, 1989.

10. Hussin, M. S., Stützle, T. Hierarchical Iterated Local
Search for the Quadratic Assignment Problem. In: Ble-
sa, M. J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M.,
Schaerf, A. (Eds.), Hybrid Metaheuristics, HM 2009, Lec-
ture Notes in Computer Science, Springer, 2009, 5818,
115-129. https://doi.org/10.1007/978-3-642-04918-7_9

11. Misevičius, A. Experiments with Hybrid Genetic Algo-
rithm for the Grey Pattern Problem. Informatica, 2006,
17(2), 237-258.

12. Misevičius, A. Generation of Grey Patterns Using an
Improved Genetic-Evolutionary Algorithm: Some New
Results. Information Technology and Control, 2011,
40(4), 330-343. https://doi.org/10.5755/j01.itc.40.4.983

13. Misevičius, A., Guogis, E., Stanevičienė, E. Computa-
tional Algorithmic Generation of High-Quality Colour
Patterns. In: Skersys, T., Butleris, R., Butkienė, R. (Eds.),
Information and Software Technologies (ICIST 2013),
Communications in Computer and Information Sci-
ence, Springer, Berlin, Heidelberg, 2013, 403, 285-296.
https://doi.org/10.1007/978-3-642-41947-8_24

14. Misevičius, A., Rubliauskas, D. Performance of Hybrid
Genetic Algorithm for the Grey Pattern Problem. Infor-
mation Technology and Control, 2005, 34(1), 15-24.

15. Taillard, E. Comparison of Iterative Searches for the
Quadratic Assignment Problem. Location Science,
1995, 3(2), 87-105. https://doi.org/10.1016/0966-
8349(95)00008-6

16. Taillard, E., Gambardella, L. M. Adaptive Memories for
the Quadratic Assignment Problem. Tech. Report ID-
SIA-87-97, Lugano, Switzerland, 1997.

17. Tizhoosh, H. R. Opposition-Based Learning: A New
Scheme for Machine Intelligence. In: Mohammadian,
M. (Ed.), Proceedings of International Conference on
Computational Intelligence for Modeling, Control and
Automation and International Conference on Intel-
ligent Agents, Web Technologies and Internet Com-
merce (CIMCA/IAWTIC), IEEE Press, 2005, 2, 695-
701. https://doi.org/10.1109/CIMCA.2005.1631345

18. Wu, Q., Hao, J.-K. A Hybrid Metaheuristic Method for
the Maximum Diversity Problem. European Journal of
Operational Research, 2013, 231(2), 452-464. https://
doi.org/10.1016/j.ejor.2013.06.002

19. Zhou, Y., Hao, J.-K., Duval, B. Opposition-Based Memet-
ic Search for the Maximum Diversity Problem. IEEE
Transactions on Evolutionary Computation, 2017, 21(5),
731-745. https://doi.org/10.1109/TEVC.2017.2674800

