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algorithm is used. In addition, a smart combination of the tabu search and adaptive perturbation is adopted, which 
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algorithms. Many best known solutions have been discovered for the large-scaled GP-QAP instances.
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Introduction
The grey pattern quadratic assignment problem (GP-
QAP) is a special case of the well-known combinato-
rial optimization problem, the quadratic assignment 
problem (QAP) [2]. GP-QAP can be formulated as fol-
lows [15]. Given two matrices A = (aij)n×n and B = (bkl)n×n  

and the set Πn of permutations of the integers from 1 
to n, find a permutation p ∈ Πn  that minimizes
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Introduction
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial 

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given 
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a 
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 (1)

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen 
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are defined according to the following rule [15]:

𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2 + (𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2)⁄ } (2)

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also 
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity 
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and 
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the 
intensities of the repulsion forces is minimized.

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares 
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where 
the black points are distributed in the most uniform possible way along the grid.

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items 
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the 
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (considered as an objective function 

of the GP-QAP) is as minimal as possible, that is:

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (3)

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed 
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚},
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where 
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚.

Exchanging two black (or two white) squares with each other does not change the value of the objective function,
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions.

1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ .

(1)
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where aij= 1 for i, j = 1, ..., m (1 ≤ m < n)1 and  aij= 0  oth-
erwise. The values of the matrix (bkl)n×n may be seen as 
distances between every pair of n objects (elements), 
bkl = blk, bkk = 0, k, l = 1, ..., n. In the context of the GP-
QAP, the values bkl  are defined according to the fol-
lowing rule [15]:
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Introduction 
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial 

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given 
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a 
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes 

 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1  (1) 

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen 
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  are defined according to the following rule [15]: 

 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟−𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2+ (𝑟𝑟𝑟𝑟−𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛 )2)⁄ }  (2) 

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also 
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity 
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and 
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the 
intensities of the repulsion forces is minimized. 

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares 
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where 
the black points are distributed in the most uniform possible way along the grid. 

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items 
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the 
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items 
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1  (considered as an objective function 

of the GP-QAP) is as minimal as possible, that is: 

 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1  (3) 

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed 
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}, 
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where  
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚. 

Exchanging two black (or two white) squares with each other does not change the value of the objective function, 
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions. 

                                                           
1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ . 
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Introduction 
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial 

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given 
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a 
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes 

 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1  (1) 

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen 
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  are defined according to the following rule [15]: 

 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟−𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2+ (𝑟𝑟𝑟𝑟−𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛 )2)⁄ }  (2) 

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also 
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity 
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and 
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the 
intensities of the repulsion forces is minimized. 

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares 
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where 
the black points are distributed in the most uniform possible way along the grid. 

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items 
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the 
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items 
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1  (considered as an objective function 

of the GP-QAP) is as minimal as possible, that is: 

 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1  (3) 

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed 
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}, 
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where  
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚. 

Exchanging two black (or two white) squares with each other does not change the value of the objective function, 
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions. 

                                                           
1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ . 
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(2)

where r, t = 1, ..., n1, s, u = 1, ..., n2, n1× n2 = n . The in-
terpretation of the quantity ωrstu is as follows (see also 
[15]). We may consider m electrons that have to be put 
on grid’s squares. Then, ωrstu  may be thought of as a 
quantity proportional to repulsion force between two 
electrons i  and j ( i, j = 1, ..., n) located in the grid posi-
tions k = p(i)  and l = p(j) with the coordinates (r, s) and 
(t, u). The electrons are to be arranged in such a way 
that the sum of the intensities of the repulsion forces 
is minimized.
So, there is a grid of dimensions n1 by n2. In the grid, 
there are n = n1× n squares: there are m black squares 
while the rest of the squares are white. This forms a 
grey pattern of density m/n. We seek to have a grey 
pattern where the black points are distributed in the 
most uniform possible way along the grid.
According to the above formulation, p denotes a 
permutation and p(i), p(j) denote the correspond-
ing items (elements) of the permutation. The first m 
items of every feasible permutation may be consid-
ered as a solution of the GP-QAP. In this way, the ob-
jective is to find the best available, optimal solution, 
i.e., the permutation items p(1), ..., p(m) ( 1 ≤ p(i) ≤ n, 
i = 1, ..., m) such that the sum 
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Introduction
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial 

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given 
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a 
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 (1)

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen 
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are defined according to the following rule [15]:

𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2 + (𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2)⁄ } (2)

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also 
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity 
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and 
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the 
intensities of the repulsion forces is minimized.

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares 
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where 
the black points are distributed in the most uniform possible way along the grid.

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items 
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the 
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (considered as an objective function 

of the GP-QAP) is as minimal as possible, that is:

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (3)

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed 
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚},
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where 
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚.

Exchanging two black (or two white) squares with each other does not change the value of the objective function,
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions.

1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ .
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minimal as possible, that is:

A New Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment 
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Introduction
The grey pattern quadratic assignment problem (GP-QAP) is a special case of the well-known combinatorial 

optimization problem, the quadratic assignment problem (QAP) [2]. GP-QAP can be formulated as follows [15]. Given 
two matrices 𝑨𝑨𝑨𝑨 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and 𝑩𝑩𝑩𝑩 = (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 and the set Π𝑛𝑛𝑛𝑛 of permutations of the integers from 1 to 𝑛𝑛𝑛𝑛, find a 
permutation 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 that minimizes

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 (1)

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (1 ≤ 𝑚𝑚𝑚𝑚 < 𝑛𝑛𝑛𝑛)1 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise. The values of the matrix (𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 may be seen 
as distances between every pair of 𝑛𝑛𝑛𝑛 objects (elements), 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0, 𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙 = 1, … ,𝑛𝑛𝑛𝑛. In the context of the GP-
QAP, the values 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are defined according to the following rule [15]:

𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑏𝑏(𝑟𝑟𝑟𝑟−1)𝑛𝑛𝑛𝑛2+𝑠𝑠𝑠𝑠 (𝑡𝑡𝑡𝑡−1)𝑛𝑛𝑛𝑛2+𝑢𝑢𝑢𝑢 = 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢,𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 = max
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2∈{−1,0,1}

{1 ((𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2 + (𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑡𝑡 + 𝑤𝑤𝑤𝑤1𝑛𝑛𝑛𝑛1)2)⁄ } (2)

where 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 = 1, … ,𝑛𝑛𝑛𝑛1, 𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢 = 1, … ,𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛. The interpretation of the quantity 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 is as follows (see also 
[15]). We may consider 𝑚𝑚𝑚𝑚 electrons that have to be put on grid's squares. Then, 𝜔𝜔𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢 may be thought of as a quantity 
proportional to repulsion force between two electrons 𝑖𝑖𝑖𝑖 and 𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛) located in the grid positions 𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) and 
𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) with the coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) and (𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢). The electrons are to be arranged in such a way that the sum of the 
intensities of the repulsion forces is minimized.

So, there is a grid of dimensions 𝑛𝑛𝑛𝑛1 by 𝑛𝑛𝑛𝑛2. In the grid, there are 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛1 × 𝑛𝑛𝑛𝑛2 squares: there are 𝑚𝑚𝑚𝑚 black squares 
while the rest of the squares are white. This forms a grey pattern of density 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛⁄ . We seek to have a grey pattern where 
the black points are distributed in the most uniform possible way along the grid.

According to the above formulation, p denotes a permutation and 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗) denote the corresponding items 
(elements) of the permutation. The first 𝑚𝑚𝑚𝑚 items of every feasible permutation may be considered as a solution of the 
GP-QAP. In this way, the objective is to find the best available, optimal solution, i.e., the permutation items
𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) (1 ≤ 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) ≤ 𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚) such that the sum ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (considered as an objective function 

of the GP-QAP) is as minimal as possible, that is:

𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = ∑ ∑ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) → minimum𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 (3)

In formulation (3), only the matrix B and the values of 𝑛𝑛𝑛𝑛, 𝑚𝑚𝑚𝑚 are necessary; meanwhile, the matrix 𝑨𝑨𝑨𝑨 is not needed 
at all. In our work, we use this formulation, rather than the general formulation (1). Also, note that the GP-QAP-
solution (the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)) can be associated with an m-(sub)set 𝑀𝑀𝑀𝑀 such that 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚},
|𝑀𝑀𝑀𝑀| = 𝑚𝑚𝑚𝑚 (see [5]). Analogously, the elements 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 + 1), … , 𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) can be related to an n − m-(sub)set 𝑁𝑁𝑁𝑁, where 
𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}, |𝑁𝑁𝑁𝑁| = 𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚.

Exchanging two black (or two white) squares with each other does not change the value of the objective function,
thus many permutations with the same objective value, 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝), may exist. So, there exist at least 𝑚𝑚𝑚𝑚! optimal solutions.

1 In our work, we will consider 𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛𝑛𝑛 2⁄ .

(1)

In formulation (3), only the matrix B and the values 
of n, m are necessary; meanwhile, the matrix A is not 
needed at all. In our work, we use this formulation, 
rather than the general formulation (1). Also, note 

1  In our work, we will consider m  ≤ n /2.

that the GP-QAP-solution (the elements p(1),…,p(m)) 
can be associated with an m-(sub)set M such that M= 
{p(i) : i = 1 ,…, m}, |M| = m (see [5]). Analogously, the el-
ements p(m + 1),…,p(n) can be related to an n – m-(sub)
set N, where N = {p(i) : i = m + 1, …, n}, |N| = n - m.
Exchanging two black (or two white) squares with 
each other does not change the value of the objective 
function, thus many permutations with the same ob-
jective value, z(p), may exist. So, there exist at least m!  
optimal solutions.
There can be other contexts of the problem defined by 
formula (1). For example, we can consider n points in 
the plane or n nodes of a network and we then may wish 
to find a cluster of m points, which minimizes the total 
distance between all pairs of points in the cluster. This 
cluster can be interpreted as the tightest cluster of m 
points [5]. This is similar to the max-cover problem [3] 
where one wishes to find the location of several facili-
ties which cover the maximum number of points.
The other example of applications includes the selec-
tion of a group of  m people out of n available people 
[5]. The distance between a pair of persons is a mea-
sure of compatibility (a measure of the ability to work 
together). The ideal group will have the most mutual 
compatibility and the least potential for tension.
For the solution of the GP-QAP, the computational 
intelligence approaches are well applicable, includ-
ing the exact and heuristic algorithms. The exact al-
gorithms are suited only for small-sized problems [5, 
6]. For larger problem instances, heuristic algorithms 
are used: single-solution-based algorithms (local 
search, tabu search [5, 15]), population-based algo-
rithms (genetic/evolutionary algorithms [5, 15, 16]. 
Among heuristic algorithms, hybrid genetic/evolu-
tionary algorithms have been shown to be very effec-
tive [5, 11, 12, 14].
In this paper, we are attempting to further improve 
the performance of hybrid genetic algorithms by pro-
posing some more new enhancements2. The main 
contributions are as follows.
1 The so-called hierarchical iterated tabu search 

(ITS) algorithm and its hybridization with the ge-
netic algorithm are applied to the grey pattern qua-
dratic assignment problem for the first time.

2 We assume that the reader is familiar with the most basic 
concepts of the genetic algorithms [9] and also the local search-
based, tabu search-based heuristic algorithms [1, 8].
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2 Very fast evaluation of the neighbouring solutions 
within the tabu search algorithm is used.

3 Smart combination of the tabu search and greedy 
adaptive perturbation is adopted. This enables to 
achieve the beneficial synergy of diversification 
and intensification during the iterative optimiza-
tion process.

The paper is organized as follows. In Section 1, some 
preliminaries are given. In Section  2, we describe a 
novel hybrid genetic algorithm for the grey pattern 
quadratic assignment problem. The results of the 
computational experiments with the proposed algo-
rithm are presented in Section  3. The paper is com-
pleted with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩: Π� → 2��  assigns for each 
𝑝𝑝 𝑝 Π�  a set 𝛩𝛩𝛩𝑝𝑝𝛩 𝛩 Π�  — the set of neighbouring 
solutions of 𝑝𝑝. With the permutation-based problems, a 
common practice is to use the 2-exchange 
neighbourhood function 𝛩𝛩� which is defined in the 
following way: 𝛩𝛩�𝛩𝑝𝑝𝛩 = �𝑝𝑝�: 𝑝𝑝� 𝑝 Π�, 𝛿𝛿�𝛩𝑝𝑝, 𝑝𝑝�𝛩 = 2� , 
where 𝛿𝛿�𝛩𝑝𝑝, 𝑝𝑝�𝛩 is the Hamming distance between the 
permutations 𝑝𝑝 and 𝑝𝑝𝑝. (Remind that the Hamming 
distance between two permutations 𝑝𝑝� and 𝑝𝑝�  can be 
declared as 𝛿𝛿�𝛩𝑝𝑝�, 𝑝𝑝�𝛩 = ��𝑖𝑖: 𝑝𝑝�𝛩𝑖𝑖𝛩 ≠ 𝑝𝑝�𝛩𝑖𝑖𝛩��.) However, 
the order of the elements 𝑝𝑝𝛩1𝛩, … , 𝑝𝑝𝛩𝑝𝑝𝛩 is not 
important in the GP-QAP, so we have to formulate the 
neighbourhood function in a more appropriate way. 
The 1-interchange neighbourhood function 𝛩𝛩� is 
defined such that every neighbouring solution 𝑝𝑝� 𝑝
𝛩𝛩�𝛩𝑝𝑝𝛩 is obtained from the current solution 𝑝𝑝 by simply 
interchanging one element of �𝑝𝑝𝛩𝑖𝑖𝛩: 𝑖𝑖 = 1, … , 𝑝𝑝� with 
another element of �𝑝𝑝𝛩𝑗𝑗𝛩: 𝑗𝑗 = 𝑝𝑝 𝑗 1, … , 𝑗𝑗�. Clearly, this 
neighbourhood function maintains solution feasibility, 
i.e., ∀𝑝𝑝 𝑝 Π�: 𝑝𝑝� 𝑝 𝛩𝛩�𝛩𝑝𝑝𝛩 ⟹ 𝑝𝑝� 𝑝 Π�. More formally: 

  

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the 
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance 
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is 
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the 
maximum number of points.

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The 
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal 
group will have the most mutual compatibility and the least potential for tension.

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact 
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem 
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary 
algorithms have been shown to be very effective [5, 11, 12, 14].

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing 
some more new enhancements2. The main contributions are as follows.

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm 
are applied to the grey pattern quadratic assignment problem for the first time.

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used.
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the 

beneficial synergy of diversification and intensification during the iterative optimization process.
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel 

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational 
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring 

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood 
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the 
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations 
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is 
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from 
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally:

𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4)

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined 
in the following way:

𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝑚𝑚𝑚𝑚 − |{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∩ {𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}| (5)

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1).
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by 

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝.
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula:

Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6)

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances):

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7)

2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local 
search-based, tabu search-based heuristic algorithms [1, 8].

(4)

where δ denotes the distance between solutions. The 
distance between two GP-QAP-solutions p1 and p2 
can be defined in the following way:

  

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the 
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance 
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is 
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the 
maximum number of points. 

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The 
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal 
group will have the most mutual compatibility and the least potential for tension. 

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact 
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem 
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary 
algorithms have been shown to be very effective [5, 11, 12, 14]. 

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing 
some more new enhancements2. The main contributions are as follows. 

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm 
are applied to the grey pattern quadratic assignment problem for the first time. 

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used. 
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the 

beneficial synergy of diversification and intensification during the iterative optimization process. 
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel 

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational 
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks. 

1. Preliminaries 
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring 

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood 
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the 
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations 
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2  can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is 
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from 
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally: 

 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4) 

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined 
in the following way: 

 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2)=𝑚𝑚𝑚𝑚−|{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖=1, … ,𝑚𝑚𝑚𝑚}∩{𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖=1,… ,𝑚𝑚𝑚𝑚}| (5) 

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿( 𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) =𝛿𝛿𝛿𝛿( 𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1) . 
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short 

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by 

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝. 
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) 
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula: 

 Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6) 

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances): 

 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7) 

                                                           
2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local 

search-based, tabu search-based heuristic algorithms [1, 8]. 

(5)

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the 
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance 
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is 
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the 
maximum number of points.

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The 
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal 
group will have the most mutual compatibility and the least potential for tension.

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact 
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem 
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary 
algorithms have been shown to be very effective [5, 11, 12, 14].

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing 
some more new enhancements2. The main contributions are as follows.

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm 
are applied to the grey pattern quadratic assignment problem for the first time.

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used.
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the 

beneficial synergy of diversification and intensification during the iterative optimization process.
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel 

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational 
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring 

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood 
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the 
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations 
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is 
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from 
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally:

𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4)

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined 
in the following way:

𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝑚𝑚𝑚𝑚 − |{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∩ {𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}| (5)

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1).
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by 

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝.
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula:

Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6)

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances):

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7)

2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local 
search-based, tabu search-based heuristic algorithms [1, 8].

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the 
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance 
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is 
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the 
maximum number of points.

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The 
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal 
group will have the most mutual compatibility and the least potential for tension.

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact 
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem 
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary 
algorithms have been shown to be very effective [5, 11, 12, 14].

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing 
some more new enhancements2. The main contributions are as follows.

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm 
are applied to the grey pattern quadratic assignment problem for the first time.

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used.
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the 

beneficial synergy of diversification and intensification during the iterative optimization process.
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel 

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational 
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring 

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood 
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the 
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations 
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is 
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from 
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally:

𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4)

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined 
in the following way:

𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝑚𝑚𝑚𝑚 − |{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∩ {𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}| (5)

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1).
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by 

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝.
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula:

Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6)

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances):

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7)

2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local 
search-based, tabu search-based heuristic algorithms [1, 8].

(6)

where c(x) is a contribution of the element x (the sum 
of related distances):

There can be other contexts of the problem defined by formula (1). For example, we can consider 𝑛𝑛𝑛𝑛 points in the 
plane or 𝑛𝑛𝑛𝑛 nodes of a network and we then may wish to find a cluster of 𝑚𝑚𝑚𝑚 points, which minimizes the total distance 
between all pairs of points in the cluster. This cluster can be interpreted as the tightest cluster of 𝑚𝑚𝑚𝑚 points [5]. This is 
similar to the max-cover problem [3] where one wishes to find the location of several facilities which cover the 
maximum number of points.

The other example of applications includes the selection of a group of 𝑚𝑚𝑚𝑚 people out of 𝑛𝑛𝑛𝑛 available people [5]. The 
distance between a pair of persons is a measure of compatibility (a measure of the ability to work together). The ideal 
group will have the most mutual compatibility and the least potential for tension.

For the solution of the GP-QAP, the computational intelligence approaches are well applicable, including the exact 
and heuristic algorithms. The exact algorithms are suited only for small-sized problems [5, 6]. For larger problem 
instances, heuristic algorithms are used: single-solution-based algorithms (local search, tabu search [5, 15]), population-
based algorithms (genetic/evolutionary algorithms [5, 15, 16]. Among heuristic algorithms, hybrid genetic/evolutionary 
algorithms have been shown to be very effective [5, 11, 12, 14].

In this paper, we are attempting to further improve the performance of hybrid genetic algorithms by proposing 
some more new enhancements2. The main contributions are as follows.

1. The so-called hierarchical iterated tabu search (ITS) algorithm and its hybridization with the genetic algorithm 
are applied to the grey pattern quadratic assignment problem for the first time.

2. Very fast evaluation of the neighbouring solutions within the tabu search algorithm is used.
3. Smart combination of the tabu search and greedy adaptive perturbation is adopted. This enables to achieve the 

beneficial synergy of diversification and intensification during the iterative optimization process.
The paper is organized as follows. In Section 1, some preliminaries are given. In Section 2, we describe a novel 

hybrid genetic algorithm for the grey pattern quadratic assignment problem. The results of the computational 
experiments with the proposed algorithm are presented in Section 3. The paper is completed with concluding remarks.

1. Preliminaries
A neighbourhood function 𝛩𝛩𝛩𝛩: Π𝑛𝑛𝑛𝑛 → 2Π𝑛𝑛𝑛𝑛 assigns for each 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 a set 𝛩𝛩𝛩𝛩(𝑝𝑝𝑝𝑝) ⊆ Π𝑛𝑛𝑛𝑛 — the set of neighbouring 

solutions of 𝑝𝑝𝑝𝑝. With the permutation-based problems, a common practice is to use the 2-exchange neighbourhood 
function 𝛩𝛩𝛩𝛩2 which is defined in the following way: 𝛩𝛩𝛩𝛩2(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 2} , where 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) is the 
Hamming distance between the permutations 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝′. (Remind that the Hamming distance between two permutations 
𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be declared as 𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝1 , 𝑝𝑝𝑝𝑝2) = |{𝑖𝑖𝑖𝑖: 𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖) ≠ 𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖)}|.) However, the order of the elements 𝑝𝑝𝑝𝑝(1), … , 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚) is 
not important in the GP-QAP, so we have to formulate the neighbourhood function in a more appropriate way. The 1-
interchange neighbourhood function 𝛩𝛩𝛩𝛩1 is defined such that every neighbouring solution 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) is obtained from 
the current solution 𝑝𝑝𝑝𝑝 by simply interchanging one element of {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with another element of {𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗): 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛}. Clearly, this neighbourhood function maintains solution feasibility, i.e., ∀𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛: 𝑝𝑝𝑝𝑝′ ∈ 𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) ⟹ 𝑝𝑝𝑝𝑝′ ∈
Π𝑛𝑛𝑛𝑛. More formally:

𝛩𝛩𝛩𝛩1(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′: 𝑝𝑝𝑝𝑝′ ∈ Π𝑛𝑛𝑛𝑛 , 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝′) = 1} (4)

where 𝛿𝛿𝛿𝛿 denotes the distance between solutions. The distance between two GP-QAP-solutions 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 can be defined 
in the following way:

𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝑚𝑚𝑚𝑚 − |{𝑝𝑝𝑝𝑝1(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∩ {𝑝𝑝𝑝𝑝2(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚}| (5)

It can be seen that 0 ≤ 𝛿𝛿𝛿𝛿 ≤ 𝑚𝑚𝑚𝑚, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 0, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2) = 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝2, 𝑝𝑝𝑝𝑝1).
To be more precise, let 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) (𝑢𝑢𝑢𝑢 = 1, … ,𝑚𝑚𝑚𝑚) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛) be two items to be swapped. Then, a short

notation of the form 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 can be used such that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) = �
𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 ≠ 𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣

. This means that 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 is obtained from 𝑝𝑝𝑝𝑝 by 

interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) (𝑝𝑝𝑝𝑝 is said to move to 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤). Of course, 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) = 1 , 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑝𝑝, (𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤)𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝.
It is of high importance to efficiently calculate the difference in the objective values when interchanging the items 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
and 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) . The difference is calculated in O(1) time by this formula:

Δ(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤 , 𝑝𝑝𝑝𝑝) = 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣,𝑤𝑤𝑤𝑤) − 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝) = 2�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� − 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)� − 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� (6)

where 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) is a contribution of the element 𝑥𝑥𝑥𝑥 (the sum of related distances):

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = ∑ 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)
𝑚𝑚𝑚𝑚
𝑦𝑦𝑦𝑦=1 , 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (7)

2 We assume that the reader is familiar with the most basic concepts of the genetic algorithms [9] and also the local 
search-based, tabu search-based heuristic algorithms [1, 8].

(7)

After the exchange, the contributions are updated ac-
cording to the expression:

After the exchange, the contributions are updated according to the expression:

𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) = �
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) + 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) − 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)
𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥) + 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) − 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤), 𝑥𝑥𝑥𝑥 ≠ 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑥𝑥𝑥𝑥 ≠ 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)

, 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (8)

The elements of the found solution determine the locations in the grid where the black squares have to be placed in.
The coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) of the black squares are derived according to these formulas:
𝑟𝑟𝑟𝑟 = ⌊(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) 𝑛𝑛𝑛𝑛2⁄ ⌋ + 1, 𝑠𝑠𝑠𝑠 = �(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) mod 𝑛𝑛𝑛𝑛2� + 1 (see also Figure 1).

Figure 1. A graphical illustration of correspondence of the analytical solution to the graphical image

Let us also introduce the concept of an opposition-based solution (opposite solution), which is in connection with 
what is known as an opposition-based learning (OBL) [17]. The rationale of opposition-based solutions is based on an 
assumption that it is more advantageous to consider an opposite solution with respect to the current solution from a 
search space, rather than a pure random solution generated in a blind random way. The helpfulness of using the 
opposition-based solutions has been confirmed by solving the maximum diversity problem (MDP) [19], which may be 
seen as a "sister problem" of the GP-QAP.

Definition 1. The GP-QAP-solution 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 is an opposition-based solution (opposite solution) with respect to the 
solution 𝑝𝑝𝑝𝑝 if 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 𝑚𝑚𝑚𝑚.

Finally, we are defining a backbone solution (see also [19]).
Definition 2. The GP-QAP-solution 𝑝𝑝𝑝𝑝 ∈ Π𝑛𝑛𝑛𝑛 is a backbone solution (with respect to two underlying solutions 𝑝𝑝𝑝𝑝1,

𝑝𝑝𝑝𝑝2) if simultaneously 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝1� ≤ ⌈𝑚𝑚𝑚𝑚 2⁄ ⌉ and 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝2� ≤ ⌈𝑚𝑚𝑚𝑚 2⁄ ⌉.
Roughly speaking, the backbone solution shares information with its both underlying solutions and is close enough 

to both of them (or possibly "equivalent" to the underlying solution(s) in the sense that 𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝1� = 0 and/or 
𝛿𝛿𝛿𝛿�𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝2� = 0 ).

Within the genetic algorithm, the solution 𝑝𝑝𝑝𝑝 = �𝑝𝑝𝑝𝑝(1), …  𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚)� is associated with an individual (in fact, the 
individual's chromosome). Then, the single element 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) corresponds to a gene of the current chromosome.

2. Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment Problem
Our algorithm is based on the general hybrid genetic algorithm framework where the population-based 

evolutionary search (i.e., explorative search) is combined with the local improvement of the offspring (i.e., exploitative 
search) to enhance the overall search performance.

The hybrid genetic algorithm consists of six main components: a) creation of an initial (starting) population; 
b) parent selection; c) a crossover operator; d) an improvement of the produced offspring; e) updating of the population; 
and f) restart from the new population (if necessary). The high-level description of the hybrid genetic algorithm is 
presented in Figure 2.

The algorithm starts with creation of the initial population of fixed size 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by paying attention to both the quality 
(fitness) of the population individuals and the mutual variability (i.e., mutual distance) between all the population 
members. The algorithm then performs iterations called generations until the pre-defined number of generations, 𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛,
has been accomplished. At every generation, the standard genetic operations — selection, crossover, population 
replacement — take place (with the exception of mutation). The mutation procedure is integrated into the improvement 
algorithm — the hierarchical iterated tabu search (HITS). Our genetic algorithm also incorporates the restart mechanism 
in the cases of observed stagnation of the evolutionary process.

The components of the hybrid genetic algorithm are discussed in more detail in the subsequent sections.

2.1. Initial Population Construction
The initial population is generated as follows.
1. Let 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’OFF’, 𝑃𝑃𝑃𝑃 = ∅, 𝑘𝑘𝑘𝑘 = 1, 𝑙𝑙𝑙𝑙 = 1. (𝑙𝑙𝑙𝑙 is the lexicographic index of the generated solution.)
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, 𝑥𝑥𝑥𝑥 = 1, … ,𝑛𝑛𝑛𝑛 (8)

The elements of the found solution determine the locations in the grid where the black squares have to be placed in.
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individual's chromosome). Then, the single element 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) corresponds to a gene of the current chromosome.

2. Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment Problem
Our algorithm is based on the general hybrid genetic algorithm framework where the population-based 

evolutionary search (i.e., explorative search) is combined with the local improvement of the offspring (i.e., exploitative 
search) to enhance the overall search performance.

The hybrid genetic algorithm consists of six main components: a) creation of an initial (starting) population; 
b) parent selection; c) a crossover operator; d) an improvement of the produced offspring; e) updating of the population; 
and f) restart from the new population (if necessary). The high-level description of the hybrid genetic algorithm is 
presented in Figure 2.

The algorithm starts with creation of the initial population of fixed size 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by paying attention to both the quality 
(fitness) of the population individuals and the mutual variability (i.e., mutual distance) between all the population 
members. The algorithm then performs iterations called generations until the pre-defined number of generations, 𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛,
has been accomplished. At every generation, the standard genetic operations — selection, crossover, population 
replacement — take place (with the exception of mutation). The mutation procedure is integrated into the improvement 
algorithm — the hierarchical iterated tabu search (HITS). Our genetic algorithm also incorporates the restart mechanism 
in the cases of observed stagnation of the evolutionary process.

The components of the hybrid genetic algorithm are discussed in more detail in the subsequent sections.

2.1. Initial Population Construction
The initial population is generated as follows.
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It can be seen that 0 ≤ 𝛿𝛿 ≤ 𝛿𝛿, 𝛿𝛿(𝑝𝑝𝑝 𝑝𝑝) = 0, 𝛿𝛿(𝑝𝑝�𝑝 𝑝𝑝�) =
𝛿𝛿(𝑝𝑝�𝑝 𝑝𝑝�). 
To be more precise, let 𝑝𝑝(𝑝𝑝) (𝑢𝑢 = 𝑢𝑝 𝑢 𝑝 𝛿𝛿) and 𝑝𝑝(𝑝𝑝) 
(𝑝𝑝 = 𝛿𝛿 𝑣 𝑢𝑝 𝑢 𝑝 𝑣𝑣) be two items to be swapped. Then, a 
short notation of the form 𝑝𝑝�𝑝�  can be used such that 

𝑝𝑝�𝑝�(𝑖𝑖) = �
𝑝𝑝(𝑖𝑖)𝑝 𝑖𝑖 𝑖 𝑝𝑝𝑝 𝑝𝑝
𝑝𝑝(𝑝𝑝)𝑝 𝑖𝑖 = 𝑝𝑝
𝑝𝑝(𝑝𝑝)𝑝 𝑖𝑖 = 𝑝𝑝

. This means that 𝑝𝑝�𝑝�  is 

obtained from 𝑝𝑝 by interchanging the items 𝑝𝑝(𝑝𝑝) and 
𝑝𝑝(𝑝𝑝) (𝑝𝑝 is said to move to 𝑝𝑝�𝑝�). Of course, 𝛿𝛿(𝑝𝑝𝑝 𝑝𝑝�𝑝�) =
𝑢 , 𝑝𝑝�𝑝� = 𝑝𝑝, (𝑝𝑝�𝑝�)�𝑝� = 𝑝𝑝. It is of high importance to 
efficiently calculate the difference in the objective 
values when interchanging the items 𝑝𝑝(𝑝𝑝) and 𝑝𝑝(𝑝𝑝) . 
The difference is calculated in O(1) time by this 
formula: 
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The elements of the found solution determine the loca-
tions in the grid where the black squares have to be 
placed in. The coordinates (𝑟𝑟𝑟 𝑟𝑟𝑟 of the black squares  
are derived according to these formulas: 
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(see also Figure 1). 
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Figure 1 
A graphical illustration of correspondence of the analytical 
solution to the graphical image
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The coordinates (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) of the black squares are derived according to these formulas:
𝑟𝑟𝑟𝑟 = ⌊(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) 𝑛𝑛𝑛𝑛2⁄ ⌋ + 1, 𝑠𝑠𝑠𝑠 = �(𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) − 1) mod 𝑛𝑛𝑛𝑛2� + 1 (see also Figure 1).

Figure 1. A graphical illustration of correspondence of the analytical solution to the graphical image

Let us also introduce the concept of an opposition-based solution (opposite solution), which is in connection with 
what is known as an opposition-based learning (OBL) [17]. The rationale of opposition-based solutions is based on an 
assumption that it is more advantageous to consider an opposite solution with respect to the current solution from a 
search space, rather than a pure random solution generated in a blind random way. The helpfulness of using the 
opposition-based solutions has been confirmed by solving the maximum diversity problem (MDP) [19], which may be 
seen as a "sister problem" of the GP-QAP.
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Finally, we are defining a backbone solution (see also [19]).
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individual's chromosome). Then, the single element 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) corresponds to a gene of the current chromosome.

2. Hybrid Genetic Algorithm for the Grey Pattern Quadratic Assignment Problem
Our algorithm is based on the general hybrid genetic algorithm framework where the population-based 

evolutionary search (i.e., explorative search) is combined with the local improvement of the offspring (i.e., exploitative 
search) to enhance the overall search performance.

The hybrid genetic algorithm consists of six main components: a) creation of an initial (starting) population; 
b) parent selection; c) a crossover operator; d) an improvement of the produced offspring; e) updating of the population; 
and f) restart from the new population (if necessary). The high-level description of the hybrid genetic algorithm is 
presented in Figure 2.

The algorithm starts with creation of the initial population of fixed size 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by paying attention to both the quality 
(fitness) of the population individuals and the mutual variability (i.e., mutual distance) between all the population 
members. The algorithm then performs iterations called generations until the pre-defined number of generations, 𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛,
has been accomplished. At every generation, the standard genetic operations — selection, crossover, population 
replacement — take place (with the exception of mutation). The mutation procedure is integrated into the improvement 
algorithm — the hierarchical iterated tabu search (HITS). Our genetic algorithm also incorporates the restart mechanism 
in the cases of observed stagnation of the evolutionary process.

The components of the hybrid genetic algorithm are discussed in more detail in the subsequent sections.

2.1. Initial Population Construction
The initial population is generated as follows.
1. Let 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’OFF’, 𝑃𝑃𝑃𝑃 = ∅, 𝑘𝑘𝑘𝑘 = 1, 𝑙𝑙𝑙𝑙 = 1. (𝑙𝑙𝑙𝑙 is the lexicographic index of the generated solution.)
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2. Hybrid Genetic Algorithm for the 
Grey Pattern Quadratic Assignment 
Problem
Our algorithm is based on the general hybrid genet-
ic algorithm framework where the population-based 

a search space, rather than a pure random solution 
generated in a blind random way. The helpfulness of 
using the opposition-based solutions has been con-
firmed by solving the maximum diversity problem 
(MDP) [19], which may be seen as a "sister problem" 
of the GP-QAP.
Definition 1. The GP-QAP-solution 𝑝𝑝 ∈ Π� is an oppo-
sition-based solution (opposite solution) with respect 
to the solution 𝑝𝑝 if 𝛿𝛿(𝑝𝑝𝑝 𝑝𝑝) = 𝑚𝑚. 

Finally, we are defining a backbone solution (see also 
[19]). 

Definition 2. The GP-QAP-solution 𝑝𝑝 ∈ Π�  is a back-
bone solution (with respect to two underlying solutions 
𝑝𝑝�, 𝑝𝑝�) if simultaneously 𝛿𝛿�𝑝𝑝𝑝 𝑝𝑝�� � ⌈𝑚𝑚 𝑚⁄ ⌉ and 
𝛿𝛿�𝑝𝑝𝑝 𝑝𝑝�� � ⌈𝑚𝑚 𝑚⁄ ⌉. 

Roughly speaking, the backbone solution shares infor-
mation with its both underlying solutions and is close 
enough to both of them (or possibly "equivalent" to the 
underlying solution(s) in the sense that 𝛿𝛿�𝑝𝑝𝑝 𝑝𝑝�� = � 
and/or 𝛿𝛿�𝑝𝑝𝑝 𝑝𝑝�� = � ). 

Within the genetic algorithm, the solution 𝑝𝑝 =
�𝑝𝑝(1)𝑝 …  𝑝𝑝(𝑚𝑚)� is associated with an individual (in fact, 
the individual's chromosome). Then, the single element 
𝑝𝑝(𝑝𝑝) corresponds to a gene of the current chromosome. 

Definition 1.

Definition 2.

evolutionary search (i.e., explorative search) is com-
bined with the local improvement of the offspring 
(i.e., exploitative search) to enhance the overall search 
performance.
The hybrid genetic algorithm consists of six main 
components: a) creation of an initial (starting) popu-
lation; b) parent selection; c) a crossover operator; d) 
an improvement of the produced offspring; e) updat-
ing of the population; and f ) restart from the new pop-
ulation (if necessary). The high-level description of 
the hybrid genetic algorithm is presented in Figure 2.
The algorithm starts with creation of the initial pop-
ulation of fixed size PS by paying attention to both 
the quality (fitness) of the population individuals 
and the mutual variability (i.e., mutual distance) be-
tween all the population members. The algorithm 
then performs iterations called generations until the 
pre-defined number of generations, Ngen, has been 
accomplished. At every generation, the standard ge-
netic operations — selection, crossover, population 
replacement — take place (with the exception of mu-
tation). The mutation procedure is integrated into the 
improvement algorithm — the hierarchical iterated 
tabu search (HITS). Our genetic algorithm also in-
corporates the restart mechanism in the cases of ob-
served stagnation of the evolutionary process.
The components of the hybrid genetic algorithm are 
discussed in more detail in the subsequent sections.

2.1. Initial Population Construction
The initial population is generated as follows.
1 Let flag=’OFF’, P=∅, k=1, l=1. (l is the lexicographic 

index of the generated solution.)
2 If flag=’OFF’, then generate a random permuta-

tion (solution) p_1; otherwise, generate an opposi 
llllllllll

3 Apply the hierarchical iterated tabu search algo-
rithm to the generated solution and get the im-
proved solution p_l^∅.

4 If (flag=’OFF’)  and (k=1), then: a) include the solu-
tion p_1^∅   into the population P; b) flag=’ON’; c) go 
to Step 2.

5 If (flag=’ON’)  and (k=1)  and (z(p_l^∅ )<z(p): p∅P), 
then: a) replace the 1st member of the population 
by the solution p_l^∅  ; b) go to Step 2.

6 If ((z(p_l^∅ )≠z(p):∅p∅P)  and (min∅(p∅P)∅{∅(p_

Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓, 𝑃𝑃 𝑓 𝑃, 𝑘𝑘 𝑓 𝑘, 𝑓𝑓 𝑓 𝑘. (𝑓𝑓 is the lexico-
graphic index of the generated solution.) 
If 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓, then generate a random permuta-
tion (solution) 𝑝𝑝�; otherwise, generate an opposi-
tion-based random permutation 𝑝𝑝� . 𝑓𝑓 𝑓 𝑓𝑓 𝑙 𝑘. 
Apply the hierarchical iterated tabu search algo-
rithm to the generated solution and get the im-
proved solution 𝑝𝑝�. 
If (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓) and (𝑘𝑘 𝑓 𝑘), then: a) include the 
solution 𝑝𝑝�  into the population 𝑃𝑃; b) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓; 
c) go to Step 2. 
If (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓)  and (𝑘𝑘 𝑓 𝑘)  and (𝑧𝑧(𝑝𝑝�) <
𝑧𝑧(𝑝𝑝): 𝑝𝑝 𝑝 𝑃𝑃), then: a) replace the 1st member of the 
population by the solution 𝑝𝑝� ; b) go to Step 2. 

If �(𝑧𝑧(𝑝𝑝�) ≠ 𝑧𝑧(𝑝𝑝): ∀𝑝𝑝 𝑝 𝑃𝑃) and �min�𝑝�
�𝛿𝛿(𝑝𝑝�, 𝑝𝑝)� ≥

𝐷𝐷𝐷𝐷��  �� �𝑧𝑧(𝑝𝑝�) < min�𝑝�
�𝑧𝑧(𝑝𝑝)��, then include the so-

lution 𝑝𝑝�  into the population 𝑃𝑃. Otherwise, include 
the random solution 𝑝𝑝�  into the population 𝑃𝑃. 

 𝑘𝑘 𝑓 𝑘𝑘 𝑙 𝑘. If 𝑘𝑘 𝑘 𝑃𝑃𝑘𝑘, then go to Step 2; otherwise, 
the initial population formation is finished. 

tions, an easy way to operationalize this is to maintain a 
long-term frequency array (memory) 𝑓𝑓, where 𝑓𝑓(𝑓𝑓) rec-
ords the number of times the item 𝑓𝑓 has appeared in a 
solution. The array 𝑓𝑓 is operated in a very simple way: 
all one needs is to initialize it with zeros and update its 
values each time a new solution is generated, i.e., 
𝑓𝑓�𝑝𝑝�(𝑓𝑓)� 𝑓 𝑓𝑓�𝑝𝑝�(𝑓𝑓)� 𝑙 𝑘, where 𝑝𝑝�  is the currently gen-
erated solution. To obtain the opposition-based ran-
dom solution, it is sufficient to pick up 𝑚𝑚 items with the 
smallest frequency (ties are broken randomly). Obvi-
ously, this ensures that 𝛿𝛿(𝑝𝑝�, 𝑝𝑝���) 𝑓 𝑚𝑚  (𝑓𝑓 𝑓 𝑙, 𝑙, 𝑙), 
where 𝑝𝑝�, 𝑝𝑝���  are solutions consecutively generated 
one after another. 

Each generated solution is subject to improvement by 
the hierarchical ITS. After improvement, it is checked 
if the distance between the improved solution 𝑝𝑝�   and 
the population 𝑃𝑃 (𝛿𝛿(𝑝𝑝�, 𝑃𝑃) 𝑓 min

�𝑝�
�𝛿𝛿(𝑝𝑝�, 𝑝𝑝)�) is greater 

than or equal to the pre-defined distance threshold, 𝐷𝐷𝐷𝐷. 
If it is the case, the improved solution is included into 
the population. The same is true if the improved solu-
tion is better than the best population member. Other-
wise, the randomly generated solution enters the popu-
lation. This ensures both the quality and genetic vari-
ance of the initial population. 
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l^∅,p)}≥DT))  or (z(p_l^∅ )<min∅(p∅P)∅{z(p)} ), then 
include the solution p_l^∅   into the population P. 
Otherwise, include the random solution p_l into 
the population P.

7 k=k+1. If k≤PS, then go to Step 2; otherwise, the ini-
tial population formation is finished.

Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓, 𝑃𝑃 𝑓 𝑃, 𝑘𝑘 𝑓 𝑘, 𝑓𝑓 𝑓 𝑘. (𝑓𝑓 is the lexico-
graphic index of the generated solution.) 
If 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓, then generate a random permuta-
tion (solution) 𝑝𝑝�; otherwise, generate an opposi-
tion-based random permutation 𝑝𝑝� . 𝑓𝑓 𝑓 𝑓𝑓 𝑙 𝑘. 
Apply the hierarchical iterated tabu search algo-
rithm to the generated solution and get the im-
proved solution 𝑝𝑝�. 
If (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓) and (𝑘𝑘 𝑓 𝑘), then: a) include the 
solution 𝑝𝑝�  into the population 𝑃𝑃; b) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓; 
c) go to Step 2. 
If (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓)  and (𝑘𝑘 𝑓 𝑘)  and (𝑧𝑧(𝑝𝑝�) <
𝑧𝑧(𝑝𝑝): 𝑝𝑝 𝑝 𝑃𝑃), then: a) replace the 1st member of the 
population by the solution 𝑝𝑝� ; b) go to Step 2. 

If �(𝑧𝑧(𝑝𝑝�) ≠ 𝑧𝑧(𝑝𝑝): ∀𝑝𝑝 𝑝 𝑃𝑃) and �min�𝑝�
�𝛿𝛿(𝑝𝑝�, 𝑝𝑝)� ≥

𝐷𝐷𝐷𝐷��  �� �𝑧𝑧(𝑝𝑝�) < min�𝑝�
�𝑧𝑧(𝑝𝑝)��, then include the so-

lution 𝑝𝑝�  into the population 𝑃𝑃. Otherwise, include 
the random solution 𝑝𝑝�  into the population 𝑃𝑃. 

 𝑘𝑘 𝑓 𝑘𝑘 𝑙 𝑘. If 𝑘𝑘 𝑘 𝑃𝑃𝑘𝑘, then go to Step 2; otherwise, 
the initial population formation is finished. 

tions, an easy way to operationalize this is to maintain a 
long-term frequency array (memory) 𝑓𝑓, where 𝑓𝑓(𝑓𝑓) rec-
ords the number of times the item 𝑓𝑓 has appeared in a 
solution. The array 𝑓𝑓 is operated in a very simple way: 
all one needs is to initialize it with zeros and update its 
values each time a new solution is generated, i.e., 
𝑓𝑓�𝑝𝑝�(𝑓𝑓)� 𝑓 𝑓𝑓�𝑝𝑝�(𝑓𝑓)� 𝑙 𝑘, where 𝑝𝑝�  is the currently gen-
erated solution. To obtain the opposition-based ran-
dom solution, it is sufficient to pick up 𝑚𝑚 items with the 
smallest frequency (ties are broken randomly). Obvi-
ously, this ensures that 𝛿𝛿(𝑝𝑝�, 𝑝𝑝���) 𝑓 𝑚𝑚  (𝑓𝑓 𝑓 𝑙, 𝑙, 𝑙), 
where 𝑝𝑝�, 𝑝𝑝���  are solutions consecutively generated 
one after another. 

Each generated solution is subject to improvement by 
the hierarchical ITS. After improvement, it is checked 
if the distance between the improved solution 𝑝𝑝�   and 
the population 𝑃𝑃 (𝛿𝛿(𝑝𝑝�, 𝑃𝑃) 𝑓 min

�𝑝�
�𝛿𝛿(𝑝𝑝�, 𝑝𝑝)�) is greater 

than or equal to the pre-defined distance threshold, 𝐷𝐷𝐷𝐷. 
If it is the case, the improved solution is included into 
the population. The same is true if the improved solu-
tion is better than the best population member. Other-
wise, the randomly generated solution enters the popu-
lation. This ensures both the quality and genetic vari-
ance of the initial population. 

2.2. Parent Selection
At each generation, two solutions (permutations) p' 
and p'' are randomly selected in the population P to 
serve as parents for reproduction.

2.3. Crossover Operator
The goal of crossover (recombination) operator is to 
produce an offspring from a pair of parents. The prin-
ciple of functioning of our crossover is based on two 
concepts: backbone solution and opposition-based 
(opposite) solution (see also [19]). This allows both 
to preserve the common elements (genes) in two se-
lected parents and introduce completely new genes. 
Note that, in addition, the backbone solution is par-
tially optimized to ensure a higher quality of the off-

Regarding the generation of opposition-based solu-
tions, an easy way to operationalize this is to maintain a 
long-term frequency array (memory) 𝑓𝑓, where 𝑓𝑓𝑓𝑓𝑓𝑓 rec-
ords the number of times the item 𝑓𝑓 has appeared in a 
solution. The array 𝑓𝑓 is operated in a very simple way: 
all one needs is to initialize it with zeros and update its 
values each time a new solution is generated, i.e., 
𝑓𝑓�𝑝𝑝�𝑓𝑓𝑓𝑓� = 𝑓𝑓�𝑝𝑝�𝑓𝑓𝑓𝑓� � �, where 𝑝𝑝�  is the currently gen-
erated solution. To obtain the opposition-based ran-
dom solution, it is sufficient to pick up 𝑚𝑚 items with the 
smallest frequency (ties are broken randomly). Obvi-
ously, this ensures that 𝛿𝛿𝑓𝑝𝑝�, 𝑝𝑝���𝑓 = 𝑚𝑚𝑚 (𝑙𝑙 = 𝑙, 𝑙, 𝑙), 
where 𝑝𝑝�, 𝑝𝑝���𝑚 are solutions consecutively generated 
one after another. 

Each generated solution is subject to improvement by 
the hierarchical ITS. After improvement, it is checked 
if the distance between the improved solution 𝑝𝑝�𝑚𝑚 and 
the population 𝑃𝑃 (𝛿𝛿𝑓𝑝𝑝�, 𝑃𝑃𝑓=min����𝛿𝛿𝑓𝑝𝑝�, 𝑝𝑝𝑓�) is greater 
than or equal to the pre-defined distance threshold, 𝐷𝐷𝐷𝐷. 
If it is the case, the improved solution is included into 
the population. The same is true if the improved solu-
tion is better than the best population member. Other-
wise, the randomly generated solution enters the popu-
lation. This ensures both the quality and genetic vari-
ance of the initial population. 

Regarding the generation of opposition-based solu-
tions, an easy way to operationalize this is to maintain a 
long-term frequency array (memory) 𝑓𝑓, where 𝑓𝑓𝑓𝑓𝑓𝑓 rec-
ords the number of times the item 𝑓𝑓 has appeared in a 
solution. The array 𝑓𝑓 is operated in a very simple way: 
all one needs is to initialize it with zeros and update its 
values each time a new solution is generated, i.e., 
𝑓𝑓�𝑝𝑝�𝑓𝑓𝑓𝑓� = 𝑓𝑓�𝑝𝑝�𝑓𝑓𝑓𝑓� � �, where 𝑝𝑝�  is the currently gen-
erated solution. To obtain the opposition-based ran-
dom solution, it is sufficient to pick up 𝑚𝑚 items with the 
smallest frequency (ties are broken randomly). Obvi-
ously, this ensures that 𝛿𝛿𝑓𝑝𝑝�, 𝑝𝑝���𝑓 = 𝑚𝑚𝑚 (𝑙𝑙 = 𝑙, 𝑙, 𝑙), 
where 𝑝𝑝�, 𝑝𝑝���𝑚 are solutions consecutively generated 
one after another. 

Each generated solution is subject to improvement by 
the hierarchical ITS. After improvement, it is checked 
if the distance between the improved solution 𝑝𝑝�𝑚𝑚 and 
the population 𝑃𝑃 (𝛿𝛿𝑓𝑝𝑝�, 𝑃𝑃𝑓=min����𝛿𝛿𝑓𝑝𝑝�, 𝑝𝑝𝑓�) is greater 
than or equal to the pre-defined distance threshold, 𝐷𝐷𝐷𝐷. 
If it is the case, the improved solution is included into 
the population. The same is true if the improved solu-
tion is better than the best population member. Other-
wise, the randomly generated solution enters the popu-
lation. This ensures both the quality and genetic vari-
ance of the initial population. 

Figure 2 
Pseudo-code of the hybrid genetic algorithm

  

2. If 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’OFF’, then generate a random permutation (solution) 𝑝𝑝𝑝𝑝1; otherwise, generate an opposition-based 
random permutation 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 . 𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙 + 1. 

3. Apply the hierarchical iterated tabu search algorithm to the generated solution and get the improved solution 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗. 
4. If (𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’OFF’) and (𝑘𝑘𝑘𝑘 = 1), then: a) include the solution 𝑝𝑝𝑝𝑝1∗  into the population 𝑃𝑃𝑃𝑃; b) 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’ON’; c) go to 

Step 2. 
5. If (𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 = ’ON’) and (𝑘𝑘𝑘𝑘 = 1) and (𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗) < 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝): 𝑝𝑝𝑝𝑝 ∈ 𝑃𝑃𝑃𝑃), then: a) replace the 1st member of the population by 

the solution 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗ ; b) go to Step 2. 

6. If �(𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗) ≠ 𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝):∀𝑝𝑝𝑝𝑝 ∈ 𝑃𝑃𝑃𝑃) and �min
𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃

{𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗, 𝑝𝑝𝑝𝑝)} ≥ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷��  or �𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗) < min
𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃

{𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝)}�, then include the solution 

𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗  into the population 𝑃𝑃𝑃𝑃. Otherwise, include the random solution 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘  into the population 𝑃𝑃𝑃𝑃. 
7. 𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑘𝑘 + 1. If 𝑘𝑘𝑘𝑘 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, then go to Step 2; otherwise, the initial population formation is finished. 
Regarding the generation of opposition-based solutions, an easy way to operationalize this is to maintain a long-

term frequency array (memory) 𝑓𝑓𝑓𝑓, where 𝑓𝑓𝑓𝑓(𝑖𝑖𝑖𝑖) records the number of times the item 𝑖𝑖𝑖𝑖 has appeared in a solution. The 
array 𝑓𝑓𝑓𝑓 is operated in a very simple way: all one needs is to initialize it with zeros and update its values each time a new 
solution is generated, i.e., 𝑓𝑓𝑓𝑓�𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓�𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘  is the currently generated solution. To obtain the 
opposition-based random solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency (ties are broken 
randomly). Obviously, this ensures that 𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 , 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘−1) = 𝑚𝑚𝑚𝑚  (𝑙𝑙𝑙𝑙 = 2, 3, …), where 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 , 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘−1  are solutions consecutively 
generated one after another. 

Each generated solution is subject to improvement by the hierarchical ITS. After improvement, it is checked if the 
distance between the improved solution 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗   and the population 𝑃𝑃𝑃𝑃 (𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗,𝑃𝑃𝑃𝑃) = min

𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃
{𝛿𝛿𝛿𝛿(𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘∗, 𝑝𝑝𝑝𝑝)}) is greater than or equal to 

the pre-defined distance threshold, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. If it is the case, the improved solution is included into the population. The same 
is true if the improved solution is better than the best population member. Otherwise, the randomly generated solution 
enters the population. This ensures both the quality and genetic variance of the initial population. 
 
procedure Hybrid_Genetic_Algorithm; // hybrid genetic algorithm for the grey pattern quadratic assignment problem 
// input: n, m, B 
// output: p − the best found solution 
// parameters: PS  − population size, Ngen − number of generations, Lidle_gen − idle generations limit, DT − distance threshold 

 

begin 
  get data, parameters; initialize algorithm variables; 
  create initial population P of size PS; // see Section 2.1 
  𝑝𝑝𝑝𝑝: = argmin

𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃
{𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝)}; // the best so far solution is memorized 

  for gen_index := 1 to Ngen do begin 
    randomly select the parents p′, p′′ ∈ P for reproduction; 
    produce the offspring p°, p°° ∈ Πn; 
    apply Hierarchical_Iterated_Tabu_Search to the offspring p°, get an (improved) solution p ; 
    if z(p ) < z(p) then p := z(p ); // the best so far solution is updated 
    update the current population P; // see Section 2.5 
    apply Hierarchical_Iterated_Tabu_Search to the offspring p°°, get an (improved) solution p ; 
    if z(p ) < z(p) then p := z(p ); // the best so far solution is updated 
    update the current population P; 
    if idle generation limit Lidle_gen is exceeded then begin 
       restart from the random population; 
       if min

𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃
{𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝)} < z(p) then 𝑝𝑝𝑝𝑝: = argmin

𝑝𝑝𝑝𝑝∈𝑃𝑃𝑃𝑃
{𝑧𝑧𝑧𝑧(𝑝𝑝𝑝𝑝)} 

    endif 
  endfor 
end. 

Figure 2. Pseudo-code of the hybrid genetic algorithm 

2.2. Parent Selection 

At each generation, two solutions (permutations) 𝑝𝑝𝑝𝑝′ and 𝑝𝑝𝑝𝑝′′ are randomly selected in the population 𝑃𝑃𝑃𝑃 to serve as 
parents for reproduction. 

2.3. Crossover Operator 
The goal of crossover (recombination) operator is to produce an offspring from a pair of parents. The principle of 

functioning of our crossover is based on two concepts: backbone solution and opposition-based (opposite) solution (see 
also [19]). This allows both to preserve the common elements (genes) in two selected parents and introduce completely 
new genes. Note that, in addition, the backbone solution is partially optimized to ensure a higher quality of the 
offspring. A so-called greedy adaptive procedure (GAP) is applied for this purpose. Thus, two offspring solutions are 
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spring. A so-called greedy adaptive procedure (GAP) 
is applied for this purpose. Thus, two offspring solu-
tions are generated: the optimized offspring solution 
and its counterpart (the opposite offspring solution). 
The crossover is called the backbone and opposi-
tion-based crossover and its high-level description is 
given in Figure 3. Some specific details are as follows.
The values of the short-term array (gene frequencies) 
fST

cross are calculated by this expression:

where 𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 are the corresponding parental solutions. 
The m genes with the most frequency are then chosen 
to form the backbone solution 𝑝𝑝. After this, we apply 
the greedy adaptive procedure, which respects only 
𝑚𝑚 𝑚⁄   genes with the largest frequency. So, the GAP re-
ceives a partial solution 𝑝𝑝 (the elements 𝑝𝑝(1), …, 
𝑝𝑝(𝑚𝑚 𝑚⁄ )) as an input. The GAP chooses the element, 
one at a time, and adds it to the current partial solution. 
In particular, GAP adds, at each iteration 𝑞𝑞 (𝑞𝑞 𝑞
1, … , 𝑚𝑚 𝑚⁄ ), the element from the set of unselected ele-
ments �𝑗𝑗𝑗 𝑗𝑗 𝑞 1, … , 𝑗𝑗� ∖ �𝑝𝑝(𝑖𝑖)𝑗 𝑖𝑖 𝑞 1, … , 𝑚𝑚 𝑚⁄ + 𝑞𝑞 𝑞 1� 
with the minimum contribution value (see formula (7)) 
across all the unselected elements, i.e., 

𝑗𝑗 𝑞 𝑗𝑗𝑗𝑗𝑗𝑗
����𝑗���,…,��∖��(�)𝑗���,…,� �⁄ �����

�𝑐𝑐�𝑝𝑝(𝑗𝑗)�� . This is contin-

ued until the solution has been completed (see Fig-
ure 4). Note that the objective function value 𝑧𝑧 can be 
obtained from the 𝑐𝑐 values by the equation: 𝑧𝑧 𝑞
𝑚 ∑ 𝑐𝑐�𝑝𝑝(𝑗𝑗)��

��� . The complexity of the GAP algorithm is 
𝑂𝑂(𝑚𝑚𝑗𝑗). 
 

Figure 3 
Pseudo-code of the backbone and opposition-based crossover

Figure 4 
Pseudo-code of the greedy adaptive procedure

  

generated: the optimized offspring solution and its counterpart (the opposite offspring solution). The crossover is called 
the backbone and opposition-based crossover and its high-level description is given in Figure 3. Some specific details 
are as follows. 

The values of the short-term array (gene frequencies) 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are calculated by this expression: 

 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖) = ��𝑗𝑗𝑗𝑗: 𝑗𝑗𝑗𝑗 ∈ �𝑝𝑝𝑝𝑝′(𝑘𝑘𝑘𝑘):𝑘𝑘𝑘𝑘 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑗𝑗𝑗𝑗 ∈ �𝑝𝑝𝑝𝑝′′(𝑘𝑘𝑘𝑘): 𝑘𝑘𝑘𝑘 = 1, … ,𝑚𝑚𝑚𝑚���, 𝑖𝑖𝑖𝑖 = 1, …  𝑛𝑛𝑛𝑛 (9) 

where 𝑝𝑝𝑝𝑝′, 𝑝𝑝𝑝𝑝′′ are the corresponding parental solutions. The m genes with the most frequency are then chosen to form the 
backbone solution 𝑝𝑝𝑝𝑝. After this, we apply the greedy adaptive procedure, which respects only 𝑚𝑚𝑚𝑚 2⁄   genes with the 
largest frequency. So, the GAP receives a partial solution 𝑝𝑝𝑝𝑝 (the elements 𝑝𝑝𝑝𝑝(1), …, 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 2⁄ )) as an input. The 
GAP chooses the element, one at a time, and adds it to the current partial solution. In particular, GAP adds, at each 
iteration 𝑞𝑞𝑞𝑞 (𝑞𝑞𝑞𝑞 = 1, … ,𝑚𝑚𝑚𝑚 2⁄ ), the element from the set of unselected elements {𝑗𝑗𝑗𝑗: 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛} ∖ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚 2⁄ +
𝑞𝑞𝑞𝑞 − 1} with the minimum contribution value (see formula (7)) across all the unselected elements, i.e., 

𝑗𝑗𝑗𝑗 = argmin
𝑖𝑖𝑖𝑖∈{𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖=1,…,𝑛𝑛𝑛𝑛}∖{𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖):𝑖𝑖𝑖𝑖=1,…,𝑚𝑚𝑚𝑚 2⁄ +𝑞𝑞𝑞𝑞−1}

�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗)�� . This is continued until the solution has been completed (see Figure 4). Note 

that the objective function value 𝑧𝑧𝑧𝑧 can be obtained from the 𝑐𝑐𝑐𝑐 values by the equation: 𝑧𝑧𝑧𝑧 = 2∑ 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗)�𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 . The 

complexity of the GAP algorithm is 𝑂𝑂𝑂𝑂(𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). 
 
procedure Backbone_and_Opposition_Based_Crossover; // backbone and opposition-based crossover for the GP-QAP 
// input: n, m, 
//           p′, p′′ − parents 
// output: 𝑝𝑝𝑝𝑝° − partially optimized offspring solution, 𝑝𝑝𝑝𝑝°°− opposition-based offspring solution 

 

begin 
  // construction of the backbone solution with respect to the parental solutions p′, p′′ 
  calculate the values of the short-term array (gene frequencies) 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖), i = 1, …, n; // see formula(9) 
  pick up m genes with the largest frequency (break ties randomly), 
  the chosen m genes form the backbone solution 𝑝𝑝𝑝𝑝; 
  // partial optimization of the backbone solution 
  disregard 𝑚𝑚𝑚𝑚 2⁄  genes of the backbone solution 𝑝𝑝𝑝𝑝 

  (the genes with the smallest frequency are disregarded (ties are resolved randomly)); 
  apply Greedy_Adaptive_Procedure to the partial backbone solution 𝑝𝑝𝑝𝑝, 
  get a partially optimized complete offspring solution 𝑝𝑝𝑝𝑝°; 
  // construction of the opposition-based solution 
  generate an opposition-based offspring solution 𝑝𝑝𝑝𝑝°° with respect to 𝑝𝑝𝑝𝑝°, i.e., 𝑝𝑝𝑝𝑝°° = 𝑝𝑝𝑝𝑝° 
end. 

Figure 3. Pseudo-code of the backbone and opposition-based crossover 
 
procedure Greedy_Adaptive_Procedure; // greedy adaptive procedure for the GP-QAP 
// input: n, m, B, 
//           p − partial solution, where the elements p(𝑚𝑚𝑚𝑚 2⁄  + 1), …, p(m) are disregarded 
// output: p − feasible (complete) solution 

 

begin 
  for i := 1 to n do begin c(i) := 0; Selected(i) := FALSE endfor; 
  for i := 1 to n do for j := 1 to 𝑚𝑚𝑚𝑚 2⁄ − 1 do c(i) := c(i) + B(i, p(j)); // calculation of contributions (c) 
  for i := 1 to 𝑚𝑚𝑚𝑚 2⁄  do Selected(p(i)) := TRUE; // initialization of Selected 
  i := 𝑚𝑚𝑚𝑚 2⁄ ; k := p(𝑚𝑚𝑚𝑚 2⁄ ); 
  for q := 1 to 𝑚𝑚𝑚𝑚 2⁄  do begin // cycle is repeated until the solution has been completed 
    minimum_contribution := ∞; 
    for j := 1 to n do 
      if Selected(j) = FALSE then begin 
         c(j) := c(j) + B(j, k); if c(j) < minimum_contribution then begin minimum_contribution := c(j); jmin := j endif 
      endif; 
    i := i + 1; p(i) := jmin; // the element with the minimum contribution is added to the solution 
    Selected(p(i)) := TRUE; k := jmin 
  endfor; 
  i := m + 1; for j := 1 to n do // assigning values to the elements p(m + 1), …, p(n) 
             if Selected(j) = FALSE then begin p(i) := j; i := i + 1 endif 
end. 

Figure 4. Pseudo-code of the greedy adaptive procedure 
 

The principle of greedy adaptive algorithm is not new and it is in its nature similar to "greedy randomized adaptive 
search procedures" (GRASP) [7]. GAP is adaptive since it selects the current element with respect to the already 

  

generated: the optimized offspring solution and its counterpart (the opposite offspring solution). The crossover is called 
the backbone and opposition-based crossover and its high-level description is given in Figure 3. Some specific details 
are as follows. 

The values of the short-term array (gene frequencies) 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are calculated by this expression: 

 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖) = ��𝑗𝑗𝑗𝑗: 𝑗𝑗𝑗𝑗 ∈ �𝑝𝑝𝑝𝑝′(𝑘𝑘𝑘𝑘):𝑘𝑘𝑘𝑘 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑗𝑗𝑗𝑗 ∈ �𝑝𝑝𝑝𝑝′′(𝑘𝑘𝑘𝑘): 𝑘𝑘𝑘𝑘 = 1, … ,𝑚𝑚𝑚𝑚���, 𝑖𝑖𝑖𝑖 = 1, …  𝑛𝑛𝑛𝑛 (9) 

where 𝑝𝑝𝑝𝑝′, 𝑝𝑝𝑝𝑝′′ are the corresponding parental solutions. The m genes with the most frequency are then chosen to form the 
backbone solution 𝑝𝑝𝑝𝑝. After this, we apply the greedy adaptive procedure, which respects only 𝑚𝑚𝑚𝑚 2⁄   genes with the 
largest frequency. So, the GAP receives a partial solution 𝑝𝑝𝑝𝑝 (the elements 𝑝𝑝𝑝𝑝(1), …, 𝑝𝑝𝑝𝑝(𝑚𝑚𝑚𝑚 2⁄ )) as an input. The 
GAP chooses the element, one at a time, and adds it to the current partial solution. In particular, GAP adds, at each 
iteration 𝑞𝑞𝑞𝑞 (𝑞𝑞𝑞𝑞 = 1, … ,𝑚𝑚𝑚𝑚 2⁄ ), the element from the set of unselected elements {𝑗𝑗𝑗𝑗: 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛} ∖ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚 2⁄ +
𝑞𝑞𝑞𝑞 − 1} with the minimum contribution value (see formula (7)) across all the unselected elements, i.e., 

𝑗𝑗𝑗𝑗 = argmin
𝑖𝑖𝑖𝑖∈{𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖=1,…,𝑛𝑛𝑛𝑛}∖{𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖):𝑖𝑖𝑖𝑖=1,…,𝑚𝑚𝑚𝑚 2⁄ +𝑞𝑞𝑞𝑞−1}

�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗)�� . This is continued until the solution has been completed (see Figure 4). Note 

that the objective function value 𝑧𝑧𝑧𝑧 can be obtained from the 𝑐𝑐𝑐𝑐 values by the equation: 𝑧𝑧𝑧𝑧 = 2∑ 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗)�𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1 . The 

complexity of the GAP algorithm is 𝑂𝑂𝑂𝑂(𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). 
 
procedure Backbone_and_Opposition_Based_Crossover; // backbone and opposition-based crossover for the GP-QAP 
// input: n, m, 
//           p′, p′′ − parents 
// output: 𝑝𝑝𝑝𝑝° − partially optimized offspring solution, 𝑝𝑝𝑝𝑝°°− opposition-based offspring solution 

 

begin 
  // construction of the backbone solution with respect to the parental solutions p′, p′′ 
  calculate the values of the short-term array (gene frequencies) 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖), i = 1, …, n; // see formula(9) 
  pick up m genes with the largest frequency (break ties randomly), 
  the chosen m genes form the backbone solution 𝑝𝑝𝑝𝑝; 
  // partial optimization of the backbone solution 
  disregard 𝑚𝑚𝑚𝑚 2⁄  genes of the backbone solution 𝑝𝑝𝑝𝑝 

  (the genes with the smallest frequency are disregarded (ties are resolved randomly)); 
  apply Greedy_Adaptive_Procedure to the partial backbone solution 𝑝𝑝𝑝𝑝, 
  get a partially optimized complete offspring solution 𝑝𝑝𝑝𝑝°; 
  // construction of the opposition-based solution 
  generate an opposition-based offspring solution 𝑝𝑝𝑝𝑝°° with respect to 𝑝𝑝𝑝𝑝°, i.e., 𝑝𝑝𝑝𝑝°° = 𝑝𝑝𝑝𝑝° 
end. 

Figure 3. Pseudo-code of the backbone and opposition-based crossover 
 
procedure Greedy_Adaptive_Procedure; // greedy adaptive procedure for the GP-QAP 
// input: n, m, B, 
//           p − partial solution, where the elements p(𝑚𝑚𝑚𝑚 2⁄  + 1), …, p(m) are disregarded 
// output: p − feasible (complete) solution 

 
begin 
  for i := 1 to n do begin c(i) := 0; Selected(i) := FALSE endfor; 
  for i := 1 to n do for j := 1 to 𝑚𝑚𝑚𝑚 2⁄ − 1 do c(i) := c(i) + B(i, p(j)); // calculation of contributions (c) 
  for i := 1 to 𝑚𝑚𝑚𝑚 2⁄  do Selected(p(i)) := TRUE; // initialization of Selected 
  i := 𝑚𝑚𝑚𝑚 2⁄ ; k := p(𝑚𝑚𝑚𝑚 2⁄ ); 
  for q := 1 to 𝑚𝑚𝑚𝑚 2⁄  do begin // cycle is repeated until the solution has been completed 
    minimum_contribution := ∞; 
    for j := 1 to n do 
      if Selected(j) = FALSE then begin 
         c(j) := c(j) + B(j, k); if c(j) < minimum_contribution then begin minimum_contribution := c(j); jmin := j endif 
      endif; 
    i := i + 1; p(i) := jmin; // the element with the minimum contribution is added to the solution 
    Selected(p(i)) := TRUE; k := jmin 
  endfor; 
  i := m + 1; for j := 1 to n do // assigning values to the elements p(m + 1), …, p(n) 
             if Selected(j) = FALSE then begin p(i) := j; i := i + 1 endif 
end. 

 
The principle of greedy   

search procedures" (GRASP) [7]. GAP is adaptive since it selects the current element with respect to the already 

,  
,  (9)
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2.4. Improvement of the Offspring: A 
Hierarchical Iterated Tabu Search Algorithm
2.4.1. Hierarchical Iterated Tabu Search 
Algorithm
Our proposed hierarchical iterated tabu search algo-
rithm follows the hierarchical iterated local search 
paradigm [10]. The central idea is that the further 
enhancement of local search-based algorithms is 
achieved by intelligently developing the inner struc-
ture (architecture) of the algorithms and creating 
hierarchically structured (hierarchical) algorithms 
(HAs). The basic principle behind HA is the multi-
ple utilization (reuse) of the well-known heuristic 
algorithm (like the local search (LS) or tabu search 
(TS)). In the case of TS, we firstly obtain an iterated 
tabu search — ITS — by combining tabu search and 
some perturbations. Further, the ITS algorithm itself 
is combined with the other ITS algorithm, which re-

where 𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 are the corresponding parental solutions. 
The m genes with the most frequency are then chosen 
to form the backbone solution 𝑝𝑝. After this, we apply 
the greedy adaptive procedure, which respects only 
𝑚𝑚 𝑚⁄   genes with the largest frequency. So, the GAP re-
ceives a partial solution 𝑝𝑝 (the elements 𝑝𝑝(1), …, 
𝑝𝑝(𝑚𝑚 𝑚⁄ )) as an input. The GAP chooses the element, 
one at a time, and adds it to the current partial solution. 
In particular, GAP adds, at each iteration 𝑞𝑞 (𝑞𝑞 𝑞
1, … , 𝑚𝑚 𝑚⁄ ), the element from the set of unselected ele-
ments �𝑗𝑗𝑗 𝑗𝑗 𝑞 1, … , 𝑗𝑗� ∖ �𝑝𝑝(𝑖𝑖)𝑗 𝑖𝑖 𝑞 1, … , 𝑚𝑚 𝑚⁄ + 𝑞𝑞 𝑞 1� 
with the minimum contribution value (see formula (7)) 
across all the unselected elements, i.e., 

𝑗𝑗 𝑞 𝑗𝑗𝑗𝑗𝑗𝑗
����𝑗���,…,��∖��(�)𝑗���,…,� �⁄ �����

�𝑐𝑐�𝑝𝑝(𝑗𝑗)�� . This is contin-

ued until the solution has been completed (see Fig-
ure 4). Note that the objective function value 𝑧𝑧 can be 
obtained from the 𝑐𝑐 values by the equation: 𝑧𝑧 𝑞
𝑚 ∑ 𝑐𝑐�𝑝𝑝(𝑗𝑗)��

��� . The complexity of the GAP algorithm is 
𝑂𝑂(𝑚𝑚𝑗𝑗). 
 The principle of greedy adaptive algorithm is not new 
and it is in its nature similar to "greedy randomized 
adaptive search procedures" (GRASP) [7]. GAP is 
adaptive since it selects the current element with re-
spect to the already selected elements and the set of 
selected elements is updated at every iteration. The 
greedy component of GAP is that it always chooses 
the element with the minimum possible contribution. 
However, randomization is absent in GAP.
For the generation of opposite solution, we utilize a long 
term frequency array 𝑓𝑓�������. The initialization of 𝑓𝑓������� 
is done before running the genetic algorithm. The val-
ues of 𝑓𝑓�������  are updated each time the new optimized 
backbone solution is constructed, i.e., 𝑓𝑓��������𝑝𝑝�𝑖𝑖�� �
𝑓𝑓��������𝑝𝑝�𝑖𝑖�� � �, where 𝑝𝑝 is the optimized backbone 
solution. To get the opposition-based solution, it is suf-
ficient to pick up 𝑚𝑚 items with the smallest frequency. 
 

sults in the "ITS-ITS" algorithm. This can be further 
iterated. Thus, we can define a hierarchy of many 
"copies" of the ITS algorithms embedded within each 
other. Each copy contains the three main ingredients: 
1) invocation of the iterated tabu search procedure; 
2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the 
hierarchical ITS algorithm. In the simplest way, the TS 
procedure uses the 1-exchange neighbourhood Θ1. In 
particular, TS starts with the current solution and iter-
atively swaps an element of the set M = {p(i) : i = 1, …, m} 
with an element of the set N = {p(i) : i = m + 1, …, n} such 
that the objective function value is minimized taking 
into account the tabu condition and aspiration criterion.
To reduce the computational time, we use the mod-
ified neighbourhood Θ1

*, which is defined as follows 
(see also [18]):

selected elements and the set of selected elements is updated at every iteration. The greedy component of GAP is that it 
always chooses the element with the minimum possible contribution. However, randomization is absent in GAP.

For the generation of opposite solution, we utilize a long term frequency array 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The initialization of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 
done before running the genetic algorithm. The values of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are updated each time the new optimized backbone 
solution is constructed, i.e., 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝° is the optimized backbone solution. To get 
the opposition-based solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency.

2.4. Improvement of the Offspring: A Hierarchical Iterated Tabu Search Algorithm

2.4.1. Hierarchical Iterated Tabu Search Algorithm
Our proposed hierarchical iterated tabu search algorithm follows the hierarchical iterated local search paradigm 

[10]. The central idea is that the further enhancement of local search-based algorithms is achieved by intelligently 
developing the inner structure (architecture) of the algorithms and creating hierarchically structured (hierarchical) 
algorithms (HAs). The basic principle behind HA is the multiple utilization (reuse) of the well-known heuristic
algorithm (like the local search (LS) or tabu search (TS)). In the case of TS, we firstly obtain an iterated tabu search —
ITS — by combining tabu search and some perturbations. Further, the ITS algorithm itself is combined with the other 
ITS algorithm, which results in the "ITS-ITS" algorithm. This can be further iterated. Thus, we can define a hierarchy of 
many "copies" of the ITS algorithms embedded within each other. Each copy contains the three main ingredients: 
1) invocation of the iterated tabu search procedure; 2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the hierarchical ITS algorithm. In the simplest way, the TS 

procedure uses the 1-exchange neighbourhood 𝛩𝛩𝛩𝛩1. In particular, TS starts with the current solution and iteratively swaps 
an element of the set 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with an element of the set 𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛} such that the 
objective function value is minimized taking into account the tabu condition and aspiration criterion.

To reduce the computational time, we use the modified neighbourhood 𝛩𝛩𝛩𝛩1∗, which is defined as follows (see also 
[18]):

𝛩𝛩𝛩𝛩1∗(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′:𝑝𝑝𝑝𝑝′ ∈ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∖ {𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)} ∪ {𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)}, 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) ∈ 𝑀𝑀𝑀𝑀′, 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) ∈ 𝑁𝑁𝑁𝑁′} (10)

where 𝑣𝑣𝑣𝑣 = 1, … , |𝑀𝑀𝑀𝑀′|, 𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑚𝑚𝑚𝑚 + |𝑀𝑀𝑀𝑀′|. Sets 𝑀𝑀𝑀𝑀′, 𝑁𝑁𝑁𝑁′ are formed in the following way:

𝑀𝑀𝑀𝑀′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≥ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑁𝑁𝑁𝑁′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≤ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2, 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� (11)

where c is the contribution array, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1 = max�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚� − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2 = min�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max{𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘: 𝑘𝑘𝑘𝑘 = 1, … 𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙 = 1, …𝑛𝑛𝑛𝑛}, 𝜌𝜌𝜌𝜌 (𝜌𝜌𝜌𝜌 > 0) is a parameter (a neighbourhood size 
factor).

The tabu list 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is organized as a matrix, where the tabu list entry 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) stores the current 
iteration number plus the tabu tenure h, i.e., the number of the iteration starting at which the corresponding elements
(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) may again be interchanged. The tabu tenure is fixed at the pre-defined value (ℎ = ⌊0.3𝑚𝑚𝑚𝑚⌋). The 
interchange of elements 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) is not allowed if the value of 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� is equal or greater than the 
current iteration number. The tabu status is ignored if the aspiration criterion is met, i.e., the interchange results in a 
solution that is better than the best so far solution. In addition, we disregard the tabu status with a small probability 𝛼𝛼𝛼𝛼,
(𝛼𝛼𝛼𝛼 = 0.02) even if the aspiration criterion does not hold. This slightly increases the number of accepted moves and 
helps avoiding potential stagnation of the search.

In addition to the tabu list, we also use a long-term memory like mechanism to maintain an archive of good solutions 
that were evaluated but not chosen [4]. The goal is to diversify the search process and explore more regions of the search 
space. To implement this mechanism, a list called an archive (𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) is used, which is composed of so-called "second"
solutions. In particular, at each iteration, the best chosen solution becomes the current solution, while the second best 
solution 𝑝𝑝𝑝𝑝~ is included in 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟. The tabu search restarts from one of these solutions when the best found solution is 
not improved for 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 iterations (𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 is called an idle iterations limit). In our algorithm, 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 = ⌊0.2𝜏𝜏𝜏𝜏⌋,
where 𝜏𝜏𝜏𝜏 is the number of tabu search iterations. Note that it is required to save the whole information, i.e., the current 
solution 𝑝𝑝𝑝𝑝, the contributions 𝑐𝑐𝑐𝑐, and the indices of the elements which generate 𝑝𝑝𝑝𝑝~. 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is emptied after finishing the 
TS procedure. The pseudo-code of the tabu search procedure is shown in Figure 5.

B. Iterated tabu search
In the iterated tabu search algorithm, the self-contained tabu search described above is combined with some sort of 

perturbations (see Section 2.4.3). The TS procedure transforms the current solution into the optimized solution.
Perturbation is applied to chosen optimized candidate solution that is selected by a defined candidate acception rule (see 
Section 2.4.2). The perturbed solution serves as an input for the self-contained TS procedure, which starts immediately 
after the perturbation procedure has been executed. TS again returns an improved solution. This solution (or possibly 
some other previously optimized solution), in turn, is perturbed, and so on. The best found solution is regarded as the 
resulting solution of ITS. The overall process continues until a pre-defined number of iterations have been performed 
(see Figure 6).

selected elements and the set of selected elements is updated at every iteration. The greedy component of GAP is that it 
always chooses the element with the minimum possible contribution. However, randomization is absent in GAP.

For the generation of opposite solution, we utilize a long term frequency array 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The initialization of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 
done before running the genetic algorithm. The values of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are updated each time the new optimized backbone 
solution is constructed, i.e., 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝° is the optimized backbone solution. To get 
the opposition-based solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency.

2.4. Improvement of the Offspring: A Hierarchical Iterated Tabu Search Algorithm

2.4.1. Hierarchical Iterated Tabu Search Algorithm
Our proposed hierarchical iterated tabu search algorithm follows the hierarchical iterated local search paradigm 

[10]. The central idea is that the further enhancement of local search-based algorithms is achieved by intelligently 
developing the inner structure (architecture) of the algorithms and creating hierarchically structured (hierarchical) 
algorithms (HAs). The basic principle behind HA is the multiple utilization (reuse) of the well-known heuristic
algorithm (like the local search (LS) or tabu search (TS)). In the case of TS, we firstly obtain an iterated tabu search —
ITS — by combining tabu search and some perturbations. Further, the ITS algorithm itself is combined with the other 
ITS algorithm, which results in the "ITS-ITS" algorithm. This can be further iterated. Thus, we can define a hierarchy of 
many "copies" of the ITS algorithms embedded within each other. Each copy contains the three main ingredients: 
1) invocation of the iterated tabu search procedure; 2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the hierarchical ITS algorithm. In the simplest way, the TS 

procedure uses the 1-exchange neighbourhood 𝛩𝛩𝛩𝛩1. In particular, TS starts with the current solution and iteratively swaps 
an element of the set 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with an element of the set 𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛} such that the 
objective function value is minimized taking into account the tabu condition and aspiration criterion.

To reduce the computational time, we use the modified neighbourhood 𝛩𝛩𝛩𝛩1∗, which is defined as follows (see also 
[18]):

𝛩𝛩𝛩𝛩1∗(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′:𝑝𝑝𝑝𝑝′ ∈ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∖ {𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)} ∪ {𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)}, 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) ∈ 𝑀𝑀𝑀𝑀′, 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) ∈ 𝑁𝑁𝑁𝑁′} (10)

where 𝑣𝑣𝑣𝑣 = 1, … , |𝑀𝑀𝑀𝑀′|, 𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑚𝑚𝑚𝑚 + |𝑀𝑀𝑀𝑀′|. Sets 𝑀𝑀𝑀𝑀′, 𝑁𝑁𝑁𝑁′ are formed in the following way:

𝑀𝑀𝑀𝑀′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≥ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑁𝑁𝑁𝑁′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≤ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2, 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� (11)

where c is the contribution array, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1 = max�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚� − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2 = min�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max{𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘: 𝑘𝑘𝑘𝑘 = 1, … 𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙 = 1, …𝑛𝑛𝑛𝑛}, 𝜌𝜌𝜌𝜌 (𝜌𝜌𝜌𝜌 > 0) is a parameter (a neighbourhood size 
factor).

The tabu list 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is organized as a matrix, where the tabu list entry 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) stores the current 
iteration number plus the tabu tenure h, i.e., the number of the iteration starting at which the corresponding elements
(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) may again be interchanged. The tabu tenure is fixed at the pre-defined value (ℎ = ⌊0.3𝑚𝑚𝑚𝑚⌋). The 
interchange of elements 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) is not allowed if the value of 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� is equal or greater than the 
current iteration number. The tabu status is ignored if the aspiration criterion is met, i.e., the interchange results in a 
solution that is better than the best so far solution. In addition, we disregard the tabu status with a small probability 𝛼𝛼𝛼𝛼,
(𝛼𝛼𝛼𝛼 = 0.02) even if the aspiration criterion does not hold. This slightly increases the number of accepted moves and 
helps avoiding potential stagnation of the search.

In addition to the tabu list, we also use a long-term memory like mechanism to maintain an archive of good solutions 
that were evaluated but not chosen [4]. The goal is to diversify the search process and explore more regions of the search 
space. To implement this mechanism, a list called an archive (𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) is used, which is composed of so-called "second"
solutions. In particular, at each iteration, the best chosen solution becomes the current solution, while the second best 
solution 𝑝𝑝𝑝𝑝~ is included in 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟. The tabu search restarts from one of these solutions when the best found solution is 
not improved for 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 iterations (𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 is called an idle iterations limit). In our algorithm, 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 = ⌊0.2𝜏𝜏𝜏𝜏⌋,
where 𝜏𝜏𝜏𝜏 is the number of tabu search iterations. Note that it is required to save the whole information, i.e., the current 
solution 𝑝𝑝𝑝𝑝, the contributions 𝑐𝑐𝑐𝑐, and the indices of the elements which generate 𝑝𝑝𝑝𝑝~. 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is emptied after finishing the 
TS procedure. The pseudo-code of the tabu search procedure is shown in Figure 5.

B. Iterated tabu search
In the iterated tabu search algorithm, the self-contained tabu search described above is combined with some sort of 

perturbations (see Section 2.4.3). The TS procedure transforms the current solution into the optimized solution.
Perturbation is applied to chosen optimized candidate solution that is selected by a defined candidate acception rule (see 
Section 2.4.2). The perturbed solution serves as an input for the self-contained TS procedure, which starts immediately 
after the perturbation procedure has been executed. TS again returns an improved solution. This solution (or possibly 
some other previously optimized solution), in turn, is perturbed, and so on. The best found solution is regarded as the 
resulting solution of ITS. The overall process continues until a pre-defined number of iterations have been performed 
(see Figure 6).

(10)

where v =1, … ,|M'|, w = m + 1, …, m + |M' |. Sets M', N' are 
formed in the following way:

selected elements and the set of selected elements is updated at every iteration. The greedy component of GAP is that it 
always chooses the element with the minimum possible contribution. However, randomization is absent in GAP.

For the generation of opposite solution, we utilize a long term frequency array 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The initialization of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 
done before running the genetic algorithm. The values of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are updated each time the new optimized backbone 
solution is constructed, i.e., 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝° is the optimized backbone solution. To get 
the opposition-based solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency.

2.4. Improvement of the Offspring: A Hierarchical Iterated Tabu Search Algorithm

2.4.1. Hierarchical Iterated Tabu Search Algorithm
Our proposed hierarchical iterated tabu search algorithm follows the hierarchical iterated local search paradigm 

[10]. The central idea is that the further enhancement of local search-based algorithms is achieved by intelligently 
developing the inner structure (architecture) of the algorithms and creating hierarchically structured (hierarchical) 
algorithms (HAs). The basic principle behind HA is the multiple utilization (reuse) of the well-known heuristic
algorithm (like the local search (LS) or tabu search (TS)). In the case of TS, we firstly obtain an iterated tabu search —
ITS — by combining tabu search and some perturbations. Further, the ITS algorithm itself is combined with the other 
ITS algorithm, which results in the "ITS-ITS" algorithm. This can be further iterated. Thus, we can define a hierarchy of 
many "copies" of the ITS algorithms embedded within each other. Each copy contains the three main ingredients: 
1) invocation of the iterated tabu search procedure; 2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the hierarchical ITS algorithm. In the simplest way, the TS 

procedure uses the 1-exchange neighbourhood 𝛩𝛩𝛩𝛩1. In particular, TS starts with the current solution and iteratively swaps 
an element of the set 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with an element of the set 𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛} such that the 
objective function value is minimized taking into account the tabu condition and aspiration criterion.

To reduce the computational time, we use the modified neighbourhood 𝛩𝛩𝛩𝛩1∗, which is defined as follows (see also 
[18]):

𝛩𝛩𝛩𝛩1∗(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′:𝑝𝑝𝑝𝑝′ ∈ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∖ {𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)} ∪ {𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)}, 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) ∈ 𝑀𝑀𝑀𝑀′, 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) ∈ 𝑁𝑁𝑁𝑁′} (10)

where 𝑣𝑣𝑣𝑣 = 1, … , |𝑀𝑀𝑀𝑀′|, 𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑚𝑚𝑚𝑚 + |𝑀𝑀𝑀𝑀′|. Sets 𝑀𝑀𝑀𝑀′, 𝑁𝑁𝑁𝑁′ are formed in the following way:

𝑀𝑀𝑀𝑀′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≥ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑁𝑁𝑁𝑁′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≤ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2, 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� (11)

where c is the contribution array, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1 = max�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚� − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2 = min�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max{𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘: 𝑘𝑘𝑘𝑘 = 1, … 𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙 = 1, …𝑛𝑛𝑛𝑛}, 𝜌𝜌𝜌𝜌 (𝜌𝜌𝜌𝜌 > 0) is a parameter (a neighbourhood size 
factor).

The tabu list 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is organized as a matrix, where the tabu list entry 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) stores the current 
iteration number plus the tabu tenure h, i.e., the number of the iteration starting at which the corresponding elements
(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) may again be interchanged. The tabu tenure is fixed at the pre-defined value (ℎ = ⌊0.3𝑚𝑚𝑚𝑚⌋). The 
interchange of elements 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) is not allowed if the value of 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� is equal or greater than the 
current iteration number. The tabu status is ignored if the aspiration criterion is met, i.e., the interchange results in a 
solution that is better than the best so far solution. In addition, we disregard the tabu status with a small probability 𝛼𝛼𝛼𝛼,
(𝛼𝛼𝛼𝛼 = 0.02) even if the aspiration criterion does not hold. This slightly increases the number of accepted moves and 
helps avoiding potential stagnation of the search.

In addition to the tabu list, we also use a long-term memory like mechanism to maintain an archive of good solutions 
that were evaluated but not chosen [4]. The goal is to diversify the search process and explore more regions of the search 
space. To implement this mechanism, a list called an archive (𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) is used, which is composed of so-called "second"
solutions. In particular, at each iteration, the best chosen solution becomes the current solution, while the second best 
solution 𝑝𝑝𝑝𝑝~ is included in 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟. The tabu search restarts from one of these solutions when the best found solution is 
not improved for 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 iterations (𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 is called an idle iterations limit). In our algorithm, 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 = ⌊0.2𝜏𝜏𝜏𝜏⌋,
where 𝜏𝜏𝜏𝜏 is the number of tabu search iterations. Note that it is required to save the whole information, i.e., the current 
solution 𝑝𝑝𝑝𝑝, the contributions 𝑐𝑐𝑐𝑐, and the indices of the elements which generate 𝑝𝑝𝑝𝑝~. 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is emptied after finishing the 
TS procedure. The pseudo-code of the tabu search procedure is shown in Figure 5.

B. Iterated tabu search
In the iterated tabu search algorithm, the self-contained tabu search described above is combined with some sort of 

perturbations (see Section 2.4.3). The TS procedure transforms the current solution into the optimized solution.
Perturbation is applied to chosen optimized candidate solution that is selected by a defined candidate acception rule (see 
Section 2.4.2). The perturbed solution serves as an input for the self-contained TS procedure, which starts immediately 
after the perturbation procedure has been executed. TS again returns an improved solution. This solution (or possibly 
some other previously optimized solution), in turn, is perturbed, and so on. The best found solution is regarded as the 
resulting solution of ITS. The overall process continues until a pre-defined number of iterations have been performed 
(see Figure 6).

selected elements and the set of selected elements is updated at every iteration. The greedy component of GAP is that it 
always chooses the element with the minimum possible contribution. However, randomization is absent in GAP.

For the generation of opposite solution, we utilize a long term frequency array 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The initialization of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 
done before running the genetic algorithm. The values of 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are updated each time the new optimized backbone 
solution is constructed, i.e., 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� = 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝°(𝑖𝑖𝑖𝑖)� + 1, where 𝑝𝑝𝑝𝑝° is the optimized backbone solution. To get 
the opposition-based solution, it is sufficient to pick up 𝑚𝑚𝑚𝑚 items with the smallest frequency.

2.4. Improvement of the Offspring: A Hierarchical Iterated Tabu Search Algorithm

2.4.1. Hierarchical Iterated Tabu Search Algorithm
Our proposed hierarchical iterated tabu search algorithm follows the hierarchical iterated local search paradigm 

[10]. The central idea is that the further enhancement of local search-based algorithms is achieved by intelligently 
developing the inner structure (architecture) of the algorithms and creating hierarchically structured (hierarchical) 
algorithms (HAs). The basic principle behind HA is the multiple utilization (reuse) of the well-known heuristic
algorithm (like the local search (LS) or tabu search (TS)). In the case of TS, we firstly obtain an iterated tabu search —
ITS — by combining tabu search and some perturbations. Further, the ITS algorithm itself is combined with the other 
ITS algorithm, which results in the "ITS-ITS" algorithm. This can be further iterated. Thus, we can define a hierarchy of 
many "copies" of the ITS algorithms embedded within each other. Each copy contains the three main ingredients: 
1) invocation of the iterated tabu search procedure; 2) candidate acception; 3) perturbation procedure.

A. Tabu search
The tabu search procedure plays the essential role in the hierarchical ITS algorithm. In the simplest way, the TS 

procedure uses the 1-exchange neighbourhood 𝛩𝛩𝛩𝛩1. In particular, TS starts with the current solution and iteratively swaps 
an element of the set 𝑀𝑀𝑀𝑀 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} with an element of the set 𝑁𝑁𝑁𝑁 = {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛} such that the 
objective function value is minimized taking into account the tabu condition and aspiration criterion.

To reduce the computational time, we use the modified neighbourhood 𝛩𝛩𝛩𝛩1∗, which is defined as follows (see also 
[18]):

𝛩𝛩𝛩𝛩1∗(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′:𝑝𝑝𝑝𝑝′ ∈ {𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚} ∖ {𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣)} ∪ {𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)}, 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣) ∈ 𝑀𝑀𝑀𝑀′, 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) ∈ 𝑁𝑁𝑁𝑁′} (10)

where 𝑣𝑣𝑣𝑣 = 1, … , |𝑀𝑀𝑀𝑀′|, 𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑚𝑚𝑚𝑚 + |𝑀𝑀𝑀𝑀′|. Sets 𝑀𝑀𝑀𝑀′, 𝑁𝑁𝑁𝑁′ are formed in the following way:

𝑀𝑀𝑀𝑀′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≥ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1, 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚�, 𝑁𝑁𝑁𝑁′ = �𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖): 𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)� ≤ 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2, 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� (11)

where c is the contribution array, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜1 = max�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 = 1, … ,𝑚𝑚𝑚𝑚� − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜2 = min�𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖)�: 𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑚𝑚 + 1, … ,𝑛𝑛𝑛𝑛� + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max{𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘: 𝑘𝑘𝑘𝑘 = 1, … 𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙 = 1, …𝑛𝑛𝑛𝑛}, 𝜌𝜌𝜌𝜌 (𝜌𝜌𝜌𝜌 > 0) is a parameter (a neighbourhood size 
factor).

The tabu list 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is organized as a matrix, where the tabu list entry 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) stores the current 
iteration number plus the tabu tenure h, i.e., the number of the iteration starting at which the corresponding elements
(𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)) may again be interchanged. The tabu tenure is fixed at the pre-defined value (ℎ = ⌊0.3𝑚𝑚𝑚𝑚⌋). The 
interchange of elements 𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤) is not allowed if the value of 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡�𝑝𝑝𝑝𝑝(𝑣𝑣𝑣𝑣), 𝑝𝑝𝑝𝑝(𝑤𝑤𝑤𝑤)� is equal or greater than the 
current iteration number. The tabu status is ignored if the aspiration criterion is met, i.e., the interchange results in a 
solution that is better than the best so far solution. In addition, we disregard the tabu status with a small probability 𝛼𝛼𝛼𝛼,
(𝛼𝛼𝛼𝛼 = 0.02) even if the aspiration criterion does not hold. This slightly increases the number of accepted moves and 
helps avoiding potential stagnation of the search.

In addition to the tabu list, we also use a long-term memory like mechanism to maintain an archive of good solutions 
that were evaluated but not chosen [4]. The goal is to diversify the search process and explore more regions of the search 
space. To implement this mechanism, a list called an archive (𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) is used, which is composed of so-called "second"
solutions. In particular, at each iteration, the best chosen solution becomes the current solution, while the second best 
solution 𝑝𝑝𝑝𝑝~ is included in 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟. The tabu search restarts from one of these solutions when the best found solution is 
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B. Iterated tabu search
In the iterated tabu search algorithm, the self-contained tabu search described above is combined with some sort of 

perturbations (see Section 2.4.3). The TS procedure transforms the current solution into the optimized solution.
Perturbation is applied to chosen optimized candidate solution that is selected by a defined candidate acception rule (see 
Section 2.4.2). The perturbed solution serves as an input for the self-contained TS procedure, which starts immediately 
after the perturbation procedure has been executed. TS again returns an improved solution. This solution (or possibly 
some other previously optimized solution), in turn, is perturbed, and so on. The best found solution is regarded as the 
resulting solution of ITS. The overall process continues until a pre-defined number of iterations have been performed 
(see Figure 6).
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The tabu list 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡 is organized as a matrix, where the 
tabu list entry 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) stores the current 
iteration number plus the tabu tenure h, i.e., the number 
of the iteration starting at which the corresponding ele-
ments (𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) may again be interchanged. The 
tabu tenure is fixed at the pre-defined value (𝑡 =
⌊𝜌.3𝑚𝑚⌋). The interchange of elements 𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝) is not 
allowed if the value of 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)� is equal or 
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status is ignored if the aspiration criterion is met, i.e., 
the interchange results in a solution that is better than 
the best so far solution. In addition, we disregard the 
tabu status with a small probability 𝛼𝛼, (𝛼𝛼 = 𝜌.𝜌𝛼) even 
if the aspiration criterion does not hold. This slightly in-
creases the number of accepted moves and helps avoid-
ing potential stagnation of the search. 
In addition to the tabu list, we also use a long-term 
memory like mechanism to maintain an archive of good 
solutions that were evaluated but not chosen [4]. The goal 
is to diversify the search process and explore more re-
gions of the search space. To implement this mechanism, 
a list called an archive (𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡) is used, which is com-
posed of so-called "second" solutions. In particular, at 
each iteration, the best chosen solution becomes the 
current solution, while the second best solution 𝑇𝑇~ is 
included in 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡. The tabu search restarts from one 
of these solutions when the best found solution is not 
improved for 𝑇𝑇���������  iterations (𝑇𝑇���������  is called an 
idle iterations limit). In our algorithm, 𝑇𝑇��������� =
⌊𝜌.𝛼𝜏𝜏⌋, where 𝜏𝜏 is the number of tabu search iterations. 
Note that it is required to save the whole information, 
i.e., the current solution 𝑇𝑇, the contributions 𝐴𝐴, and the 
indices of the elements which generate 𝑇𝑇~. 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡 is 
emptied after finishing the TS procedure. The pseudo-
code of the tabu search procedure is shown in Figure 5. 

 



Information Technology and Control 2018/3/47510

where c is the contribution array, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
max�𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑘𝑘𝑘 𝑘𝑚𝑚� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
m���𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑚𝑚 � 𝑘𝑘𝑘 𝑘 𝑘𝑘� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
max�𝑏𝑏��: 𝑘𝑘 = 𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡 = 𝑘𝑘𝑘𝑘𝑘�, 𝜌𝜌 (𝜌𝜌 𝜌 𝜌) is a parame-
ter (a neighbourhood size factor). 
The tabu list 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡 is organized as a matrix, where the 
tabu list entry 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) stores the current 
iteration number plus the tabu tenure h, i.e., the number 
of the iteration starting at which the corresponding ele-
ments (𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) may again be interchanged. The 
tabu tenure is fixed at the pre-defined value (𝑡 =
⌊𝜌.3𝑚𝑚⌋). The interchange of elements 𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝) is not 
allowed if the value of 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)� is equal or 
greater than the current iteration number. The tabu 
status is ignored if the aspiration criterion is met, i.e., 
the interchange results in a solution that is better than 
the best so far solution. In addition, we disregard the 
tabu status with a small probability 𝛼𝛼, (𝛼𝛼 = 𝜌.𝜌𝛼) even 
if the aspiration criterion does not hold. This slightly in-
creases the number of accepted moves and helps avoid-
ing potential stagnation of the search. 
In addition to the tabu list, we also use a long-term 
memory like mechanism to maintain an archive of good 
solutions that were evaluated but not chosen [4]. The goal 
is to diversify the search process and explore more re-
gions of the search space. To implement this mechanism, 
a list called an archive (𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡) is used, which is com-
posed of so-called "second" solutions. In particular, at 
each iteration, the best chosen solution becomes the 
current solution, while the second best solution 𝑇𝑇~ is 
included in 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡. The tabu search restarts from one 
of these solutions when the best found solution is not 
improved for 𝑇𝑇���������  iterations (𝑇𝑇���������  is called an 
idle iterations limit). In our algorithm, 𝑇𝑇��������� =
⌊𝜌.𝛼𝜏𝜏⌋, where 𝜏𝜏 is the number of tabu search iterations. 
Note that it is required to save the whole information, 
i.e., the current solution 𝑇𝑇, the contributions 𝐴𝐴, and the 
indices of the elements which generate 𝑇𝑇~. 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡 is 
emptied after finishing the TS procedure. The pseudo-
code of the tabu search procedure is shown in Figure 5. 

 

where c is the contribution array, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
max�𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑘𝑘𝑘 𝑘𝑚𝑚� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =
m���𝐴𝐴�𝑇𝑇(𝑖𝑖)�: 𝑖𝑖 = 𝑚𝑚 � 𝑘𝑘𝑘 𝑘 𝑘𝑘� � 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
max�𝑏𝑏��: 𝑘𝑘 = 𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡 = 𝑘𝑘𝑘𝑘𝑘�, 𝜌𝜌 (𝜌𝜌 𝜌 𝜌) is a parame-
ter (a neighbourhood size factor). 
The tabu list 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡 is organized as a matrix, where the 
tabu list entry 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) stores the current 
iteration number plus the tabu tenure h, i.e., the number 
of the iteration starting at which the corresponding ele-
ments (𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)) may again be interchanged. The 
tabu tenure is fixed at the pre-defined value (𝑡 =
⌊𝜌.3𝑚𝑚⌋). The interchange of elements 𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝) is not 
allowed if the value of 𝑇𝑇𝐵𝐵𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇(𝑣𝑣)𝑘 𝑇𝑇(𝑝𝑝)� is equal or 
greater than the current iteration number. The tabu 
status is ignored if the aspiration criterion is met, i.e., 
the interchange results in a solution that is better than 
the best so far solution. In addition, we disregard the 
tabu status with a small probability 𝛼𝛼, (𝛼𝛼 = 𝜌.𝜌𝛼) even 
if the aspiration criterion does not hold. This slightly in-
creases the number of accepted moves and helps avoid-
ing potential stagnation of the search. 
In addition to the tabu list, we also use a long-term 
memory like mechanism to maintain an archive of good 
solutions that were evaluated but not chosen [4]. The goal 
is to diversify the search process and explore more re-
gions of the search space. To implement this mechanism, 
a list called an archive (𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡) is used, which is com-
posed of so-called "second" solutions. In particular, at 
each iteration, the best chosen solution becomes the 
current solution, while the second best solution 𝑇𝑇~ is 
included in 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡. The tabu search restarts from one 
of these solutions when the best found solution is not 
improved for 𝑇𝑇���������  iterations (𝑇𝑇���������  is called an 
idle iterations limit). In our algorithm, 𝑇𝑇��������� =
⌊𝜌.𝛼𝜏𝜏⌋, where 𝜏𝜏 is the number of tabu search iterations. 
Note that it is required to save the whole information, 
i.e., the current solution 𝑇𝑇, the contributions 𝐴𝐴, and the 
indices of the elements which generate 𝑇𝑇~. 𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑖𝑖𝑣𝑣𝑡𝑡 is 
emptied after finishing the TS procedure. The pseudo-
code of the tabu search procedure is shown in Figure 5. 

 

  

procedure Tabu_Search; // tabu search algorithm for the GP-QAP 
// input: n, m, B, 
//           p − current solution 
// output: p• − the best found solution (along with the corresponding contributions) 
// parameters: τ  − number of tabu search iterations, h − tabu tenure, α − randomization coefficient, 
//                     ρ − parameter used to regulate the neighbourhood size, 
//                     Lidle_iter − idle iterations limit 

 
begin 
  clear tabu list TabuList; 
  p• := p; k := 1; k′ := 1; archive_counter := 0; improved := FALSE; 
  while (k ≤ τ) or (improved = TRUE) then begin // main cycle 
    determine sets M′, N′; m′ := | M′ |; n′ := m + | N′ | (rearrange p accordingly); 
    ∆′min := ∞; ∆′′min := ∞; v′ := 1; w′ := m + 1; 
    for i := 1 to m′ do 
      for j := m + 1 to n′ do begin // m′(n′ − m) neighbours of p are scanned 
        ∆ := 2(c(p(j)) − c(p(i)) − B(p(i), p(j))); 
        forbidden := iif(((TabuList(p(i), p(j)) ≥ k) and (random() ≥ α)), TRUE, FALSE); 
        aspired := iif(z(p) + ∆ < z(p•), TRUE, FALSE); 
        if ((∆ < ∆′min) and (forbidden = FALSE)) or (aspired = TRUE) then begin 
           if ∆ < ∆′min then begin ∆′′min := ∆′min; v′′ := v′; w′′ := w′; ∆′min := ∆; v′ := i; w′ := j endif 
           else if ∆ < ∆′′min then begin ∆′′min := ∆; v′′ := i; w′′ := j endif 
        endif 
      endfor; 
    if ∆′′min < ∞ then begin // archiving second solution, c, v′′, w′′ 
       archive_counter := archive_counter + 1; Archive(archive_counter) ← p, c, v′′, w′′ 
    endif; 
    if ∆′min < ∞ then begin // replacement of the current solution and recalculation of c 
       𝑝𝑝𝑝𝑝 ≔ 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣′,𝑤𝑤𝑤𝑤′

; for i := 1 to n do c(i) := c(i) + B(i, p(v′)) − B(i, p(w′)); 
       if z(p) < z(p•) then begin p• := p; k′ := k endif; // the best so far solution is memorized 
       TabuList(p(v′), p(w′)) := k + h; TabuList(p(w′), p(v′)) := k + h // the elements p(v′), p(w′) become tabu 
    endif; 
    improved := iif(∆′min < 0, TRUE, FALSE); 
    if (improved = FALSE) and (k − k′ > Lidle_iter) and (k <τ − Lidle_iter) then begin // retrieving solution from the archive 
       random_access_index := random(archive_counter ∗ 0.8, archive_counter); 
       p, c, v′′, w′′ ← Archive(random_access_index); 
       𝑝𝑝𝑝𝑝 := 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣′′,𝑤𝑤𝑤𝑤′′

; for i := 1 to n do c(i) := c(i) + B(i, p(v′′)) − B(i, p(w′′)); 
       clear tabu list TabuList; 
       TabuList(p(v′′), p(w′′)) := k + h; TabuList(p(w′′), p(v′′)) := k + h; // the elements p(v′′), p(w′′) become tabu 
       k′ := k 
    endif; 
    k := k + 1 
  endwhile 
end. 

Notes. 1. The immediate if function iif(x, y1, y2) returns y1 if x = TRUE, otherwise it returns y2. 2. The function random() returns a pseudo-
random number uniformly distributed in [0, 1]. 3. The function random(x1, x2) returns a pseudo-random number in [x1, x2]. 

 
procedure Iterated_Tabu_   -  
// input: p − current solution 
// output: p∇ − the best found solution  (along with the corresponding contributions) 
// parameter: Q − number of iterations 

 

begin 
  p∇ := p; 
  for q := 1 to Q do begin 
    apply Tabu_Search to p and get p•; 
    if z(p•) < z(p∇) p∇ := p•; // the best found solution is memorized 
    if q < Q then begin 
       p := Candidate_Acceptance(p•, p∇); apply Perturbation to p 
    endif 
  endfor 
end. 

Figure 6. Pseudo-code of the iterated tabu search algorithm 

Figure 5 
Pseudo-code of the tabu search algorithm
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B. Iterated tabu search
In the iterated tabu search algorithm, the self-con-
tained tabu search described above is combined with 
some sort of perturbations (see Section 2.4.3). The TS 
procedure transforms the current solution into the 
optimized solution. Perturbation is applied to chosen 
optimized candidate solution that is selected by a de-
fined candidate acception rule (see Section 2.4.2). The 
perturbed solution serves as an input for the self-con-
tained TS procedure, which starts immediately after 
the perturbation procedure has been executed. TS 
again returns an improved solution. This solution (or 
possibly some other previously optimized solution), 
in turn, is perturbed, and so on. The best found solu-

Figure 6 
Pseudo-code of the iterated tabu search algorithm
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       𝑝𝑝𝑝𝑝 ≔ 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣′,𝑤𝑤𝑤𝑤′

; for i := 1 to n do c(i) := c(i) + B(i, p(v′)) − B(i, p(w′)); 
       if z(p) < z(p•) then begin p• := p; k′ := k endif; // the best so far solution is memorized 
       TabuList(p(v′), p(w′)) := k + h; TabuList(p(w′), p(v′)) := k + h // the elements p(v′), p(w′) become tabu 
    endif; 
    improved := iif(∆′min < 0, TRUE, FALSE); 
    if (improved = FALSE) and (k − k′ > Lidle_iter) and (k <τ − Lidle_iter) then begin // retrieving solution from the archive 
       random_access_index := random(archive_counter ∗ 0.8, archive_counter); 
       p, c, v′′, w′′ ← Archive(random_access_index); 
       𝑝𝑝𝑝𝑝 := 𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣′′,𝑤𝑤𝑤𝑤′′

; for i := 1 to n do c(i) := c(i) + B(i, p(v′′)) − B(i, p(w′′)); 
       clear tabu list TabuList; 
       TabuList(p(v′′), p(w′′)) := k + h; TabuList(p(w′′), p(v′′)) := k + h; // the elements p(v′′), p(w′′) become tabu 
       k′ := k 
    endif; 
    k := k + 1 
  endwhile 
end. 

Notes. 1. The immediate if function iif(x, y1, y2) returns y1 if x = TRUE, otherwise it returns y2. 2. The function random() returns a pseudo-
random number uniformly distributed in [0, 1]. 3. The function random(x1, x2) returns a pseudo-random number in [x1, x2]. 

Figure 5. Pseudo-code of the tabu search algorithm 
 
procedure Iterated_Tabu_Search; // iterated tabu search algorithm for the GP-QAP 
// input: p − current solution 
// output: p∇ − the best found solution  (along with the corresponding contributions) 
// parameter: Q − number of iterations 

 

begin 
  p∇ := p; 
  for q := 1 to Q do begin 
    apply Tabu_Search to p and get p•; 
    if z(p•) < z(p∇) p∇ := p•; // the best found solution is memorized 
    if q < Q then begin 
       p := Candidate_Acceptance(p•, p∇); apply Perturbation to p 
    endif 
  endfor 
end. 

Figure 6. Pseudo-code of the iterated tabu search algorithm 

tion is regarded as the resulting solution of ITS. The 
overall process continues until a pre-defined number 
of iterations have been performed (see Figure 6).

C. Hierarchical iterated tabu search
The 1-level hierarchical iterated tabu search (1-HITS) 
algorithm can be obtained from the ITS algorithm. 
The structure of the algorithm remains practically 
unchanged, except that the ITS algorithm (instead of 
the TS algorithm) is used for the solution improve-
ment (see Figure 7).
It is possible to further extend the 1-HITS algorithm in 
a very gentle way. New extension is entitled as 2-HITS. 
The pseudo-code of 2-HITS is almost identical to 

Figure 7 
Pseudo-code of the 1-level hierarchical iterated tabu search algorithm
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It is possible to further extend the 1-HITS algorithm in a very gentle way. New extension is entitled as 2-HITS. The 
pseudo-code of 2-HITS is almost identical to the one of 1-HITS, except that the invocation of the ITS procedure is 
substituted by the invocation of the 1-HITS procedure. Continuing in the above manner, one can create a cascade of 
self-similar algorithms: 3-HITS, 4-HITS, and so on. It is not difficult, only one should be careful and patient. Our most 
latest version of HITS is, in particular, 7-HITS. The description of 7-HITS is presented in Figure 8. It is a high level 
template of the algorithm, rather than a detailed pseudo-code. Some parts are omitted for the sake of brevity. 
 
procedure 1-Hierarchical_Iterated_Tabu_Search; // 1-level hierarchical iterated tabu search algorithm for the GP-QAP 
// input: p − current solution 
// output: p〈1〉 − the best found solution (along with the corresponding contributions) 
// parameters: Q1 − number of iterations 

 

begin 
  p〈1〉 := p; 
  for q1 := 1 to Q1 do begin 
    apply Iterated_Tabu_Search to p and get p∇; 
    if z(p∇) < z(p〈1〉) p〈1〉 := p∇; // the best found solution is memorized 
    if q1 < Q1 then begin 
       p := Candidate_Acceptance(p∇, p〈1〉); apply Perturbation to p 
    endif 
  endfor 
end. 

Figure 7. Pseudo-code of the 1-level hierarchical iterated tabu search algorithm 
 
procedure Hierarchical_Iterated_Tabu_Search; // seven-level hierarchical iterated tabu search for the GP-QAP 
// input: n, m, B, 
//           p − current solution 
// output: p  − the best found solution 
// parameters: Q, Q1, . . . , Q7 − numbers of iterations 

 

begin 
  for i := 1 to n do begin c(i) := 0; 
  for i := 1 to n do for j := 1 to m do c(i) := c(i) + B(i, p(j)); // initialization of contributions (c) 
  p〈7〉 := p; 
  for q7 := 1 to Q7 do begin 
    . . . 
    p〈1〉 := p; 
    for q1 := 1 to Q1 do begin 
      p∇ := p; 
      for q := 1 to Q do begin 
        apply Tabu_Search  to p and get p•; 
        if z(p•) < z(p∇) then p∇ := p•; // new better solution is memorized 
        if q < Q then begin 
           p := Candidate_Acceptance(p•, p∇); apply Perturbation to p 
        endif 
      endfor;             Iterated_Tabu_Search 
      if z(p∇) < z(p〈1〉) then p〈1〉 := p∇; // new better solution is memorized 
      if q1 < Q1 then begin 
         p := Candidate_Acceptance(p∇, p〈1〉); apply Perturbation to p 
      endif 
    endfor;           1-Hierarchical_Iterated_Tabu_Search 
    . . . 
    if z(p〈6〉) < z(p〈7〉) then p〈7〉 := p〈6〉; // the best solution is memorized 
    if q7 < Q7 then begin 
       p := Candidate_Acceptance(p〈6〉, p〈7〉); apply Perturbation to p 
    endif 
  endfor; 
  p  := p〈7〉 
end.               7-Hierarchical_Iterated_Tabu_Search 
 

Figure 8. Template of the seven-level hierarchical iterated tabu search algorithm 
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the one of 1-HITS, except that the invocation of the 
ITS procedure is substituted by the invocation of the 
1-HITS procedure. Continuing in the above manner, 
one can create a cascade of self-similar algorithms: 
3-HITS, 4-HITS, and so on. It is not difficult, only one 
should be careful and patient. Our most latest version 
of HITS is, in particular, 7-HITS. The description of 
7-HITS is presented in Figure 8. It is a high level tem-
plate of the algorithm, rather than a detailed pseu-
do-code. Some parts are omitted for the sake of brevity.

2.4.2. Candidate Acception
The function Candidate_Acceptance can be imple-
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mented in many different ways. We utilize the so-
called "where-you-are" rule, which means that we 
always choose the first candidate from the function 
parameters' list. For example, in the case of Candi-
date_Acceptance(p•, p∆), p• is accepted.

2.4.3. Perturbation
The perturbation procedure is very simple in its struc-
ture and it consists of two parts: a) random mutation 
(shuffling) and b) re-construction of the mutated solu-
tion by fast greedy adaptive procedure (see Figure 9).
Firstly, the accepted candidate solution undergoes a 
random mutation process; in particular, the solution is 
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procedure Perturbation; // perturbation procedure for the GP-QAP 
// input: p − current solution 
// output: p − the resulting (perturbed) solution 
// parameter: µ − mutation rate (number of disregarded elements) 

 

begin 
  apply Mutation to p using mutation rate µ, get partial (mutated) solution p─; 
  apply Fast_Greedy_Adaptive_Procedure to the partial solution p─, 
  get a perturbed complete solution 𝑝𝑝𝑝𝑝 
  // the solution p is then to be improved by tabu search 
end. 

Figure 9. Pseudo-code of the perturbation procedure 
 
procedure Mutation; // random mutation procedure for the GP-QAP 
// input: m, 
//           p − current (complete) solution 
// output: p─ − resulting (partial) solution 

 

begin 
  for i := 1 to m − 1 do begin // shuffling the items p(1), …, p(m) 
    generate an integer j randomly, uniformly, i ≤ j ≤ m; 
    𝑝𝑝𝑝𝑝 ≔ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 // the items p(i) and p(j) are interchanged 
  endfor; 
  // after shuffling, the items p(m − µ + 1), …, p(m) are disregarded (no action is needed) 
  p─ := p 
end. 

Figure 10. Pseudo-code of the random mutation procedure 
 
procedure Fast_Greedy_Adaptive_Procedure; // fast greedy adaptive procedure for the GP-QAP 
// input: n, m, B, 
//           p − partial solution, where the elements p(m − µ + 1), …, p(m) are disregarded 
// output: p − feasible (complete) solution 
// parameter: µ − mutation rate (1 ≤ µ < m) 

 

begin 
  for i := 1 to n do for j := m − µ + 1 to m do c(i) := c(i) − B(i, p(j)); // fast (re)calculation of contributions (c) 
  for i := 1 to n do Selected(i) := FALSE; for i := 1 to m − µ do Selected(p(i)) := TRUE; // initialization of Selected 
  i := m − µ; k := p(m − µ); 
  for q := 1 to µ do begin // cycle is repeated until the solution has been completed 
    minimum_contribution := ∞; 
    for j := 1 to n do 
      if Selected(j) = FALSE then begin 
         c(j) := c(j) + B(j, k); if c(j) < minimum_contribution then begin minimum_contribution := c(j); jmin := j endif 
      endif; 
    i := i + 1; p(i) := jmin; // the element with the minimum contribution is added to the solution 
    Selected(p(i)) := TRUE; k := jmin 
  endfor; 
  i := m + 1; for j := 1 to n do if Selected(j) = FALSE then begin p(i) := j; i := i + 1 endif 
end. 

Figure 11. Pseudo-code of the fast greedy adaptive procedure 

2. 4. 2. Candidate Acception 
The function Candidate_Acceptance can be implemented in many different ways. We utilize the so-called "where-

you-are" rule, which means that we always choose the first candidate from the function parameters' list. For example, in 
the case of Candidate_Acceptance(p•, p∇), p• is accepted. 

2. 4. 3. Perturbation 
The perturbation procedure is very simple in its structure and it consists of two parts: a) random mutation 

(shuffling) and b) re-construction of the mutated solution by fast greedy adaptive procedure (see Figure 9). 
Firstly, the accepted candidate solution undergoes a random mutation process; in particular, the solution is 

"disintegrated" by disregarding (removing) 𝜇𝜇𝜇𝜇 elements from the current solution (𝜇𝜇𝜇𝜇 is a parameter called mutation rate). 
The 𝜇𝜇𝜇𝜇 elements are chosen in a random way (see Figure 10). The value of 𝜇𝜇𝜇𝜇 is relatively small in our algorithm  
(𝜇𝜇𝜇𝜇 = ⌊0.15𝑚𝑚𝑚𝑚⌋), so only a minor fraction of elements is involved in the mutation procedure. 

Secondly, the mutated partial solution is subject to re-construction (partial optimization) by the fast greedy adaptive 
procedure (FGAP), which is identical to that used in the crossover operator, except that the more effective calculation of 
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Figure 10
Pseudo-code of the random mutation procedure

"disintegrated" by disregarding (removing) μ elements 
from the current solution (μ is a parameter called mu-
tation rate). The μ elements are chosen in a random 
way (see Figure 10). The value of μ is relatively small 
in our algorithm (μ=⌊0.15m⌋), so only a minor fraction 
of elements is involved in the mutation procedure.
Secondly, the mutated partial solution is subject to 
re-construction (partial optimization) by the fast 
greedy adaptive procedure (FGAP), which is identi-
cal to that used in the crossover operator, except that 
the more effective calculation of the contributions is 
applied (see Figure 11). The calculation takes O(μn) 
time. The overall complexity of the FGAP algorithm is 
also O(μn). This results in a very fast execution of both 
FGAP and HITS as long as the value of μ is not large.

After the offspring is improved by HITS, it is tested if 
the new solution (𝑝𝑝 ) differs from the other solutions in 
population. If it is the case, it is checked if the new 
solution is better than the best solution in the 
population or the distance between the new solution 
and population (𝛿𝛿�𝑝𝑝 , 𝑃𝑃�= min�∈��𝛿𝛿�𝑝𝑝 , 𝑝𝑝��) is grea- 
ter than or equal to the distance threshold 𝐷𝐷𝑇𝑇. If this is 
true, then the new solution replaces the worst solution 
in the current population (𝑃𝑃 = 𝑃𝑃 ∪ �𝑝𝑝 � ∖ �𝑝𝑝������, 
where 𝑝𝑝�����= argma

                                �∈��𝑧𝑧�𝑝𝑝��). (Otherwise, the 
population remains unaltered and the algorithm 
continues with the next generation.) This rule is to 
maintain both the high-quality and sufficient diversity 
of the members of population. 

 

  

 

x

2.5. Population Management
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procedure Perturbation; // perturbation procedure for the GP-QAP 
// input: p − current solution 
// output: p − the resulting (perturbed) solution 
// parameter: µ − mutation rate (number of disregarded elements) 

 

begin 
  apply Mutation to p using mutation rate µ, get partial (mutated) solution p─; 
  apply Fast_Greedy_Adaptive_Procedure to the partial solution p─, 
  get a perturbed complete solution 𝑝𝑝𝑝𝑝 
  // the solution p is then to be improved by tabu search 
end. 

Figure 9. Pseudo-code of the perturbation procedure 
 
procedure Mutation; // random mutation procedure for the GP-QAP 
// input: m, 
//           p − current (complete) solution 
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    𝑝𝑝𝑝𝑝 ≔ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 // the items p(i) and p(j) are interchanged 
  endfor; 
  // after shuffling, the items p(m − µ + 1), …, p(m) are disregarded (no action is needed) 
  p─ := p 
end. 

Figure 10. Pseudo-code of the random mutation procedure 
 
procedure Fast_Greedy_Adaptive_Procedure; // fast greedy adaptive procedure for the GP-QAP 
// input: n, m, B, 
//           p − partial solution, where the elements p(m − µ + 1), …, p(m) are disregarded 
// output: p − feasible (complete) solution 
// parameter: µ − mutation rate (1 ≤ µ < m) 

 

begin 
  for i := 1 to n do for j := m − µ + 1 to m do c(i) := c(i) − B(i, p(j)); // fast (re)calculation of contributions (c) 
  for i := 1 to n do Selected(i) := FALSE; for i := 1 to m − µ do Selected(p(i)) := TRUE; // initialization of Selected 
  i := m − µ; k := p(m − µ); 
  for q := 1 to µ do begin // cycle is repeated until the solution has been completed 
    minimum_contribution := ∞; 
    for j := 1 to n do 
      if Selected(j) = FALSE then begin 
         c(j) := c(j) + B(j, k); if c(j) < minimum_contribution then begin minimum_contribution := c(j); jmin := j endif 
      endif; 
    i := i + 1; p(i) := jmin; // the element with the minimum contribution is added to the solution 
    Selected(p(i)) := TRUE; k := jmin 
  endfor; 
  i := m + 1; for j := 1 to n do if Selected(j) = FALSE then begin p(i) := j; i := i + 1 endif 
end. 

Figure 11. Pseudo-code of the fast greedy adaptive procedure 

2. 4. 2. Candidate Acception 
The function Candidate_Acceptance can be implemented in many different ways. We utilize the so-called "where-

you-are" rule, which means that we always choose the first candidate from the function parameters' list. For example, in 
the case of Candidate_Acceptance(p•, p∇), p• is accepted. 

2. 4. 3. Perturbation 
The perturbation procedure is very simple in its structure and it consists of two parts: a) random mutation 

(shuffling) and b) re-construction of the mutated solution by fast greedy adaptive procedure (see Figure 9). 
Firstly, the accepted candidate solution undergoes a random mutation process; in particular, the solution is 

"disintegrated" by disregarding (removing) 𝜇𝜇𝜇𝜇 elements from the current solution (𝜇𝜇𝜇𝜇 is a parameter called mutation rate). 
The 𝜇𝜇𝜇𝜇 elements are chosen in a random way (see Figure 10). The value of 𝜇𝜇𝜇𝜇 is relatively small in our algorithm  
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Secondly, the mutated partial solution is subject to re-construction (partial optimization) by the fast greedy adaptive 
procedure (FGAP), which is identical to that used in the crossover operator, except that the more effective calculation of 
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2.6. Restart
The restart of the genetic algorithm takes place if the 
solutions of the population are not improved for Li-

dle_gen generations (Lidle_gen is an idle generations limit, 
which is set to ⌊0.15Ngen⌋, Ngen is the number of genera-
tions). The restart is performed by simply construct-
ing the new population (see Section 2.1).

3. Results of Computational 
Experiments
Our new hybrid genetic algorithm (NHGA) was im-
plemented by using C# programming language. The 
computational experiments have been carried out on 
a 3 GHz personal computer running Windows 7 En-
terprise.
We have tested our algorithm on the medium and 
large-scaled GP-QAP instances with n = 256 and n = 
1024, respectively. The instances are generated ac-
cording to the method described in [15]3 . The grids 

are of dimensions 16×16 (n1 = n2 = 16) and 32×32 (n1 = 
n2 = 32), respectively. The grey density parameter m 
varies from 2 to 128 and from 2 to 512.
The values of the control parameters of NHGA used 
in the experiments are shown in Table 1. (Note that 
the calibration of the parameters was not performed.)
Firstly, we have experimented with the problems 
of size 256 and we have compared our algorithm 
with the improved genetic-evolutionary algorithm 
(IGEA) presented in [12]. To our knowledge, IGEA 
seems very likely to be the most efficient (to date) 
heuristic algorithm for the problems of this size. As 
the algorithms IGEA and NHGA constantly find the 
best known (pseudo-optimal) solutions (BKSs), we 
compare the run time performance, rather than the 
quality of solutions.
Thus, the experimentation was designed in such a 
way that the algorithms IGEA and NHGA were run 
10 and 100 times, respectively. At every run, the al-
gorithms are applied to a given m, each time starting 
from new random solutions. The current run is fin-
ished as soon as BKS has been found (even without 

13  

3  These instances can also be found at the website: http://www.
personalas.ktu.lt/~alfmise/.
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Table 1 
Values of the control parameters of the hybrid genetic algorithm

Parameter Value Remarks

Population size, PS 20

Number of generations, Ngen 40

Idle generations limit, Lidle_gen ⌊0.15Ngen ⌋ 0 < Lidle_gen ≤ Ngen

Distance threshold, DT ⌊0.25m⌋ 0 ≤ DT ≤ m

Number of hierarchical tabu search iterations, QHIER 384 QHIER = Q × Q1 × Q2 × Q3 ×Q4 × Q5 ×Q6 ×Q7
†

Number of tabu search iterations, τ 80

Tabu tenure, h ⌊0.3m⌋ h > 0

Idle iterations limit, Lidle_iter ⌊0.2τ⌋ 0 < Lidle_iter ≤ τ

Neighbourhood size factor, ρ 0.4 ρ >0

Randomization coefficient, α 0.02 0 < α < 1

Mutation rate, μ ⌊0.15m⌋ 0 < μ < m

† Q = Q1= Q2 = Q3 = Q4 = Q5 = Q6 = 2, Q7=3.

reaching the limit of generations Ngen). The obtained 
run times (CPU times) of the algorithms to achieve 
the BKS for every m  are reported in Table 2. For 
the algorithm IGEA, the run time averaged over 10 
runs is presented. For the algorithm NHGA, the run 
time of the shortest run out of 100 runs is given. The 
comparison thus seems to be slightly unfair — we 
just wanted to bring to the light how fast our algo-
rithm can run.
On the whole, the results demonstrate that NHGA 
clearly dominates IGEA. IGEA was able to slight-
ly outperform NHGA in very few cases only 
(m=26,101,102,103). Figure 12 illustrates the in-
credible overall speed improvement of NHGA 
for m's varying from 30 to 100. It can be observed 
that, for some instances, the computation time is 
reduced by a factor of over 100 (!). Such small run 
times of NHGA indicate that NHGA is capable to 
obtain pseudo-optimal solutions at very early stag-
es of the construction of the initial population with 
the help of the stand-alone hierarchical tabu search 
only. Very probably, the efficiency of NHGA could 
be improved even more by an accurate tuning of the 

values of the control parameters.

During the additional extensive, long-lasting ex-
perimentation, we were examining the algorithm 
NGHA on the large-sized problems (n=1024), which 
are much more difficult and time-consuming. It 
should be stressed that, nevertheless, we were suc-
cessful in discovering new record breaking solu-
tions for more than 190 values of m. The results are 
presented in Table 3. The CPU times are omitted. 
The new BKVs are in bold face. All the remaining 
values are from [13].

The further thorough experiments are needed to 
show (verify) the pseudo-optimality of the newly ob-
tained best known solutions.

We also provide several visual representations (grey 
frames) corresponding to some of the new best known 
solutions (in particular, m=401,402,403,404,405,40
6,407,408) (see Figure 13). In the graphical illustra-
tions, each 

1024-square-grid is replicated 8 times horizontally 
and 8 times vertically for the visibility convenience.
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m Best known 
value (BKV)

Dev. 
from 
BKV

CPU time (sec)
m

Best known 
value  

(BKV)

Dev. 
from 
BKV

CPU time (sec)
m Best known 

value (BKV)

Dev. 
from 
BKV

CPU time (sec)

IGEA NHGA IGEA NHGA IGEA NHGA

2 1562 0 0.0 0.00 45 8674910 0 150 5.91 87 39389054 0 25.0 0.19
3 7810 0 0.0 0.00 46 9129192 0 64 11.38 88 40416536 0 23.0 0.15
4 15620 0 0.0 0.00 47 9575736 0 3.1 0.29 89 41512742 0 183 6.98
5 38072 0 0.0 0.00 48 10016256 0 2.0 0.16 90 42597626 0 165 4.76
6 63508 0 0.0 0.00 49 10518838 0 3.4 0.56 91 43676474 0 224 17.64
7 97178 0 0.0 0.00 50 11017342 0 2.8 0.56 92 44759294 0 157 7.94
8 131240 0 0.0 0.00 51 11516840 0 7.5 0.83 93 45870244 0 214 19.18
9 183744 0 0.0 0.00 52 12018388 0 6.3 0.39 94 46975856 0 190 21.52

10 242266 0 0.0 0.00 53 12558226 0 4.6 0.54 95 48081112 0 169 2.14
11 304722 0 0.1 0.00 54 13096646 0 4.0 0.03 96 49182368 0 216 6.58
12 368952 0 0.1 0.00 55 13661614 0 10.1 0.12 97 50344050 0 213 23.88
13 457504 0 0.1 0.00 56 14229492 0 2.8 0.15 98 51486642 0 188 63.40
14 547522 0 0.1 0.00 57 14793682 0 2.2 0.37 99 52660116 0 201 50.53
15 644036 0 0.1 0.00 58 15363628 0 2.3 0.09 100 53838088 0 117 48.18
16 742480 0 0.1 0.00 59 15981086 0 3.5 0.71 101 55014262 0 84 156
17 878888 0 0.2 0.00 60 16575644 0 2.4 0.95 102 56202826 0 40.0 115
18 1012990 0 0.1 0.00 61 17194812 0 2.2 0.01 103 57417112 0 73 84.00
19 1157992 0 0.2 0.00 62 17822806 0 3.6 0.01 104 58625240 0 62 51.14
20 1305744 0 0.3 0.08 63 18435790 0 1.9 0.00 105 59854744 0 38.0 32.41
21 1466210 0 0.5 0.00 64 19050432 0 2.3 0.00 106 61084902 0 33.0 10.85
22 1637794 0 0.3 0.00 65 19848790 0 3.1 0.00 107 62324634 0 21.0 0.73
23 1820052 0 0.2 0.00 66 20648754 0 4.5 0.02 108 63582416 0 12.6 0.65
24 2010846 0 0.6 0.02 67 21439396 0 9.7 0.08 109 64851966 0 11.1 1.02
25 2215714 0 3.2 0.31 68 22234020 0 18.0 0.23 110 66120434 0 10.7 0.41
26 2426298 0 16.5 22.98 69 23049732 0 27.0 0.64 111 67392724 0 8.2 0.46
27 2645436 0 1.1 0.02 70 23852796 0 26.0 0.98 112 68666416 0 7.7 0.17
28 2871704 0 0.9 0.03 71 24693608 0 78 0.43 113 69984758 0 10.2 0.13
29 3122510 0 0.7 0.03 72 25522408 0 490 64.80 114 71304194 0 6.3 0.18
30 3373854 0 0.5 0.00 73 26375828 0 298 5.81 115 72630764 0 5.1 0.37
31 3646344 0 0.6 0.00 74 27235240 0 304 2.50 116 73962220 0 5.3 0.21
32 3899744 0 0.5 0.02 75 28114952 0 41.0 0.85 117 75307424 0 4.0 0.03
33 4230950 0 0.7 0.03 76 29000908 0 121 1.30 118 76657014 0 3.6 0.06
34 4560162 0 2.6 0.36 77 29894452 0 145 4.81 119 78015914 0 2.3 0.03
35 4890132 0 3.2 0.41 78 30797954 0 117 1.15 120 79375832 0 1.7 0.05
36 5222296 0 2.0 0.44 79 31702182 0 11.6 0.81 121 80756852 0 1.6 0.07
37 5565236 0 1.8 0.34 80 32593088 0 3.3 0.47 122 82138768 0 1.4 0.03
38 5909202 0 0.9 0.14 81 33544628 0 3.9 0.26 123 83528554 0 1.0 0.04
39 6262248 0 1.1 0.08 82 34492592 0 70 3.33 124 84920540 0 0.7 0.01
40 6613472 0 0.9 0.02 83 35443938 0 57.0 1.41 125 86327812 0 0.4 0.00
41 7002794 0 0.6 0.11 84 36395172 0 61 2.77 126 87736646 0 0.3 0.00
42 7390586 0 0.7 0.16 85 37378800 0 151 1.20 127 89150166 0 0.2 0.00
43 7794422 0 3.2 0.20 86 38376438 0 94 0.32 128 90565248 0 0.2 0.00
44 8217264 0 16.0 0.87

Table 2 
Results of the experiments with the medium-sized GP-QAP instances (n = 256)

The deviation from BKV (Dev. from BKV) is calculated as the ratio (z*- BKV)/BKV, where z* denotes the algorithms' best 
found solution. The best known values of the objective function corresponding to the best known solutions are from [12].
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m BKV m BKV m BKV m BKV m BKV m BKV m BKV m BKV

2 390 66 5132250 130 23460170 194 57086766 258 106260632 322 176518174 386 262819150 450 363665156

3 1954 67 5312762 131 23897592 195 57739124 259 107273354 323 177756358 387 264317294 451 365361310

4 3908 68 5493398 132 24335656 196 58392270 260 108286116 324 178959204 388 265791714 452 367056444

5 9488 69 5675784 133 24773832 197 59055298 261 109299348 325 180158842 389 267231448 453 368754728

6 15882 70 5868614 134 25213730 198 59710314 262 110313464 326 181377560 390 268698768 454 370451410

7 24290 71 6061636 135 25653062 199 60357328 263 111323160 327 182598340 391 270205824 455 372157104

8 32808 72 6253544 136 26091040 200 61005880 264 112349256 328 183826382 392 271688930 456 373863658

9 45844 73 6451748 137 26536474 201 61656140 265 113366358 329 185039942 393 273203922 457 375575430

10 60310 74 6658646 138 26980064 202 62313154 266 114381534 330 186245648 394 274660438 458 377289052

11 75878 75 6866464 139 27426740 203 62979360 267 115403394 331 187480294 395 276180114 459 379005274

12 91852 76 7077272 140 27873238 204 63648372 268 116415772 332 188702624 396 277670456 460 380724964

13 114040 77 7287952 141 28319430 205 64329116 269 117454596 333 189934056 397 279172978 461 382449898

14 136706 78 7497962 142 28761578 206 65021762 270 118462682 334 191134986 398 280677404 462 384174962

15 160770 79 7708934 143 29211334 207 65721964 271 119472414 335 192370030 399 282179032 463 385902750

16 185552 80 7919112 144 29649520 208 66422364 272 120505424 336 193596576 400 283712492 464 387628048

17 218392 81 8147012 145 30118164 209 67136312 273 121574572 337 194844496 401 285211916 465 389368514

18 251618 82 8363950 146 30588480 210 67852496 274 122629730 338 196104848 402 286746076 466 391105794

19 288006 83 8600584 147 31065948 211 68585494 275 123626322 339 197349714 403 288238662 467 392843892

20 324794 84 8839620 148 31546098 212 69315338 276 124716364 340 198600114 404 289784468 468 394587900

21 365546 85 9079818 149 32025690 213 70050648 277 125741472 341 199870596 405 291260654 469 396332818

22 407406 86 9322672 150 32508848 214 70789536 278 126807112 342 201181102 406 292833208 470 398083462

23 451448 87 9563920 151 32992712 215 71527862 279 127842588 343 202519622 407 294387042 471 399837320

24 496888 88 9818424 152 33479148 216 72259864 280 128937048 344 203834574 408 295934120 472 401592882

25 549180 89 10074140 153 33968988 217 72990332 281 130003342 345 205167090 409 297474388 473 403351666

26 603368 90 10331422 154 34461110 218 73726832 282 131077338 346 206544390 410 298998414 474 405112104

27 659044 91 10600710 155 34955468 219 74466810 283 132132040 347 207925194 411 300564200 475 406875344

28 716280 92 10871062 156 35450196 220 75201458 284 133187012 348 209234904 412 302129606 476 408637620

29 777436 93 11138470 157 35944108 221 75953890 285 134287484 349 210612178 413 303688980 477 410409038

30 837798 94 11411510 158 36437606 222 76713866 286 135364426 350 211922934 414 305224788 478 412182568

31 907090 95 11679880 159 36933614 223 77465610 287 136441394 351 213304876 415 306845268 479 413959340

32 975008 96 11944352 160 37426912 224 78218352 288 137549224 352 214686716 416 308393388 480 415733856

33 1050792 97 12237102 161 37947342 225 78977922 289 138637260 353 216044260 417 309969764 481 417519180

34 1125558 98 12523996 162 38464394 226 79744456 290 139677068 354 217376574 418 311420318 482 419302686

35 1203646 99 12813836 163 38982592 227 80520900 291 140801272 355 218738658 419 313094242 483 421092758

36 1281132 100 13103420 164 39500208 228 81287994 292 141875610 356 220109066 420 314652760 484 422883164

37 1368444 101 13398254 165 40025416 229 82061894 293 142916356 357 221526988 421 316172166 485 424678088

38 1456842 102 13691306 166 40550006 230 82837128 294 144026694 358 222888300 422 317825280 486 426473544

39 1547598 103 13988062 167 41078930 231 83613898 295 145175322 359 224268836 423 319428868 487 428272184

40 1638808 104 14288780 168 41606240 232 84406568 296 146290048 360 225646838 424 321022500 488 430071632

41 1736236 105 14593444 169 42140968 233 85225404 297 147454448 361 227020504 425 322637088 489 431876322

42 1834074 106 14899130 170 42673974 234 86030804 298 148527002 362 228390592 426 324266210 490 433683572

43 1935946 107 15216394 171 43219476 235 86829778 299 149672540 363 229827232 427 325898680 491 435492454

44 2042792 108 15537796 172 43787404 236 87618540 300 150827224 364 231201722 428 327457994 492 437303524

Table 3 
Results of the experiments with the large-sized GP-QAP instances (n = 1024)
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m BKV m BKV m BKV m BKV m BKV m BKV m BKV m BKV

45 2147200 109 15857934 173 44361196 237 88445972 301 151952048 365 232578308 429 328993270 493 439118116

46 2260650 110 16177106 174 44933388 238 89239062 302 153122860 366 233960416 430 330616714 494 440933678

47 2373506 111 16504524 175 45511224 239 90075414 303 154282700 367 235302078 431 332246332 495 442752278

48 2482832 112 16837956 176 46091442 240 90875504 304 155417120 368 236712932 432 333874768 496 444570032

49 2607474 113 17174378 177 46680202 241 91698908 305 156547208 369 238200964 433 335514106 497 446397066

50 2730510 114 17508602 178 47274350 242 92523578 306 157684310 370 239582944 434 337154026 498 448224550

51 2857088 115 17849756 179 47871440 243 93371894 307 158836480 371 241044336 435 338796402 499 450053654

52 2988998 116 18191920 180 48462430 244 94187252 308 159999648 372 242479798 436 340435998 500 451883116

53 3120248 117 18535442 181 49056670 245 95044544 309 161157378 373 243893396 437 342076542 501 453718668

54 3257234 118 18902942 182 49654614 246 95865322 310 162344014 374 245361204 438 343718980 502 455554546

55 3398018 119 19272770 183 50258968 247 96720682 311 163515706 375 246783270 439 345362184 503 457391626

56 3535048 120 19631156 184 50876864 248 97531736 312 164641724 376 248246874 440 347009592 504 459230104

57 3684478 121 20001764 185 51494526 249 98361638 313 165838280 377 249710800 441 348669786 505 461073188

58 3829950 122 20370638 186 52115066 250 99225594 314 167015058 378 251141622 442 350325606 506 462916382

59 3984538 123 20746696 187 52731636 251 100062350 315 168180928 379 252535872 443 351981700 507 464761614

60 4136400 124 21117234 188 53348334 252 100898116 316 169354960 380 254011358 444 353638456 508 466607612

61 4291962 125 21484868 189 53959660 253 101733670 317 170529852 381 255486362 445 355296090 509 468457260

62 4447434 126 21852518 190 54571808 254 102566006 318 171723964 382 256914322 446 356954184 510 470307298

63 4604860 127 22218924 191 55185346 255 103399158 319 172910768 383 258421702 447 358612252 511 472158510

64 4762688 128 22581376 192 55788864 256 104232704 320 174113066 384 259861698 448 360270272 512 474010112

65 4949042 129 23021790 193 56452088 257 105247082 321 175343494 385 261377866 449 361968220

Table 3 (continued)

Figure 12. Illustration of the run time improvement. In the y-axis, we present the ratio of CPUIGEA to CPUNHGA,
where CPUIGEA, CPUNHGA denote the run times of IGEA and NHGA, respectively

Figure 13. Examples of (pseudo-)optimal grey frames (𝑛𝑛𝑛𝑛 = 1024):
(a) 𝑚𝑚𝑚𝑚 = 401, (b) 𝑚𝑚𝑚𝑚 = 402, (c) 𝑚𝑚𝑚𝑚 = 403, (d) 𝑚𝑚𝑚𝑚 = 404, (e) 𝑚𝑚𝑚𝑚 = 405, (f) 𝑚𝑚𝑚𝑚 = 406, (g) 𝑚𝑚𝑚𝑚 = 407, (h) 𝑚𝑚𝑚𝑚 = 408

4. Concluding Remarks
In this paper, we have proposed a new improved hybrid genetic algorithm for solving the grey pattern quadratic 

assignment problem. In particular, the genetic algorithm is hybridized with the hierarchical iterated tabu search and this 
is adopted for the GP-QAP for the first time. The compacted, reduced neighbourhood is used. This enables very fast 
execution of the hierarchical ITS algorithm and the hybrid GA. In addition, we apply a smart combination of the 
iterated tabu search and the greedy adaptive perturbations. This allows beneficial balance between diversification and 
intensification during the iterative search process.

Our algorithm has been computationally tested on the medium and large-sized instances of the GP-QAP, where the 
instances size is equal to 256 and 1024, respectively. The results obtained from the conducted experiments demonstrate 
that the new hybridized GA is extremely effective and outperforms other the-state-of-the-art heuristic algorithms. The 
high efficiency is confirmed by the numerous best known solutions achieved for the challenging GP-QAP instances of 
size 1024.

Regarding the future work, it might be worthy to improve the population initialization and management 
mechanisms within hybrid GA to avoid presumable stagnation of the genetic process. It is also worth to try to further 
enhance the performance of HGA by developing new architecture of the genetic algorithm itself.

Additionally, our proposed new HGA might be adapted for other types of combinatorial optimization problems.
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Figure 12 
Illustration of the run time improvement. In the y-axis, we present the ratio of CPUIGEA to CPUNHGA, where CPUIGEA, CPUNHGA 
denote the run times of IGEA and NHGA, respectively
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Figure 13 
Examples of (pseudo-)optimal grey frames (n = 1024): (a) m =4 01, (b) m =4 02, (c) m = 403, (d) m = 404, (e) m = 405, (f ) m = 406, 
(g) m =4 07, (h) m = 408

Figure 12. Illustration of the run time improvement. In the y-axis, we present the ratio of CPUIGEA to CPUNHGA,
where CPUIGEA, CPUNHGA denote the run times of IGEA and NHGA, respectively

Figure 13. Examples of (pseudo-)optimal grey frames (𝑛𝑛𝑛𝑛 = 1024):
(a) 𝑚𝑚𝑚𝑚 = 401, (b) 𝑚𝑚𝑚𝑚 = 402, (c) 𝑚𝑚𝑚𝑚 = 403, (d) 𝑚𝑚𝑚𝑚 = 404, (e) 𝑚𝑚𝑚𝑚 = 405, (f) 𝑚𝑚𝑚𝑚 = 406, (g) 𝑚𝑚𝑚𝑚 = 407, (h) 𝑚𝑚𝑚𝑚 = 408

4. Concluding Remarks
In this paper, we have proposed a new improved hybrid genetic algorithm for solving the grey pattern quadratic 

assignment problem. In particular, the genetic algorithm is hybridized with the hierarchical iterated tabu search and this 
is adopted for the GP-QAP for the first time. The compacted, reduced neighbourhood is used. This enables very fast 
execution of the hierarchical ITS algorithm and the hybrid GA. In addition, we apply a smart combination of the 
iterated tabu search and the greedy adaptive perturbations. This allows beneficial balance between diversification and 
intensification during the iterative search process.

Our algorithm has been computationally tested on the medium and large-sized instances of the GP-QAP, where the 
instances size is equal to 256 and 1024, respectively. The results obtained from the conducted experiments demonstrate 
that the new hybridized GA is extremely effective and outperforms other the-state-of-the-art heuristic algorithms. The 
high efficiency is confirmed by the numerous best known solutions achieved for the challenging GP-QAP instances of 
size 1024.

Regarding the future work, it might be worthy to improve the population initialization and management 
mechanisms within hybrid GA to avoid presumable stagnation of the genetic process. It is also worth to try to further 
enhance the performance of HGA by developing new architecture of the genetic algorithm itself.

Additionally, our proposed new HGA might be adapted for other types of combinatorial optimization problems.
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4. Concluding Remarks
In this paper, we have proposed a new improved hy-
brid genetic algorithm for solving the grey pattern 
quadratic assignment problem. In particular, the 
genetic algorithm is hybridized with the hierarchi-
cal iterated tabu search and this is adopted for the 
GP-QAP for the first time. The compacted, reduced 
neighbourhood is used. This enables very fast execu-
tion of the hierarchical ITS algorithm and the hybrid 
GA. In addition, we apply a smart combination of the 
iterated tabu search and the greedy adaptive pertur-
bations. This allows beneficial balance between di-
versification and intensification during the iterative 
search process.
Our algorithm has been computationally tested on 
the medium and large-sized instances of the GP-QAP, 
where the instances size is equal to 256 and 1024, re-
spectively. The results obtained from the conducted 

experiments demonstrate that the new hybridized 
GA is extremely effective and outperforms other 
the-state-of-the-art heuristic algorithms. The high 
efficiency is confirmed by the numerous best known 
solutions achieved for the challenging GP-QAP in-
stances of size 1024.
Regarding the future work, it might be worthy to im-
prove the population initialization and management 
mechanisms within hybrid GA to avoid presumable 
stagnation of the genetic process. It is also worth to 
try to further enhance the performance of HGA by 
developing new architecture of the genetic algo-
rithm itself.
Additionally, our proposed new HGA might be 
adapted for other types of combinatorial optimiza-
tion problems.
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