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Computational intelligence search and optimization algorithms have been efficiently adopted and used for 
many types of complex problems. Optics Inspired Optimization (OIO) is one of the most recent physics in-
spired computational intelligence methods which treats the search space of the problem to be optimized as a 
wavy mirror in which each peak is assumed to reflect as a convex mirror and each valley to reflect as a concave 
one. Each candidate solution is treated as an artificial light point that its glittered ray is reflected back by the 
search space of the problem and the artificial image is formed based on mirror equations adopted from Optics, 
as a new candidate solution. In this study, OIO for the first time has been designed as a solution search strategy 
for travelling tournament problem which is one of the current sport problems and aids to minimize transporta-
tion and total movement of teams. Furthermore, this problem has been firstly solved by League Championship 
Algorithm and obtained results from both synthetic and real datasets have been compared. By this study, new 
application areas for OIO and LCA have been introduced. Obtained results show the superiority of OIO which 
is a novel algorithm and seems to efficiently solve many complex problems.
KEYWORDS: Computational intelligence optimization, optics inspired optimization, travelling tournament 
problem, artificial intelligence.

1. Introduction
Most of the search and optimization methods require 
mathematical models of the system. Establishing a 
mathematical model for complex systems is often 
difficult. Even if the model is established, the solution 

time cannot be used due to the huge cost. Classical 
search and optimization algorithms are insufficient 
for complex large scale combinatorial and nonlinear 
search and optimization problems. 
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Such algorithms are not effective in adapting them 
to interested problems. This, in many cases, requires 
some assumptions that may be difficult to validate. 
Often due to the natural solution mechanisms of clas-
sical search methods, the problem concerned is mod-
eled such that the method will manage it. The solution 
strategy of classical optimization methods is usually 
dependent on the type of objectives and constraints 
and on the type of variables. Their effectiveness is also 
highly dependent on the solution space in the prob-
lem model, the number of constraints, and number of 
decision variables. Another important shortcoming 
is that they cannot present general solution purpose 
strategies that can be utilized in the case of different 
types of variables, objectives, and constraints. In oth-
er words, classical methods solve models that have 
a specific type of objective function or constraint 
functions. However, many optimization problems in 
management, sports, engineering, economy, comput-
er, etc., require different types of variables, objective 
functions, and constraints in formulations simul-
taneously. Therefore, computational intelligence 
optimization methods are purposed and efficiently 
adapted. These methods have become very popular in 
recent years because they are computationally pow-
erful and their transformations are easy [1].
General-purpose computational intelligence search 
algorithms are divided into various groups such as 
biology-based, social-based, chemical-based, phys-
ics-based, music-based, mathematics-based, sports-
based, swarm-based, plant-based, and water-based. 
Their combinations can also be considered as hybrid 
category. Genetic algorithm, ant colony algorithms, 
and differential evolution algorithm are biologically 
based; simulated annealing algorithm and charged 
system search algorithm are physics based; human 
mental search is social based; artificial chemical re-
action optimization algorithm is chemistry-based 
and musical composition method is music-based al-
gorithm and models [3].
Optics Inspired Optimization (OIO) is one of the most 
recent population-based physics inspired algorithms 
proposed by Kashan [23, 24]. OIO is inspired by the 
optical characteristics of concave and convex mirrors 
that can be utilized to solve different types of complex 
large scaled problems. When the light rays strike on 
the concave mirror, they reflect towards the principal 
axis and converge. When the light rays fall on the con-
vex mirror, they reflect away from the principal axis 

and diverge. Exploration and exploitation capabilities 
of OIO are controlled by these concave and convex 
mirror phenomena. 
In this study, OIO has been used as a solution search 
strategy for the first time in the Travelling Tourna-
ment Problem (TTP), which aims to minimize the 
moving problems of the current sports problems and 
the total movement of the sports teams. The obtained 
results are compared with the League Championship 
Algorithm (LCA) which is one of the most recent 
sports inspired artificial intelligence optimization al-
gorithms [25].
The organization of this work is as follows. In Section 2, 
information about computational intelligence optimi-
zation algorithms and their advantages are discussed. 
Physics-based OIO is briefly introduced in Section 
3. In Section 4, TTP is explained in detail with exam-
ples. In Section 5, designing of OIO for the TTP that 
confronts the league is explained. The performance of 
the OIO optimized TTP is experimentally investigated 
in the real and synthetic dataset and the performance 
comparisons with the sports-based LCA are present-
ed for the first time. Section 6 contains comments on 
what kind of problems OIO can be efficiently used for 
and what can be done in future works.

2. Computational Intelligence Search 
and Optimization
In most real-life problems, the solution space of the 
problem is infinite or so large that all solutions cannot 
be evaluated. For this to be acceptable, it is necessary 
to create and evaluate the candidate solutions and 
find a good solution within an acceptable time. The 
evaluation of solutions in such a way that they are ac-
ceptable for such problems actually means the evalu-
ation of “some solutions” in the entire solution space. 
The way in which some solutions are chosen and how 
they are selected varies according to the computa-
tional intelligence technique [2, 3, 5].
Computational intelligence algorithms provide gen-
eral solution strategies when the optimization prob-
lem may have a structure in which the exact solution 
finding process cannot be identified. When a mathe-
matical model cannot be constructed or when con-
structed model has different types of variables, objec-
tive functions, and constraint functions, they can also 
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be efficiently utilized. Their computing power is good 
and their transformations are easy. They are adapt-
able for different types of complex problems. 
For clarity, computational intelligence algorithms 
can be much simpler in terms of decision makers. 
They can be used as part of learning and precise 
solution finding. Definitions made by mathematical 
formulas often ignore the most difficult parts of re-
al-world search and optimization problems (what ob-
jectives and what constraints should be used, which 
alternatives should be tested, how to gather problem 
data). In the case that the data used in determining 
the model parameters have noise, worse solutions 
may be obtained than the suboptimal solution that 
the computational intelligence search techniques can 
produce. Due to many advantages, computational in-
telligence algorithms are densely and efficiently being 
used as search strategy in many search and optimiza-
tion problems.
General-purpose computational metaheuristic 
search and optimization algorithms can be divided 
to ten categories according to different inspiration 
fields: as sociology, music, physics, biology, swarm, 
sports, chemistry, water, plant, and mathematics. Cat-
egorization is depicted in Table 1. 

Physics-based computational intelligence optimi-
zation methods mimic physical rules [9]. The most 
popular physics-based methods are magnetic opti-
mization algorithm [46], ions motion optimization 
[22], central force optimization algorithm [47], and 
OIO [23, 24]. Social based optimization algorithms 
are inspired by behaviors of people, human learning 
mechanism, and many features associated with the 
social situation of the people [36, 28]. Some of the 
popular social based optimization algorithms are 
named as Parliamentary optimization algorithm [8], 
teaching-learning based optimization [39], and social 
based algorithm [38].
Harmony search [19] and musical composition algo-
rithm [33] are music based methods. Artificial chem-
ical reaction optimization algorithm [4] is a chemis-
try- based method. Genetic algorithm [21] and clonal 
selection algorithm [14] are well-known biological 
based algorithms. Base optimization algorithm [42] 
and golden sine algorithm [45] are mathematics 
based methods. 
Particle swarm optimization [26], chicken swarm 
optimization [32], and ant colony algorithm [15] are 
some of the popular swarm inspired search and opti-
mization algorithms proposed inspiring from swarm 
intelligence systems in nature. 
Plant-based algorithms have been proposed by inspi-
ration from plant intelligence [3]. Water-based algo-
rithms have been proposed inspiring from the process 
in hydrology [35].

3. Optics Inspired Optimization 
OIO is one of the most recent population-based phys-
ics inspired algorithms proposed by Kashan [23-25]. 
OIO is inspired by the optical characteristics of con-
cave and convex mirrors that can be utilized to solve 
different types of complex search problems. When the 
light rays strike on the concave mirror, they reflect to-
wards the principal axis and converge. When the light 
rays fall on the convex mirror, they reflect away from 
the principal axis and diverge. Exploration and ex-
ploitation capabilities of OIO are controlled by these 
concave and convex mirror phenomena. The pictorial 
representation of an artificial image formation (new 
candidate solution generation) is shown in Figure 1 

Table 1
Computational intelligence search and optimization methods

Computational Intelligence Algorithms

Physics-based Optics inspired optimization, Ions 
motion optimization

Music-based Harmony search, Musical composition 
algorithm

Swarm-based Particle swarm optimization, Ant 
colony algorithm

Biology-based Genetic algorithm, Clonal selection 
algorithm

Math-based Base optimization algorithm, Golden 
sine algorithm

Plant-based Plant growth optimization

Social based Parliamentary optimization algorithm, 
Social based algorithm

Water-based Water drops algorithm

Sports based League championship algorithm

Chemistry 
based

Artificial chemical reaction 
optimization algorithm
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Figure 1 
Demonstration of the law of reflection when light rays fall 
on convex mirror [23]

  

solutions for the interested problem) are assumed 
to be sitting in front of an artificial wavy mirror 
(function surface) reflecting their images. OIO 
treats the surface of the function to be minimized 
or maximized as the reflecting mirror composed of 
peaks and valleys. Each valley is considered as a 
concave reflective surface and each peak is 
considered as a convex reflective surface [24]. 
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Distances and radius have been computed as in 
Equations (1) and (2). After computing these 
values, Equation (3) is applied to obtain 𝑞𝑞𝑗𝑗 ,𝑖𝑖𝑘𝑘𝑡𝑡 . 
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Table 2 
Meaning of variables and formulations 

Formulations and 
Variables 

Meaning 
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Position of artificial light point 
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search space in iteration t (the 
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Image position of the ALP j in 
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Sj,ik
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t  

 

Distance between the position 
of ALP j on the 
function/objective axis and the 
position of artificial mirror 
(AM) 

qj,ik
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Distance between the image 
position of the ALP j on the 
function/objective axis and the 
position of AM vertex on the 
function/objective axis at 
iteration t. 

rj,ik
t  Radius of curvature of the AM 

mik
t   

Position of the center of 
curvature on the 
function/objective axis 

HOj,ik
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Height of the ALP j from 
artificial principal axis in 
iteration t. 

HIj,ik
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Image height of the ALP j from 
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Kj,ik
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Value of lateral aberration 
relevant to the AM which is 
reflecting the image of the ALP 
j in iteration t. 

A new consequent image position (candidate 
solution) is calculated according to Equations 
(7) and (8): 
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where each valley represents the concave mirror and 
peek represents a convex mirror [23, 29].
The candidate solutions in OIO are represented by 
artificial light points (ALP). Their rays strike at the 
mirror and reflect back to form artificial images (new 
candidate solutions) with the help of artificial mirror 
(AM). The reflected surface can be convex or concave. 
The variables used in OIO equations are described in 
Table 2.
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whose mapping in Rn are candidate solutions for the 
interested problem) are assumed to be sitting in front 
of an artificial wavy mirror (function surface) reflect-
ing their images. OIO treats the surface of the func-
tion to be minimized or maximized as the reflecting 
mirror composed of peaks and valleys. Each valley is 
considered as a concave reflective surface and each 
peak is considered as a convex reflective surface [24].
Distances and radius have been computed as in Equa-
tions (1) and (2). After computing these values, Equa-
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Travelling Tournament Problem 
Travelling Tournament Problem (TTP) is one of the 
most popular scheduling problems in any sport. 
Where the team travels when traveling charts are 
created is an important issue. It is a problem that 
has arisen by imitating the traveling salesman 
problem [44, 20, 37]. 

There are professional leagues all over the world. 
They have great economic hedge because of the 
massive revenue generated by broadcast rights 
and ticket sales of popular matches. Therefore, the 
planning of these leagues is of great importance. 
Another important aspect is the creation of the 
time table for the tournament. During the season, 
which teams will match the other teams and the 
venues of the matches must be specified. 
Considering the distance between team numbers 
and locations, the time table of the Double Round 
Robin Tournament is used to reduce the total 
number of travel distances by teams [27, 12, 41]. 

The TTP is a problem of optimizing tournament 
schedule. Given N teams with N even, Double 
Round Robin Tournament is a game series in 
which every team plays every other team exactly 
once at home and once away. The game is 
designated as an ordered pair of competitors. 
2×(N-1) slots or time periods are required to play 
Double Round Robin Tournament. The distance 
between tool positions is given as N×N distance 
matrix. Each team starts in their own home and 
goes on a trip to play in selected locations. At the 
end of the program, each team will return to their 
home if necessary. Thus, the problem is to decide 
on the optimal plan and to make the average travel 
fee less. 

Input: N (Number of teams), D (N×N distance 
matrix) 

Output: Teams travel in the final tournament 
schedule with all restrictions and least total 
distance 

The problem can be formalized according to the 
following rules: 

1) N teams participate on the tour. 

2) Every team has its own stadium. 

3) Distances between stadiums are known. 

The following constraints should be taken 
into account: 

1) Each pair of teams (we can call them A and 
B) makes 2 matches. One of them is at A's and 
the other is at B's home. Thus, 2×(N-1) rounds 
are made and N/2 matches are performed in 
each round (N is the number of teams) 
(Double Round Robin restriction). 

2) No team will be able to compete successive 
four times in their home or away on the road 
(Successive restriction). 

3) For any pair of teams, for example, A and 
B, the match played at A's/B's home and the 
match played at B's/A's home cannot be on 
consecutive tours (non-repeating restriction). 
Thus, if the match is made at A's home this 
week, it cannot be done at B's home; matches 
should be played with other teams [44].  

Table 3 
The distance matrix for 6 × 6 TTP [11] 

 ATL NYM PHI MON  FLA PIT 
ATL 0 745 665 929 605 521 
NYM 745 0 80 337 1090 315 
PHI 665 80 0 380 1020 257 

MON 929 337 380 0 1380 408 
FLA 605 1090 1020 1380 0 1010 
PIT 521 315 257 408 1010 0 

ATL team will play against FLA (home), 
NYM (home), PIT (home), PHI (away), MON 
(away), PIT (away), PHI (home), MON 
(home), NYM (away), and FLA (away) based 
on the program in Table 4 [35]. Looking at the 
distance between the cities where the teams 
in Table 3 are located, it will be found how 
much the ATL team will move through the 
league [11]: 

dATL,PHI + dPHI,MON + dMON,PIT + dPIT,ATL + dATL,NYM + 
dNYM,FLA + dFLA,ATL = 665 + 380 + 408 + 521 + 745 + 
1090 + 605 = 4414 

The total distance in the league will be 
obtained by taking the sum of the distances 
according to the league program for each 
team. This total distance gives us the value of 
the objective function. As this distance 
decreases, the solution of the problem will 
also be considered as successful. Therefore, 
TTP is exactly the problem of minimizing the 
total distance in the league. The NL shown in 
Table 5 means national league and the N 
parameter indicates the number of teams. 

4. Travelling Tournament Problem
Travelling Tournament Problem (TTP) is one of 
the most popular scheduling problems in any sport. 
Where the team travels when traveling charts are 
created is an important issue. It is a problem that has 
arisen by imitating the traveling salesman problem 
[44, 20, 37].
There are professional leagues all over the world. 
They have great economic hedge because of the mas-
sive revenue generated by broadcast rights and ticket 
sales of popular matches. Therefore, the planning of 
these leagues is of great importance. Another import-
ant aspect is the creation of the time table for the tour-
nament. During the season, which teams will match 
the other teams and the venues of the matches must 
be specified. Considering the distance between team 
numbers and locations, the time table of the Double 
Round Robin Tournament is used to reduce the total 
number of travel distances by teams [27, 12, 41].
The TTP is a problem of optimizing tournament 
schedule. Given N teams with N even, Double Round 
Robin Tournament is a game series in which every 
team plays every other team exactly once at home and 
once away. The game is designated as an ordered pair 
of competitors. 2×(N-1) slots or time periods are re-
quired to play Double Round Robin Tournament. The 
distance between tool positions is given as N×N dis-
tance matrix. Each team starts in their own home and 
goes on a trip to play in selected locations. At the end 
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of the program, each team will return to their home if 
necessary. Thus, the problem is to decide on the opti-
mal plan and to make the average travel fee less.
Input: N (Number of teams), D (N×N distance matrix)
Output: Teams travel in the final tournament sched-
ule with all restrictions and least total distance
The problem can be formalized according to the fol-
lowing rules:
1 N teams participate on the tour.
2 Every team has its own stadium.
3 Distances between stadiums are known.
The following constraints should be taken into account:
1 Each pair of teams (we can call them A and B) 

makes 2 matches. One of them is at A’s and the oth-
er is at B’s home. Thus, 2×(N-1) rounds are made 
and N/2 matches are performed in each round (N 
is the number of teams) (Double Round Robin re-
striction).

2 No team will be able to compete successive four 
times in their home or away on the road (Succes-
sive restriction).

3 For any pair of teams, for example, A and B, the 
match played at A’s/B’s home and the match 
played at B’s/A’s home cannot be on consecutive 
tours (non-repeating restriction). Thus, if the 
match is made at A’s home this week, it cannot be 
done at B’s home; matches should be played with 
other teams [44]. 

Table 3
The distance matrix for 6 × 6 TTP [11]

ATL NYM PHI MON FLA PIT

ATL 0 745 665 929 605 521

NYM 745 0 80 337 1090 315

PHI 665 80 0 380 1020 257

MON 929 337 380 0 1380 408

FLA 605 1090 1020 1380 0 1010

PIT 521 315 257 408 1010 0

ATL team will play against FLA (home), NYM (home), 
PIT (home), PHI (away), MON (away), PIT (away), 
PHI (home), MON (home), NYM (away), and FLA 
(away) based on the program in Table 4 [35]. Looking 
at the distance between the cities where the teams in 
Table 3 are located, it will be found how much the ATL 
team will move through the league [11]:

dATL,PHI + dPHI,MON + dMON,PIT + dPIT,ATL + dATL,NYM + dNYM,FLA + 
dFLA,ATL = 665 + 380 + 408 + 521 + 745 + 1090 + 605 = 4414

The total distance in the league will be obtained 
by taking the sum of the distances according to the 
league program for each team. This total distance 
gives us the value of the objective function. As this 
distance decreases, the solution of the problem will 
also be considered as successful. Therefore, TTP is 
exactly the problem of minimizing the total distance 
in the league. The NL shown in Table 5 means nation-

Table 4
Sample league program for TTP (The @ sign represents a team playing away) [11]

Slot ATL NYM PHI MON FLA PIT

0 FLA @PIT @MON PHI @ATL NYM

1 NYM @ATL FLA @PIT @PHI MON

2 PIT @FLA MON @PHI NYM @ATL

3 @ PHI MON ATL @NYM PIT @FLA

4 @MON FLA @PIT ATL @NYM PHI

5 @PIT @PHI NYM FLA @MON ATL

6 PHI @MON @ATL NYM @PIT FLA

7 MON PIT @FLA @ATL PHI @NYM

8 @NYM ATL PIT @FLA MON @PHI

9 @FLA PHI @NYM PIT ATL @MON
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Table 5
Solution comparison of TTP with the existing algorithms (The best values are expressed in boldface) [11]

Work Method NL4 NL6 NL8 NL10 NL12 NL14 NL16

[16, 40, 
34, 16] Linear Programming 8276 23916 41113 312623

[7] A combination of constraint programming and 
lanrange relaxation 8276 23916 42517 68691 143655 301113 437273

[10] Tabu Search 8276 23916 40416 66037 125803 205894 308413

[30] Unknown (data from TTP Website) 8276 24073 39947 61608 119012 207075 293175

[43] “Greedy big step” Meta-Heuristic 39776 61679 117888 206274 281660

[31] Simulated Annealing and Hill-Climbing 8276 23916 39721 59821 115089 196363 274673

[30] Unknown (data from TTP Website) 59436 112298 190056 272902

[13] Ant Colony Optimization with Local 
Improvement 8276 23916 40797 67640 128909 238507 346530

[6] Simulated Annealing 8276 23916 39721 59583 111248 188728 263772

[18] Composite-Neighborhood Tabu Search 
Approach 59583 111483 190174 270063

[11] Ant Algorithm Hyper-Heuristic 8276 23916 40361 65168 123752 225169 321037

al league and the N parameter indicates the number of 
teams. NL8 shows that the league consists of 8 teams. 
Several algorithms have been searched for TTP and 
the test results obtained are shown in Table 5.

5. Solution of the Travelling 
Tournament Problem with Optics 
Inspired Optimization 
Assume that the number of teams is 8. By following 
the constraints defined in TTP, based on the distance 
matrix of the cities indicated in Table 6, the problem of 
minimizing the total movement of the teams through 
the league is achieved by OIO. League schedule for 
the first match is shown in Table 7. Table 9 shows the 
league fixture based on the weekly match schedule in 
Table 8. Twelve iterations are shown in Tables 10-21.

Table 6
Distances between stadiums (km)

Te
am

s

Teams

1 2 3 4 5 6 7 8

1 0 50 60 80 120 182 160 220

2 50 0 75 92 90 137 170 196

3 60 75 0 100 110 89 150 77

4 80 92 100 0 25 94 152 86

5 120 90 110 25 0 75 215 69

6 182 137 89 94 75 0 50 60

7 160 170 150 152 215 50 0 40

8 220 196 77 86 69 60 40 0
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Movement path for 1st team: Team 1 will play with 
team 7 (home), 6 (home), 5 (home), 7 (away), 6 (away), 
5 (away), 8 (home), 3 (home), 4 (away), 2 (away), 4 
(home), 2 (home), 8 (away), 3 (away) according to the 
league fixture shown in Table 9. 
Looking at the distances between the cities shown in 
Table 6, it can be found how far the 1st team will move 
through the league:

Table 7
League schedule for the first match based on the number 
of teams

1. Week

5 6 8 1 3 4 7 2

Table 8
Weekly league schedule showing the match of 8 teams for 
the first match

1. Week 

5  2  7  4  
6  8  1  3  

 

2. Week 
5 6 2 7 
8 1 3 4 

 

3. Week  
5  8  6  2  
1  3  4  7  

 

4. Week  
5 1 8 6 
3 4 7 2 

 

5. Week  
5  3  1  8  
4  7  2  6  

 

6. Week  
5  4 3 1 
7  2 6 8 

 

6. Week  
5 7 4 3 

2 6 8 1 
 

 

Table 9
League fixture

Week
At home At away

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Te
am

s

1 7 6 5 4 2 8 3 7 6 5 4 2 8 3

2 8 3 7 6 1 4 5 8 3 7 6 1 4 5

3 4 2 8 5 7 6 1 4 2 8 5 7 6 1

4 3 7 6 1 5 2 8 3 7 6 1 5 2 8

5 6 8 1 3 4 7 2 6 8 1 3 4 7 2

6 5 1 4 2 8 3 7 5 1 4 2 8 3 7

7 1 4 2 8 3 5 6 1 4 2 8 3 5 6

8 2 5 3 7 6 1 4 2 5 3 7 6 1 4

Table 10
Total distance the teams took in an iteration according to 
the first match

Total path taken by team 
1: 984
Total: 984

Total path taken by team 
2: 1169
Total: 2153

Total path taken by team 
3: 1271
Total: 3424

Total path taken by team 
4: 993
Total: 4417

Total path taken by team 
5: 1185
Total: 5602

Total path taken by team 
6: 1051
Total: 6653

Total path taken by team 
7: 1109
Total: 7762

Total path taken by team 
8: 1009
Total: 8771

Table 11
League schedule for the second match and the total 
distance the teams took in an iteration

2. Week

4 1 7 6 2 3 5 8

Total path taken by team  
1: 1003 
Total: 1003

Total path taken by team 
2: 938 
Total: 1941

Total path taken by team  
3: 895 
Total: 2836

Total path taken by team 
4: 831 
Total: 3667

Total path taken by team  
5 : 1010 
Total: 4677

Total path taken by team 
6: 952
Total: 5629

Total path taken by team  
7 : 1172 
Total: 6801

Total path taken by team 
8: 1094 
Total: 7895

d1,7 + d7,6 + d6,5 + d5,1 + d1,4 + d4,2 + d2,1+ d1,8 + d8,3+ d3,1 = 160 + 
50 + 75 + 120 + 80 + 92 + 50 + 220 + 77 + 60 = 984.

Similarly, for all other teams, the total mobility during 
the iteration is shown in Table 10. The league sched-
ule and the total distance the teams have taken based 
on the first match shown in Table 7 are similarly cal-
culated for the matches shown in Tables 11-21.
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Table 12
The league schedule for the third match and the total 
distance the teams took in an iteration

3. Week

3 4 5 1 8 6 7 2

Total path taken by team 
1: 1250
Total: 1250

Total path taken by team 
2: 892
Total: 2142

Total path taken by team 
3: 926
Total: 3068

Total path taken by team 
4: 921
Total: 3989

Total path taken by team 
5: 1080
Total: 5069

Total path taken by team  
6: 979
Total: 6048

Total path taken by team 
7: 1375
Total: 7423

Total path taken by team 
8: 1009
Total: 8432

Table 13
The league schedule for the fourth match and the total 
distance the teams took in an iteration

4. Week

4 3 6 1 8 7 5 2

Total path taken by team 
1: 1252
Total: 1252

Total path taken by team 
2: 955
Total: 2207

Total path taken by team 
3: 1047
Total: 3254

Total path taken by team 
4: 936
Total: 4190

Total path taken by team 
5: 979
Total: 5169

Total path taken by team 
6: 1041
Total: 6210

Total path taken by team 
7: 1118
Total: 7328

Total path taken by team 
8: 944
Total: 8272

Table 14
League schedule for the fifth match and the total distance 
the teams took in an iteration

5. Week

5 6 8 1 3 4 7 2

Total path taken by team 
1: 984
Total: 984

Total path taken by team 
2: 1169
Total: 2153

Total path taken by team 
3: 1271
Total: 3424

Total path taken by team 
4: 993
Total: 4417

Total path taken by team 
5: 1185
Total: 5602

Total path taken by team 
6: 1051
Total: 6653

Total path taken by team 
7: 1109
Total: 7762

Total path taken by team 
8: 1009
Total: 8771

Table 15
League schedule for the sixth match and the total distance 
the teams took in an iteration

6. Week

4 1 7 5 2 3 6 8

Total path taken by team 
1: 1064
Total: 1064

Total path taken by team 
2: 945
Total: 2009

Total path taken by team 
3: 956
Total: 2965

Total path taken by team 
4: 987
Total: 3952

Total path taken by team 
5: 1093
Total: 5045

Total path taken by team 
6: 1035
Total: 6080

Total path taken by team 
7: 1255
Total: 7335

Total path taken by team 
8: 1079
Total: 8414

The total distance (global minimum) of the teams in 
the 11th week was calculated as 7955 km, based on the 
results obtained in 1 iteration, i.e. 12 weeks, of the al-
gorithm. When the algorithm is run for 100 iterations, 
the total distance obtained is 7372 km.

Generally, performances of computational intel-
ligence optimization algorithms in terms of many 
metrics for a specific complex problem are compared 
within the same conditions. Due to the stochastic 
characteristics of the computational intelligence opti-
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Table 16
League schedule for the seventh match and the total 
distance the teams took in an iteration

7. Week

3 4 6 1 8 5 7 2

Total path taken by team 
1: 1194
Total: 1194

Total path taken by team 
2: 904
Total: 2098

Total path taken by team 
3: 1087
Total: 3185

Total path taken by team 
4: 906
Total: 4091

Total path taken by team 
5: 878
Total: 4969

Total path taken by team 
6: 1022
Total: 5991

Total path taken by team 
7: 1092
Total: 7083

Total path taken by team 
8: 1009
Total: 8092

Table 17
League schedule for the eighth match and the total distance 
the teams took in an iteration

8. Week

4 3 6 1 8 7 5 2

Total path taken by team 
1: 1252
Total: 1252

Total path taken by team 
2: 955
Total: 2207

Total path taken by team 
3: 1047
Total: 3254

Total path taken by team 
4: 936
Total: 4190

Total path taken by team 
5: 979
Total: 5169

Total path taken by team 
6: 1041
Total: 6210

Total path taken by team 
7: 1118
Total: 7328

Total path taken by team 
8: 944
Total: 8272

Table 18
League schedule for the ninth match and the total distance 
the teams took in an iteration

9. Week

4 6 8 1 3 5 7 2

Total path taken by team 
1: 1001
Total: 1001

Total path taken by team 
2: 1169
Total: 2170

Total path taken by team 
3: 1206
Total: 3376

Total path taken by team 
4: 1103
Total: 4479

Total path taken by team 
5: 965
Total: 5444

Total path taken by team 
6: 1051
Total: 6495

Total path taken by team 
7: 1103
Total: 7598

Total path taken by team 
8: 1024
Total: 8622

Table 19
The league schedule for the tenth match and the total 
distance the teams took in an iteration

10. Week

5 1 4 7 2 3 6 8

Total path taken by team 
1: 1300
Total: 1300

Total path taken by team 
2: 1012
Total: 2312

Total path taken by team 
3: 1192
Total: 3504

Total path taken by team 
4: 1095
Total: 4599

Total path taken by team 
5: 1046
Total: 5645

Total path taken by team 
6: 1037
Total: 6682

Total path taken by team 
7: 1248
Total: 7930

Total path taken by team 
8: 1051
Total: 8981

mization algorithms, the performance of the algorithm 
can be understood by interpreting the results after 
at least 30 runs. In this study, League Championship 
Algorithm (LCA) has been selected for performance 
comparisons. OIO and LCA were run 30 times for both 
1 (iteration, season) and 100 (iterations, seasons). For 
statistical analysis, t-test method has been performed.

In order to compare the performance of the OIO al-
gorithm with the LCA, the same iteration parameters 
have been used. LightPoint value is selected as 12 in 
OIO algorithm. In LCA, the number of teams (Team) 
is 4. LightPoint is set to this value because there will 
be a total of 12 matches during the season, as it is 4 
teams in the league and 3 weeks a season. N value 
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Table 20
The league schedule for the eleventh match and the total 
distance the teams took in an iteration

11. Week

3 6 5 1 8 4 7 2

Total path taken by team 
1: 990
Total: 990

Total path taken by team 
2: 1005
Total: 1995

Total path taken by team 
3: 1002
Total: 2997

Total path taken by team 
4: 717
Total: 3714

Total path taken by team 
5: 876
Total: 4590

Total path taken by team 
6: 775
Total: 5365

Total path taken by team 
7: 1115
Total: 6480

Total path taken by team 
8: 1066
Total: 7546

Table 21
The league schedule for the twelfth match and the total 
distance the teams took in an iteration

12. Week

4 3 5 1 8 7 6 2

Total path taken by team 
1: 1240
Total: 1240

Total path taken by team 
2: 955
Total: 2195

Total path taken by team 
3: 991
Total: 3186

Total path taken by team 
4: 1011
Total: 4197

Total path taken by team 
5: 1106
Total: 5303

Total path taken by team 
6: 1136
Total: 6439

Total path taken by team 
7: 1206
Total: 7645

Total path taken by team 
8: 966
Total: 8611

refers to the problem dimension and N was selected 
as 8 in both algorithms. In contrast to the number 
of seasons in LCA, the maximum iteration value in 
OIO algorithm is 100. LCA and OIO for 1 season or 
iteration and 100 seasons or iterations used in the 
total distance optimization in the TTP have been 
run and the performances of both optimization algo-
rithms on this problem have been measured. The to-
tal minimum distance obtained is shown in Table 22.  

Table 22
Comparison of OIO and LCA (km)

Number 
of Run

OIO (1 
iteration)

LCA (1 
season)

OIO (100 
iterations)

LCA (100 
seasons)

1 7955 8417 7372 7362

2 7897 8074 7409 7625

3 7886 8393 7415 7546

4 8024 8115 7480 7511

5 8288 8123 7406 7362

6 7682 8038 7429 7569

7 7597 8078 7394 7415

8 7704 8062 7459 7519

9 7730 7902 7362 7405

10 8169 7744 7385 7530

11 7985 7575 7516 7495

12 8042 8024 7478 7453

13 7716 7777 7505 7362

14 7937 7980 7338 7512

15 7966 8496 7295 7511

16 7581 8237 7449 7400

17 8040 8274 7530 7563

18 7858 8130 7496 7554

19 8177 8649 7394 7575

20 7973 8310 7540 7600

21 7849 7845 7453 7347

22 7516 7861 7386 7295

23 7850 7793 7400 7340

24 7933 7945 7340 7338

25 7878 8019 7482 7347

26 7507 7809 7358 7470

27 7842 7876 7491 7539

28 8036 8152 7360 7372

29 7794 8373 7603 7629

30 7899 7693 7347 7519
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The t-test results obtained by running LCA and OIO 
algorithms for 1 season or iteration are shown in Ta-
ble 23, and the t-test results obtained by running 100 
seasons or iterations are shown in Table 24.

Table 23
t-test results obtained by 1 season-iteration operation of 
LCA and OIO algorithm

  LCA OIO 

Mean 8058.8 7877.033333

Variance 65023.06207 36074.65402

Observations 30 30

Hypothesized Mean 0

t Stat 3.59930922

P(T<=t) one-tail 0.000586497

t Critical one-tail 1.699127027

P(T<=t) two-tail 0.001172994

t Critical two-tail 2.045229642  

In the t-test; 
H0: It is argued that there is no difference between the 
means.
Ha: It is argued that there is a meaningful difference 
between the means.

Table 24
t-test results obtained by 100 season-iteration operations 
of LCA and OIO algorithm

  LCA OIO 

Mean 7482.233333 7429.066667

Variance 16078.25402 5199.512644

Observations 30 30

Hypothesized Mean 0

t Stat 2.170686074

P(T<=t) one-tail 0.019141499

t Critical one-tail 1.699127027

P(T<=t) two-tail 0.038282999

t Critical two-tail 2.045229642  

P: Probability value
Observations: Number of experiments
t Stat: t statistic value
Pearson Correlation: The correlation coefficient be-
tween LCA and OIO samples
t Critical one-tail: Single-sided t critical value
t Critical two-tail: Double-sided t critical value
alfa: Significant level
In the t-test, there are two hypotheses, H0 and Ha. 
When the P value is less than 0.05, the H0 hypothesis 
is rejected and Ha is accepted. When the P value is 
greater than or equal to 0.05, the H0 hypothesis is ac-
cepted and Ha is rejected. H0 hypothesis will be “The 
convergence value of OIO to global minimum is not 
lower than the convergence value of LCA to global 
minimum, there is no difference between the mean 
values of the obtained minimum values”. Ha hypothe-
sis will be “The convergence value of OIO to the global 
minimum is lower than the convergence value of LCA 
to global minimum, meaning there is a significant dif-
ference between the means”.
According to the P values shown in Table 27, it is seen 
that single-ended 0.0005 and double-ended 0.001, 
both values being less than 0.05. The H0 hypothesis 
is rejected and Ha is accepted. OIO algorithm has 
shown better results than LCA for 1 season-itera-
tion. According to t-test results, OIO’s success has 
been found to be statistically better than LCA in 30 
experiments. According to the P values shown in 
Table 28, it is seen that single-ended 0.01 and dou-
ble-ended 0.03, both values being less than 0.05. The 
H0 hypothesis is rejected and Ha is accepted. OIO al-
gorithm has shown better results than LCA for 100 
season-iteration. According to t-test results, OIO’s 
success has been found to be statistically better than 
LCA in 30 experiments.
Another experiment has been performed within real 
dataset NL8 obtained from [30] as shown in Table 25. 
The same parameters have been selected as used in 
synthetic dataset. Two algorithms have been execut-
ed 30 times. The obtained distances are listed in Table 
26. OIO seems to perform better than LCA, however, 
the differences between mean values are not statis-
tically important as evidenced by the t-test results 
shown in Table 27.
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Table 25
Distances between stadiums (km)

Te
am

s

Teams

1 2 3 4 5 6 7 8

1 0 745 665 929 605 521 370 587

2 745 0 80 337 1090 315 567 712

3 665 80 0 380 1020 257 501 664

4 929 337 380 0 1380 408 622 646

5 605 1090 1020 1380 0 1010 957 1190

6 521 315 257 408 1010 0 253 410

7 370 567 501 622 957 253 0 250

8 587 712 664 646 1190 410 250 0

Table 26
Comparison of LCA and OIO algorithms within NL8 dataset

Number of 
Run OIO (100 iterations) LCA (100 seasons) Number of Run OIO (100 iterations) LCA (100 seasons)

1 45242 45357 16 45815 45460

2 45752 45242 17 45376 46452

3 45452 45242 18 45374 45242

4 45438 45399 19 45438 45564

5 45433 45815 20 45706 45452

6 45821 45242 21 45492 46009

7 45460 46002 22 45433 45242

8 45357 45677 23 45242 45857

9 45438 45357 24 45242 46002

10 45357 45752 25 45242 45522

11 45997 45633 26 45357 46673

12 45242 45564 27 45564 45564

13 45581 46275 28 45438 45433

14 45941 46002 29 45564 45242

15 45857 45492 30 45581 45374

Mean 45507.73 45637.97
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Table 27
t-test results of LCA and OIO within real NL8 dataset

  LCA OIO 

Mean 45507.73333 45637.96667

Variance 46565.71954 143230.723

Observations 30 30

Hypothesized Mean 0

t Stat -1.530079783

P(T<=t) one-tail 0.068416633

t Critical one-tail 1.699127027

P(T<=t) two-tail 0.136833266

t Critical two-tail 2.045229642  

6. Conclusions
Problems encountered in sports sciences such as 
traveling tournament problem, referee appoint-
ment problem, tournament planning, qualification 
and elimination problems, minimization of moving 
problems are difficult to be efficiently solved. Nov-
el and computationally efficient methods should be 
searched for these search and optimization problems. 
OIO is one of the most recent physics-based algorithm 
that can be effectively used to solve such problems.
In this study, LCA and OIO were used for the first 
time to solve the Traveling Tournament Problem for 

which the total movement of the teams of the games 
has been aimed to be minimized considering the con-
straints. The results obtained from OIO are compared 
with the results obtained from LCA which is one of 
the most recent artificial intelligence based optimiza-
tion algorithms.
In the formed artificial league, the total movement of 
all the teams obtained from OIO in the 1st season was 
8417 km. When the algorithm’s season number is set 
to 100, the total mobility has decreased to 7362  km. 
Similarly, the total movement of all the teams ob-
tained from LCA in the 1st iteration was 7955 km. 
When the algorithm’s iteration number is set to 100, 
the total mobility has decreased to 7372 km. These 
two new algorithms have been also used for a real 
dataset and OIO seems to perform better than LCA. 
Although OIO is very new, the obtained results are 
promising and OIO seems to be an alternative meth-
od for the complex search and optimization problems 
for which mathematical model cannot be created or 
takes too long for computing even if it is created. Dis-
tributed and parallel versions of OIO and LCA with 
optimized parameters can be proposed for many dif-
ferent complex problems. 
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