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This paper is a theoretical and practical study on the stabilization of fractional order Lipschitz nonlinear sys-
tems under arbitrary switching. The investigated system is a generalization of both switched and fractional 
order dynamical systems. Firstly, a switched frequency distributed model is introduced as an equivalent for 
the system. Subsequently, a sufficient condition is obtained for the stabilizability of the system based on the 
Lyapunov approach. Finally, the results are extended to synthesis mode-dependent state feedback controller 
for the system. All the results are expressed in terms of coupled linear matrix inequalities, which are solvable 
by optimization tools and directly reducible to the conditions of the integer order nonlinear switching systems 
as well as the conventional non-switched nonlinear fractional order systems. The proposed method has various 
practical implications. As an example, it is utilized to control Francis hydro-turbine governing system. This 
system is represented as a switching structure and supposed to supply a load suffering abrupt changes driven 
by an arbitrary switching mechanism. The simulation results support the usefulness of the method.
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1. Introduction
Switching systems are a class of hybrid systems that 
has attracted increasing attentions during the past 
decades. Various practical structures such as me-
chanical systems, power systems, networked con-
trolled systems and multi agent systems could be 
described by switching dynamical systems [27]. This 
is due to the nature of switching systems in express-
ing the interactions between the continuous variable 
dynamics and the discrete events through multiple 
subsystems governed by a switching mechanism. 
These systems help to model the structural variations 
induced by external or internal discrete events such 
as failures, environmental factors, and configuration 
conversions [37, 38]. 
The stability, stabilization and control of switched 
systems are fundamental and interested research 
problems since they cannot be directly deduced from 
the specifications of each individual subsystem. A 
wide range of constructive researches is now available 
on the stability [19, 38, 41], stabilization and control 
[16-18], estimation and filtering [14, 47] of switched 
systems. In this area, the problems of nonlinear 
switched systems constitute a more significant focus 
since most real systems are essentially nonlinear but 
complex and hardly handled. Problems of nonlinear 
switched systems are addressed in [33, 38, 45, 49] and 
the references therein. Typically, the approach adopt-
ed to analyse these systems is utilizing the theories 
developed for nonlinear differential equations as well 
as the Lyapunov stability theory.
In all of the previous studies dedicated to the switched 
dynamical systems, the subsystems are supposed to 
be represented by the conventional integer order dif-
ferential equations. It is already known that fractional 
calculus, as a generalization to the classical integer or-
der calculus, provides a much better understanding of 
the realistic applications such as in electronic circuits 
[1, 21], electrical machines [35] and chemical systems 
[20]. Fundamentals of fractional order systems (FOSs) 
are pretty well established by now [4, 8, 31]. Various 
subtle results on the stability problems are discussed 
in [10, 26, 39]. Controllers are designed in [23, 24, 29] 
and observer-based designs are proposed in [2, 11]. 
Further reviews are also reported in [31, 25]. 
An increased number of applications of FOSs in 
various areas of science and technology as well as 

the potentials of switching systems to model struc-
ture-varying systems necessitates the analysis of 
fractional order switching systems (FOSSs). There 
exist only few studies dedicated to FOSSs. Basic sta-
bility notions of FOSS are studied in [22, 46]. Stabili-
zation and control problems of linear FOSSs are men-
tioned in [3, 5, 6, 29]. Also, special classes of fractional 
order positive switched systems and fractional order 
impulsive switched system are studied in [28, 48] and 
[13, 44, 48], respectively. 
Despite the recent developments on switching sys-
tems and FOSs, the control problems of fractional or-
der switched dynamical structures have not received 
enough attention. These systems have different fea-
tures compared with ordinary integer order systems 
and studying their problems is more challenging than 
both integer order and switched systems. According-
ly, the contribution of this paper is to investigate the 
stabilizability and stabilization of such systems. 
The main contribution of this paper is to study the 
stabilizability and controller design of a class of non-
linear continuous-time dynamical systems under ar-
bitrary switching. The system under consideration 
is supposed to include a linear nominal part with an 
unknown nonlinearity of Lipschitz type. This class is 
interested since it can describe real physical systems 
more precise and direct than the conventional linear, 
non-switched or integer order systems. The problem 
is solved through introducing an equivalent switched 
frequency distributed model for the system. Based on 
the equivalent model, the stabilizability of the sys-
tem is investigated based on the stability definitions 
of switched systems and fractional order systems. 
The result is the stabilizability condition obtained 
by the Lyapunov approach, as well as the stabilizing 
controller gains designed in terms of linear matrix in-
equalities (LMIs). The results obtained for FOSSs in 
this paper are reducible to the linear fractional order 
switching systems, the integer order switching sys-
tems and the conventional fractional order systems 
reported in the previous studies. As an example, the 
method is tested on Francis hydro-turbine governing 
power system with fractional order dynamics subject 
to nonlinearities and time-varying load profile which 
is modelled by a switched structure. The results sup-
port the usefulness of the method.
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The remainder of the paper is organized as follows: in 
Section 2, the dynamical specifications of the FOSSs 
are formulated and some preliminaries are recalled 
for both switching and fractional order systems. In 
Section 3, a stabilizability condition is derived and 
the controller is synthesized. In Section 4, the theo-
retical results are tested on the practical system. Fi-
nally, concluding remarks and possible future study 
directions are mentioned in Section 5. 

2. Preliminaries and Problem 
Formulation
The fractional order nonlinear switched system 
(FONSS) is described as follows:

 
 

An increased number of applications of FOSs in various areas of science and technology as well as the potentials 
of switching systems to model structure-varying systems necessitates the analysis of fractional order switching systems 
(FOSSs). There exist only few studies dedicated to FOSSs. Basic stability notions of FOSS are studied in [22, 46]. 
Stabilization and control problems of linear FOSSs are mentioned in [3, 5, 6, 29]. Also, special classes of fractional order 
positive switched systems and fractional order impulsive switched system are studied in [28, 48] and [13, 44, 48], 
respectively.  

Despite the recent developments on switching systems and FOSs, the control problems of fractional order switched 
dynamical structures have not received enough attention. These systems have different features compared with ordinary 
integer order systems and studying their problems is more challenging than both integer order and switched systems. 
Accordingly, the contribution of this paper is to investigate the stabilizability and stabilization of such systems.  

The main contribution of this paper is to study the stabilizability and controller design of a class of nonlinear 
continuous-time dynamical systems under arbitrary switching. The system under consideration is supposed to include a 
linear nominal part with an unknown nonlinearity of Lipschitz type. This class is interested since it can describe real 
physical systems more precise and direct than the conventional linear, non-switched or integer order systems. The problem 
is solved through introducing an equivalent switched frequency distributed model for the system. Based on the equivalent 
model, the stabilizability of the system is investigated based on the stability definitions of switched systems and fractional 
order systems. The result is the stabilizability condition obtained by the Lyapunov approach, as well as the stabilizing 
controller gains designed in terms of linear matrix inequalities (LMIs). The results obtained for FOSSs in this paper are 
reducible to the linear fractional order switching systems, the integer order switching systems and the conventional 
fractional order systems reported in the previous studies. As an example, the method is tested on Francis hydro-turbine 
governing power system with fractional order dynamics subject to nonlinearities and time-varying load profile which is 
modelled by a switched structure. The results support the usefulness of the method. 

The remainder of the paper is organized as follows: in Section 2, the dynamical specifications of the FOSSs are 
formulated and some preliminaries are recalled for both switching and fractional order systems. In Section 3, a 
stabilizability condition is derived and the controller is synthesized. In Section 4, the theoretical results are tested on the 
practical system. Finally, concluding remarks and possible future study directions are mentioned in Section 5.  

2. Preliminaries and Problem Formulation 

The fractional order nonlinear switched system (FONSS) is described as follows: 

0 0 00
( ) ,

( ) ( ( ), ( ), )

( ) ( ) ( ( ), ) ( ) ( ),
t

t

t

t t

D x t x t u t r

A r x t f x t r B r u t

x t x r r

α

= =

=

= + +









 )1( 

where x(t) n∈  is the state vector of the system, u(t) m∈  is the input vector of the system. {rt, t ≥ 0} is a continuous-time 
switching mechanism [15] taking values in the finite set N {1, 2,..., },N= where the set N contains the modes of the system 
and N is their number. The switching mechanism is of arbitrary type with no specific limitations or constraints.  

f(x(t), rt) is a nonlinear dynamic related to x(t) and rt. A(rt) is the mode-dependent system matrix with compatible 
dimensions representing the nominal part of the system and B(rt) is a mode dependent system gain on the input u(t). Also, 
x0 is the initial state vector and r0 represents the initial mode. 

 Dα denotes the fractional order operator representing both differential and integral operations. This operator is 
expressed by (2) according to the Caputo fractional derivative of the αth (α > 0) order [9], 
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Lemma 3: [42] Let Y be a symmetric matrix, H and E 
be given matrices with the appropriate dimensions. 
For F(t) satisfying F(t)TF(t) ≤ I, the inequality (9) 
holds

 0T T THFE E F H+ < (9)

if and only if there exists an ε > 0 such that

1  ε    ε .T T T T THFE E F H HH E E    (10)

Definition 1: (Common Lyapunov Function) [38]. A 
function V(x(t)) is said to be a common (strong) Lya-
punov function for the conventional switching sys-
tem ( )x t  = g(x(t), rt) if:

1 It is continuous everywhere and continuously dif-
ferentiable except possibly at the origin. 

2 It admits class K∞ bounds, i.e. there are class K∞ 
functions of β1 and β2 such that, β1(|x(t)|) ≤ V(x(t)) 
≤ β2(|x(t)|).

3 There is a class K function β3 such that ( ( ))V x t ≤  
- β3(|x(t)|).

Proposition 1: (Stability) [38]. The switched system
( )x t  = g(x(t),rt) is uniformly asymptotically stable if it 

admits a common Lyapunov function.
By introducing the FONSSs as a generalization of 
both switching and fractional order nonlinear sys-
tems, now, the stabilizability and stabilization prob-
lems can be addressed. 

3. Main Results
In this section, the stabilization problem of nonlinear 
fractional order switched dynamical system is inves-
tigated. To this end, first, the continuous mode-de-
pendent frequency distributed model is obtained for 

the system. Subsequently, Lyapunov approach is uti-
lized to give the condition. All the results are reported 
in the LMI form and can be checked easily. 
Consider the state feedback controller of the follow-
ing form:

( ) ( ),( ) tK r x tu t = (11)

where K(rt) is the mode dependent gain to be de-
signed. 

Applying the controller gains of (11) to the system of 
(1) yields the closed-loop system as (12),
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By using the Lyapunov approach, first the sufficient 
condition for stability of the closed-loop dynamic sys-
tem is obtained.
Theorem: The FONSS of (1) with the commensurate 
order α, 0 < α < 1 is stabilizable with the controller 
gains (11) if, there are symmetric, positive definite 
matrix X, matrices Yi together with the real scalars  
εi > 0 and γi > 0 such that the following set of LMIs hold:
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Then, the controller gains are obtained as Ki = YiX-1. 
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Based on the continuous frequency distributed system (16), consider the two Lyapunov functions: v(ω, t) as the 
Lyapunov function corresponding to the elementary frequency ω and V(t) defined by (17) as the Lyapunov function 
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The first item in the right-hand side of (21) is less than zero, therefore the inequality (22) holds 
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Subsequently, if the inequality (23) holds for Ni  , )23( 
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v(ω, t) as the Lyapunov function corresponding to the 
elementary frequency ω and V(t) defined by (17) as 
the Lyapunov function summing all the v(ω, t) with 
the weighting function μ(ω). Here, P denounces a 
symmetric and positive definite matrix.
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The derivative of the Lyapunov function along the 
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Subsequently, if the inequality (23) holds for Ni∀ ∈ , )23( 
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The first item in the right-hand side of (21) is less than 
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Subsequently, if the inequality (23) holds for Ni∀ ∈ ,
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one has ( ( )) 0.V Z t < Substituting (13) in (23) leads to 
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Remarkably, (24) can be rewritten as (25) utilizing 
the following inequality obtained by Lemma 3 
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Utilizing (25), the inequality of (24) turns to (26):
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which is equivalent to (27) due to its symmetric form:
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0.

T
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+ + + <+ +  (27)

Considering the quadratic and bounded Lyapunov 
function of (17) along with its negative definite form 
guaranteed by (27), the closed-loop system of (12) is 
stabilizable according to Definition 1 and Proposi-
tion 1. 
Notably, the condition of (27) is nonlinear in P and 
Ki. To find the controller gains, it is desired to trans-
form (27) into an LMI form, so let X = P-1. Pre- and 
post-multiplying (27) by X yields (28).
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Define Yi = KiX. Therefore, (27) changes to (29):

2 21 0,i
T T T
i i i i i i i iXA Y BXA BY I X−+ + <+ + +ε ε γ (29)

Using Lemma 2 makes it possible to write (29) in the 
form of (14) and (15). Finally, the state feedback gains 
are derived as Ki = YiX-1, which ends the proof. 
The flowchart of the proposed method is shown in 
Figure 1.

Figure 1 
The flowchart of the proposed method
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Remark 3: The stability criterion obtained for the 
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The fractional order Francis hydro-turbine governing system is composed of a hydro-turbine and penstock system, 
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supply a load that suffers abrupt changes driven by an arbitrary switching mechanism. 
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The basic physical model of the hydro power penstock system is shown in Figure 2. 

 

The dynamic characteristic of the synchronous generator is given by: 
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where δ(t) is the rotor angle, ω(t) is the variation of the generator speed and ω0 is the rated angular speed of the generator. 
Additionally, D is the damping factor of the generator and it is generally regarded as a constant. mt(t) is the output torque 
of the hydro turbine while me(t) denotes the torque of the electrical load. Ta is the inertia time constant of the generator and 
Tb denotes the inertia time constant of the load.  

If the influence of the rotor on the torque is added to the damping factor, the torque of the electric load and the 
terminal active power are equal to each other, i.e. 

( ) ( ),e eP mt t=  )31( 

The electromagnetic power of the generator can be described as (32) 
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where qE ′ is the transient internal voltage of the armature, Vs is the voltage of bus at infinity, dx′ and qx are the direct axis 
and quartered transient reactances, respectively.  
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where δ(t) is the rotor angle, ω(t) is the variation of 
the generator speed and ω0 is the rated angular speed 
of the generator. Additionally, D is the damping factor 
of the generator and it is generally regarded as a con-
stant. mt(t) is the output torque of the hydro turbine 
while me(t) denotes the torque of the electrical load. 
Ta is the inertia time constant of the generator and Tb 
denotes the inertia time constant of the load. 
If the influence of the rotor on the torque is added to 
the damping factor, the torque of the electric load and 
the terminal active power are equal to each other, i.e.
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where 
qE ′  

is the transient internal voltage of the ar-
mature, Vs is the voltage of bus at infinity, dx′  and qx
are the direct axis and quartered transient reactanc-
es, respectively. 
Dynamic characteristic of a hydraulic servo system is 
given as (33) according to the fractional calculus
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where y(t) is the incremental deviation of the guide 
vane opening and Ty is the major relay connector re-
sponse time. Here, u(t) is the output signal of the gov-
erning system, which is the input voltage for the elec-
tric-hydraulic servo system. 
The output torque of the turbine governing system is 
obtained as 
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In (34), eqh is the transfer coefficient of turbine flow 
on the head, Tω is the water inertia time constant of 
the penstock system, ey is the transfer coefficient of 
turbine torque flow on the servo motor stroke, e is de-
fined as e = eqh eh/ey – eqh, and eh is the transfer coeffi-
cient of turbine torque on the water head.

It is supposed that the system load is varying accord-
ing to an arbitrary switching mechanism. 
The load is assumed to be characterized by two distin-
guished inertia time constants characterized by Tb(rt):
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where Tb1 refers to load with large time constant while 
Tb2 specifies a load with small time constant.
The block diagram of the proposed control system 
is depicted in Figure 3. The system is composed of a 
switching controller whose modes change according 
to the same switching mechanism that orchestrates 
the loads.
Considering the Equations (30) to (35), the mathe-
matical switching model of the hydro-turbine gover-
nor system is obtained as (36) where the fractional 
order is α = 0.98: 
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To proceed further, the parameters of system (35) are selected as shown in Table 1. Remarkably, the state variables 
as well as the parameters are in p.u. while the time constants are in seconds.  

Table 1 Parameter values of the HGS system 
Parameter Value Parameter Value 

    
D 2 ω0 300 
Tω 0.8 Ty 0.1 
Ta 10 Tb1 9 
Tb2 0.6 Vs 1 
xq 1.474 xq’ 1.25 
e 0.7 eqh 0.5 
ey 1 - - 

Defining the state variables of the HGS as 1 2 3 4( ), ( ) ( ), ( ) ( ), ( ) ( )( ) tt t t t m t t tx t x x x yδ ω= = = = and replacing the parameter 
values, reveals the final form of the system model as (37) 
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Accordingly, the system matrices in the form of (1) are obtained as (38): 
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where Tb1 refers to load with large time constant while Tb2 specifies a load with small time constant. 

The block diagram of the proposed control system is depicted in Figure 3. The system is composed of a switching 
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To proceed further, the parameters of system (35) are 
selected as shown in Table 1. Remarkably, the state 
variables as well as the parameters are in p.u. while 
the time constants are in seconds. 

Table 1 
Parameter values of the HGS system

Parameter Value Parameter Value

D 2 ω0 300

Tω 0.8 Ty 0.1

Ta 10 Tb1 9

Tb2 0.6 Vs 1

xq 1.474 xq’ 1.25

e 0.7 eqh 0.5

ey 1 - -

4.2. Simulation Results of the Switched 
Nonlinear Francis hydro-Turbine Governing 
System
Uncontrolled states of the fractional order HGS un-
der two different arbitrary switching signals shown 
by Figure 4 are illustrated in Figure 5. As the figure 
shows, the uncontrolled system is unstable.

Figure 4 
Two sample arbitrary switching signals (SW1, SW2)

Figure 5 
Uncontrolled states of HGS under two arbitrary switching 
signals (SW1, SW2)
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Accordingly, the system matrices in the form of (1) are 
obtained as (38):
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4.2. Simulation Results of the Switched Nonlinear Francis hydro-Turbine Governing System 

Uncontrolled states of the fractional order HGS under two different arbitrary switching signals shown by Figure 4 are 
illustrated in Figure 5. As the figure shows, the uncontrolled system is unstable. 

Solving the LMIs of Theorem provides the matrices and controller gains as (39). The parameters are selected as γ1 = 
γ2 = 10e-10, ɛ1 = ɛ1 = 10e-7. 

The resultant control outputs of the HGS appear in Figure 6. The controlled states of the HGS are shown in Figure 7. 
Clearly, the states are stabilized properly. 
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Figure 6
Controller outputs under two arbitrary switching signals

Figure 7 
Controlled states of HGS under two arbitrary switching 
signals (SW)

Solving the LMIs of Theorem provides the matrices 
and controller gains as (39). The parameters are se-
lected as γ1 = γ2 = 10e-10, ɛ1 = ɛ1 = 10e-7.
The resultant control outputs of the HGS appear in 
Figure 6. The controlled states of the HGS are shown 
in Figure 7. Clearly, the states are stabilized properly.

Figure 8 
Statistics of the settling time of the controlled states for 
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To further investigate the proposed theorem, the sim-
ulations are conducted fot 100 different switching 
signals. The statistics of the settling time and its ap-
proximated distribution are summarized in Figure 8. 
The figure shows that the convergence time has a nor-
mal distribution with mean value of 1.2217 seconds 
and the deviation of 0.2174 seconds.

Remarkably, a drawback of the proposed method is 
that the conditions depend on a number of parame-
ters ε and γ that must be suitably tuned. The param-
eter ε rises due to Lemma 3 used for dealing with the 
system nonlinearity. According to [42], this lemma 
holds for any ε > 0. Although this parameter could take 
any values, it is preferred to be selected properly. The 
reason is that this parameter determines the robust-
ness degree of the system and improper values may 
increase conservativeness and even lead to infeasible 
LMI sets. 
To investigate the effect of ε on the responses, the con-
trolled system states and control signals are depicted 
in Figures 9-10 under the switching of Figure 11. 
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Similarly, the parameter of γ appears as a result of As-
sumption 2, it is a positive value that fulfils the Lip-
schitz condition. The effect of this parameter is also 
simulated in Figures 12-14.
As the figures show, smaller values of both parameters 
ε and γ lead to faster and less conservative responses. 
At the same time, they provide more aggressive and 
larger controller outputs. Since the variations of the 
controller output and the conservativeness of the re-
sponses are conflicted specifications, proper selec-
tion of both parameters is required.
There exist two approaches for dealing with the pa-
rameters ε and γ. The first approach is to select them 
a priori to afford a prescribed degree of robustness. 
This approach is extensively used in the control-
ler design problems [44] and is also preferred in the 
current study. The main advantage of this approach 
is providing the conditions of a fair comparison be-
tween the multiple results. The second approach is to 
optimize those parameters which is addressed in [34]. 
It is worth mentioning that, for analysis, the param-
eters of ε and γ are selected the same for both modes 
without loss of generalization. Additionally, to pro-
vide a fair comparison between the results of distinct 
values of ε and γ, for the former γ is uniformly selected 
as γ = 10e-9, while for the latter ε is uniformly selected 
as ɛ = 10e-8 for both modes.

Figure 9 
The effect of the parameter ε on the controlled states of HGS

Figure 10
The effect of ε on the control signal variation

Figure 11 
Sample arbitrary switching signals for ε analysis for the 
load variation
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Figure 12 
Sample arbitrary switching signals for γ analysis for the 
load variation

Figure 13 
The effect of γ on the control signal variation

Figure 14 
The effect of the parameter γ on the controlled states of HGS
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5. Conclusions
In this paper, the stabilizability problem of nonlinear 
fractional order systems under arbitrary switching is 
addressed. The analysis is started by means of a fre-
quency distributed mode-dependent equivalent mod-
el for the system. Subsequently, a condition guaran-
teeing the existence and the synthesis of multi-mode 
feedback stabilizing controller in LMI formulation is 
given. The computed controller law ensures the sta-
bilization of the system under the nonlinear pertur-
bations and the dynamical variations induced by the 

switching. The obtained theorem is a general form 
of the results previously reported for non-switched 
fractional order systems as well as the ordinary in-
teger order switched systems. The proposed analysis 
and synthesis method is successfully tested on a hy-
dro-turbine governing system modelled as a switch-
ing structure. Remarkably, further studies are re-
quired on the nonlinear fractional order dynamical 
systems under constrained switching mechanisms 
and their applications.
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