
471Information Technology and Control 2018/3/47

Variable Neighborhood
Search Methods for
the Dynamic Minimum
Cost Hybrid Berth
Allocation Problem

ITC 3/47
Journal of Information Technology
and Control
Vol. 47 / No. 3 / 2018
pp. 471-488
DOI 10.5755/j01.itc.47.3.20420
© Kaunas University of Technology

Variable Neighborhood Search Methods for the Dynamic
Minimum Cost Hybrid Berth Allocation Problem

Received 2018/03/24 Accepted after revision 2018/08/16

 http://dx.doi.org/10.5755/j01.itc.47.3.20420

Corresponding author: knatasa@ac.me

Nataša Kovač
Faculty of Applied Sciences, University of Donja Gorica, Donja Gorica, 81000 Podgorica, Montenegro, knatasa@ac.me

Tatjana Davidović
Mathematical Institute of the Serbian Academy of Science and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia
tanjad@turing.mi.sanu.ac.rs

Zorica Stanimirović
Faculty of Mathematics, University of Belgrade, Studentski trg. 16/IV, 11 000 Belgrade, Serbia, zoricast@matf.bg.ac.rs

This study considers the Dynamic Minimum Cost Hybrid Berth Allocation Problem (DMCHBAP) with fixed
handling times of vessels. The objective function to be minimized consists of three components: the costs
of positioning, waiting, and tardiness of completion for all vessels. Having in mind that the speed of finding
high-quality solutions is of crucial importance for designing an efficient and reliable decision support system
in container terminal, metaheuristic methods represent the natural choice to deal with DMCHBAP. Four vari-
ants of Variable Neighborhood Search (VNS) metaheuristic are designed for DMCHBAP. All four proposed
VNS methods are evaluated on four classes of randomly generated instances with respect to solution quality
and running times. The conducted computational analysis indicates that all four VNS-based methods repre-
sent promising solution approaches to DMCHBAP and similar problems in maritime transportation.
KEYWORDS: container terminal, scheduling vessels, penalties, metaheuristics, variable neighborhood search.

Information Technology and Control 2018/3/47472

1. Introduction
Berth Allocation Problem (BAP) is one of the most
studied topics in the optimization of maritime trans-
portation. BAP assumes that a set of vessels needs to
be allocated to the berths within some planning hori-
zon in such a way that some objective function is opti-
mized. BAP is proved to be NP-hard in [32]. The most
detailed classification scheme for BAPs is proposed in
[2] and extended in [3]. The classification is based on
four attributes: spatial, temporal, handling time and
performance measure.
Spatial attribute classifies BAPs as discrete, continu-
ous, hybrid, or draft. In the discrete case (DBAP), each
vessel may be allocated only to one berth at a time,
while in the continuous case, a vessel can be allocated
to any position on quay. Hybrid layout (HBAP) is ob-
tained if vessels can share one berth or one vessel can
occupy more than one berth. The fourth BAP layout
describes vessel’s berthing position based on its draft.
The most common BAP models with respect to the
temporal attribute are static and dynamic. In the stat-
ic model, arrival times impose soft constraints on the
berthing times, meaning that a vessel can be speeded
up or slowed down. The dynamic model assumes fixed
arrival times of the vessels, meaning that they cannot
berth before the expected arrival time. According to
the handling time attribute, BAP can assume fixed or
variable handling times. Handling times may vary de-
pending on the berthing position, on the assignment
of Quay Cranes (QCs), or on a QC operation schedule.
The performance measure attribute describes the ob-
jective function of a considered BAP. Detailed surveys
of BAP variants can be found in [3] and [44].
This paper considers a variant of dynamic BAP, de-
noted by Dynamic Minimum Cost Hybrid Berth Al-
location Problem (DMCHBAP) and classified as

1 2 3| | | (),hybr dyn fix w pos w wait w tard+ +∑ according
to the notation from [2]. Hybrid layout studied in this
paper, corresponds to the case shown in Fig. 3d from
[2]. The objective function is based on the one proposed
in [40] and it is adapted to the dynamic BAP. The objec-
tive function is a weighted sum of three components:
berthing of a vessel apart from its preferred berthing
position, waiting of a vessel with respect to the expect-
ed arrival time, and tardiness of a vessel against its due
date. This form of objective function reflects the real
requirements in majority of ports [16, 39, 40, 48].

Terminal manager needs a fast and efficient decision
support system, in order to meet all requirements of
the port as a highly dynamic system. The necessity of
quickly providing high-quality solution for BAP was a
motivation for many authors to apply metaheuristic
methods, such as: simulated annealing, tabu search,
ant colony optimization, particle swarm optimiza-
tion, etc. [25]. On the other hand, experimental results
from [7] related to static MCHBAP, showed that even
small BAP instances are too complex for exact and
MIP-based heuristics solvers. These results, as well
as the fact that dynamic BAP is harder to solve than
its static variant [11], motivated us to use metaheuris-
tic methods as solution approaches to DMCHBAP.
To the best of our knowledge, the only paper dealing
with hybrid variant of dynamic BAP is [47]. The au-
thors considered hybrid BAP in bulk ports with an
aim to minimize the total service times of vessels and
applied Squeaky Wheel Optimization (SWO). Hav-
ing in mind that the objective function of our DM-
CHBAP is different from the one considered in [47],
SWO from that paper cannot be directly applied to
DMCHBAP. We have developed several variants of
SWO adapted to the considered BAP. However, even
the best SWO variant provided results that are far
from satisfactory ones, with respect to both solution
quality and running times (see Section 5). Therefore,
SWO is excluded from our consideration as a solution
method to DMCHBAP.
The choice of Variable Neighborhood Search (VNS)
as a metaheuristic method for DMCHBAP is mo-
tivated by studies [19] (considering minimum cost
static discrete BAP), [6] and [26] (dealing with stat-
ic MCHBAP). The authors of [19] proposed general
VNS exploring three neighborhoods (local insertion,
interchange and insertion) in order to minimize the
objective function composed of waiting and han-
dling costs, lateness penalties and earliness premi-
ums (considered as benefits and therefore appearing
with negative sign). In [6], a deterministic variant
of VNS, known as Variable Neighborhood Descent
(VND), was successfully applied to static MCHBAP,
while [26] proposed General Variable Neighborhood
Search (GVNS), which showed to be a promising
solution approach for the same problem. In general, if
some constraints are excluded, MCHBAPs may be ob-

473Information Technology and Control 2018/3/47

served as 2-D packing problems, with the goal to pack
smaller rectangles into a bigger one of predetermined
size. The main characteristic of this kind of problems
is that, in order to improve a given (locally minimal)
solution, it is required to significantly degrade its
quality by some specific transformations. Although
VNS, as an improvement forcing method, may not
seem as adequate solution approach, the studies [6]
and [26] showed that the use of sophisticated data
structures and definitions of neighborhoods in VNS-
based methods ensure their good performance when
solving static MCHBAP. Therefore, starting from
VND [6] and GVNS [26], we have designed VND and
GVNS approaches for DMCHBAP. In addition, we
develop a Multi-Start VND (MS-VND) and Skewed
Variable Neighborhood Search (SVNS) as new VNS-
based methods for DMCHBAP. The proposed VNS
approaches use adequate solution representation,
neighborhood structures, and search strategies,
which are adapted to the considered DMCHBAP. All
four metaheuristic approaches are evaluated on four
classes of randomly generated DMCHBAP test in-
stances.
The rest of this paper is organized as follows. A brief
review of recent papers addressing metaheuristic ap-
proaches to dynamic variants of BAP is given in Sec-
tion 2. Section 3 introduces the considered DMCH-
BAP. In Section 4, we provide a detailed description of
four VNS-based metaheuristic for DMCHBAP: VND,
MS-VND, GVNS, and SVNS. Experimental results
and analysis are presented in Section 5. Concluding
remarks and some directions for future work are giv-
en in Section 6.

2. Related Work
In recent literature dealing with dynamic BAP, dy-
namic vessel arrivals are considered and addressed
by several variants of metaheuristic methods, such
as randomized Local Search (LS), Tabu Search (TS),
Genetic Algorithm (GA), Simulated Annealing (SA),
Particle Swarm Optimization (PSO), etc. Nishimu-
ra et al. [36] presented GA for the discrete space and
dynamic vessels’ arrival times for berth scheduling
problem. Imai et al. [21] presented a formulation of
the dynamic discrete BAP at a terminal with indented
berths, and proposed GA as a solution method. Han et

al. [17] combined GA with SA in the case of dynamic
discrete BAP in order to minimize the total service
time of all the vessels. Theofanis et al. [45] present-
ed an optimization-based GA for the dynamic dis-
crete BAP with an aim to minimize the total weighted
service time of vessels that may have various service
priorities. Dynamic berth allocation and Quay Crane
Assignments Problem (QCAP) was considered in [4].
A hybrid method, obtained by combining parallel GA
and a constructive heuristic algorithm for generat-
ing promising solutions, is applied to solve QCAP.
Discrete space and dynamic vessel arrival BAP with
stochastic vessel handling times and known probabil-
ity distributions was studied in [22]. Two objectives
were considered, risk and total service time, which
were minimized by Evolutionary Algorithm (EA).
Golias and Haralambides in [14] concurrently min-
imized vessels’ tardiness and waiting time and max-
imized the premium from vessels’ early departure in
the case of dynamic discrete BAP. As a solution meth-
od, the authors used GA previously proposed in [15].
Hierarchical optimization approach for dynamic dis-
crete BAP was studied in [42], involving two conflict-
ing objective functions that correspond to two levels
of hierarchy. To solve this problem, the authors de-
signed GA based on the k-th best algorithm. The stud-
ies [49] and [50] considered dynamic discrete BAP
that minimizes total waiting time of calling vessels,
where arrival times and handling times of vessels
were considered as stochastic parameters following
the normal distribution. In both papers, a reduced
search space GA, based on the characteristics of the
optimal solution, was used. In [41], dynamic contin-
uous BAP and QCAP were studied and addressed by
GA approach. Two conflicted objectives were consid-
ered: minimizing the total service time and maximiz-
ing the robustness or buffer times.
TS was used to solve dynamic discrete BAP and it
was further extended for continuous BAP in [5]. The
authors considered the BAP model with the objective
function that minimizes the sum of the service times
for vessels. Minimization of the total weighted flow
time in dynamic continuous BAP was studied in [31],
where two variants of Greedy Randomized Adaptive
Search Procedure (GRASP) were developed to find
near optimal solutions. The dynamic discrete BAP was
solved in [37] by combining clustering search method
and SA, where the objective function minimizes the

Information Technology and Control 2018/3/47474

weighted sum of service times. In [23], the cost of the
non-optimal berthing location and costs of tardiness
were minimized in the case of continuous BAP.
In [46], PSO was applied for the first time as solu-
tion approach to dynamic discrete BAP. Golias et al.
[13] used lambda-optimal based heuristic for dy-
namic discrete BAP to guarantee local optimality at
a predefined neighborhood. In [28] and [29], Partial
Optimization Metaheuristic Under Special Intensi-
fication Conditions (POPMUSIC) was used for dy-
namic discrete BAP with the aim to minimize the to-
tal (weighted) service time of the incoming container
vessels. The authors developed two variants of the
algorithm by hybridization of the metaheuristic ap-
proach with mathematical programming. More pre-
cisely, CPLEX solver is used to exactly solve defined
sub-problems. Based on promising experimental
results, the authors concluded that POPMUSIC has
clear advantage over the best approximate approach-
es known to date, and that it can be successfully ap-
plied to this kind of problems as stand-alone solution
technique. Hybridization of POPMUSIC and the
branch-and-cut algorithm incorporated in CPLEX
solver is also used in [30] in the case of BAP under
time-dependent limitations where berthing depends
on tidal and water depth constraint. A new model for
the dynamic BAP was proposed by Simrin and Diabat
in [43]. The authors used GA to minimize the total
time that vessels spend at a terminal. Alsoufi et al. [1]
proposed a mathematical model for robust berth allo-
cation and implemented hybrid meta-heuristic based
on GA and Branch-and-Cut algorithm in order to
minimize the total tardiness of vessel departure time
and to reduce the cost of berthing.
Gargari and Niasar in [10] applied VNS method to
minimize vessels waiting time and berth idle time
in the case of the discrete dynamic BAP. The authors
used two types of neighborhoods (insert and swap),
which were explored only in the case when a new
allocation produced a feasible solution. Discrete dy-
namic BAP under tidal and water depth constraints is
solved in [27] by applying Adaptive VNS. This variant
of VNS involves multi-start strategy that exploits an
adaptive mechanism with the goal to minimize the
service time of each vessel. In [8], VNS approach was
used to solve tactical BAP that incorporates uncer-
tainty in vessel arrival times. VNS for tactical BAP is
based on two neighborhood structures: reinsertion

movement, which is used in shaking phase and in
VND part of local search, and interchange movement,
which is explored only in VND part. An overview of
solution approaches to different variants of BAP can
be found in [25].

3. Dynamic Minimum Cost Hybrid
Berth Allocation Problem
DMCHBAP, considered in this paper, deals with as-
signing a berthing position and a berthing time to each
incoming vessel to be served within a given planning
horizon, with an aim to minimize the total berthing
cost. This cost consists of three components: the costs
of positioning, waiting, and tardiness of completion for
all vessels. The vessels are defined by the following set
of data: expected arrival time, processing time, length,
due date, preferred berth position, and penalties.
As illustrated in Fig. 3, a solution to DMCHBAP can
be presented in a space-time-diagram. It is assumed
that both coordinates are discrete, i.e., the space is
modelled by the berth indices, whereas the time hori-
zon is divided into segments, such that berthing time
of each vessel is represented by an integer. Each ves-
sel is represented by a rectangle with the height equal
to the length of a vessel (expressed by the number of
berths), while the width corresponds to the required
handling time. The berthing position and berthing
time of a vessel are given in the lower-left vertex of
a rectangle, denoted by the reference point of a vessel
(marked by the index of vessel in Fig. 3). A berthing
plan is feasible if)a the rectangles do not overlap and

)b all rectangles can fit in the given space-time-dia-
gram (see Fig. 3).
In order to define DMCHBAP, we start from the defi-
nition of static MCHBAP given in [24] and adapt it to
the dynamic version of BAP. DMCHBAP is charac-
terized by the input data, objective function, and a set
of constraints defining feasible solutions. The input
data of DMCHBAP are listed below:
l : Total number of vessels;
m : Total number of berthing positions;
T : Total number of time units in the planning hori-

zon (corresponding to 1T - time segments);
vessels: Sequence of data describing all l vessels,

where = { : = 1, , };kvessels vessel k l

475Information Technology and Control 2018/3/47

vesselsk : 8-tuple with the following structure
 1 2 3= (, , , , , , ,).k k k k k k k k kvessel ETA a b d s c c c
The elements of a 8-tuple kvessel represent the follow-
ing data for each vessel:
ETAk : The expected time of arrival of kvessel ;
ak : Processing time of kvessel , if single crane is

used;
bk : Length of kvessel expressed by the number of

berths;
dk : Required departure time of kvessel ;
sk : Least-cost berthing location of the reference

point of kvessel ;
c1k : Penalty cost, if kvessel cannot dock at its pre-

ferred berth;
c2k : Penalty cost per unit time, if kvessel cannot

berth at kETA ;
c3k : Penalty cost per unit time, if kvessel is delayed

beyond the required departure time kd .
A feasible solution of DMCHBAP consists of pairs
(,)k kB At , = 1,2, ,k l where {1,2, , }kB m∈  denotes
the lowest berth index allocated to the kvessel and

{1,2, , 1}kAt T∈ - represents the minimum time in-
dex of a kvessel . Pair (,)k kB At actually corresponds to

the reference point of ,kvessel = 1,2, ,k l . A feasible
solution of DMCHBAP is subject to the following sets
of constraints:

Constraints 1. Each berth can be assigned to only one
vessel at time segment t , = 1, , 1t T - ;

Constraints 2. A berth can be allocated to a vessel
only between its arrival and departure times.
The goal of DMCHBAP is to minimize the total pen-
alty cost including: the penalty incurred as a result of
missing the preferred berthing location of the refer-
ence point, the penalty resulted by the actual berthing
later than the expected arrival time, and the penalty
cost arising from the delay of the departure after the
required due time. The last two terms influence the ob-
jective function only in case they are positive. Similarly
to [40], the objective function can be expressed as:

()1 2 3
=1

() () ,
l

k k k k k k k k
k

c c At ETA c Dt dσ + ++ - + -∑ (1)

where

(2)

Figure 1
Illustration of BAP solution

occupies more than one berth (each equipped by a crane), the processing time will be reduced.
According to the definition of the objective function given in [40], k is expressed by the given double
sum (2). It can be explained as follows: as the kvessel can occupy several berths and only one is
preferred (which usually means that it contains the required equipment for serving the vessel), all other
allocated berths have to be penalized. The lack of a proper equipment on these berths requires the
engagement of additional equipment and/or labor. For these reasons, the cost of handling a vessel may
increase. Finally, ()a b  denotes that this term has impact on the objective function value only if its
value is positive.

Figure 1 Illustration of BAP solution

Note that DMCHBAP is strongly NP-hard, because it can be observed as a machine scheduling problem
[9, 38]. Actually, we prove that even the simpler variant of DMHCBAP is strongly NP-hard.

Theorem 1. DMCHBAP is strongly NP-hard even in the restricted case, in which the preferred berth
restrictions are ignored and the objective function represents only total weighted tardiness.
Proof. In order to prove this theorem, we show that the well-known identical machine scheduling
problem with release dates and minimization of total weighted tardiness can be polynomially reduced to
DMCHBAP. In the standard three field scheduling notation [9], the problem can be classified as

| |m j j jP r w T . In order to follow previously given notations, we rename index j to k . We further
assume that vessels represent jobs and berths correspond to the machines. Consequently, vessel’s
processing time defined by /k ka b  can be observed as job processing time kp , while expected arrival
time kETA corresponds to the job release time kr . In addition, job’s due date is actually vessel’s due
date kd and the tardiness is calculated in the standard way, assuming that 3=k kw c . To ignore preferred
berthing location and waiting time of vessel, the corresponding penalties 1kc and 2kc are set to zero.
The obtained machine scheduling problem is known to be strongly NP-hard, even for = 1m (see [38]).

Information Technology and Control 2018/3/47476

, > ,
() =

0, ,
a b if a b

a b
otherwise

+ -
- 


(3)

and = /k k k kDt At a b+   , {1,2, , }kDt T∈  , representing
the departure time of the

kvessel . Namely, if only one
crane is used to serve the

kvessel , the required process-
ing time is ka . However, if the kvessel occupies more
than one berth (each equipped by a crane), the pro-
cessing time will be reduced.
According to the definition of the objective function
given in [40], kσ is expressed by the given double sum
(2). It can be explained as follows: as the kvessel can oc-
cupy several berths and only one is preferred (which
usually means that it contains the required equip-
ment for serving the vessel), all other allocated berths
have to be penalized. The lack of a proper equipment
on these berths requires the engagement of addition-
al equipment and/or labor. For these reasons, the cost
of handling a vessel may increase. Finally, ()a b +- de-
notes that this term has impact on the objective func-
tion value only if its value is positive.
Note that DMCHBAP is strongly NP-hard, because it
can be observed as a machine scheduling problem [9,
38]. Actually, we prove that even the simpler variant
of DMHCBAP is strongly NP-hard.
Theorem 1. DMCHBAP is strongly NP-hard even in
the restricted case, in which the preferred berth restric-
tions are ignored and the objective function represents
only total weighted tardiness.
Proof. In order to prove this theorem, we show that the
well-known identical machine scheduling problem
with release dates and minimization of total weighted
tardiness can be polynomially reduced to DMCHBAP.
In the standard three field scheduling notation [9], the
problem can be classified as | |m j j jP r w T∑ . In order to
follow previously given notations, we rename index j
to k . We further assume that vessels represent jobs
and berths correspond to the machines. Consequent-
ly, vessel’s processing time defined by /k ka b  can be
observed as job processing time kp , while expected ar-
rival time kETA corresponds to the job release time kr .
In addition, job’s due date is actually vessel’s due date

kd and the tardiness is calculated in the standard way,
assuming that 3=k kw c . To ignore preferred berthing
location and waiting time of vessel, the correspond-
ing penalties 1kc and 2kc are set to zero. The obtained
machine scheduling problem is known to be strongly
NP-hard, even for = 1m (see [38]).

4. VNS-Based Metaheuristics for
DMCHBAP
VNS is a simple and effective metaheuristic method
based on local search procedure [20, 34]. The basic
idea of VNS is the systematic change of neighbor-
hoods within a descent phase, to find a local optimum,
and within a perturbation phase to escape from the
corresponding valley. The main components of VNS
are shaking and local search. The role of shaking is to
help the algorithm to escape from a local optimum and
to explore the search space in an efficient manner. Lo-
cal search is used to intensify exploration of neighbor-
hoods around promising solutions. Different variants
of VNS have been proposed in the literature up to now:
Basic VNS (BVNS), Reduced VNS (RVNS), Variable
Neighborhood Descent (VND), Variable Neighbor-
hood Decomposition Search (VNDS), General VNS
(GVNS), Skewed VNS (SVNS), Primal-dual VNS, Par-
allel VNS, etc. An overview of VNS-based methods
and applications to combinatorial and global continu-
ous optimization problems can be found in [20].
The study [6] considers static MCHBAP and proposes
a new optimization method based on the determinis-
tic variant of VNS method, known as Variable Neigh-
borhood Descent (VND). This variant does not involve
shaking component and the local search is performed
through multiple neighborhoods. General Variable
Neighborhood Search (GVNS) for the static MCH-
BAP is proposed in [26] to allow better diversification
of solutions. GVNS involves shaking phase that helps
the algorithm to escape from the local minimum and
to efficiently explore the search space. In addition, in-
stead of simple local search, GVNS uses VND. In this
paper, we modify VND and GVNS approaches from [6]
and [26], and develop VND and GVNS implementa-
tions for DMCHBAP. In order to provide better diver-
sification of initial solutions, we propose Multi-Start
variant of VND. In addition, we develop Skewed VNS
(SVNS) as a solution approach to DMCHBAP. The ba-
sic idea behind SVNS is to address the problem of ex-
ploring valleys far from the incumbent solution. This is
performed by accepting local optimum with objective
function values close to the objective value of incum-
bent solution, but not necessarily better (see [20]).
The detailed description of other aspects of the pro-
posed VND, MS-VND, GVNS, and SVNS implemen-
tations for DMCHBAP is provided in the following
subsections.

477Information Technology and Control 2018/3/47

4.1. Basic Definitions and Solution
Representation
All four VNS methods proposed in this study are
based on the combinatorial formulation for DMCH-
BAP and use the same data structures and initializa-
tion (preprocessing) phase as in [6] and [26]. As a part
of the initialization, for all vessels and for all possible
vessel positions in two dimensional plane, the list of
3-tuples elements (berth, time, penalty cost) is creat-
ed. This list is denoted by Ψ and it consists of l indi-
vidual ξ lists, each corresponding to one vessel. The
ξ lists are sorted in non-decreasing order according
to the penalty cost values for each vessel individual-
ly. The role of ξ lists is to ensure efficient search of
the solution space by its significant reduction in each
step. More precisely, any change in the allocation of
vessels produces changes in the corresponding ξ lists
in such a way that, for each vessel, only feasible posi-
tions remain as the elements in its ξ list. The fact that
the ξ lists remain sorted at each step of the search,
makes it easy to detect positions with smaller pen-
alty costs for each allocated vessel (if any exists). In
addition, Ψ list structure enables easy identification
of unfeasible solution: if at any moment there exists a
vessel with empty ξ list, the corresponding solution
could be discarded as unfeasible.
During the execution of VNS-based methods for DM-
CHBAP, two main decisions are to be made: the se-
lection of a vessel to be allocated and the selection of
its position in berth-time plane. In the initialization
phase of algorithms, these decisions are made sto-
chastically, based on the priorities of vessels.
All four VNS approaches proposed for DMCHBAP
use the same solution representation based on se-
quence pair, which was introduced in [35]. It involves
two types of permutations, denoted by H and V that
describe the positions of vessels in the port. These
permutations are formed based on the following rules:
a if vessel j precedes vessel i in the permutation H ,

then vessel j “cannot see” vessel i on “left-up”
view,

b if vessel j precedes vessel i in the permutation V ,
then j “cannot see” i on “left-down” view.

For each of the implemented VNS-based methods
for DMCHBAP, global variables are: current solu-
tion ()Solution , local improvement of the shaken
current solution ()LocalBest , the best found solution

()GlobalBest and the CPU time of the first occurrence
of the best found solution ()minT .

4.2. VND for DMCHBAP
Each vessel allocation may be uniquely represented
as a pair of permutations (,)H V . On the other hand,
each pair (,)H V corresponds to a class of allocations.
Therefore, the study [6] introduces a procedure that
efficiently finds a feasible allocation that minimiz-
es total cost while preserving (,)H V ordering in the
case of static MCHBAP.

selection of a vessel to be allocated and the selection of its position in berth-time plane. In the
initialization phase of algorithms, these decisions are made stochastically, based on the priorities of
vessels.
All four VNS approaches proposed for DMCHBAP use the same solution representation based on
sequence pair, which was introduced in [35]. It involves two types of permutations, denoted by H and
V that describe the positions of vessels in the port. These permutations are formed based on the
following rules:

 (a) if vessel j precedes vessel i in the permutation H , then vessel j "cannot see" vessel
i on "left-up" view,

 (b) if vessel j precedes vessel i in the permutation V , then j "cannot see" i on "left-
down" view.

For each of the implemented VNS-based methods for DMCHBAP, global variables are: current solution
()Solution , local improvement of the shaken current solution ()LocalBest , the best found solution
()GlobalBest and the CPU time of the first occurrence of the best found solution ()minT .

4.2 VND for DMCHBAP

Each vessel allocation may be uniquely represented as a pair of permutations (,)H V . On the other hand,
each pair (,)H V corresponds to a class of allocations. Therefore, the study [6] introduces a procedure
that efficiently finds a feasible allocation that minimizes total cost while preserving (,)H V ordering in
the case of static MCHBAP.

The pseudo-code of the VND for DMCHBAP is presented in Alg. 4.2. The procedure used for generating
initial solution for VND and GVNS from [6] and [26], respectively, cannot be applied to DMCHBAP,
as this procedure often creates infeasible solution. For this reason, we propose two new methods for
generating initial solution for DMCHBAP, which are incorporated in the procedure INITIALSOLUTION.
Both methods start with creating the subsets of conflicting vessels, based on their most preferred berths
and ETA parameter values. In the first method, groups are sorted in non-increasing order of their
cardinality. One by one, groups are allocated such that total cost of each group is minimized. If no feasible
solution is obtained, the second method is applied. The groups of conflicting vessels are now sorted in

The pseudo-code of the VND for DMCHBAP is pre-
sented in Alg. 4.2. The procedure used for generating
initial solution for VND and GVNS from [6] and [26],
respectively, cannot be applied to DMCHBAP, as this
procedure often creates infeasible solution. For this
reason, we propose two new methods for generating
initial solution for DMCHBAP, which are incorporated
in the procedure InItIalSolutIon. Both methods start
with creating the subsets of conflicting vessels, based
on their most preferred berths and ETA parameter
values. In the first method, groups are sorted in non-in-
creasing order of their cardinality. One by one, groups
are allocated such that total cost of each group is min-
imized. If no feasible solution is obtained, the second
method is applied. The groups of conflicting vessels are
now sorted in non-decreasing order based on average
number of feasible positions for vessels belonging to the
same group. The allocation of each group is followed by
updating the feasible positions in ξ lists of the remain-
ing vessels and resorting the non-allocated groups.
Based on Solution obtained by procedure InItIalSolu-
tIon, the corresponding pair (,)H V is formed by pro-

Information Technology and Control 2018/3/47478

cedure PermutatIonS. The group of vessels Sω that are
not placed on their most preferred positions is identi-
fied. The vessels belonging to Sω are sorted in non-in-
creasing order of their costs with respect to the current
best solution. During the algorithm’s run, the content
of set Sω may change, however, its elements are al-
ways sorted according to the corresponding costs.
As in [6], VND uses three types of neighborhoods,
which are applied only to the vessels from Sω . The
algorithm always starts from the vessel in Sω hav-
ing the largest cost and continues with vessels having
smaller costs. For a given size k , = 1,2,3,... maxk k , the
neighborhoods are explored in the following order:
1 ChangePoSItIonh: selected vessel is first moved k

positions to the left in permutation H , and if there
is no improvement, the same vessel is moved k po-
sitions to the right in H , while permutation V re-
mains unchanged;

2 ChangePoSItIonV: selected vessel is first moved k
positions to the left in permutation V , and if there
is no improvement, the same vessel is moved k po-
sitions to the right in V , while permutation H re-
mains unchanged;

3 ChangePoSItIonhV: represents a combination of
ChangePoSItIonh and ChangePoSItIonV, where all
possible changes of H and V are considered.

4.3. MS-VND for DMCHBAP
At the beginning of each iteration of MS-VND, the
initial solution is constructed by procedure InItIal-
Ize. This procedure starts with an empty solution and
constructs a complete initial solution. In order to gen-
erate it, the procedure must make two decisions: to
choose a vessel and to choose allowable position from
ξ list for the selected vessel.

corresponding rectangle associated to the vessel in
two dimensional plane, and the calculated average
cost of all possible ξ list elements for the observed
vessel. Coefficients of these three parameters are
denoted by 1λ , 2λ , and 3λ , respectively. The linear
combination of parameters with the corresponding
coefficients represents the priority of a vessel used
for its selection by the roulette wheel. The values of
coefficients iλ are determined experimentally in such
a way that 1 2 3 = 1λ λ λ+ + holds.
For a selected vessel, all potential positions are con-
sidered with respect to the penalty cost value. The se-
lection of vessels’ positions in the initialization phase
of MS-VND is performed stochastically, based on the
position costs. The positions with smaller costs have
higher chances to be selected by the roulette wheel.
Procedure InItIalIze calculates probabilities for all
feasible positions from ξ list and selects a position
by using randomly generated number and the roulette
wheel. The considered vessel is fixed on that position
and ξ lists are reduced for all unused vessels. The
above described process is repeated l times.
From the constructed initial solution, algorithm
forms permutation pair (,)H V and the group of ves-
sels Sω . These parameters are further passed as in-
put data to algorithm VND1, which is similar to VND
described in Subsection 4.2. The only difference is
that procedures PermutatIonS and notPreferred-
PoSItIon are called outside it and additional input
parameters ((,),)H V Sω are passed to VND1. These
steps are repeated until stopping criterion is satisfied
(predefined amount of running time RunTime). The
best found solution through multiple VND runs is re-
turned as the output of MS-VND. The pseudo-code of
MS-VND for DMCHBAP is presented in Alg. 4.3.

4.4. GVNS for DMCHBAP
The initial solution and pair (,)H V are generated in
the same way as in VND. GVNS employs Shake pro-
cedure based on stochastic transformations of the
current best solution. During the shaking step, two
transformations are applied in order to form a new
solution:
1 First, k random groups of vessels are chosen in ac-

cordance with the priority proportional to the total
cost of the group. The chosen groups are placed at
the beginning of the list containing all the groups.

non-decreasing order based on average number of feasible positions for vessels belonging to the same
group. The allocation of each group is followed by updating the feasible positions in  lists of the
remaining vessels and resorting the non-allocated groups.
Based on Solution obtained by procedure INITIALSOLUTION, the corresponding pair (,)H V is formed
by procedure PERMUTATIONS. The group of vessels S that are not placed on their most preferred
positions is identified. The vessels belonging to S are sorted in non-increasing order of their costs
with respect to the current best solution. During the algorithm’s run, the content of set S may change,
however, its elements are always sorted according to the corresponding costs.
As in [6], VND uses three types of neighborhoods, which are applied only to the vessels from S . The
algorithm always starts from the vessel in S having the largest cost and continues with vessels having
smaller costs. For a given size k , = 1,2,3,... maxk k , the neighborhoods are explored in the following
order:

 (i) CHANGEPOSITIONH: selected vessel is first moved k positions to the left in permutation
H , and if there is no improvement, the same vessel is moved k positions to the right
in H , while permutation V remains unchanged;

 (ii) CHANGEPOSITIONV: selected vessel is first moved k positions to the left in permutation
V , and if there is no improvement, the same vessel is moved k positions to the right
in V , while permutation H remains unchanged;

 (iii) CHANGEPOSITIONHV: represents a combination of CHANGEPOSITIONH and
CHANGEPOSITIONV, where all possible changes of H and V are considered.

4.3 MS-VND for DMCHBAP

At the beginning of each iteration of MS-VND, the initial solution is constructed by procedure
INITIALIZE. This procedure starts with an empty solution and constructs a complete initial solution. In
order to generate it, the procedure must make two decisions: to choose a vessel and to choose allowable
position from  list for the selected vessel.

The criterion for vessel selection in MS-VND is a linear combination of ETA parameter, the size of the
corresponding rectangle associated to the vessel in two dimensional plane, and the calculated average
cost of all possible  list elements for the observed vessel. Coefficients of these three parameters are
denoted by 1 , 2 , and 3 , respectively. The linear combination of parameters with the corresponding
coefficients represents the priority of a vessel used for its selection by the roulette wheel. The values of

The criterion for vessel selection in MS-VND is a
linear combination of ETA parameter, the size of the

479Information Technology and Control 2018/3/47

2 Next, k random pairs of vessels are selected based
on the calculated priority, where the priority is
proportional to the vessel’s cost in the current best
solution. The locations of the selected pairs of ves-
sels are swapped. For this transformation, vessels
do not need to be in the same group.

Let 1 1(,)H V be a neighbor solution obtained from
Shake phase. Instead of simple local search, GVNS
employs VND to find improvements of the solution

1 1(,)H V , by systematic exploration of its six neigh-
borhoods. These neighborhoods are changing H or V
permutation, or both permutations simultaneously,
with an aim to find the optimal sequence pair. The six
procedures for exploring neighborhoods are applied
in the following order:

 (i) SINGLESWAPH selects two vessels and exchanges their positions in permutation ,H

leaving permutation V unmodified;
 (ii) SINGLESWAPV selects two vessels and swaps their positions in permutation ,V while

permutation H is unchanged;
 (iii) SINGLEMOVEH selects two vessels iv and jv and moves vessel jv immediately after

vessel iv in permutation H , no matter if the vessel iv is in front of or behind vessel

jv in the current permutation;
 (iv) SINGLEMOVEV performs moving of selected vessel jv immediately after vessel iv in

permutation ,V regardless of mutual order of vessels iv and jv ;
 (v) DOUBLESWAPHV consists of all neighbors obtained by one SINGLESWAPH and one

SINGLESWAPV that are not necessarily performed on the same pair of vessels;
 (vi) DOUBLEMOVEHV is performed by one SINGLEMOVEH and one SINGLEMOVEV that are

not necessarily applied on the same pair of vessels.

GVNS incorporates the first improvement principle. More precisely, when an improvement of the current
solution is found in one of the six neighborhoods, the remaining neighborhoods are skipped and this is
controlled by noImpr variable. As soon as noImpr gets value false , global variables Solution and
GlobalBest are updated inside the corresponding local search procedure. Each procedure of local search
starts by examining the value of noImpr variable. The false value will prevent the execution of the
corresponding local search procedure. If GlobalBest is improved, the neighborhood counter k is reset
to 1. The value of parameter maxk represents the maximal neighborhood size for shaking. GVNS
algorithm finishes when the stopping criterion (predefined amount of running time) is satisfied. The

1 SingleSwapH selects two vessels and exchanges
their positions in permutation ,H leaving permu-
tation V unmodified;

2 SIngleSwaPV selects two vessels and swaps their
positions in permutation ,V while permutation H
is unchanged;

3 SInglemoVeh selects two vessels iv and jv and
moves vessel jv immediately after vessel iv in per-
mutation H , no matter if the vessel iv is in front
of or behind vessel jv in the current permutation;

4 SInglemoVeV performs moving of selected vessel
jv immediately after vessel iv in permutation ,V

regardless of mutual order of vessels iv and jv ;
5 doubleSwaPhV consists of all neighbors obtained

by one SIngleSwaPh and one SIngleSwaPV that are
not necessarily performed on the same pair of ves-
sels;

6 doublemoVehV is performed by one SInglemoVeh
and one SInglemoVeV that are not necessarily ap-
plied on the same pair of vessels.

GVNS incorporates the first improvement principle.
More precisely, when an improvement of the current
solution is found in one of the six neighborhoods, the
remaining neighborhoods are skipped and this is con-
trolled by noImpr variable. As soon as noImpr gets
value false , global variables Solution and GlobalBest
are updated inside the corresponding local search
procedure. Each procedure of local search starts by
examining the value of noImpr variable. The false
value will prevent the execution of the corresponding
local search procedure. If GlobalBest is improved,
the neighborhood counter k is reset to 1. The value
of parameter maxk represents the maximal neighbor-
hood size for shaking. GVNS algorithm finishes when
the stopping criterion (predefined amount of running
time) is satisfied. The described steps of GVNS for
DMCHBAP are presented in Alg. 4.4.

4.5. SVNS for DMCHBAP
In cases when a high-quality local optimum has been
found, VNS will most likely lead the search at random
to far-away neighborhoods. As the size of neighbor-
hoods to be explored increases, VNS has a tendency
to degenerate into a multi-start heuristic. In order to
address the problem of getting out of very large neigh-
borhoods, Hansen and Mladenović [18] proposed a
variant of VNS, denoted by Skewed Variable Neigh-
borhood Search (SVNS). The main idea behind SVNS
is to accept a local optimum even if it is slightly worse
than the incumbent solution. The strategy applied in
SVNS helps in solving problem instances having sev-
eral separated and possibly distant neighborhoods
containing near-optimal solutions [18, 20].
This was our motivation to develop SVNS as an addi-
tional VNS approach to DMCHBAP. The pseudocode
of our SVNS algorithm is presented in Alg. 4.5. The
structure of SVNS for DMCHBAP is similar to the

Information Technology and Control 2018/3/47480

structure of GVNS described in Section 4.4. As SVNS
allows the acceptance of worse solutions compared
to the current best one, it was necessary to activate
the global variable LocalBest . The initially generat-
ed solution is placed in the variable Solution , which
is further subject to Shake procedure. Local Search
phase tries to improve the newly produced solution
by exploring each of the six neighborhoods in the or-
der indicated in Alg. 4.5. At the end of Local Search
phase, the obtained solution is saved in the LocalBest
variable. The difference between GVNS and SVNS
is in the acceptance criterion of the local optimum
LocalBest produced by VND phase. SVNS is more

tolerant in accepting local optimum LocalBest
that does not improve the current Solution regard-
ing the objective function value. The level of toler-
ance is controlled by parameter > 0.α Whenever

() | () () |Cost LocalBest Cost LocalBest Cost Solutionα- -
is less than (),Cost Solution the search resumes from
LocalBest by setting = 1k . Obviously, it is necessary to
keep the information about the global best solution
GlobalBest and to update it whenever an improve-
ment is achieved. As we already explained, this is done
within the corresponding local search procedure.

described steps of GVNS for DMCHBAP are presented in Alg. 4.4.

4.5 SVNS for DMCHBAP

In cases when a high-quality local optimum has been found, VNS will most likely lead the search at
random to far-away neighborhoods. As the size of neighborhoods to be explored increases, VNS has a
tendency to degenerate into a multi-start heuristic. In order to address the problem of getting out of very
large neighborhoods, Hansen and Mladenović [18] proposed a variant of VNS, denoted by Skewed
Variable Neighborhood Search (SVNS). The main idea behind SVNS is to accept a local optimum even
if it is slightly worse than the incumbent solution. The strategy applied in SVNS helps in solving problem
instances having several separated and possibly distant neighborhoods containing near-optimal solutions
[18, 20].
This was our motivation to develop SVNS as an additional VNS approach to DMCHBAP. The
pseudocode of our SVNS algorithm is presented in Alg. 4.5. The structure of SVNS for DMCHBAP is
similar to the structure of GVNS described in Section 4.4. As SVNS allows the acceptance of worse
solutions compared to the current best one, it was necessary to activate the global variable LocalBest .
The initially generated solution is placed in the variable Solution , which is further subject to SHAKE
procedure. Local Search phase tries to improve the newly produced solution by exploring each of the six
neighborhoods in the order indicated in Alg. 4.5. At the end of Local Search phase, the obtained solution

5 Experimental Results
In general, there is a lack of benchmark instances
for BAPs in literature. Therefore, we generated test
examples randomly, but systematically, following
the idea from [12]. Metaheuristics VND, MS-VND,
GVNS, and SVNS developed for DMCHBAP are eval-
uated on four generated data sets and the obtained
results are analyzed. Data sets used in our experimen-
tal study are available online at http://www.mi.sanu.
ac.rs/tanjad/DMCHBAP.htm. Each of them contains
randomly generated instances characterized by the
following parameters:
 _ the first data set: = 10,15l vessels, = 8m berths,

the time horizon of = 15T units, = 20l vessels,
= 8m berths, the time horizon of = 20T units, and

= 25l vessels, = 8m berths, the time horizon of
= 25T units;

 _ the second data set: = 35,40,45l vessels, = 8m
berths, and the time horizon of = 112T units;

 _ the third data set: contains randomly generated
instances involving = 50,55,60l vessels in the
case of = 13m berths and = 112T time units;

 _ he fourth data set: = 70,80,90,100l vessels, = 13m
berths, and the time horizon of = 112T units.

The data used to specify various types of vessels are
presented in Table 1 taken from [33]. The set of test
instances involves three types of vessels: feeder, me-
dium, and mega. For each type, the corresponding
percentage of test instances, handling time range,
penalty amounts (in units of US$ 1000) and number
of berths occupied by specific type of vessels are listed
in Table 1. The distribution of the least-cost berthing
location for vessels is homogeneous.

Table 1
Vessel specifications for generated test instances

is saved in the LocalBest variable. The difference between GVNS and SVNS is in the acceptance
criterion of the local optimum LocalBest produced by VND phase. SVNS is more tolerant in accepting
local optimum LocalBest that does not improve the current Solution regarding the objective function
value. The level of tolerance is controlled by parameter > 0. Whenever

() | () () |Cost LocalBest Cost LocalBest Cost Solution  is less than (),Cost Solution the search
resumes from LocalBest by setting = 1k . Obviously, it is necessary to keep the information about the
global best solution GlobalBest and to update it whenever an improvement is achieved. As we already
explained, this is done within the corresponding local search procedure.

5 Experimental Results

In general, there is a lack of benchmark instances for BAPs in literature. Therefore, we generated test
examples randomly, but systematically, following the idea from [12]. Metaheuristics VND, MS-VND,
GVNS, and SVNS developed for DMCHBAP are evaluated on four generated data sets and the obtained
results are analyzed. Data sets used in our experimental study are available online at
http://www.mi.sanu.ac.rs/tanjad/DMCHBAP.htm. Each of them contains randomly generated instances
characterized by the following parameters:

 • the first data set: = 10,15l vessels, = 8m berths, the time horizon of =15T units,
= 20l vessels, = 8m berths, the time horizon of = 20T units, and = 25l vessels,
= 8m berths, the time horizon of = 25T units;

 • the second data set: = 35, 40, 45l vessels, = 8m berths, and the time horizon of = 112T
units;

 • the third data set: contains randomly generated instances involving = 50,55,60l vessels in
the case of = 13m berths and = 112T time units;

 • the fourth data set: = 70,80,90,100l vessels, = 13m berths, and the time horizon of
= 112T units.

The data used to specify various types of vessels are presented in Table 1 taken from [33]. The set of test
instances involves three types of vessels: feeder, medium, and mega. For each type, the corresponding
percentage of test instances, handling time range, penalty amounts (in units of US$ 1000) and number of
berths occupied by specific type of vessels are listed in Table 1. The distribution of the least-cost berthing
location for vessels is homogeneous.

Table 1 Vessel specifications for generated test instances

In order to obtain optimal solutions for small size problem instances we adapted MILP model, proposed
in [7] for MCHBAP (the static variant of Minimum Cost Hybrid BAP), to the considered DMCHBAP.
We have executed the obtained MILP model within the framework of commercial CPLEX solver, version
12.3, which was run on the same configuration as the one used for metaheuristic methods.

In order to obtain optimal solutions for small size
problem instances we adapted MILP model, proposed
in [7] for MCHBAP (the static variant of Minimum

481Information Technology and Control 2018/3/47

Cost Hybrid BAP), to the considered DMCHBAP.
We have executed the obtained MILP model within
the framework of commercial CPLEX solver, version
12.3, which was run on the same configuration as the
one used for metaheuristic methods.
All four VNS metaheuristic approaches are coded in
the Wolfram Mathematica v8.0 programming lan-
guage. It is important to note that, unlike classical
programming languages, Mathematica interprets in-
structions and therefore, the running times of algo-
rithms may increase. However, our comparison is fair,
having in mind that all VNS-based algorithms are ex-
ecuted under the same conditions. All computation-
al experiments with CPLEX, VND, MS-VND, GVNS,
and SVNS were conducted on the same platform, i.e.,
on a computer with an Intel Pentium 4 3.00 GHz CPU
and 512 MB of RAM, running the Microsoft Windows
XP Professional Version 2002 Service Pack 2 operat-
ing system. Note that executable version of CPLEX
12.3 is optimized for this platform, meaning that it is
favored with respect to other algorithms.
Having in mind that metaheuristics are stochastic
methods, their stability is examined by performing
repeated runs on each instance. In our computation-
al experiments, MS-VND, GVNS, and SVNS methods
where executed 10 times with time limit of 10 min-
utes for all test examples, i.e., variable RunTime is set
to 10 minutes. VND is deterministic in nature, and,
therefore, it was run only once on each tested instance.
Preliminary computational experiments are per-
formed on the subset of test instances in order to de-
termine appropriate parameter values for each of the
considered VNS-based approaches. Table 2 shows
the list of parameter values for each metaheuristic
that led to its best performance.
We have also developed several variants of SWO
adapted to the DMCHBAP, following the ideas pre-

Table 2
Parameter specifications

All four VNS metaheuristic approaches are coded in the Wolfram Mathematica v8.0 programming
language. It is important to note that, unlike classical programming languages, Mathematica interprets
instructions and therefore, the running times of algorithms may increase. However, our comparison is
fair, having in mind that all VNS-based algorithms are executed under the same conditions. All
computational experiments with CPLEX, VND, MS-VND, GVNS, and SVNS were conducted on the
same platform, i.e., on a computer with an Intel Pentium 4 3.00-GHz CPU and 512 MB of RAM running
the Microsoft Windows XP Professional Version 2002 Service Pack 2 operating system. Note that
executable version of CPLEX 12.3 is optimized for this platform, meaning that it is favored with respect
to other algorithms.
Having in mind that metaheuristics are stochastic methods, their stability is examined by performing
repeated runs on each instance. In our computational experiments, MS-VND, GVNS, and SVNS methods
where executed 10 times with time limit of 10 minutes for all test examples, i.e., variable RunTime is
set to 10 minutes. VND is deterministic in nature, and, therefore, it was run only once on each tested
instance.
Preliminary computational experiments are performed on the subset of test instances in order to
determine appropriate parameter values for each of the considered VNS-based approaches. Table 2
shows the list of parameter values for each metaheuristic that led to its best performance.

Table 2 Parameter specifications

We have also developed several variants of SWO adapted to the DMCHBAP, following the ideas
presented in [47]. Each of the implemented SWO variants starts from a feasible initial solution and
dynamically changes it based on vessels’ priorities. Vessels with larger allocation cost in current solution
have higher priority to be chosen for the next allocation. Once feasible solution is produced, all vessels
are sorted according to their cost in decreasing order and new allocation starts. One by one, vessels are
allocated in port on randomly chosen feasible position by roulette wheel. If allocation leads to an
unfeasible solution, a new random solution is generated. In the case that all vessels are allocated in port,
i.e., solution is complete and feasible, new vessels’ priorities are calculated and SWO algorithm performs
the next iteration. The imposed stopping criterion for each SWO variant is 10 minutes of running time.
Implemented SWO approaches for DMCHBAP are also coded in the Wolfram Mathematica v8.0 and
executed on the same platform as VNS-based methods. On each instance, SWO was run 10 times. In the
rest of this section, we present only the results of the best performing SWO variant.
Tables 3 and 4 contain the comparison of results obtained by CPLEX solver and considered metaheuristic
methods on the first data set that includes small size problem instances. The first column of Table 3,
denoted by Class contains instance’s specification, given in the form m T l  , where m represents the
number of berths, T indicates the number of time units in the planning horizon, and l stands for the
number of vessels. The second column contains the identification number (index) of each instance in the
corresponding class. The next two columns are related to the results of CPLEX solver, containing
objective function value of the optimal solution OPT and the corresponding running time, denoted by

sented in [47]. Each of the implemented SWO vari-
ants starts from a feasible initial solution and dynam-
ically changes it based on vessels’ priorities. Vessels
with larger allocation cost in current solution have
higher priority to be chosen for the next allocation.
Once feasible solution is produced, all vessels are
sorted according to their cost in decreasing order
and new allocation starts. One by one, vessels are al-
located in port on randomly chosen feasible position
by roulette wheel. If allocation leads to an unfeasible
solution, a new random solution is generated. In the
case that all vessels are allocated in port, i.e., solution
is complete and feasible, new vessels’ priorities are
calculated and SWO algorithm performs the next iter-
ation. The imposed stopping criterion for each SWO
variant is 10 minutes of running time. Implemented
SWO approaches for DMCHBAP are also coded in the
Wolfram Mathematica v8.0 and executed on the same
platform as VNS-based methods. On each instance,
SWO was run 10 times. In the rest of this section, we
present only the results of the best performing SWO
variant.
Tables 3 and 4 contain the comparison of results ob-
tained by CPLEX solver and considered metaheuris-
tic methods on the first data set that includes small
size problem instances. The first column of Table 3,
denoted by Class contains instance’s specification,
given in the form m T l× - , where m represents the
number of berths, T indicates the number of time
units in the planning horizon, and l stands for the
number of vessels. The second column contains the
identification number (index) of each instance in the
corresponding class. The next two columns are relat-
ed to the results of CPLEX solver, containing objec-
tive function value of the optimal solution OPT and
the corresponding running time, denoted by Time and
given in seconds. In the next four columns, results
related to the best performing SWO variant are pre-
sented. In the column named Best, the best found to-
tal cost (obtained after 10 SWO executions) is given,
while the average total cost AvgC and average mini-
mum CPU time AvgT (out of 10 runs) are presented in
the next two columns. In order to measure the quality
of the obtained SWO results, in column G%, we pres-
ent the average gap calculated as 100 AvgC OPT

OPT
-

⋅ .
The next three columns contain results related to the
VND metaheuristic. The column named Best contains
the best found total cost. Column Time indicates the

Information Technology and Control 2018/3/47482

running time (in seconds) required by VND to obtain
its best solution. The gap G% for VND is calculated as

100 Best OPT
OPT

-
⋅ . The results of MS-VND, GVNS, and

SVNS in Table 3 are given in the same way as in the
case of SWO. In order to highlight the best performing
method with respect to the solution quality, the best-
known (optimal) solutions for each instance are bold-
ed in Table 3. Similarly, for the best performing meth-
od with respect to CPU time, the shortest (average)
CPU times for each instance are bolded in Table 3.
From the results presented in Table 3, it can be seen that
all four VNS-based methods reach optimal solutions
provided by CPLEX solver on each of small size prob-
lem instances. SVNS shows the best stability, as its av-
erage percentage gap is 0%, meaning that SVNS reached
optimal solution in all 10 runs for each instance. The
values presented in column G% indicate that MS-VND,
and GVNS methods also showed to be stable, as the
corresponding average percentage gaps are 0.03%, and
0.09%, respectively. SWO method evinced poor perfor-
mance on the set of small size instances, as it provided
solutions that are quite far from the optimal ones for
each considered instance. The best performing SWO

Table 3
Computational results of CPLEX, SWO, and VNS-based metaheuristics on instances from the first data set (m = 8, T= 15, 20,
l = 10, 15, 20)

Table 4
Computational results of CPLEX and VNS-based metaheuristics on instances from the first data set (m = 8, T= 25, l = 25)

Time and given in seconds. In the next four columns, results related to the best performing SWO variant
are presented. In the column named Best, the best found total cost (obtained after 10 SWO executions)
is given, while the average total cost AvgC and average minimum CPU time AvgT (out of 10 runs) are
presented in the next two columns. In order to measure the quality of the obtained SWO results, in column

G%, we present the average gap calculated as 100 AvgC OPT
OPT
 . The next three columns contain results

related to the VND metaheuristic. The column named Best contains the best found total cost. Column
Time indicates the running time (in seconds) required by VND to obtain its best solution. The gap G%

for VND is calculated as 100 Best OPT
OPT
 . The results of MS-VND, GVNS, and SVNS in Table 3 are

given in the same way as in the case of SWO. In order to highlight the best performing method with
respect to the solution quality, the best-known (optimal) solutions for each instance are bolded in Table
3. Similarly, for the best performing method with respect to CPU time, the shortest (average) CPU times
for each instance are bolded in Table 3.
From the results presented in Table 3, it can be seen that all four VNS-based methods reach optimal
solutions provided by CPLEX solver on each of small size problem instances. SVNS shows the best
stability, as its average percentage gap is 0%, meaning that SVNS reached optimal solution in all 10 runs
for each instance. The values presented in column G% indicate that MS-VND, and GVNS methods also
showed to be stable, as the corresponding average percentage gaps are 0.03%, and 0.09%, respectively.
SWO method evinced poor performance on the set of small size instances, as it provided solutions that
are quite far from the optimal ones for each considered instance. The best performing SWO variant
produces solutions with average percentage gap of 79.68% from the optimal ones.

Table 3 Computational results of CPLEX, SWO, and VNS-based metaheuristics on instances from the
first data set (= 8m , = 15, 20T , = 10,15, 20l)

Table 4 Computational results of CPLEX and VNS-based metaheuristics on instances from the first data
set (= 8m , = 25T , = 25l)

Time and given in seconds. In the next four columns, results related to the best performing SWO variant
are presented. In the column named Best, the best found total cost (obtained after 10 SWO executions)
is given, while the average total cost AvgC and average minimum CPU time AvgT (out of 10 runs) are
presented in the next two columns. In order to measure the quality of the obtained SWO results, in column

G%, we present the average gap calculated as 100 AvgC OPT
OPT
 . The next three columns contain results

related to the VND metaheuristic. The column named Best contains the best found total cost. Column
Time indicates the running time (in seconds) required by VND to obtain its best solution. The gap G%

for VND is calculated as 100 Best OPT
OPT
 . The results of MS-VND, GVNS, and SVNS in Table 3 are

given in the same way as in the case of SWO. In order to highlight the best performing method with
respect to the solution quality, the best-known (optimal) solutions for each instance are bolded in Table
3. Similarly, for the best performing method with respect to CPU time, the shortest (average) CPU times
for each instance are bolded in Table 3.
From the results presented in Table 3, it can be seen that all four VNS-based methods reach optimal
solutions provided by CPLEX solver on each of small size problem instances. SVNS shows the best
stability, as its average percentage gap is 0%, meaning that SVNS reached optimal solution in all 10 runs
for each instance. The values presented in column G% indicate that MS-VND, and GVNS methods also
showed to be stable, as the corresponding average percentage gaps are 0.03%, and 0.09%, respectively.
SWO method evinced poor performance on the set of small size instances, as it provided solutions that
are quite far from the optimal ones for each considered instance. The best performing SWO variant
produces solutions with average percentage gap of 79.68% from the optimal ones.

Table 3 Computational results of CPLEX, SWO, and VNS-based metaheuristics on instances from the
first data set (= 8m , = 15, 20T , = 10,15, 20l)

Table 4 Computational results of CPLEX and VNS-based metaheuristics on instances from the first data
set (= 8m , = 25T , = 25l)

variant produces solutions with average percentage gap
of 79.68% from the optimal ones.
Regarding average running times, GVNS was the fastest
in returning its best solutions, followed by VND, SVNS,
and MS-VND, while SWO was the slowest method.
However, all five methods were significantly faster
compared to CPLEX solver, which needed 2436.81 sec-
onds (on average) to produce optimal solutions for all
instances in the set. The average running times of the
proposed VNS-based methods were: 15.74 s for GVNS,
19.58 s for VND, 25.44 s for SVNS, and 77.34 s for MS-
VND, while SWO required 241.40 s (on average) to re-
turn its best solutions. This implies that the proposed
GVNS was more than 154 times faster compared to
CPLEX, and 1.24, 1.62, 4.91, and 15.34 times faster than
VND, SVNS, MS-VND, and SWO, respectively.
As it can be seen from Table 3, even the best variant
of SWO did not produce satisfactory results regarding
solution quality and running times. Therefore, SWO
is excluded from detailed computational experiments
on the other data sets.
Table 4 contains the comparison of results obtained
by CPLEX solver and the proposed VNS-based meta-
heuristic methods on the largest instances from the

483Information Technology and Control 2018/3/47

first data set, with = 8m , = 25T , = 25l . For these
instances we impose the time limit on CPLEX exe-
cution of 1 hour (having in mind that the decisions in
the port are to be made very quick, on a minute basis).
The first column of Table 4 contains instance’s spec-
ification, while the second column, denoted as BK,
presents the best-known objective function values,
provided either by CPLEX or by the proposed VNS-
based metaheuristics. The next two columns are re-
lated to the results of CPLEX solver, containing lower
and upper bounds on the objective function value of
the optimal solution. The rest of Table 4 is related to
the results of the four proposed VNS methods, which
are given in the same way as in Table 3.
The results presented in Table 4 show that all four
VNS-based methods improved upper bounds pro-
vided by CPLEX, with the exception of one instance

for which the best solutions of all four VNS methods
coincide with the upper bound that CPLEX returned.
Again, VND and SVNS showed the best stability, as
their average percentage gap is 0.11% and 0.47%, re-
spectively. In the case of MS-VND, and GVNS, the val-
ues of average percentage gaps were 1.04% and 2.42%,
respectively, indicating that these two VNS-based
methods also have good stability. On average, VND
was the fastest method, followed by GVNS, SVNS,
and MS-VND. The average running times of the pro-
posed VNS-based methods were: 30.75 s for VND,
103.47 s for GVNS, 129.36 s for SVNS, and 178.63 s for
MS-VND, implying that the proposed VND was 3.36,
4.21, and 5.81 times faster than GVNS, SVNS, and
MS-VND, respectively.
Tables 5 and 6 show the results obtained by the pro-
posed VNS-based approaches to DMCHBAP on the

Table 5
Computational results of VNS-based metaheuristics on instances from the second data set (m = 8, T= 112, l = 35, 40, 45)

Information Technology and Control 2018/3/47484

second and third data set, respectively. These data
sets contain randomly generated test instances of
larger dimensions, unsolved to optimality by CPLEX
solver. Therefore, Tables 5 and 6 present the compar-
ison of results obtained by VND, MS-VND, GVNS,
and SVNS. The first column of Table 5 contains the
number of vessels l. The next column (with heading i)
indicates the index of the considered instance, while
the third column (named BK) refers to the best-known
cost value. The results of VND, MS-VND, GVNS, and
SVNS are presented in the same way as in Table 3. As
optimal solution is not known, the gap G% for VND is

calculated as 100 Best BK
BK

-
⋅ . In the case of MS-VND,

GVNS, and SVNS, the average gap G% is calculated as

100 AvgC BK
BK

-
⋅ . In Table 5, the best-known solutions

and the shortest (average) CPU times for the best per-

Table 6
Computational results of VNS-based metaheuristics on instances from the third data set (m = 13, T= 112, l = 50, 55, 60)

forming method on each instance are bolded. The re-
sults of comparison on the third data set are presented
in Table 6, which has the same structure as Table 5.
As it can be seen from Table 5, SVNS was able to ob-
tain the best-known solutions for all test instances,
with average gap of 0.80%. VND, MS-VND and GVNS
found best-known solution on 15, 14, and 18 (out of
30) test instances, respectively. However, the result-
ing average gaps remain very small, 3.01% for VND,
3.28% for MS-VND, and 2.27% for GVNS. Regarding
the (average) minimum CPU time, the superior meth-
od is MS-VND, followed by GVNS, VND, and SVNS.
The corresponding (average) minimum CPU times
are 3.74, 5.37, 8.55, and 74.35 seconds, respectively.
This means that MS-VND is 1.44 times faster than
GVNS, 2.29 times faster than VND, and 19.88 times
faster than SVNS.

485Information Technology and Control 2018/3/47

The results presented in Table 6 on larger size test
instances, show that SVNS remains superior to oth-
er three methods regarding solution quality. For each
test instance from the third data set, SVNS method
produced best-known solution at least once with-
in 10 runs. On the same data set, SVNS reached the
best-known solution in each of 10 runs in the case
of 28 out of 30 examples. In the case of instance

= 50l and = 10i from the third data set, remaining
three algorithms performed better on average with

= 926AvgC , while for SVNS = 926.9AvgC . For in-
stance = 60l and = 6i from the same data set, VND
and GVNS showed slightly better performance with

= 1143AvgC compared to SVNS with = 1189.4AvgC
and MS-VND with = 1201.AvgC VND, MS-VND and
GVNS have similar performance: GVNS reached
best-known solution on 18 out of 30 instances, while
VND and MS-VND generated 17 and 16 best-known
solutions, respectively. All four methods have small
average gaps from the best-known solution: 0.51% for
SVNS, 1.03% for GVNS, 1.38% for VND, and 1.55% for
MS-VND. MS-VND showed the best performance in
respect to CPU time (8.38 s) followed by VND (13.84
s), GVNS (14.06 s) and SVNS (45.49 s). Therefore,
MS-VND is 1.65 times faster than VND, 1.68 times
faster than GVNS and 5.43 times faster than SVNS.
From the presented computational results, it can be
seen that the average gap values and required CPU
times are quite small for all four VNS based methods,
and therefore, all of them can be considered suitable
for DMCHBAP. However, SVNS outperforms oth-
er methods on both data sets regarding the solution
quality, while MS-VND is able to provide high quality
solutions in short execution times.
Table 7 shows summarized computational results
of the proposed VNS methods on the fourth data set
with = 13m , = 112T and = 70,80,90,100l . These
test instances are the hardest ones, because of the

Table 7
Computational results of VNS-based metaheuristics on instances from the fourth data set (m = 13, T = 112, l = 70, 80, 90, 100)

large number of vessels and high density of their al-
location. Table 7 has the same structure as Tables 5
and 6, the only difference is that each column of Table
7 contains average values obtained on the subset of 10
generated instances ({1,..10}i ∈) from the fourth set
with fixed value of l . As in the case of the first three
data sets, each VNS method is run 10 times on each
instance from the fourth data set. On each subclass
with fixed value of l , the best result regarding average
best cost, average cost, average CPU time and average
gap is bolded. The summarized results presented in
Table 7 show that all four VNS-based methods have
stable performance. On average, the fastest method is
VND (77.75 s), however, its average gap is the highest
one (3.39%). Other three VNS methods have small
computational times with no significant difference
among them (between 116.45 s and 138.63 s). On av-
erage, VND is 1.50 times faster than GVNS, 1.59 times
faster than MS-VND, and 1.78 times faster than SVNS
on the fourth data set. GVNS shows the best perfor-
mance regarding stability, as its average gap is 1.94%.
However, the average gaps of MS-VND and SVNS are
also quite small (under 3%). Detailed computational
results on these instances can be found at http://www.
mi.sanu.ac.rs/tanjad/DMCHBAP.htm.
Computational results presented in Table 7 show that
all four presented methods stay stable and efficient
even in the case of very hard test instances with large
number of allocated vessels. These results verify that
VNS based methods can be considered suitable for
DMCHBAP and that expected running times on large
test instances remain desirable small.

6 Conclusion
In order to meet all requirements of a port as a high-
ly dynamic system, terminal manager needs an ef-

As it can be seen from Table 5, SVNS was able to obtain the best-known solutions for all test instances,
with average gap of 0.80%. VND, MS-VND and GVNS found best-known solution on 15, 14, and 18
(out of 30) test instances, respectively. However, the resulting average gaps remain very small, 3.01%
for VND, 3.28% for MS-VND, and 2.27% for GVNS. Regarding the (average) minimum CPU time, the
superior method is MS-VND, followed by GVNS, VND, and SVNS. The corresponding (average)
minimum CPU times are 3.74, 5.37, 8.55, and 74.35 seconds, respectively. This means that MS-VND is
1.44 times faster than GVNS, 2.29 times faster than VND, and 19.88 times faster than SVNS.
The results presented in Table 6 on larger size test instances, show that SVNS remains superior to other
three methods regarding solution quality. For each test instance from the third data set, SVNS method
produced best-known solution at least once within 10 runs. On the same data set, SVNS reached the best-
known solution in each of 10 runs in the case of 28 out of 30 examples. In the case of instance = 50l
and = 10i from the third data set, remaining three algorithms performed better on average with

= 926AvgC , while for SVNS = 926.9AvgC . For instance = 60l and = 6i from the same data set,
VND and GVNS showed slightly better performance with =1143AvgC compared to SVNS with

=1189.4AvgC and MS-VND with =1201.AvgC VND, MS-VND and GVNS have similar
performance: GVNS reached best-known solution on 18 out of 30 instances, while VND and MS-VND
generated 17 and 16 best-known solutions, respectively. All four methods have small average gaps from
the best-known solution: 0.51% for SVNS, 1.03% for GVNS, 1.38% for VND, and 1.55% for MS-VND.
MS-VND showed the best performance in respect to CPU time (8.38 s) followed by VND (13.84 s),
GVNS (14.06 s) and SVNS (45.49 s). Therefore, MS-VND is 1.65 times faster than VND, 1.68 times
faster than GVNS and 5.43 times faster than SVNS.
From the presented computational results, it can be seen that the average gap values and required CPU
times are quite small for all four VNS based methods, and therefore, all of them can be considered
suitable for DMCHBAP. However, SVNS outperforms other methods on both data sets regarding the
solution quality, while MS-VND is able to provide high quality solutions in short execution times.

Table 7 Computational results of VNS-based metaheuristics on instances from the fourth data set

(= 13m , =112T , = 70,80,90,100l)

Table 7 shows summarized computational results of the proposed VNS methods on the fourth data set
with = 13m , =112T and = 70,80,90,100l . These test instances are the hardest ones, because of the
large number of vessels and high density of their allocation. Table 7 has the same structure as Tables 5
and 6, the only difference is that each column of Table 7 contains average values obtained on the subset
of 10 generated instances ({1,..10}i) from the fourth set with fixed value of l . As in the case of the
first three data sets, each VNS method is run 10 times on each instance from the fourth data set. On each
subclass with fixed value of l , the best result regarding average best cost, average cost, average CPU
time and average gap is bolded. The summarized results presented in Table 7 show that all four VNS-

Information Technology and Control 2018/3/47486

ficient and reliable decision support system. The
performance of decision support system heavily de-
pends on the speed of finding high-quality solutions
for underlying berth allocation problem. We studied
the Dynamic Minimum Cost Hybrid Berth Alloca-
tion Problem (DMCHBAP), which has a great im-
portance in maritime transportation. We prove that
even simple variant of this problem is NP-hard, and
therefore, it should be addressed by metaheuristic
methods. We have developed four VNS-based ap-
proaches to DMCHBAP: Variable Neighborhood De-
scent (VND), Multi-Start Variable Neighborhood
Descent (MS-VND), General Variable Neighborhood
Search (GVNS), and Skewed Variable Neighborhood
Search (SVNS). In order to compare the efficiency
of the four VNS-based metaheuristics against each
other, four sets of randomly generated test instances
were considered. As metaheuristics are generally sto-
chastic methods, we have examined their stability by
performing multiple runs.
The obtained experimental results show that all four
VNS-based metaheuristics reach known optimal

solution on each small size instance (with exception
of one instance in the case of VND) in very short CPU
times. For larger problem dimensions, all four VNS-
based methods were able to find high quality solu-
tions in short running times. On average, SVNS shows
the best performance regarding the solution quality,
while VND and MS-VND methods are superior in re-
spect to the required CPU time.
Our computational results indicate that all four VNS-
based metaheuristics have obvious potential as solu-
tion methods for DMCHBAP and related problems
in maritime transportation. For further improving of
metaheuristics’ performance, their parallelization,
hybridization and combination with exact methods
might be considered.

Acknowledgments
This research was partially supported by Serbian
Ministry of Education, Science, and Technologi-
cal Development under the grants nos. 174010 and
174033.

References
1. Alsoufi, G., Yang, X., Salhi, A. H. Robust Berth Allocation

Using a Hybrid Approach Combining Branch-and-Cut
and the Genetic Algorithm. In: Blesa M. et al. (Eds.), Hy-
brid Metaheuristics. Lecture Notes in Computer Sci-
ence, Springer, Cham, 2016, 9668, 187-201. https://doi.
org/10.1007/978-3-319-39636-1_14

2. Bierwirth, C., Meisel, F. A Survey of Berth Allocation
and Quay Crane Scheduling Problems in Contain-
er Terminals. European Journal of Operational Re-
search, 2010, 202(3), 615-627. https://doi.org/10.1016/j.
ejor.2009.05.031

3. Bierwirth, C., Meisel, F. A Follow-Up Survey of Berth Al-
location and Quay Crane Scheduling Problems in Con-
tainer Terminals. European Journal of Operational Re-
search, 2015, 244(3), 675-689. https://doi.org/10.1016/j.
ejor.2014.12.030

4. Chang, D., Jiang, Z., Yan, W., He, J. Integrating Berth
Allocation and Quay Crane Assignments. Transporta-
tion Research Part E, 2010, 46(6), 975-990. https://doi.
org/10.1016/j.tre.2010.05.008

5. Cordeau, J. F., Laporte, G., Legato, P., Moccia, L. Models
and Tabu Search Heuristics for the Berth-Allocation

Problem. Transportation Science, 2005, 39(4), 526-
538. https://doi.org/10.1287/trsc.1050.0120

6. Davidović, T., Kovač, N., Stanimirović, Z. VNS-Based
Approach to Minimum Cost Hybrid Berth Allocation
Problem. Proceedings of XLII International Sympo-
sium on Operations Research, (SYMOPIS 2015), Silver
Lake, Serbia, September 15-18, 2015, 237-240.

7. Davidović, T., Lazić, J., Mladenović, N., Kordić, S., Kovač,
N., Dragović, B. MIP-Heuristics for Minimum Cost Berth
Allocation Problem. Proceedings of International Con-
ference on Traffic and Transport Engineering, (ICTTE
2012), Belgrade, Serbia, November 29-30, 2012, 21-28.

8. Expósito-Izquiero, C., Lalla-Ruiz, E., Lamata, T.,
Melián-Batista, B., Moreno-Vega, J. M. Fuzzy Opti-
mization Models for Seaside Port Logistics: Berthing
and Quay Crane Scheduling. In: Madani K., Dourado
A., Rosa A., Filipe J., Kacprzyk J. (Eds.), Computation-
al Intelligence. Studies in Computational Intelligence,
Springer, 2016, 613, 323-343.

9. Garey, M. R., Johnson, D. S. Computers and Intracta-
bility: A Guide to the Theory of NP-Completness. W. H.
Freeman and Company, 1979.

487Information Technology and Control 2018/3/47

10. Gargari, M. M., Niasar, M. S. F. A Dynamic Discrete Berth
Allocation Problem for Container Terminals. Proceed-
ings of International Maritime and Port Technology and
Development Conference, Trondheim, Norway, October
27-29, 2014, 11-18. https://doi.org/10.1201/b17517-3

11. Gharehgozli, A. H., Roy, D., de Koster, R. Sea Container
Terminals: New Technologies and OR Models. Mar-
itime Economics & Logistics, 2016, 18(2), 103-140.
https://doi.org/10.1057/mel.2015.3

12. Giallombardo, G., Moccia, L., Salani, M., Vacca, I. Mod-
eling and Solving the Tactical Berth Allocation Prob-
lem. Transportation Research Part B: Methodolog-
ical, 2010, 44(2), 232-245. https://doi.org/10.1016/j.
trb.2009.07.003

13. Golias, M. M., Boile, M., Theofanis, S. A Lamda-Opti-
mal Based Heuristic for The Berth Scheduling Problem.
Transportation Research Part C: Emerging Technol-
ogies, 2010, 18(5), 794-806. https://doi.org/10.1016/j.
trc.2009.07.001

14. Golias, M. M., Haralambides, H. E. Berth Scheduling
with Variable Cost Functions. Maritime Economics and
Logistics, 2011, 13(2), 174-189. https://doi.org/10.1057/
mel.2011.4

15. Golias, M. M., Saharidis, G. K., Boile, M., Theofanis, S.,
Ierapetritou, M. G. The Berth Allocation Problem: Op-
timizing Vessel Arrival Time. Maritime Economics and
Logistics, 2009, 11(4), 358-377. https://doi.org/10.1057/
mel.2009.12

16. Government of India. Reducing Dwell Time of Cargo at
Ports, Report of the Inter-ministerial Group. Planning
Commission, Government of India, 2007. Accessed on
August 17, 2017.

17. Han, M., Li, P., Sun, J. The Algorithm for Berth Sched-
uling Problem by the Hybrid Optimization Strate-
gy GASA. Proceedings of 9th International Confer-
ence on Control, Automation, Robotics and Vision,
(ICARCV’06), Singapore, December 5-8, 2006, 1-4.
https://doi.org/10.1109/ICARCV.2006.345455

18. Hansen, P., Mladenović, N. Developments of The Vari-
able Neighborhood Search. In: Ribeiro, C., Hansen, P.
(Eds.), Essays and Surveys in Metaheuristics, Kluw-
er Academic Publishers, 2002, 415-439. https://doi.
org/10.1007/978-1-4615-1507-4_19

19. Hansen, P., Oğuz, C., Mladenović, N. Variable Neighbor-
hood Search for Minimum Cost Berth Allocation. Eu-
ropean Journal of Operational Research, 2008, 191(3),
636-649. https://doi.org/10.1016/j.ejor.2006.12.057

20. Hansen, P., Mladenović, N., Brimberg, J., Moreno Pérez,
J. A. Variable Neighborhood Search. In: Gendreau,

M., Potvin, J.-Y. (Eds.), Handbook of Metaheuristics,
Springer, New York Dordrecht Heidelberg London,
2010, 61-86. https://doi.org/10.1007/978-1-4419-1665-
5_3

21. Imai, A., Nishimura, E., Hattori, M., Papadimitriou, S.
Berth Allocation at Indented Berths for Mega-Con-
tainerships. European Journal of Operational Re-
search, 2007, 179(2), 579-593. https://doi.org/10.1016/j.
ejor.2006.03.034

22. Karafa, J., Golias, M. M., Ivey, S., Saharidis, G. K. D.,
Leonardos, N. The Berth Allocation Problem with
Stochastic Vessel Handling Times. The International
Journal of Advanced Manufacturing Technology, 2013,
65(1-4), 473-484. https://doi.org/10.1007/s00170-012-
4186-0

23. Kim, K. H., Moon, K. C. Berth Scheduling by Simu-
lated Annealing. Transportation Research Part B,
2003, 37(6), 541-560. https://doi.org/10.1016/S0191-
2615(02)00027-9

24. Kordić, S., Davidović, T., Kovač, N., Dragović, B. Com-
binatorial Approach to Exactly Solving Discrete and
Hybrid Berth Allocation Problem. Applied Mathemat-
ical Modeling, 2016, 40(21-22), 8952-8973. https://doi.
org/10.1016/j.apm.2016.05.004

25. Kovač, N. Metaheuristic Approaches for the Berth Al-
location Problem. Yugoslav Journal of Operations Re-
search, 2017, 27(3), 265-289. https://doi.org/10.2298/
YJOR160518001K

26. Kovač, N., Stanimirović, Z., Davidović, T. Metaheuristic
Approaches for the Minimum Cost Hybrid Berth Allo-
cation Problem. In: Konstantopoulos, C., Pantziou, G.
(Eds.), Modelling, Computing and Data Handling Meth-
odologies for Maritime Transport, Springer, New York
Dordrecht, Heidelberg London, 2017, 1-47.

27. Lalla-Ruiz, E. A., Batista, B. M., Vega, J. M. M. Adap-
tive Variable Neighborhood Search for Berth Plan-
ning in Maritime Container Terminals. Proceedings of
GREEN-COPLAS 2013: IJCAI 2013 Workshop on Con-
straint Reasoning, Planning and Scheduling Problems
for a Sustainable Future, Beijing, China, August 3-9,
2013, 35-42.

28. Lalla-Ruiz, E. A., Voß, S. Towards a Matheuristic Ap-
proach for the Berth Allocation Problem. In: Pardalos
P., Resende M., Vogiatzis C., Walteros J. (Eds.), Learning
and Intelligent Optimization. LION 2014. Lecture Notes
in Computer Science, Springer, Cham, February 16-21,
2014, 8426, 218-222. https://doi.org/10.1007/978-3-
319-09584-4_20

Information Technology and Control 2018/3/47488

29. Lalla-Ruiz, E. A., Voß, S. POPMUSIC as a Matheuristic
for the Berth Allocation Problem. Annals of Mathemat-
ics and Artificial Intelligence, 2016, 76(1-2), 173-189.
https://doi.org/10.1007/s10472-014-9444-4

30. Lalla-Ruiz, E., Voß, S., Expósito-Izquierdo, C.,
Melián-Batista, B., Moreno-Vega, J. M. A POPMU-
SIC-Based Approach for the Berth Allocation Problem
Under Time-Dependent Limitations. Annals of Op-
erations Research, 2017, 253(2), 871-897. https://doi.
org/10.1007/s10479-015-2055-6

31. Lee, D. H., Chen, J. H., Cao, J. X. The Continuous Berth
Allocation Problem: A Greedy Randomized Adaptive
Search Solution. Transportation Research Part E: Lo-
gistics and Transportation Review, 2010, 46(6), 1017-
1029. https://doi.org/10.1016/j.tre.2010.01.009

32. Lim, A. The Berth Planning Problem. Operations
Research Letters, 1998, 22(2), 105-110. https://doi.
org/10.1016/S0167-6377(98)00010-8

33. Meisel, F. Seaside Operations Planning in Container
Terminals. Springer, Berlin Heidelberg, 2009. https://
doi.org/10.1007/978-3-7908-2191-8

34. Mladenović, N., Hansen, P. Variable Neighborhood
Search. Compututers and Operations Research, 1997,
24(11), 1097-1100. https://doi.org/10.1016/S0305-
0548(97)00031-2

35. Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y. VLSI
Module Placement Based on Rectangle-Packing by the
Sequence-Pair. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 1996, 15(12),
1518-1524. https://doi.org/10.1109/43.552084

36. Nishimura, E., Imai, A., Papadimitriou, S. Berth Alloca-
tion Planning in the Public Berth System by Genetic Al-
gorithms. European Journal of Operational Research,
2001, 131(2), 282-292. https://doi.org/10.1016/S0377-
2217(00)00128-4

37. de Oliveira, R. M., Mauri, G. R., Lorena, L. A. N. Clus-
tering Search for the Berth Allocation Problem. Expert
Systems with Applications, 2012, 39(5), 5499-5505.
https://doi.org/10.1016/j.eswa.2011.11.072

38. Pinedo, M. Scheduling Theory, Algorithms and Sys-
tems. Prentice Hall, 2008.

39. Port of Rotterdam. 2017 Annual Report: Results Cre-
ate New Scope for Ambitious Investment Programme.
http://www.portofrotterdam.com/en/news-and-press-
releases/2017-annual-report-results-create-new-scope
-for-ambitious-investment. Accessed on March 23, 2018.

40. Rashidi, H., Tsang, E. P. K. Novel Constraints Satis-
faction Models for Optimization Problems in Con-

tainer Terminals. Applied Mathematical Modelling,
2013, 37(6), 3601-3634. https://doi.org/10.1016/j.
apm.2012.07.042

41. Rodriguez-Molins, M., Ingolotti, L., Barber, F., Salido,
M. A., Sierra, M. R., Puente, J. A Genetic Algorithm for
Robust Berth Allocation and Quay Crane Assignment.
Progress in Artificial Intelligence, 2014, 2(4), 177-192.
https://doi.org/10.1007/s13748-014-0056-3

42. Saharidis, G. K. D., Golias, M. M., Boile, M., Theofanis,
S., Ierapetritou, M. G. The Berth Scheduling Problem
with Customer Differentiation: A New Methodological
Approach Based on Hierarchical Optimization. The In-
ternational Journal of Advanced Manufacturing Tech-
nology, 2010, 46(1-4), 377-393. https://doi.org/10.1007/
s00170-009-2068-x

43. Simrin, A., Diabat, A. The Dynamic Berth Allocation
Problem: A Linearized Formulation. RAIRO-Oper-
ations Research, 2015, 49(3), 473-494. https://doi.
org/10.1051/ro/2014039

44. Stahlbock, R., Voß, S. Operations Research at Contain-
er Terminals: A Literature Update. OR Spectrum, 2008,
30(1), 1-52. https://doi.org/10.1007/s00291-007-0100-9

45. Theofanis, S., Boile, M., Golias, M. An Optimization
Based Genetic Algorithm Heuristic for the Berth Allo-
cation Problem. IEEE Congress on Evolutionary Com-
putation, CEC 2007, September 25-28, 2007, 4439-
4445. https://doi.org/10.1109/CEC.2007.4425052

46. Ting, C. J., Wu, K. C., Chou, H. Particle Swarm Optimi-
zation Algorithm for the Berth Allocation Problem. Ex-
pert Systems with Applications, 2014, 41(4), 1543-1550.
https://doi.org/10.1016/j.eswa.2013.08.051

47. Umang, N., Bierlaire, M., Vacca, I. Exact and Heuristic
Methods to Solve the Berth Allocation Problem in Bulk
Ports. Transportation Research Part E: Logistics and
Transportation Review, 2013, 54, 14-31. https://doi.
org/10.1016/j.tre.2013.03.003

48. UNCTAD. Review of Maritime Transport. http://unct-
ad.org/en/PublicationsLibrary/rmt2017_en.pdf, 2017.
Accessed on March 23, 2018.

49. Zhou, P., Kang, H. Study on Berth and Quay-Crane Al-
location Under Stochastic Environments in Container
Terminal. Systems Engineering-Theory and Practice,
2008, 28(1), 161-169. https://doi.org/10.1016/S1874-
8651(09)60001-6

50. Zhou, P., Kang, H., Lin, L. A Dynamic Berth Allocation
Model Based on Stochastic Consideration. Proceedings
of the Sixth World Congress on Intelligent Control and
Automation, 2006, (WCICA 2006.), Dalian, China, June
21-23, 2006, 2, 7297-7301.

