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This study considers the Dynamic Minimum Cost Hybrid Berth Allocation Problem (DMCHBAP) with fixed 
handling times of vessels. The objective function to be minimized consists of three components: the costs 
of positioning, waiting, and tardiness of completion for all vessels. Having in mind that the speed of finding 
high-quality solutions is of crucial importance for designing an efficient and reliable decision support system 
in container terminal, metaheuristic methods represent the natural choice to deal with DMCHBAP. Four vari-
ants of Variable Neighborhood Search (VNS) metaheuristic are designed for DMCHBAP. All four proposed 
VNS methods are evaluated on four classes of randomly generated instances with respect to solution quality 
and running times. The conducted computational analysis indicates that all four VNS-based methods repre-
sent promising solution approaches to DMCHBAP and similar problems in maritime transportation. 
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1. Introduction
Berth Allocation Problem (BAP) is one of the most 
studied topics in the optimization of maritime trans-
portation. BAP assumes that a set of vessels needs to 
be allocated to the berths within some planning hori-
zon in such a way that some objective function is opti-
mized. BAP is proved to be NP-hard in [32]. The most 
detailed classification scheme for BAPs is proposed in 
[2] and extended in [3]. The classification is based on 
four attributes: spatial, temporal, handling time and 
performance measure.
Spatial attribute classifies BAPs as discrete, continu-
ous, hybrid, or draft. In the discrete case (DBAP), each 
vessel may be allocated only to one berth at a time, 
while in the continuous case, a vessel can be allocated 
to any position on quay. Hybrid layout (HBAP) is ob-
tained if vessels can share one berth or one vessel can 
occupy more than one berth. The fourth BAP layout 
describes vessel’s berthing position based on its draft.
The most common BAP models with respect to the 
temporal attribute are static and dynamic. In the stat-
ic model, arrival times impose soft constraints on the 
berthing times, meaning that a vessel can be speeded 
up or slowed down. The dynamic model assumes fixed 
arrival times of the vessels, meaning that they cannot 
berth before the expected arrival time. According to 
the handling time attribute, BAP can assume fixed or 
variable handling times. Handling times may vary de-
pending on the berthing position, on the assignment 
of Quay Cranes (QCs), or on a QC operation schedule. 
The performance measure attribute describes the ob-
jective function of a considered BAP. Detailed surveys 
of BAP variants can be found in [3] and [44].
This paper considers a variant of dynamic BAP, de-
noted by Dynamic Minimum Cost Hybrid Berth Al-
location Problem (DMCHBAP) and classified as 

1 2 3| | | ( ),hybr dyn fix w pos w wait w tard+ +∑  according 
to the notation from [2]. Hybrid layout studied in this 
paper, corresponds to the case shown in Fig. 3d from 
[2]. The objective function is based on the one proposed 
in [40] and it is adapted to the dynamic BAP. The objec-
tive function is a weighted sum of three components: 
berthing of a vessel apart from its preferred berthing 
position, waiting of a vessel with respect to the expect-
ed arrival time, and tardiness of a vessel against its due 
date. This form of objective function reflects the real 
requirements in majority of ports [16, 39, 40, 48].

Terminal manager needs a fast and efficient decision 
support system, in order to meet all requirements of 
the port as a highly dynamic system. The necessity of 
quickly providing high-quality solution for BAP was a 
motivation for many authors to apply metaheuristic 
methods, such as: simulated annealing, tabu search, 
ant colony optimization, particle swarm optimiza-
tion, etc. [25]. On the other hand, experimental results 
from [7] related to static MCHBAP, showed that even 
small BAP instances are too complex for exact and 
MIP-based heuristics solvers. These results, as well 
as the fact that dynamic BAP is harder to solve than 
its static variant [11], motivated us to use metaheuris-
tic methods as solution approaches to DMCHBAP.
To the best of our knowledge, the only paper dealing 
with hybrid variant of dynamic BAP is [47]. The au-
thors considered hybrid BAP in bulk ports with an 
aim to minimize the total service times of vessels and 
applied Squeaky Wheel Optimization (SWO). Hav-
ing in mind that the objective function of our DM-
CHBAP is different from the one considered in [47], 
SWO from that paper cannot be directly applied to 
DMCHBAP. We have developed several variants of 
SWO adapted to the considered BAP. However, even 
the best SWO variant provided results that are far 
from satisfactory ones, with respect to both solution 
quality and running times (see Section 5). Therefore, 
SWO is excluded from our consideration as a solution 
method to DMCHBAP.
The choice of Variable Neighborhood Search (VNS) 
as a metaheuristic method for DMCHBAP is mo-
tivated by studies [19] (considering minimum cost 
static discrete BAP), [6] and [26] (dealing with stat-
ic MCHBAP). The authors of [19] proposed general 
VNS exploring three neighborhoods (local insertion, 
interchange and insertion) in order to minimize the 
objective function composed of waiting and han-
dling costs, lateness penalties and earliness premi-
ums (considered as benefits and therefore appearing 
with negative sign). In [6], a deterministic variant 
of VNS, known as Variable Neighborhood Descent 
(VND), was successfully applied to static MCHBAP, 
while [26] proposed General Variable Neighborhood 
Search (GVNS), which showed to be a promising 
solution approach for the same problem. In general, if 
some constraints are excluded, MCHBAPs may be ob-



473Information Technology and Control 2018/3/47

served as 2-D packing problems, with the goal to pack 
smaller rectangles into a bigger one of predetermined 
size. The main characteristic of this kind of problems 
is that, in order to improve a given (locally minimal) 
solution, it is required to significantly degrade its 
quality by some specific transformations. Although 
VNS, as an improvement forcing method, may not 
seem as adequate solution approach, the studies [6] 
and [26] showed that the use of sophisticated data 
structures and definitions of neighborhoods in VNS-
based methods ensure their good performance when 
solving static MCHBAP. Therefore, starting from 
VND [6] and GVNS [26], we have designed VND and 
GVNS approaches for DMCHBAP. In addition, we 
develop a Multi-Start VND (MS-VND) and Skewed 
Variable Neighborhood Search (SVNS) as new VNS-
based methods for DMCHBAP. The proposed VNS 
approaches use adequate solution representation, 
neighborhood structures, and search strategies, 
which are adapted to the considered DMCHBAP. All 
four metaheuristic approaches are evaluated on four 
classes of randomly generated DMCHBAP test in-
stances.
The rest of this paper is organized as follows. A brief 
review of recent papers addressing metaheuristic ap-
proaches to dynamic variants of BAP is given in Sec-
tion 2. Section 3 introduces the considered DMCH-
BAP. In Section 4, we provide a detailed description of 
four VNS-based metaheuristic for DMCHBAP: VND, 
MS-VND, GVNS, and SVNS. Experimental results 
and analysis are presented in Section 5. Concluding 
remarks and some directions for future work are giv-
en in Section 6.

2. Related Work
In recent literature dealing with dynamic BAP, dy-
namic vessel arrivals are considered and addressed 
by several variants of metaheuristic methods, such 
as randomized Local Search (LS), Tabu Search (TS), 
Genetic Algorithm (GA), Simulated Annealing (SA), 
Particle Swarm Optimization (PSO), etc. Nishimu-
ra et al. [36] presented GA for the discrete space and 
dynamic vessels’ arrival times for berth scheduling 
problem. Imai et al. [21] presented a formulation of 
the dynamic discrete BAP at a terminal with indented 
berths, and proposed GA as a solution method. Han et 

al. [17] combined GA with SA in the case of dynamic 
discrete BAP in order to minimize the total service 
time of all the vessels. Theofanis et al. [45] present-
ed an optimization-based GA for the dynamic dis-
crete BAP with an aim to minimize the total weighted 
service time of vessels that may have various service 
priorities. Dynamic berth allocation and Quay Crane 
Assignments Problem (QCAP) was considered in [4]. 
A hybrid method, obtained by combining parallel GA 
and a constructive heuristic algorithm for generat-
ing promising solutions, is applied to solve QCAP. 
Discrete space and dynamic vessel arrival BAP with 
stochastic vessel handling times and known probabil-
ity distributions was studied in [22]. Two objectives 
were considered, risk and total service time, which 
were minimized by Evolutionary Algorithm (EA).
Golias and Haralambides in [14] concurrently min-
imized vessels’ tardiness and waiting time and max-
imized the premium from vessels’ early departure in 
the case of dynamic discrete BAP. As a solution meth-
od, the authors used GA previously proposed in [15]. 
Hierarchical optimization approach for dynamic dis-
crete BAP was studied in [42], involving two conflict-
ing objective functions that correspond to two levels 
of hierarchy. To solve this problem, the authors de-
signed GA based on the k-th best algorithm. The stud-
ies [49] and [50] considered dynamic discrete BAP 
that minimizes total waiting time of calling vessels, 
where arrival times and handling times of vessels 
were considered as stochastic parameters following 
the normal distribution. In both papers, a reduced 
search space GA, based on the characteristics of the 
optimal solution, was used. In [41], dynamic contin-
uous BAP and QCAP were studied and addressed by 
GA approach. Two conflicted objectives were consid-
ered: minimizing the total service time and maximiz-
ing the robustness or buffer times.
TS was used to solve dynamic discrete BAP and it 
was further extended for continuous BAP in [5]. The 
authors considered the BAP model with the objective 
function that minimizes the sum of the service times 
for vessels. Minimization of the total weighted flow 
time in dynamic continuous BAP was studied in [31], 
where two variants of Greedy Randomized Adaptive 
Search Procedure (GRASP) were developed to find 
near optimal solutions. The dynamic discrete BAP was 
solved in [37] by combining clustering search method 
and SA, where the objective function minimizes the 
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weighted sum of service times. In [23], the cost of the 
non-optimal berthing location and costs of tardiness 
were minimized in the case of continuous BAP.
In [46], PSO was applied for the first time as solu-
tion approach to dynamic discrete BAP. Golias et al. 
[13] used lambda-optimal based heuristic for dy-
namic discrete BAP to guarantee local optimality at 
a predefined neighborhood. In [28] and [29], Partial 
Optimization Metaheuristic Under Special Intensi-
fication Conditions (POPMUSIC) was used for dy-
namic discrete BAP with the aim to minimize the to-
tal (weighted) service time of the incoming container 
vessels. The authors developed two variants of the 
algorithm by hybridization of the metaheuristic ap-
proach with mathematical programming. More pre-
cisely, CPLEX solver is used to exactly solve defined 
sub-problems. Based on promising experimental 
results, the authors concluded that POPMUSIC has 
clear advantage over the best approximate approach-
es known to date, and that it can be successfully ap-
plied to this kind of problems as stand-alone solution 
technique. Hybridization of POPMUSIC and the 
branch-and-cut algorithm incorporated in CPLEX 
solver is also used in [30] in the case of BAP under 
time-dependent limitations where berthing depends 
on tidal and water depth constraint. A new model for 
the dynamic BAP was proposed by Simrin and Diabat 
in [43]. The authors used GA to minimize the total 
time that vessels spend at a terminal. Alsoufi et al. [1] 
proposed a mathematical model for robust berth allo-
cation and implemented hybrid meta-heuristic based 
on GA and Branch-and-Cut algorithm in order to 
minimize the total tardiness of vessel departure time 
and to reduce the cost of berthing.
Gargari and Niasar in [10] applied VNS method to 
minimize vessels waiting time and berth idle time 
in the case of the discrete dynamic BAP. The authors 
used two types of neighborhoods (insert and swap), 
which were explored only in the case when a new 
allocation produced a feasible solution. Discrete dy-
namic BAP under tidal and water depth constraints is 
solved in [27] by applying Adaptive VNS. This variant 
of VNS involves multi-start strategy that exploits an 
adaptive mechanism with the goal to minimize the 
service time of each vessel. In [8], VNS approach was 
used to solve tactical BAP that incorporates uncer-
tainty in vessel arrival times. VNS for tactical BAP is 
based on two neighborhood structures: reinsertion 

movement, which is used in shaking phase and in 
VND part of local search, and interchange movement, 
which is explored only in VND part. An overview of 
solution approaches to different variants of BAP can 
be found in [25].

3. Dynamic Minimum Cost Hybrid 
Berth Allocation Problem
DMCHBAP, considered in this paper, deals with as-
signing a berthing position and a berthing time to each 
incoming vessel to be served within a given planning 
horizon, with an aim to minimize the total berthing 
cost. This cost consists of three components: the costs 
of positioning, waiting, and tardiness of completion for 
all vessels. The vessels are defined by the following set 
of data: expected arrival time, processing time, length, 
due date, preferred berth position, and penalties.
As illustrated in Fig. 3, a solution to DMCHBAP can 
be presented in a space-time-diagram. It is assumed 
that both coordinates are discrete, i.e., the space is 
modelled by the berth indices, whereas the time hori-
zon is divided into segments, such that berthing time 
of each vessel is represented by an integer. Each ves-
sel is represented by a rectangle with the height equal 
to the length of a vessel (expressed by the number of 
berths), while the width corresponds to the required 
handling time. The berthing position and berthing 
time of a vessel are given in the lower-left vertex of 
a rectangle, denoted by the reference point of a vessel 
(marked by the index of vessel in Fig. 3). A berthing 
plan is feasible if )a  the rectangles do not overlap and 

)b  all rectangles can fit in the given space-time-dia-
gram (see Fig. 3).
In order to define DMCHBAP, we start from the defi-
nition of static MCHBAP given in [24] and adapt it to 
the dynamic version of BAP. DMCHBAP is charac-
terized by the input data, objective function, and a set 
of constraints defining feasible solutions. The input 
data of DMCHBAP are listed below:
l : Total number of vessels; 
m : Total number of berthing positions; 
T :  Total number of time units in the planning hori-

zon (corresponding to 1T -  time segments); 
vessels: Sequence of data describing all l  vessels, 

where = { : = 1, , };kvessels vessel k l  



475Information Technology and Control 2018/3/47

vesselsk : 8-tuple with the following structure 
  1 2 3= ( , , , , , , , ).k k k k k k k k kvessel ETA a b d s c c c
The elements of a 8-tuple kvessel  represent the follow-
ing data for each vessel:  
ETAk : The expected time of arrival of kvessel ; 
ak : Processing time of kvessel , if single crane is 

used; 
bk : Length of kvessel  expressed by the number of 

berths; 
dk : Required departure time of kvessel ; 
sk : Least-cost berthing location of the reference 

point of kvessel ; 
c1k : Penalty cost, if kvessel  cannot dock at its pre-

ferred berth; 
c2k : Penalty cost per unit time, if kvessel  cannot 

berth at kETA ; 
c3k : Penalty cost per unit time, if kvessel  is delayed 

beyond the required departure time kd . 
A feasible solution of DMCHBAP consists of pairs 
( , )k kB At , = 1,2, ,k l  where {1,2, , }kB m∈   denotes 
the lowest berth index allocated to the kvessel  and 

{1,2, , 1}kAt T∈ -  represents the minimum time in-
dex of a kvessel . Pair ( , )k kB At  actually corresponds to 

the reference point of ,kvessel = 1,2, ,k l . A feasible 
solution of DMCHBAP is subject to the following sets 
of constraints:

Constraints 1. Each berth can be assigned to only one 
vessel at time segment t , = 1, , 1t T - ;

Constraints 2. A berth can be allocated to a vessel 
only between its arrival and departure times. 
The goal of DMCHBAP is to minimize the total pen-
alty cost including: the penalty incurred as a result of 
missing the preferred berthing location of the refer-
ence point, the penalty resulted by the actual berthing 
later than the expected arrival time, and the penalty 
cost arising from the delay of the departure after the 
required due time. The last two terms influence the ob-
jective function only in case they are positive. Similarly 
to [40], the objective function can be expressed as: 

( )1 2 3
=1

( ) ( ) ,
l

k k k k k k k k
k

c c At ETA c Dt dσ + ++ - + -∑ (1)

where 

(2)

Figure 1 
Illustration of BAP solution

occupies more than one berth (each equipped by a crane), the processing time will be reduced. 
According to the definition of the objective function given in [40], k  is expressed by the given double 
sum (2). It can be explained as follows: as the kvessel  can occupy several berths and only one is 
preferred (which usually means that it contains the required equipment for serving the vessel), all other 
allocated berths have to be penalized. The lack of a proper equipment on these berths requires the 
engagement of additional equipment and/or labor. For these reasons, the cost of handling a vessel may 
increase. Finally, ( )a b   denotes that this term has impact on the objective function value only if its 
value is positive. 
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Note that DMCHBAP is strongly NP-hard, because it can be observed as a machine scheduling problem 
[9, 38]. Actually, we prove that even the simpler variant of DMHCBAP is strongly NP-hard. 
 
Theorem 1. DMCHBAP is strongly NP-hard even in the restricted case, in which the preferred berth 
restrictions are ignored and the objective function represents only total weighted tardiness.  
Proof. In order to prove this theorem, we show that the well-known identical machine scheduling 
problem with release dates and minimization of total weighted tardiness can be polynomially reduced to 
DMCHBAP. In the standard three field scheduling notation [9], the problem can be classified as 

| |m j j jP r w T . In order to follow previously given notations, we rename index j  to k . We further 
assume that vessels represent jobs and berths correspond to the machines. Consequently, vessel’s 
processing time defined by /k ka b   can be observed as job processing time kp , while expected arrival 
time kETA  corresponds to the job release time kr . In addition, job’s due date is actually vessel’s due 
date kd  and the tardiness is calculated in the standard way, assuming that 3=k kw c . To ignore preferred 
berthing location and waiting time of vessel, the corresponding penalties 1kc  and 2kc  are set to zero. 
The obtained machine scheduling problem is known to be strongly NP-hard, even for = 1m  (see [38]).  
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, > ,
( ) =

0, ,
a b if a b

a b
otherwise

+ -
- 


(3)

and = /k k k kDt At a b+   , {1,2, , }kDt T∈  , representing 
the departure time of the 

kvessel . Namely, if only one 
crane is used to serve the 

kvessel , the required process-
ing time is ka . However, if the kvessel  occupies more 
than one berth (each equipped by a crane), the pro-
cessing time will be reduced.
According to the definition of the objective function 
given in [40], kσ  is expressed by the given double sum 
(2). It can be explained as follows: as the kvessel  can oc-
cupy several berths and only one is preferred (which 
usually means that it contains the required equip-
ment for serving the vessel), all other allocated berths 
have to be penalized. The lack of a proper equipment 
on these berths requires the engagement of addition-
al equipment and/or labor. For these reasons, the cost 
of handling a vessel may increase. Finally, ( )a b +-  de-
notes that this term has impact on the objective func-
tion value only if its value is positive.
Note that DMCHBAP is strongly NP-hard, because it 
can be observed as a machine scheduling problem [9, 
38]. Actually, we prove that even the simpler variant 
of DMHCBAP is strongly NP-hard.
Theorem 1. DMCHBAP is strongly NP-hard even in 
the restricted case, in which the preferred berth restric-
tions are ignored and the objective function represents 
only total weighted tardiness. 
Proof. In order to prove this theorem, we show that the 
well-known identical machine scheduling problem 
with release dates and minimization of total weighted 
tardiness can be polynomially reduced to DMCHBAP. 
In the standard three field scheduling notation [9], the 
problem can be classified as | |m j j jP r w T∑ . In order to 
follow previously given notations, we rename index j  
to k . We further assume that vessels represent jobs 
and berths correspond to the machines. Consequent-
ly, vessel’s processing time defined by /k ka b   can be 
observed as job processing time kp , while expected ar-
rival time kETA  corresponds to the job release time kr . 
In addition, job’s due date is actually vessel’s due date 

kd  and the tardiness is calculated in the standard way, 
assuming that 3=k kw c . To ignore preferred berthing 
location and waiting time of vessel, the correspond-
ing penalties 1kc  and 2kc  are set to zero. The obtained 
machine scheduling problem is known to be strongly 
NP-hard, even for = 1m  (see [38]). 

4. VNS-Based Metaheuristics for 
DMCHBAP
VNS is a simple and effective metaheuristic method 
based on local search procedure [20, 34]. The basic 
idea of VNS is the systematic change of neighbor-
hoods within a descent phase, to find a local optimum, 
and within a perturbation phase to escape from the 
corresponding valley. The main components of VNS 
are shaking and local search. The role of shaking is to 
help the algorithm to escape from a local optimum and 
to explore the search space in an efficient manner. Lo-
cal search is used to intensify exploration of neighbor-
hoods around promising solutions. Different variants 
of VNS have been proposed in the literature up to now: 
Basic VNS (BVNS), Reduced VNS (RVNS), Variable 
Neighborhood Descent (VND), Variable Neighbor-
hood Decomposition Search (VNDS), General VNS 
(GVNS), Skewed VNS (SVNS), Primal-dual VNS, Par-
allel VNS, etc. An overview of VNS-based methods 
and applications to combinatorial and global continu-
ous optimization problems can be found in [20].
The study [6] considers static MCHBAP and proposes 
a new optimization method based on the determinis-
tic variant of VNS method, known as Variable Neigh-
borhood Descent (VND). This variant does not involve 
shaking component and the local search is performed 
through multiple neighborhoods. General Variable 
Neighborhood Search (GVNS) for the static MCH-
BAP is proposed in [26] to allow better diversification 
of solutions. GVNS involves shaking phase that helps 
the algorithm to escape from the local minimum and 
to efficiently explore the search space. In addition, in-
stead of simple local search, GVNS uses VND. In this 
paper, we modify VND and GVNS approaches from [6] 
and [26], and develop VND and GVNS implementa-
tions for DMCHBAP. In order to provide better diver-
sification of initial solutions, we propose Multi-Start 
variant of VND. In addition, we develop Skewed VNS 
(SVNS) as a solution approach to DMCHBAP. The ba-
sic idea behind SVNS is to address the problem of ex-
ploring valleys far from the incumbent solution. This is 
performed by accepting local optimum with objective 
function values close to the objective value of incum-
bent solution, but not necessarily better (see [20]).
The detailed description of other aspects of the pro-
posed VND, MS-VND, GVNS, and SVNS implemen-
tations for DMCHBAP is provided in the following 
subsections.
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4.1. Basic Definitions and Solution 
Representation
All four VNS methods proposed in this study are 
based on the combinatorial formulation for DMCH-
BAP and use the same data structures and initializa-
tion (preprocessing) phase as in [6] and [26]. As a part 
of the initialization, for all vessels and for all possible 
vessel positions in two dimensional plane, the list of 
3-tuples elements (berth, time, penalty cost) is creat-
ed. This list is denoted by Ψ  and it consists of l  indi-
vidual ξ  lists, each corresponding to one vessel. The 
ξ  lists are sorted in non-decreasing order according 
to the penalty cost values for each vessel individual-
ly. The role of ξ  lists is to ensure efficient search of 
the solution space by its significant reduction in each 
step. More precisely, any change in the allocation of 
vessels produces changes in the corresponding ξ  lists 
in such a way that, for each vessel, only feasible posi-
tions remain as the elements in its ξ  list. The fact that 
the ξ  lists remain sorted at each step of the search, 
makes it easy to detect positions with smaller pen-
alty costs for each allocated vessel (if any exists). In 
addition, Ψ  list structure enables easy identification 
of unfeasible solution: if at any moment there exists a 
vessel with empty ξ  list, the corresponding solution 
could be discarded as unfeasible.
During the execution of VNS-based methods for DM-
CHBAP, two main decisions are to be made: the se-
lection of a vessel to be allocated and the selection of 
its position in berth-time plane. In the initialization 
phase of algorithms, these decisions are made sto-
chastically, based on the priorities of vessels.
All four VNS approaches proposed for DMCHBAP 
use the same solution representation based on se-
quence pair, which was introduced in [35]. It involves 
two types of permutations, denoted by H  and V  that 
describe the positions of vessels in the port. These 
permutations are formed based on the following rules: 
a if vessel j  precedes vessel i  in the permutation H , 

then vessel j  “cannot see” vessel i  on “left-up” 
view, 

b if vessel j  precedes vessel i  in the permutation V , 
then j  “cannot see” i  on “left-down” view. 

For each of the implemented VNS-based methods 
for DMCHBAP, global variables are: current solu-
tion ( )Solution , local improvement of the shaken 
current solution ( )LocalBest , the best found solution 

( )GlobalBest  and the CPU time of the first occurrence 
of the best found solution ( )minT .

4.2. VND for DMCHBAP
Each vessel allocation may be uniquely represented 
as a pair of permutations ( , )H V . On the other hand, 
each pair ( , )H V  corresponds to a class of allocations. 
Therefore, the study [6] introduces a procedure that 
efficiently finds a feasible allocation that minimiz-
es total cost while preserving ( , )H V  ordering in the 
case of static MCHBAP.
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The pseudo-code of the VND for DMCHBAP is presented in Alg. 4.2. The procedure used for generating 
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Both methods start with creating the subsets of conflicting vessels, based on their most preferred berths 
and ETA  parameter values. In the first method, groups are sorted in non-increasing order of their 
cardinality. One by one, groups are allocated such that total cost of each group is minimized. If no feasible 
solution is obtained, the second method is applied. The groups of conflicting vessels are now sorted in 

The pseudo-code of the VND for DMCHBAP is pre-
sented in Alg. 4.2. The procedure used for generating 
initial solution for VND and GVNS from [6] and [26], 
respectively, cannot be applied to DMCHBAP, as this 
procedure often creates infeasible solution. For this 
reason, we propose two new methods for generating 
initial solution for DMCHBAP, which are incorporated 
in the procedure InItIalSolutIon. Both methods start 
with creating the subsets of conflicting vessels, based 
on their most preferred berths and ETA  parameter 
values. In the first method, groups are sorted in non-in-
creasing order of their cardinality. One by one, groups 
are allocated such that total cost of each group is min-
imized. If no feasible solution is obtained, the second 
method is applied. The groups of conflicting vessels are 
now sorted in non-decreasing order based on average 
number of feasible positions for vessels belonging to the 
same group. The allocation of each group is followed by 
updating the feasible positions in ξ  lists of the remain-
ing vessels and resorting the non-allocated groups.
Based on Solution obtained by procedure InItIalSolu-
tIon, the corresponding pair ( , )H V  is formed by pro-
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cedure PermutatIonS. The group of vessels Sω  that are 
not placed on their most preferred positions is identi-
fied. The vessels belonging to Sω  are sorted in non-in-
creasing order of their costs with respect to the current 
best solution. During the algorithm’s run, the content 
of set Sω  may change, however, its elements are al-
ways sorted according to the corresponding costs.
As in [6], VND uses three types of neighborhoods, 
which are applied only to the vessels from Sω . The 
algorithm always starts from the vessel in Sω  hav-
ing the largest cost and continues with vessels having 
smaller costs. For a given size k , = 1,2,3,... maxk k , the 
neighborhoods are explored in the following order: 
1 ChangePoSItIonh: selected vessel is first moved k  

positions to the left in permutation H , and if there 
is no improvement, the same vessel is moved k  po-
sitions to the right in H , while permutation V  re-
mains unchanged; 

2 ChangePoSItIonV: selected vessel is first moved k  
positions to the left in permutation V , and if there 
is no improvement, the same vessel is moved k  po-
sitions to the right in V , while permutation H  re-
mains unchanged; 

3 ChangePoSItIonhV: represents a combination of 
ChangePoSItIonh and ChangePoSItIonV, where all 
possible changes of H  and V  are considered. 

4.3. MS-VND for DMCHBAP
At the beginning of each iteration of MS-VND, the 
initial solution is constructed by procedure InItIal-
Ize. This procedure starts with an empty solution and 
constructs a complete initial solution. In order to gen-
erate it, the procedure must make two decisions: to 
choose a vessel and to choose allowable position from 
ξ  list for the selected vessel.

corresponding rectangle associated to the vessel in 
two dimensional plane, and the calculated average 
cost of all possible ξ  list elements for the observed 
vessel. Coefficients of these three parameters are 
denoted by 1λ , 2λ , and 3λ , respectively. The linear 
combination of parameters with the corresponding 
coefficients represents the priority of a vessel used 
for its selection by the roulette wheel. The values of 
coefficients iλ  are determined experimentally in such 
a way that 1 2 3 = 1λ λ λ+ +  holds.
For a selected vessel, all potential positions are con-
sidered with respect to the penalty cost value. The se-
lection of vessels’ positions in the initialization phase 
of MS-VND is performed stochastically, based on the 
position costs. The positions with smaller costs have 
higher chances to be selected by the roulette wheel. 
Procedure InItIalIze calculates probabilities for all 
feasible positions from ξ  list and selects a position 
by using randomly generated number and the roulette 
wheel. The considered vessel is fixed on that position 
and ξ  lists are reduced for all unused vessels. The 
above described process is repeated l  times.
From the constructed initial solution, algorithm 
forms permutation pair ( , )H V  and the group of ves-
sels Sω . These parameters are further passed as in-
put data to algorithm VND1, which is similar to VND 
described in Subsection 4.2. The only difference is 
that procedures PermutatIonS and notPreferred-
PoSItIon are called outside it and additional input 
parameters (( , ), )H V Sω  are passed to VND1. These 
steps are repeated until stopping criterion is satisfied 
(predefined amount of running time RunTime ). The 
best found solution through multiple VND runs is re-
turned as the output of MS-VND. The pseudo-code of 
MS-VND for DMCHBAP is presented in Alg. 4.3.

4.4. GVNS for DMCHBAP
The initial solution and pair ( , )H V  are generated in 
the same way as in VND. GVNS employs Shake pro-
cedure based on stochastic transformations of the 
current best solution. During the shaking step, two 
transformations are applied in order to form a new 
solution:  
1 First, k  random groups of vessels are chosen in ac-

cordance with the priority proportional to the total 
cost of the group. The chosen groups are placed at 
the beginning of the list containing all the groups. 

non-decreasing order based on average number of feasible positions for vessels belonging to the same 
group. The allocation of each group is followed by updating the feasible positions in   lists of the 
remaining vessels and resorting the non-allocated groups. 
Based on Solution obtained by procedure INITIALSOLUTION, the corresponding pair ( , )H V  is formed 
by procedure PERMUTATIONS. The group of vessels S  that are not placed on their most preferred 
positions is identified. The vessels belonging to S  are sorted in non-increasing order of their costs 
with respect to the current best solution. During the algorithm’s run, the content of set S  may change, 
however, its elements are always sorted according to the corresponding costs. 
As in [6], VND uses three types of neighborhoods, which are applied only to the vessels from S . The 
algorithm always starts from the vessel in S  having the largest cost and continues with vessels having 
smaller costs. For a given size k , = 1,2,3,... maxk k , the neighborhoods are explored in the following 
order:  

    (i)  CHANGEPOSITIONH: selected vessel is first moved k  positions to the left in permutation 
H , and if there is no improvement, the same vessel is moved k  positions to the right 
in H , while permutation V  remains unchanged;  

    (ii)  CHANGEPOSITIONV: selected vessel is first moved k  positions to the left in permutation 
V , and if there is no improvement, the same vessel is moved k  positions to the right 
in V , while permutation H  remains unchanged;  

    (iii) CHANGEPOSITIONHV: represents a combination of CHANGEPOSITIONH and 
CHANGEPOSITIONV, where all possible changes of H  and V  are considered.  
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At the beginning of each iteration of MS-VND, the initial solution is constructed by procedure 
INITIALIZE. This procedure starts with an empty solution and constructs a complete initial solution. In 
order to generate it, the procedure must make two decisions: to choose a vessel and to choose allowable 
position from   list for the selected vessel. 

 

 
 
The criterion for vessel selection in MS-VND is a linear combination of ETA  parameter, the size of the 
corresponding rectangle associated to the vessel in two dimensional plane, and the calculated average 
cost of all possible   list elements for the observed vessel. Coefficients of these three parameters are 
denoted by 1 , 2 , and 3 , respectively. The linear combination of parameters with the corresponding 
coefficients represents the priority of a vessel used for its selection by the roulette wheel. The values of 

The criterion for vessel selection in MS-VND is a 
linear combination of ETA  parameter, the size of the 



479Information Technology and Control 2018/3/47

2 Next, k  random pairs of vessels are selected based 
on the calculated priority, where the priority is 
proportional to the vessel’s cost in the current best 
solution. The locations of the selected pairs of ves-
sels are swapped. For this transformation, vessels 
do not need to be in the same group. 

Let 1 1( , )H V  be a neighbor solution obtained from 
Shake phase. Instead of simple local search, GVNS 
employs VND to find improvements of the solution 

1 1( , )H V , by systematic exploration of its six neigh-
borhoods. These neighborhoods are changing H  or V  
permutation, or both permutations simultaneously, 
with an aim to find the optimal sequence pair. The six 
procedures for exploring neighborhoods are applied 
in the following order:

  
 
    (i) SINGLESWAPH selects two vessels and exchanges their positions in permutation ,H  

leaving permutation V  unmodified;  
    (ii) SINGLESWAPV selects two vessels and swaps their positions in permutation ,V  while 

permutation H  is unchanged;  
    (iii) SINGLEMOVEH selects two vessels iv  and jv  and moves vessel jv  immediately after 

vessel iv  in permutation H , no matter if the vessel iv  is in front of or behind vessel 

jv  in the current permutation;  
    (iv) SINGLEMOVEV performs moving of selected vessel jv  immediately after vessel iv  in 

permutation ,V  regardless of mutual order of vessels iv  and jv ;  
    (v) DOUBLESWAPHV consists of all neighbors obtained by one SINGLESWAPH and one 

SINGLESWAPV that are not necessarily performed on the same pair of vessels;  
    (vi) DOUBLEMOVEHV is performed by one SINGLEMOVEH and one SINGLEMOVEV that are 

not necessarily applied on the same pair of vessels.  
 

GVNS incorporates the first improvement principle. More precisely, when an improvement of the current 
solution is found in one of the six neighborhoods, the remaining neighborhoods are skipped and this is 
controlled by noImpr  variable. As soon as noImpr  gets value false , global variables Solution  and 
GlobalBest  are updated inside the corresponding local search procedure. Each procedure of local search 
starts by examining the value of noImpr  variable. The false  value will prevent the execution of the 
corresponding local search procedure. If GlobalBest  is improved, the neighborhood counter k  is reset 
to 1. The value of parameter maxk  represents the maximal neighborhood size for shaking. GVNS 
algorithm finishes when the stopping criterion (predefined amount of running time) is satisfied. The 

1 SingleSwapH selects two vessels and exchanges 
their positions in permutation ,H  leaving permu-
tation V  unmodified; 

2 SIngleSwaPV selects two vessels and swaps their 
positions in permutation ,V  while permutation H  
is unchanged; 

3 SInglemoVeh selects two vessels iv  and jv  and 
moves vessel jv  immediately after vessel iv  in per-
mutation H , no matter if the vessel iv  is in front 
of or behind vessel jv  in the current permutation; 

4 SInglemoVeV performs moving of selected vessel 
jv  immediately after vessel iv  in permutation ,V  

regardless of mutual order of vessels iv  and jv ; 
5 doubleSwaPhV consists of all neighbors obtained 

by one SIngleSwaPh and one SIngleSwaPV that are 
not necessarily performed on the same pair of ves-
sels; 

6 doublemoVehV is performed by one SInglemoVeh 
and one SInglemoVeV that are not necessarily ap-
plied on the same pair of vessels. 

GVNS incorporates the first improvement principle. 
More precisely, when an improvement of the current 
solution is found in one of the six neighborhoods, the 
remaining neighborhoods are skipped and this is con-
trolled by noImpr  variable. As soon as noImpr  gets 
value false , global variables Solution  and GlobalBest  
are updated inside the corresponding local search 
procedure. Each procedure of local search starts by 
examining the value of noImpr  variable. The false  
value will prevent the execution of the corresponding 
local search procedure. If GlobalBest  is improved, 
the neighborhood counter k  is reset to 1. The value 
of parameter maxk  represents the maximal neighbor-
hood size for shaking. GVNS algorithm finishes when 
the stopping criterion (predefined amount of running 
time) is satisfied. The described steps of GVNS for 
DMCHBAP are presented in Alg. 4.4.

4.5. SVNS for DMCHBAP
In cases when a high-quality local optimum has been 
found, VNS will most likely lead the search at random 
to far-away neighborhoods. As the size of neighbor-
hoods to be explored increases, VNS has a tendency 
to degenerate into a multi-start heuristic. In order to 
address the problem of getting out of very large neigh-
borhoods, Hansen and Mladenović [18] proposed a 
variant of VNS, denoted by Skewed Variable Neigh-
borhood Search (SVNS). The main idea behind SVNS 
is to accept a local optimum even if it is slightly worse 
than the incumbent solution. The strategy applied in 
SVNS helps in solving problem instances having sev-
eral separated and possibly distant neighborhoods 
containing near-optimal solutions [18, 20].
This was our motivation to develop SVNS as an addi-
tional VNS approach to DMCHBAP. The pseudocode 
of our SVNS algorithm is presented in Alg. 4.5. The 
structure of SVNS for DMCHBAP is similar to the 
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structure of GVNS described in Section 4.4. As SVNS 
allows the acceptance of worse solutions compared 
to the current best one, it was necessary to activate 
the global variable LocalBest . The initially generat-
ed solution is placed in the variable Solution , which 
is further subject to Shake procedure. Local Search 
phase tries to improve the newly produced solution 
by exploring each of the six neighborhoods in the or-
der indicated in Alg. 4.5. At the end of Local Search 
phase, the obtained solution is saved in the LocalBest  
variable. The difference between GVNS and SVNS 
is in the acceptance criterion of the local optimum 
LocalBest  produced by VND phase. SVNS is more 

tolerant in accepting local optimum LocalBest  
that does not improve the current Solution  regard-
ing the objective function value. The level of toler-
ance is controlled by parameter > 0.α Whenever 

( ) | ( ) ( ) |Cost LocalBest Cost LocalBest Cost Solutionα- -  
is less than ( ),Cost Solution  the search resumes from 
LocalBest  by setting = 1k . Obviously, it is necessary to 
keep the information about the global best solution 
GlobalBest  and to update it whenever an improve-
ment is achieved. As we already explained, this is done 
within the corresponding local search procedure.

described steps of GVNS for DMCHBAP are presented in Alg. 4.4. 
 
4.5 SVNS for DMCHBAP 
  

 
 
In cases when a high-quality local optimum has been found, VNS will most likely lead the search at 
random to far-away neighborhoods. As the size of neighborhoods to be explored increases, VNS has a 
tendency to degenerate into a multi-start heuristic. In order to address the problem of getting out of very 
large neighborhoods, Hansen and Mladenović [18] proposed a variant of VNS, denoted by Skewed 
Variable Neighborhood Search (SVNS). The main idea behind SVNS is to accept a local optimum even 
if it is slightly worse than the incumbent solution. The strategy applied in SVNS helps in solving problem 
instances having several separated and possibly distant neighborhoods containing near-optimal solutions 
[18, 20]. 
This was our motivation to develop SVNS as an additional VNS approach to DMCHBAP. The 
pseudocode of our SVNS algorithm is presented in Alg. 4.5. The structure of SVNS for DMCHBAP is 
similar to the structure of GVNS described in Section 4.4. As SVNS allows the acceptance of worse 
solutions compared to the current best one, it was necessary to activate the global variable LocalBest . 
The initially generated solution is placed in the variable Solution , which is further subject to SHAKE 
procedure. Local Search phase tries to improve the newly produced solution by exploring each of the six 
neighborhoods in the order indicated in Alg. 4.5. At the end of Local Search phase, the obtained solution 

5 Experimental Results
In general, there is a lack of benchmark instances 
for BAPs in literature. Therefore, we generated test 
examples randomly, but systematically, following 
the idea from [12]. Metaheuristics VND, MS-VND, 
GVNS, and SVNS developed for DMCHBAP are eval-
uated on four generated data sets and the obtained 
results are analyzed. Data sets used in our experimen-
tal study are available online at http://www.mi.sanu.
ac.rs/tanjad/DMCHBAP.htm. Each of them contains 
randomly generated instances characterized by the 
following parameters: 
 _ the first data set: = 10,15l  vessels, = 8m  berths, 

the time horizon of = 15T  units, = 20l  vessels, 
= 8m  berths, the time horizon of = 20T  units, and 

= 25l  vessels, = 8m  berths, the time horizon of 
= 25T  units; 

 _ the second data set: = 35,40,45l  vessels, = 8m  
berths, and the time horizon of = 112T  units; 

 _ the third data set: contains randomly generated 
instances involving = 50,55,60l  vessels in the 
case of = 13m  berths and = 112T  time units; 

 _ he fourth data set: = 70,80,90,100l  vessels, = 13m  
berths, and the time horizon of = 112T  units. 

The data used to specify various types of vessels are 
presented in Table 1 taken from [33]. The set of test 
instances involves three types of vessels: feeder, me-
dium, and mega. For each type, the corresponding 
percentage of test instances, handling time range, 
penalty amounts (in units of US$ 1000) and number 
of berths occupied by specific type of vessels are listed 
in Table 1. The distribution of the least-cost berthing 
location for vessels is homogeneous.

Table 1 
Vessel specifications for generated test instances

is saved in the LocalBest  variable. The difference between GVNS and SVNS is in the acceptance 
criterion of the local optimum LocalBest  produced by VND phase. SVNS is more tolerant in accepting 
local optimum LocalBest  that does not improve the current Solution  regarding the objective function 
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5 Experimental Results 
  

In general, there is a lack of benchmark instances for BAPs in literature. Therefore, we generated test 
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The data used to specify various types of vessels are presented in Table 1 taken from [33]. The set of test 
instances involves three types of vessels: feeder, medium, and mega. For each type, the corresponding 
percentage of test instances, handling time range, penalty amounts (in units of US$ 1000) and number of 
berths occupied by specific type of vessels are listed in Table 1. The distribution of the least-cost berthing 
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In order to obtain optimal solutions for small size problem instances we adapted MILP model, proposed 
in [7] for MCHBAP (the static variant of Minimum Cost Hybrid BAP), to the considered DMCHBAP. 
We have executed the obtained MILP model within the framework of commercial CPLEX solver, version 
12.3, which was run on the same configuration as the one used for metaheuristic methods. 

In order to obtain optimal solutions for small size 
problem instances we adapted MILP model, proposed 
in [7] for MCHBAP (the static variant of Minimum 
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Cost Hybrid BAP), to the considered DMCHBAP. 
We have executed the obtained MILP model within 
the framework of commercial CPLEX solver, version 
12.3, which was run on the same configuration as the 
one used for metaheuristic methods.
All four VNS metaheuristic approaches are coded in 
the Wolfram Mathematica v8.0 programming lan-
guage. It is important to note that, unlike classical 
programming languages, Mathematica interprets in-
structions and therefore, the running times of algo-
rithms may increase. However, our comparison is fair, 
having in mind that all VNS-based algorithms are ex-
ecuted under the same conditions. All computation-
al experiments with CPLEX, VND, MS-VND, GVNS, 
and SVNS were conducted on the same platform, i.e., 
on a computer with an Intel Pentium 4 3.00 GHz CPU 
and 512 MB of RAM, running the Microsoft Windows 
XP Professional Version 2002 Service Pack 2 operat-
ing system. Note that executable version of CPLEX 
12.3 is optimized for this platform, meaning that it is 
favored with respect to other algorithms.
Having in mind that metaheuristics are stochastic 
methods, their stability is examined by performing 
repeated runs on each instance. In our computation-
al experiments, MS-VND, GVNS, and SVNS methods 
where executed 10 times with time limit of 10 min-
utes for all test examples, i.e., variable RunTime  is set 
to 10 minutes. VND is deterministic in nature, and, 
therefore, it was run only once on each tested instance.
Preliminary computational experiments are per-
formed on the subset of test instances in order to de-
termine appropriate parameter values for each of the 
considered VNS-based approaches. Table 2 shows 
the list of parameter values for each metaheuristic 
that led to its best performance.
We have also developed several variants of SWO 
adapted to the DMCHBAP, following the ideas pre-

Table 2 
Parameter specifications

All four VNS metaheuristic approaches are coded in the Wolfram Mathematica v8.0 programming 
language. It is important to note that, unlike classical programming languages, Mathematica interprets 
instructions and therefore, the running times of algorithms may increase. However, our comparison is 
fair, having in mind that all VNS-based algorithms are executed under the same conditions. All 
computational experiments with CPLEX, VND, MS-VND, GVNS, and SVNS were conducted on the 
same platform, i.e., on a computer with an Intel Pentium 4 3.00-GHz CPU and 512 MB of RAM running 
the Microsoft Windows XP Professional Version 2002 Service Pack 2 operating system. Note that 
executable version of CPLEX 12.3 is optimized for this platform, meaning that it is favored with respect 
to other algorithms. 
Having in mind that metaheuristics are stochastic methods, their stability is examined by performing 
repeated runs on each instance. In our computational experiments, MS-VND, GVNS, and SVNS methods 
where executed 10 times with time limit of 10 minutes for all test examples, i.e., variable RunTime  is 
set to 10 minutes. VND is deterministic in nature, and, therefore, it was run only once on each tested 
instance. 
Preliminary computational experiments are performed on the subset of test instances in order to 
determine appropriate parameter values for each of the considered VNS-based approaches. Table 2 
shows the list of parameter values for each metaheuristic that led to its best performance. 
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We have also developed several variants of SWO adapted to the DMCHBAP, following the ideas 
presented in [47]. Each of the implemented SWO variants starts from a feasible initial solution and 
dynamically changes it based on vessels’ priorities. Vessels with larger allocation cost in current solution 
have higher priority to be chosen for the next allocation. Once feasible solution is produced, all vessels 
are sorted according to their cost in decreasing order and new allocation starts. One by one, vessels are 
allocated in port on randomly chosen feasible position by roulette wheel. If allocation leads to an 
unfeasible solution, a new random solution is generated. In the case that all vessels are allocated in port, 
i.e., solution is complete and feasible, new vessels’ priorities are calculated and SWO algorithm performs 
the next iteration. The imposed stopping criterion for each SWO variant is 10 minutes of running time. 
Implemented SWO approaches for DMCHBAP are also coded in the Wolfram Mathematica v8.0 and 
executed on the same platform as VNS-based methods. On each instance, SWO was run 10 times. In the 
rest of this section, we present only the results of the best performing SWO variant. 
Tables 3 and 4 contain the comparison of results obtained by CPLEX solver and considered metaheuristic 
methods on the first data set that includes small size problem instances. The first column of Table 3, 
denoted by Class contains instance’s specification, given in the form m T l  , where m  represents the 
number of berths, T  indicates the number of time units in the planning horizon, and l  stands for the 
number of vessels. The second column contains the identification number (index) of each instance in the 
corresponding class. The next two columns are related to the results of CPLEX solver, containing 
objective function value of the optimal solution OPT  and the corresponding running time, denoted by 

sented in [47]. Each of the implemented SWO vari-
ants starts from a feasible initial solution and dynam-
ically changes it based on vessels’ priorities. Vessels 
with larger allocation cost in current solution have 
higher priority to be chosen for the next allocation. 
Once feasible solution is produced, all vessels are 
sorted according to their cost in decreasing order 
and new allocation starts. One by one, vessels are al-
located in port on randomly chosen feasible position 
by roulette wheel. If allocation leads to an unfeasible 
solution, a new random solution is generated. In the 
case that all vessels are allocated in port, i.e., solution 
is complete and feasible, new vessels’ priorities are 
calculated and SWO algorithm performs the next iter-
ation. The imposed stopping criterion for each SWO 
variant is 10 minutes of running time. Implemented 
SWO approaches for DMCHBAP are also coded in the 
Wolfram Mathematica v8.0 and executed on the same 
platform as VNS-based methods. On each instance, 
SWO was run 10 times. In the rest of this section, we 
present only the results of the best performing SWO 
variant.
Tables 3 and 4 contain the comparison of results ob-
tained by CPLEX solver and considered metaheuris-
tic methods on the first data set that includes small 
size problem instances. The first column of Table 3, 
denoted by Class contains instance’s specification, 
given in the form m T l× - , where m  represents the 
number of berths, T  indicates the number of time 
units in the planning horizon, and l  stands for the 
number of vessels. The second column contains the 
identification number (index) of each instance in the 
corresponding class. The next two columns are relat-
ed to the results of CPLEX solver, containing objec-
tive function value of the optimal solution OPT  and 
the corresponding running time, denoted by Time and 
given in seconds. In the next four columns, results 
related to the best performing SWO variant are pre-
sented. In the column named Best, the best found to-
tal cost (obtained after 10 SWO executions) is given, 
while the average total cost AvgC and average mini-
mum CPU time AvgT (out of 10 runs) are presented in 
the next two columns. In order to measure the quality 
of the obtained SWO results, in column G%, we pres-
ent the average gap calculated as 100 AvgC OPT

OPT
-

⋅ . 
The next three columns contain results related to the 
VND metaheuristic. The column named Best contains 
the best found total cost. Column Time  indicates the 
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running time (in seconds) required by VND to obtain 
its best solution. The gap G% for VND is calculated as 

100 Best OPT
OPT

-
⋅ . The results of MS-VND, GVNS, and 

SVNS in Table 3 are given in the same way as in the 
case of SWO. In order to highlight the best performing 
method with respect to the solution quality, the best-
known (optimal) solutions for each instance are bold-
ed in Table 3. Similarly, for the best performing meth-
od with respect to CPU time, the shortest (average) 
CPU times for each instance are bolded in Table 3.
From the results presented in Table 3, it can be seen that 
all four VNS-based methods reach optimal solutions 
provided by CPLEX solver on each of small size prob-
lem instances. SVNS shows the best stability, as its av-
erage percentage gap is 0%, meaning that SVNS reached 
optimal solution in all 10 runs for each instance. The 
values presented in column G% indicate that MS-VND, 
and GVNS methods also showed to be stable, as the 
corresponding average percentage gaps are 0.03%, and 
0.09%, respectively. SWO method evinced poor perfor-
mance on the set of small size instances, as it provided 
solutions that are quite far from the optimal ones for 
each considered instance. The best performing SWO 

Table 3 
Computational results of CPLEX, SWO, and VNS-based metaheuristics on instances from the first data set (m = 8, T= 15, 20, 
l = 10, 15, 20) 

Table 4 
Computational results of CPLEX and VNS-based metaheuristics on instances from the first data set (m = 8, T= 25, l = 25)
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SWO method evinced poor performance on the set of small size instances, as it provided solutions that 
are quite far from the optimal ones for each considered instance. The best performing SWO variant 
produces solutions with average percentage gap of 79.68% from the optimal ones. 
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variant produces solutions with average percentage gap 
of 79.68% from the optimal ones.
Regarding average running times, GVNS was the fastest 
in returning its best solutions, followed by VND, SVNS, 
and MS-VND, while SWO was the slowest method. 
However, all five methods were significantly faster 
compared to CPLEX solver, which needed 2436.81 sec-
onds (on average) to produce optimal solutions for all 
instances in the set. The average running times of the 
proposed VNS-based methods were: 15.74 s for GVNS, 
19.58 s for VND, 25.44 s for SVNS, and 77.34 s for MS-
VND, while SWO required 241.40 s (on average) to re-
turn its best solutions. This implies that the proposed 
GVNS was more than 154 times faster compared to 
CPLEX, and 1.24, 1.62, 4.91, and 15.34 times faster than 
VND, SVNS, MS-VND, and SWO, respectively.
As it can be seen from Table 3, even the best variant 
of SWO did not produce satisfactory results regarding 
solution quality and running times. Therefore, SWO 
is excluded from detailed computational experiments 
on the other data sets.
Table 4 contains the comparison of results obtained 
by CPLEX solver and the proposed VNS-based meta-
heuristic methods on the largest instances from the 
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first data set, with = 8m , = 25T , = 25l . For these 
instances we impose the time limit on CPLEX exe-
cution of 1 hour (having in mind that the decisions in 
the port are to be made very quick, on a minute basis). 
The first column of Table 4 contains instance’s spec-
ification, while the second column, denoted as BK, 
presents the best-known objective function values, 
provided either by CPLEX or by the proposed VNS-
based metaheuristics. The next two columns are re-
lated to the results of CPLEX solver, containing lower 
and upper bounds on the objective function value of 
the optimal solution. The rest of Table 4 is related to 
the results of the four proposed VNS methods, which 
are given in the same way as in Table 3.
The results presented in Table 4 show that all four 
VNS-based methods improved upper bounds pro-
vided by CPLEX, with the exception of one instance 

for which the best solutions of all four VNS methods 
coincide with the upper bound that CPLEX returned. 
Again, VND and SVNS showed the best stability, as 
their average percentage gap is 0.11% and 0.47%, re-
spectively. In the case of MS-VND, and GVNS, the val-
ues of average percentage gaps were 1.04% and 2.42%, 
respectively, indicating that these two VNS-based 
methods also have good stability. On average, VND 
was the fastest method, followed by GVNS, SVNS, 
and MS-VND. The average running times of the pro-
posed VNS-based methods were: 30.75 s for VND, 
103.47 s for GVNS, 129.36 s for SVNS, and 178.63 s for 
MS-VND, implying that the proposed VND was 3.36, 
4.21, and 5.81 times faster than GVNS, SVNS, and 
MS-VND, respectively.
Tables 5 and 6 show the results obtained by the pro-
posed VNS-based approaches to DMCHBAP on the 

Table 5 
Computational results of VNS-based metaheuristics on instances from the second data set (m = 8, T= 112, l = 35, 40, 45)
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second and third data set, respectively. These data 
sets contain randomly generated test instances of 
larger dimensions, unsolved to optimality by CPLEX 
solver. Therefore, Tables 5 and 6 present the compar-
ison of results obtained by VND, MS-VND, GVNS, 
and SVNS. The first column of Table 5 contains the 
number of vessels l. The next column (with heading i) 
indicates the index of the considered instance, while 
the third column (named BK) refers to the best-known 
cost value. The results of VND, MS-VND, GVNS, and 
SVNS are presented in the same way as in Table 3. As 
optimal solution is not known, the gap G% for VND is 

calculated as 100 Best BK
BK

-
⋅ . In the case of MS-VND, 

GVNS, and SVNS, the average gap G% is calculated as 

100 AvgC BK
BK

-
⋅ . In Table 5, the best-known solutions 

and the shortest (average) CPU times for the best per-

Table 6 
Computational results of VNS-based metaheuristics on instances from the third data set (m = 13, T= 112, l = 50, 55, 60)

forming method on each instance are bolded. The re-
sults of comparison on the third data set are presented 
in Table 6, which has the same structure as Table 5.
As it can be seen from Table 5, SVNS was able to ob-
tain the best-known solutions for all test instances, 
with average gap of 0.80%. VND, MS-VND and GVNS 
found best-known solution on 15, 14, and 18 (out of 
30) test instances, respectively. However, the result-
ing average gaps remain very small, 3.01% for VND, 
3.28% for MS-VND, and 2.27% for GVNS. Regarding 
the (average) minimum CPU time, the superior meth-
od is MS-VND, followed by GVNS, VND, and SVNS. 
The corresponding (average) minimum CPU times 
are 3.74, 5.37, 8.55, and 74.35 seconds, respectively. 
This means that MS-VND is 1.44 times faster than 
GVNS, 2.29 times faster than VND, and 19.88 times 
faster than SVNS.
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The results presented in Table 6 on larger size test 
instances, show that SVNS remains superior to oth-
er three methods regarding solution quality. For each 
test instance from the third data set, SVNS method 
produced best-known solution at least once with-
in 10 runs. On the same data set, SVNS reached the 
best-known solution in each of 10 runs in the case 
of 28 out of 30 examples. In the case of instance 

= 50l  and = 10i  from the third data set, remaining 
three algorithms performed better on average with 

= 926AvgC , while for SVNS = 926.9AvgC . For in-
stance = 60l  and = 6i  from the same data set, VND 
and GVNS showed slightly better performance with 

= 1143AvgC  compared to SVNS with = 1189.4AvgC  
and MS-VND with = 1201.AvgC  VND, MS-VND and 
GVNS have similar performance: GVNS reached 
best-known solution on 18 out of 30 instances, while 
VND and MS-VND generated 17 and 16 best-known 
solutions, respectively. All four methods have small 
average gaps from the best-known solution: 0.51% for 
SVNS, 1.03% for GVNS, 1.38% for VND, and 1.55% for 
MS-VND. MS-VND showed the best performance in 
respect to CPU time (8.38 s) followed by VND (13.84 
s), GVNS (14.06 s) and SVNS (45.49 s). Therefore, 
MS-VND is 1.65 times faster than VND, 1.68 times 
faster than GVNS and 5.43 times faster than SVNS.
From the presented computational results, it can be 
seen that the average gap values and required CPU 
times are quite small for all four VNS based methods, 
and therefore, all of them can be considered suitable 
for DMCHBAP. However, SVNS outperforms oth-
er methods on both data sets regarding the solution 
quality, while MS-VND is able to provide high quality 
solutions in short execution times.
Table 7 shows summarized computational results 
of the proposed VNS methods on the fourth data set 
with = 13m , = 112T  and = 70,80,90,100l . These 
test instances are the hardest ones, because of the 

Table 7 
Computational results of VNS-based metaheuristics on instances from the fourth data set (m = 13, T = 112, l = 70, 80, 90, 100)

large number of vessels and high density of their al-
location. Table 7 has the same structure as Tables 5 
and 6, the only difference is that each column of Table 
7 contains average values obtained on the subset of 10 
generated instances ( {1,..10}i ∈ ) from the fourth set 
with fixed value of l . As in the case of the first three 
data sets, each VNS method is run 10 times on each 
instance from the fourth data set. On each subclass 
with fixed value of l , the best result regarding average 
best cost, average cost, average CPU time and average 
gap is bolded. The summarized results presented in 
Table 7 show that all four VNS-based methods have 
stable performance. On average, the fastest method is 
VND (77.75 s), however, its average gap is the highest 
one (3.39%). Other three VNS methods have small 
computational times with no significant difference 
among them (between 116.45 s and 138.63 s). On av-
erage, VND is 1.50 times faster than GVNS, 1.59 times 
faster than MS-VND, and 1.78 times faster than SVNS 
on the fourth data set. GVNS shows the best perfor-
mance regarding stability, as its average gap is 1.94%. 
However, the average gaps of MS-VND and SVNS are 
also quite small (under 3%). Detailed computational 
results on these instances can be found at http://www.
mi.sanu.ac.rs/tanjad/DMCHBAP.htm.
Computational results presented in Table 7 show that 
all four presented methods stay stable and efficient 
even in the case of very hard test instances with large 
number of allocated vessels. These results verify that 
VNS based methods can be considered suitable for 
DMCHBAP and that expected running times on large 
test instances remain desirable small.

6 Conclusion
In order to meet all requirements of a port as a high-
ly dynamic system, terminal manager needs an ef-
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ficient and reliable decision support system. The 
performance of decision support system heavily de-
pends on the speed of finding high-quality solutions 
for underlying berth allocation problem. We studied 
the Dynamic Minimum Cost Hybrid Berth Alloca-
tion Problem (DMCHBAP), which has a great im-
portance in maritime transportation. We prove that 
even simple variant of this problem is NP-hard, and 
therefore, it should be addressed by metaheuristic 
methods. We have developed four VNS-based ap-
proaches to DMCHBAP: Variable Neighborhood De-
scent (VND), Multi-Start Variable Neighborhood 
Descent (MS-VND), General Variable Neighborhood 
Search (GVNS), and Skewed Variable Neighborhood 
Search (SVNS). In order to compare the efficiency 
of the four VNS-based metaheuristics against each 
other, four sets of randomly generated test instances 
were considered. As metaheuristics are generally sto-
chastic methods, we have examined their stability by 
performing multiple runs.
The obtained experimental results show that all four 
VNS-based metaheuristics reach known optimal 

solution on each small size instance (with exception 
of one instance in the case of VND) in very short CPU 
times. For larger problem dimensions, all four VNS-
based methods were able to find high quality solu-
tions in short running times. On average, SVNS shows 
the best performance regarding the solution quality, 
while VND and MS-VND methods are superior in re-
spect to the required CPU time.
Our computational results indicate that all four VNS-
based metaheuristics have obvious potential as solu-
tion methods for DMCHBAP and related problems 
in maritime transportation. For further improving of 
metaheuristics’ performance, their parallelization, 
hybridization and combination with exact methods 
might be considered.
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