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Although freeway traffic system is conducted with a repeatable pattern day-to-day, the initial volume/or speed 
and the desired density of the traffic flow may vary with days due to the external disturbances. In this paper, a new 
linear data-model based adaptive iterative learning control (LDM-AILC) is proposed to address ramp metering 
in a macroscopic level freeway environment. A linear data-model is developed for the nonlinear macroscopic 
traffic flow model by introducing an equivalent dynamical linearization approach in the time domain. Then 
the LDM-AILC is designed with a feedback control law and a parameter updating law. The proposed scheme 
is data-driven intrinsically, where only the input and output data are required for the controller design and 
analysis. The convergence is shown by rigorous analysis without any identical conditions exposed on both the 
initial state and the reference trajectory. Extensive simulation results are provided to verify the effectiveness 
of the proposed LDM-AILC. 
KEYWORDS: Adaptive ILC, Linear data-model, Traffic control, Ramp metering, Random initial conditions, 
Iteration-varying target trajectory.

1. Introduction
Freeway traffic control [1, 20, 28] is an important area 
in the field of traffic engineering and intelligent trans-
portation systems. Frequent congestions on freeway 
during rush hours deteriorate traffic conditions. The 
most common reasons causing freeway congestion 
include traffic demand being greater than capacity, 
as well as traffic accidents, road works and weather 
[28]. For better utilization of freeway capacity, ramp 
metering [1, 13, 15, 17, 27] is a commonly implemented 
strategy. The purpose of ramp metering is to regulate 
the amount of traffic entering a given freeway at its 
entry ramps to maximize throughput by maintaining 
a desired (or optimal) occupancy on the downstream 
mainline freeway. Ramp metering is implemented 
by means of traffic lights in practice, which is used to 
meter the number of entering vehicles. 
Based on the model extracted from these data, local 
and coordinated feedback (ALINEA) ramp metering 
strategy has been implemented [1]. It has been shown 
to be a remarkably simple, highly efficient and easily 
implemented ramp metering application. However it 
is difficult to calibrate the key model parameters crit-
ical to the performance, because model parameters 
vary with geometry of freeway road conditions and en-
vironmental factors, e.g. rain and frog. In addition, the 
freeway traffic flow system is of strong nonlinearities, 
coupling, and uncertain and thus its accurate model is 
hardly available in practice. Therefore, the common 
model-based control approaches [13, 15, 26-27] will 
encounter many unexpected difficulties when applied 
to freeway traffic control problems.
On the other hand, the macroscopic traffic flow pat-
terns are in general repeated every day [11]. For in-

stance, the traffic flow will start from a very low lev-
el at midnight, and increase gradually up to the first 
peak of morning rush hour, which is often from 7-9 
AM, and the second one from 5-7 PM. Congestions 
typically start at the same location every day. Note 
that iterative learning control (ILC) [8, 10-12, 16, 25] 
is very suitable for a repetitive process. Based on this 
observation, some ILC based ramp metering strate-
gies have been proposed for the freeway density con-
trol [10-12, 25, 28] in daily or weekly basis. In [11], only 
basic ILC based ramp metering and speed control 
are discussed. In [10], the learning mechanism com-
bined with a pure error feedback in a complementa-
ry manner is studied and the simulation results have 
shown its superiority to the ILC based only. In [12], 
the input saturation was explored by using ILC based 
ramp metering strategy and the complementary ramp 
metering combining ILC and ALINEA, respectively. 
In [25, 28], the effectiveness of the ramp metering 
based on ILC was further evaluated. 
Note that all the above ILC approaches [10-12, 25, 28] 
for ramp metering are based on the contraction map-
ping and fixed-point theory to design linear iterative 
learning algorithm, which causes two major limitations 
when used in practice. The first one is that the tran-
sient performance of the system output along the iter-
ation axis becomes poor sometimes because the con-
vergence property of tracking error is achieved in the 
sense of λ  norm. The second one is that the identical 
conditions of initial states and target references must 
be matched to achieve a perfect tracking. 
Actually, traffic control with strict day-to-day re-
peatability is the most ideal scenario. It is more 
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practical that the initial values of traffic density and 
average speed of the vehicles, as well as the tracking 
target are varying day-to-day due to the variations of 
freeway road conditions and environmental factors, 
e.g. rain and frog. Therefore, it is certain interesting 
to explore the ILC approach for the freeway traffic 
system without a strictly repeatable pattern with 
random initial conditions and iteration-varying de-
sired density trajectory. 
Adaptive iterative learning control (AILC) scheme 
[4, 6-7, 18, 23-24] was widely studied with many 
successful applications. In general, the most attrac-
tive advantage of the AILC is its capability of dealing 
with the problems of iteration-varying reference tra-
jectories, bounded but possibly large random initial 
resetting error and disturbance. However, most of the 
existing AILCs [4, 6-7, 23-25] depend on the fact that 
the unknown parameters are linearly parameterized 
with known nonlinear functions, thus cannot been 
utilized to the freeway traffic control problems due 
to the strong nonlinearity of the macroscopic traffic 
flow model. 
Recently, neural networks or fuzzy systems have been 
applied to AILC in many works to deal with the prob-
lem that the plant nonlinearities cannot be linearly 
parameterizable such as those in [2, 3, 5, 19, 21-22]. 
However, it is often difficult to determine the fuzzy 
rule base and membership functions and to train the 
neural network with massive operation data. More 
recently, a data-driven model-free adaptive ILC [6, 
14] was proposed for a class of nonlinear discrete-
time systems by introducing a dynamical lineariza-
tion approach in the iteration domain. It achieves 
a perfect tracking under random initial conditions 
without requiring any external testing signals or any 
training process. But, the tracking target trajectory 
must be repeatable strictly. 
Motivated by the above discussion, an equivalent 
dynamical linearization approach is proposed for 
freeway traffic system by introduce a new concept 
of pseudo partial derivative (PPD) [9]. Then, a new 
linear data-model based adaptive ILC (LDM-AILC) 
is proposed for the freeway density control via ramp 
metering. Both theoretical analysis and simulations 
results confirm the effectiveness of the proposed 
approach. 
The main contributions of the proposed LDM-AILC 
are that: (a) it is capable of dealing with nonlinear 

systems without known linear parametric structures 
and thus it is a data-driven control approach where 
the controller design and analysis just depends on 
the I/O data. (b) It can deal with the iteration-vary-
ing uncertainties, such as random initial states and 
iteration-varying tracking targets and achieves a 
perfect tracking performance. In a sum, the proposed 
LDM-AILC is suitable in practice for a complicated 
freeway traffic system with higher orders and strong 
nonlinearities and non-repetitive changes. 
The rest of this paper is organized as follows. Sec-
tion 2 shows a linear data-model of the macroscopic 
traffic flow model. Section 3 presents the LDM-AILC 
approach with rigorous analysis. Section 4 provides 
the simulation results to verify the effectiveness of the 
proposed approach. Section 5 concludes this work.

2. Problem Formulation

2.1. Nonlinear Macroscopic Traffic Flow 
Model
As shown in Fig.1, a single freeway is considered with 
one on-ramp and one off-ramp on each section. Its 
spatially discretized traffic flow model is expressed 
mathematically by the following equations [17].
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Figure1
Sections on a freeway with on/off ramp
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where h is the sample time interval; t  denotes the 
t-th time instant; },,1{ NIi ∈  is the i-th section of 
a freeway; NI   is the total section number; 

ml,,,, κυτ  are constant parameters reflecting par-
ticular characteristics of a given traffic system. The 
other model parameter variables are listed in Table 
1. 
 
Table 1 
Model Parameters 

Traffic density )(tiρ  (veh/lane/km) 

Mean speed )(tvi (km/h) 
Traffic flow )(tqi (veh/h) 
Traffic volume On-ramp )(tri (veh/h) 
Traffic volume Off-ramp )(tsi (veh/h) 
Length iL (km) 
Free speed freeV  
Maximum density jamρ  

Assume the freeway traffic system is repetitive 
over a finite running time interval { }Tt ,,1,0 = . 
The control objective is to design an adaptive ILC 
without knowing the exact traffic model and dis-
turbances. The adaptive ILC will make use of the 
historical freeway traffic data to generate a se-
quence of control inputs that drives traffic density 
to converge to the desired one over the entire inter-
val { }Tt ,,1,0 = .  
 
2.2. General Nonlinear Formulation and Some 

Assumptions 
According to (1) – (4), we can also express the traf-
fic dynamics in a general nonlinear form [17] as 

)],(),(),([)1( tttt dryfy =+                                 (5)                  
where the state vector nRt ∈)(y  comprises all traf-
fic densities and mean speeds, as well as all ramp 
queues; the control vector nRt ∈)(r  comprises all 
controllable ramp volumes; the disturbance vector 

pRt ∈)(d  comprises all on-ramp demands and 
turning rates; nR∈)(f  is a vector valued func-
tion.  

Assumption 1: The partial derivatives of )(f  
with respect to control inputs )(tr  are continuous.  
Assumption 2: System (5) is generalized Lipschitz, 
that is, )()1( tbt ry ∆≤+∆ Φ  for each fixed t and 
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where the state vector nRt ∈)(y  comprises all traffic 
densities and mean speeds, as well as all ramp queues; 
the control vector nRt ∈)(r  comprises all controllable 
ramp volumes; the disturbance vector pRt ∈)(d  
comprises all on-ramp demands and turning rates; 

nR∈)(f  is a vector valued function. 

Assumption  1: The partial derivatives of )(f  with 
respect to control inputs )(tr  are continuous. 
Assumption  2: System (5) is generalized Lip-
schitz, that is, )()1( tbt ry ∆≤+∆ Φ  for each fixed 
t and 0)( ≠∆ tr , where )()1()1( ttt yyy −+=+∆ , 

)1()()( −−=∆ ttt rrr , and Φb  is a positive constant.  
Remark  1: Assumption 1 is a typical condition of con-
trol system design for general nonlinear systems. It is 
obvious that the partial derivatives of all the non-lin-
ear functions in (1) – (4) with respect to its arguments 
exist and are continuous. Therefore, Assumption 1 is 
satisfied for the considered freeway traffic system. 
Remark  2: Assumption 2 limits the rates of chang-
es of the system outputs driven by the changes of 
the control inputs. For a real freeway traffic system, 
it is evident that the finite change of one traffic vari-
able does not cause an infinite variation of the other 
variables. Furthermore, we just need the existence of 
such a constant Φb  without requiring the exact value.

2.3. Dynamical Linearization
The equivalent dynamical linearization is summa-
rized as the following theorem [9]. 
Theorem  1: For nonlinear system (5), satisfying 
Assumptions 1 and 2 with 0)( ≠∆ tr  for each fixed 
t, there must exist a parameter Φ(t), called the PPD 
matrix, such that nonlinear system (5) can be trans-
formed into the following equivalent dynamical 
linearization data model

)()()1( ttt rΦy ∆=+∆  ,   (6)

where nnRt ×∈)(Ö  and .
Proof. See Appendix A. 
Remark  2: The linear data-model (6) is an equivalent 
and exact description of system (5), which is quite 
different from other linearization forms such as 
Taylor’s linearization, where the high-order terms are 
omitted. The dynamical linearization is a data-driven 
approach and it is achieved only based on the I/O data 
of the plant. Further, the linear data-model is simple 
without requiring any fuzzy rules as in fuzzy control, 
or any external testing signals and any training 
process as in neural network control. 
Another assumption is exposed on the PPD parameter. 
Assumption 3:.The PPD matrix parameter Φ(t) is 

Φ
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positive or negative definite. Without loss of generali-
ty, we assume  in this paper. 
Remark 3: Assumption 3 is similar to the control 
direction, which is common in control systems. 
As shown in [9], Φ(t) represents the Markov 
parameters or the transfer function of a linear 
system. It is reasonable to assume that Φ(t) is strictly 
repeatable for the freeway traffic system which 
varies along time axis only over a finite time interval 

},,1,0{ Tt ∈ . Then, by considering the repeatability 
of the freeway traffic control system, the equivalent 
expression of (5) is developed as

, (7)

where )1()()( −−=∆ ttt kkk rrr ; { }Tt ,,1,0 = ; k = 1, 2, ... 
is the iteration number. 
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20 << Φab , with Φb  being defined in assumption 
A2; nn×= IP  is an identical matrix.  
Remark 4: Different from other adaptive ILC [5-7, 
14, 17, 22], )()1()( , ttt kkdk yyζ −+=  is a linear 
function about the system output and reference tra-
jectory. Thus, it is automatically satisfied with lin-
ear grow condition with respect to the tracking er-
ror.  

Remark 5: The main differences of the proposed 
data-driven AILC from the ILC approach proposed 
in [6] are that: (a) As the basis of the controller de-
sign, the dynamic linear model (6) in this paper is 
built by using time-difference along the time axis. 
While the dynamic linear model in [6] is built us-
ing iteration-difference between two consecutive 
iterations. (b) The learning control law (10) and the 
parameter updating law together make up an adap-
tive mechanism, which the approach in [6] is de-
signed using optimization technique. (c) The de-
sired reference is incorporated in the learning law 
(10) such that the proposed method in this work 
can deal with iteration-varying reference trajectory. 
However, the desired tracking trajectory is required 
identical for all iterations in [6].  
Remark 6: The presented LDM-AILC is a data-
driven approach since the controllers design and 
analysis merely uses the input and output meas-
urement data of the plant. The unknown parameter 

)(tΘ  is estimated iteratively just by using the 
measured I/O data of the controlled system.  
The convergence results of the proposed LDM-
AILC scheme (10) – (11) for MIMO nonlinear dis-
crete-time system (5) are summarized as the fol-
lowing theorem. 
Theorem 2: For system (5) under Assumptions 1 – 
3, the control law (10) together with the learning 
updating law (11) guarantees that (a) the PPD ma-
trix estimation )(ˆ tkΘ  is bounded for all 

},,0{ Tt ∈  and ,2,1 　=k , and (b) the tracking 
error ),(tke  },,,1{ Tt ∈  converges to zero itera-
tively as k  approaches to infinity. 
Proof: The proof of this theorem is similar to that 
in [6], and the detail progress is shown in Appen-
dix B for the convenience of readers.  

4. Simulation Study 

For the simulation, we consider a long segment of 
freeway that is subdivided into 12 sections. The 
length of each section is 0.5km. The initial traffic 
volume entering section 1 is 1600 vehicles per hour. 
The parameters used in this model are given as: 

,/50)0( hkmvi =  ,/80 hkmv free =  

,//80 kmlanevehjam =ρ  ,8.1=l  ,7.1=m  

,/13 kmveh=κ  ,01.0 h=τ  ,00417.0 hh =  

,/35 2 hkm=γ  ,/0)0( hvehri =  .95.0=α   

There are one on-ramp located in Section 2 with 
known traffic demand and two off-ramps located in 
Section 5 and Section 9 with unknown exiting traf-
fic flow, respectively. They were chosen to simu-
late a traffic scenario during rush hour. The un-
known existing flows actually are chosen to mimic 
the exogenous disturbances to Section 2.  
Note that the queuing demands actually impose 
certain constraints on the control inputs of ramp 
metering, i.e., the on-ramp volumes cannot exceed 
the current demands plus the existing waiting 
queues at on-ramps at the time k; thus 
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where )(tli  denotes the length (in vehicles) of a 
possibly existing waiting queue at time instant t at 
the i-th on-ramp; )(tiη  is the traffic demand flow 
at time instant t at the i-th on-ramp (veh/h), and 

2=ONI  for the simulation of this paper, denotes 
the set of indices of the sections where an on-ramp 
exists. On the other hand, the waiting queue is the 
accumulation of the difference between the demand 
and actual on-ramp, i.e.,  

[ ])()()()1( trtTtltl iiii −+=+ η    ONIi∈ .            (13)                                   
The desired freeway traffic density is 

),50/sin(1.030, kkd πρ +=  which is iteration-
varying as shown in Fig. 2. The random initial traf-
fic density is selected as randki 01.030)0(, +=ρ , 
shown in Fig. 3.   
 
 
 
 
 
 

 is a linear function 
about the system output and reference trajectory. 
Thus, it is automatically satisfied with linear grow 
condition with respect to the tracking error. 
Remark 5: The main differences of the proposed da-
ta-driven AILC from the ILC approach proposed in [6] 
are that: (a) As the basis of the controller design, the 
dynamic linear model (6) in this paper is built by us-
ing time-difference along the time axis. While the dy-
namic linear model in [6] is built using iteration-dif-
ference between two consecutive iterations. (b) The 
learning control law (10) and the parameter updating 
law together make up an adaptive mechanism, which 
the approach in [6] is designed using optimization 
technique. (c) The desired reference is incorporated 
in the learning law (10) such that the proposed meth-
od in this work can deal with iteration-varying refer-
ence trajectory. However, the desired tracking trajec-
tory is required identical for all iterations in [6]. 
Remark 6: The presented LDM-AILC is a data-driven 
approach since the controllers design and analysis 
merely uses the input and output measurement data 
of the plant. The unknown parameter 
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0)( ≠∆ tr , where )()1()1( ttt yyy −+=+∆ , 
)1()()( −−=∆ ttt rrr , and Φb  is a positive constant.   

Remark 1: Assumption 1 is a typical condition of 
control system design for general nonlinear sys-
tems. It is obvious that the partial derivatives of all 
the non-linear functions in (1) – (4) with respect to 
its arguments exist and are continuous. Therefore, 
Assumption 1 is satisfied for the considered free-
way traffic system.  
Remark 2: Assumption 2 limits the rates of chang-
es of the system outputs driven by the changes of 
the control inputs. For a real freeway traffic system, 
it is evident that the finite change of one traffic var-
iable does not cause an infinite variation of the oth-
er variables. Furthermore, we just need the exist-
ence of such a constant Φb  without requiring the 
exact value. 
 
2.3. Dynamical Linearization 
The equivalent dynamical linearization is summa-
rized as the following theorem [9].  
Theorem 1: For nonlinear system (5), satisfying 
Assumptions 1 and 2 with 0)( ≠∆ tr  for each 
fixed t, there must exist a parameter )(tΦ , called 
the PPD matrix, such that nonlinear system (5) can 
be transformed into the following equivalent dy-
namical linearization data model 

)()()1( ttt rΦy ∆=+∆  ,                                          (6)                                                               
where nnRt ×∈)(Φ and Φ≤ bt)(Φ . 
Proof. See Appendix A.  
Remark 2: The linear data-model (6) is an equiva-
lent and exact description of system (5), which is 
quite different from other linearization forms such 
as Taylor’s linearization, where the high-order 
terms are omitted. The dynamical linearization is a 
data-driven approach and it is achieved only based 
on the I/O data of the plant. Further, the linear data-
model is simple without requiring any fuzzy rules 
as in fuzzy control, or any external testing signals 
and any training process as in neural network con-
trol.  
Another assumption is exposed on the PPD param-
eter.  
Assumption 3:.The PPD matrix parameter )(tΦ  is 
positive or negative definite. Without loss of gen-
erality, we assume 0IΦ >≥ δ)(t  in this paper.  

Remark 3: Assumption 3 is similar to the control 
direction, which is common in control systems.  
As shown in [9], )(tΦ  represents the Markov pa-
rameters or the transfer function of a linear system. 
It is reasonable to assume that )(tΦ  is strictly re-
peatable for the freeway traffic system which var-
ies along time axis only over a finite time interval 

},,1,0{ Tt ∈ . Then, by considering the repeata-
bility of the freeway traffic control system, the 
equivalent expression of (5) is developed as 
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,2,1 　=k  is the iteration number.  

3. Linear Data-Model Based Adaptive 
ILC 

The desired traffic output is n
kd Rt ∈)(,y , which is 

iteration-dependant and bounded for all 
},,0{ Tt ∈  and ,2,1 　=k , i.e., 

dykd
k

bt ≤)(sup ,y , },,0{ Tt ∈∀  

where we only need to know the existence of posi-
tive constant 

dyb . 
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where )(ˆ
0 tΘ  being given bounded; 0>c ; 

 is estimat-
ed iteratively just by using the measured I/O data of 
the controlled system. 
The convergence results of the proposed LDM-AILC 
scheme (10) – (11) for MIMO nonlinear discrete-time 
system (5) are summarized as the following theorem.
Theorem 2: For system (5) under Assumptions 1 – 3, 
the control law (10) together with the learning up-
dating law (11) guarantees that (a) the PPD matrix 
estimation 
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20 << Φab , with Φb  being defined in assumption 
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14, 17, 22], )()1()( , ttt kkdk yyζ −+=  is a linear 
function about the system output and reference tra-
jectory. Thus, it is automatically satisfied with lin-
ear grow condition with respect to the tracking er-
ror.  

Remark 5: The main differences of the proposed 
data-driven AILC from the ILC approach proposed 
in [6] are that: (a) As the basis of the controller de-
sign, the dynamic linear model (6) in this paper is 
built by using time-difference along the time axis. 
While the dynamic linear model in [6] is built us-
ing iteration-difference between two consecutive 
iterations. (b) The learning control law (10) and the 
parameter updating law together make up an adap-
tive mechanism, which the approach in [6] is de-
signed using optimization technique. (c) The de-
sired reference is incorporated in the learning law 
(10) such that the proposed method in this work 
can deal with iteration-varying reference trajectory. 
However, the desired tracking trajectory is required 
identical for all iterations in [6].  
Remark 6: The presented LDM-AILC is a data-
driven approach since the controllers design and 
analysis merely uses the input and output meas-
urement data of the plant. The unknown parameter 

)(tΘ  is estimated iteratively just by using the 
measured I/O data of the controlled system.  
The convergence results of the proposed LDM-
AILC scheme (10) – (11) for MIMO nonlinear dis-
crete-time system (5) are summarized as the fol-
lowing theorem. 
Theorem 2: For system (5) under Assumptions 1 – 
3, the control law (10) together with the learning 
updating law (11) guarantees that (a) the PPD ma-
trix estimation )(ˆ tkΘ  is bounded for all 

},,0{ Tt ∈  and ,2,1 　=k , and (b) the tracking 
error ),(tke  },,,1{ Tt ∈  converges to zero itera-
tively as k  approaches to infinity. 
Proof: The proof of this theorem is similar to that 
in [6], and the detail progress is shown in Appen-
dix B for the convenience of readers.  

4. Simulation Study 

For the simulation, we consider a long segment of 
freeway that is subdivided into 12 sections. The 
length of each section is 0.5km. The initial traffic 
volume entering section 1 is 1600 vehicles per hour. 
The parameters used in this model are given as: 

,/50)0( hkmvi =  ,/80 hkmv free =  

,//80 kmlanevehjam =ρ  ,8.1=l  ,7.1=m  

,/13 kmveh=κ  ,01.0 h=τ  ,00417.0 hh =  

,/35 2 hkm=γ  ,/0)0( hvehri =  .95.0=α   

There are one on-ramp located in Section 2 with 
known traffic demand and two off-ramps located in 
Section 5 and Section 9 with unknown exiting traf-
fic flow, respectively. They were chosen to simu-
late a traffic scenario during rush hour. The un-
known existing flows actually are chosen to mimic 
the exogenous disturbances to Section 2.  
Note that the queuing demands actually impose 
certain constraints on the control inputs of ramp 
metering, i.e., the on-ramp volumes cannot exceed 
the current demands plus the existing waiting 
queues at on-ramps at the time k; thus 
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where )(tli  denotes the length (in vehicles) of a 
possibly existing waiting queue at time instant t at 
the i-th on-ramp; )(tiη  is the traffic demand flow 
at time instant t at the i-th on-ramp (veh/h), and 

2=ONI  for the simulation of this paper, denotes 
the set of indices of the sections where an on-ramp 
exists. On the other hand, the waiting queue is the 
accumulation of the difference between the demand 
and actual on-ramp, i.e.,  

[ ])()()()1( trtTtltl iiii −+=+ η    ONIi∈ .            (13)                                   
The desired freeway traffic density is 

),50/sin(1.030, kkd πρ +=  which is iteration-
varying as shown in Fig. 2. The random initial traf-
fic density is selected as randki 01.030)0(, +=ρ , 
shown in Fig. 3.   
 
 
 
 
 
 

 is bounded for all },,0{ Tt ∈  
and ,2,1 　=k , and (b) the tracking error , 

, converges to zero iteratively as k  ap-
proaches to infinity.
Proof: The proof of this theorem is similar to that in 
[6], and the detail progress is shown in Appendix B for 
the convenience of readers. 
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4. Simulation Study
For the simulation, we consider a long segment of 
freeway that is subdivided into 12 sections. The length 
of each section is 0.5km. The initial traffic volume en-
tering section 1 is 1600 vehicles per hour. The param-
eters used in this model are given as:  

  ,8.1=l  ,7.1=m  
  ,00417.0 hh =   
,/0)0( hvehri =   

There are one on-ramp located in Section 2 with 
known traffic demand and two off-ramps located in 
Section 5 and Section 9 with unknown exiting traffic 
flow, respectively. They were chosen to simulate a 
traffic scenario during rush hour. The unknown exist-
ing flows actually are chosen to mimic the exogenous 
disturbances to Section 2. 
Note that the queuing demands actually impose cer-
tain constraints on the control inputs of ramp me-
tering, i.e., the on-ramp volumes cannot exceed the 
current demands plus the existing waiting queues at 
on-ramps at the time k; thus

T
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)()( +≤η ,  ONIi∈  ,                              (12)                                               (12)

where )(tli  denotes the length (in vehicles) of a pos-
sibly existing waiting queue at time instant t at the 
i-th on-ramp; )(tiη  is the traffic demand flow at time 
instant t at the i-th on-ramp (veh/h), and  for the 
simulation of this paper, denotes the set of indices of 
the sections where an on-ramp exists. On the other 
hand, the waiting queue is the accumulation of the dif-
ference between the demand and actual on-ramp, i.e., 

[ ])()()()1( trtTtltl iiii −+=+ η    ONIi∈ .            (13)                              (13)

The desired freeway traffic density is 
 which is iteration-varying as 

shown in Fig. 2. The random initial traffic density is 
selected as , shown in Fig. 3.  
In the simulation, we choose 1.0=a , , 

002.0)(0 =tθ , 0)(0 =tu . Applying the proposed 
LDM-AILC, the learning convergence is shown in 
Fig. 4 where the horizon is the iteration number and 
the vertical axis is the maximum absolute value of 
tracking error 
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Figure 2
The profile of iteration-variant desired traffic density

Figure 3
The profile of initial traffic density over 100 iterations
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In the simulation, we choose 1.0=a , 01.0=c , 

002.0)(0 =tθ , 0)(0 =tu . Applying the proposed 
LDM-AILC, the learning convergence is shown in 
Fig. 4 where the horizon is the iteration number 
and the vertical axis is the maximum absolute value 
of tracking error 

{ }
})({max

500,,1

*
max, tee ktk

∈
= .  

The effectiveness of the proposed LDM-AILC can 
be seen from Figures 2-4. Despite the random ini-
tial values and the random variations of the refer-
ence trajectory along the iteration axis, the tracking 
error still approaches to zero asymptotically. 

Figure 4 
The profile of maximum tracking error in the time 
interval of { }500,,0 ∈t  
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5. Conclusion 
In this paper, a new linear data-model based adap-
tive ILC is proposed to solve the local on-ramp 
control problem at the macroscopic level in a free-
way environment by considering non-strictly re-
peatable conditions. The controller design and 
analysis only depends on the measured I/O data of 
the freeway traffic system without requiring any 
other model information. Rigorous mathematical 
analysis is provided to show the asymptotic con-
vergence of the proposed LDM-AILC without as-
suming any identical conditions on both the initial 
state and the reference trajectory. Simulation re-
sults show the effectiveness of the proposed LDM-
AILC based traffic control scheme.  
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In the simulation, we choose 1.0=a , 01.0=c , 
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5. Conclusion 
In this paper, a new linear data-model based adap-
tive ILC is proposed to solve the local on-ramp 
control problem at the macroscopic level in a free-
way environment by considering non-strictly re-
peatable conditions. The controller design and 
analysis only depends on the measured I/O data of 
the freeway traffic system without requiring any 
other model information. Rigorous mathematical 
analysis is provided to show the asymptotic con-
vergence of the proposed LDM-AILC without as-
suming any identical conditions on both the initial 
state and the reference trajectory. Simulation re-
sults show the effectiveness of the proposed LDM-
AILC based traffic control scheme.  
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5. Conclusion 
In this paper, a new linear data-model based adap-
tive ILC is proposed to solve the local on-ramp 
control problem at the macroscopic level in a free-
way environment by considering non-strictly re-
peatable conditions. The controller design and 
analysis only depends on the measured I/O data of 
the freeway traffic system without requiring any 
other model information. Rigorous mathematical 
analysis is provided to show the asymptotic con-
vergence of the proposed LDM-AILC without as-
suming any identical conditions on both the initial 
state and the reference trajectory. Simulation re-
sults show the effectiveness of the proposed LDM-
AILC based traffic control scheme.  
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The effectiveness of the proposed LDM-AILC can 
be seen from Figures 2-4. Despite the random initial 
values and the random variations of the reference tra-
jectory along the iteration axis, the tracking error still 
approaches to zero asymptotically.

5. Conclusion
In this paper, a new linear data-model based adaptive 
ILC is proposed to solve the local on-ramp control 
problem at the macroscopic level in a freeway 
environment by considering non-strictly repeatable 
conditions. The controller design and analysis only 

depends on the measured I/O data of the freeway 
traffic system without requiring any other mod-
el information. Rigorous mathematical analysis is 
provided to show the asymptotic convergence of the 
proposed LDM-AILC without assuming any identical 
conditions on both the initial state and the reference 
trajectory. Simulation results show the effectiveness 
of the proposed LDM-AILC based traffic control 
scheme. 
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Appendices

Appendix A 

Proof of Theorem 1
Proof: From system (5), we have

( 1) [ ( ), ( ), ( )] [ ( 1), ( 1), ( 1)]
[ ( ), ( ), ( )] [ ( ), ( 1), ( )]
[ ( ), ( 1), ( )] [ ( 1), ( 1), ( 1)].

t t t t t t t
t t t t t t
t t t t t t

∆ + = − − − −
= − −
+ − − − − −

y f y r d f y r d
f y r d f y r d
f y r d f y r d

(A1)

Let )]1(),1(),1([)](),1(),([)( −−−−−= ttttttt dryfdryfΨ . 
By virtue of Assumption 1 and the differential mean 
value theorem, (A1) can be rewritten as
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Proof: From system (5), we have 
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(A1) 
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(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 
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(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 
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Since 20 << Φab , 0>q , it is obvious 
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(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 
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Since 20 << Φab , 0>q , it is obvious 
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As a result of (B7) and (B8), it is easy to get 
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or 

1 0
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) .k kt t t t t t−− ≤ − ≤ ≤ −Θ Θ Θ Θ Θ Θ                                       

(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 

(B7)

Since , 0>q , it is obvious
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Since 20 << Φab , 0>q , it is obvious 
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As a result of (B7) and (B8), it is easy to get 
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1 0
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) .k kt t t t t t−− ≤ − ≤ ≤ −Θ Θ Θ Θ Θ Θ                                       

(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 
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As a result of (B7) and (B8), it is easy to get
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Hence in terms of (B5), one can rearrange (B4) as 

( )
( )

1

1 1

1 1

1
1 1

1 1

1

1 1

1 1

1 1

( 1)( )
( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( )
( ) ( )

( 1)
( ) ( )

( ) ( ) ( )2
( ) ( )

T
k

k T
k k

k k k

T
k

k k kT
k k

T
k

T
k k

T
k k

T
k k

a tV t
c t t

t t t t t

a t t t t
c t t

a t
c t t

a t t t
c t t

−

− −

− −

−
− −

− −

−

− −

− −

− −

+
∆ =

+

− + −

+
= − −

+

+
=

+

 
− + + 

e P
ζ ζ

Θ Θ Θ Θ ζ

e P Θ Θ ζ
ζ ζ

e P
ζ ζ

PΦ ζ ζI
ζ ζ

 



1 1( ) ( ).k kt t− −Θ ζ

                     

(B6) 
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(B7) 
Since 20 << Φab , 0>q , it is obvious 
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As a result of (B7) and (B8), it is easy to get 
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(B9) 
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1 0
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) .k kt t t t t t−− ≤ − ≤ ≤ −Θ Θ Θ Θ Θ Θ                                       

(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 
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Since 20 << Φab , 0>q , it is obvious 
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As a result of (B7) and (B8), it is easy to get 
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(B10) 
According to Theorem 1 and Assumption 3, 
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)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 

(B10)

According to Theorem 1 and Assumption 3, 
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                 (B3) 
In terms of the above trace property P2, (B3) yields 
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(B4) 
Subtracting )(tΘ  from both sides of (11) and using 
relationship (B1), one obtains 
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(B5) 
Hence in terms of (B5), one can rearrange (B4) as 
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(B6) 
Again using (B1), we have  
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(B7) 
Since 20 << Φab , 0>q , it is obvious 
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 (B8) 

  
As a result of (B7) and (B8), it is easy to get 

( ) ( )
( ) ( )
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(B9) 
or 

1 0
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) .k kt t t t t t−− ≤ − ≤ ≤ −Θ Θ Θ Θ Θ Θ                                       

(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 

, so 
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In terms of the above trace property P2, (B3) yields 
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(B4) 
Subtracting )(tΘ  from both sides of (11) and using 
relationship (B1), one obtains 
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(B5) 
Hence in terms of (B5), one can rearrange (B4) as 

( )
( )

1

1 1

1 1

1
1 1

1 1

1

1 1

1 1

1 1

( 1)( )
( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( )
( ) ( )

( 1)
( ) ( )

( ) ( ) ( )2
( ) ( )

T
k

k T
k k

k k k

T
k

k k kT
k k

T
k

T
k k

T
k k

T
k k

a tV t
c t t

t t t t t

a t t t t
c t t

a t
c t t

a t t t
c t t

−

− −

− −

−
− −

− −

−

− −

− −

− −

+
∆ =

+

− + −

+
= − −

+

+
=

+

 
− + + 

e P
ζ ζ

Θ Θ Θ Θ ζ

e P Θ Θ ζ
ζ ζ

e P
ζ ζ

PΦ ζ ζI
ζ ζ

 



1 1( ) ( ).k kt t− −Θ ζ

                     

(B6) 
Again using (B1), we have  
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(B7) 
Since 20 << Φab , 0>q , it is obvious 
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As a result of (B7) and (B8), it is easy to get 
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(B9) 
or 

1 0
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) .k kt t t t t t−− ≤ − ≤ ≤ −Θ Θ Θ Θ Θ Θ                                       

(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 

 is bounded. Further,  
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                 (B3) 
In terms of the above trace property P2, (B3) yields 
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(B4) 
Subtracting )(tΘ  from both sides of (11) and using 
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(B5) 
Hence in terms of (B5), one can rearrange (B4) as 
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Again using (B1), we have  
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(B7) 
Since 20 << Φab , 0>q , it is obvious 
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As a result of (B7) and (B8), it is easy to get 
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(B9) 
or 

1 0
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) .k kt t t t t t−− ≤ − ≤ ≤ −Θ Θ Θ Θ Θ Θ                                       

(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 

 is given bounded too, thus it is 
obvious that 
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In terms of the above trace property P2, (B3) yields 
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(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 

 is bounded. Therefore, 
inequality (B10) implies that 
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As a result of (B7) and (B8), it is easy to get 
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(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 

 is nonnegative, 
nonincreasing, and bounded and 
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Since 20 << Φab , 0>q , it is obvious 
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(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 
 is bounded.

Summing both sides of (B7) from 0 to k, yields
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(B11) 
Since )(0 tV  is bounded and )(tVk  is nonnegative 
and bounded, in terms of (B8) and (B11), one ob-
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(B13) 
where 

dybq 21 =  and 12 =q  are two positive con-
stants.  
Thus, the convergence property (B12) together 
with (B13) implies the asymptotical convergence 
of )(tke  along iteration axis for all { }Tt ,,1∈ .  
 

(B11)

Since )(0 tV  is bounded and )(tVk  is nonnega-
tive and bounded, in terms of (B8) and (B11), one  
obtains 
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Since )(0 tV  is bounded and )(tVk  is nonnegative 
and bounded, in terms of (B8) and (B11), one ob-
tains  

0
)()(

)1(
lim

2

=
+

+
∞→ ttc

t

k
T

k

k

k ζζ
e

                                   (B12)                                              
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(B13) 
where 

dybq 21 =  and 12 =q  are two positive con-
stants.  
Thus, the convergence property (B12) together 
with (B13) implies the asymptotical convergence 
of )(tke  along iteration axis for all { }Tt ,,1∈ .  
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In terms of the above trace property P2, (B3) yields 
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(B4) 
Subtracting )(tΘ  from both sides of (11) and using 
relationship (B1), one obtains 
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Hence in terms of (B5), one can rearrange (B4) as 
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Again using (B1), we have  
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(B7) 
Since 20 << Φab , 0>q , it is obvious 
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As a result of (B7) and (B8), it is easy to get 
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or 
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(B10) 
According to Theorem 1 and Assumption 3, 

Φ≤≤< bt)(0 Φδ , so )(tΘ  is bounded. Further, 

)(ˆ
0 tΘ , },,,0{ Tt ∈  is given bounded too, thus it 

is obvious that )()(ˆ
0 tt ΘΘ −  is bounded. There-

fore, inequality (B10) implies that )(~ tkΘ  is 

nonnegative, nonincreasing, and bounded and 
)(ˆ tkΘ  is bounded. 

Summing both sides of (B7) from 0 to k, yields 
, one has
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(B13)

where 
dybq 21 =  and 12 =q  are two positive constants. 

Thus, the convergence property (B12) together with 
(B13) implies the asymptotical convergence of )(tke  
along iteration axis for all { }Tt ,,1∈ . 
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