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Our daily life is increasingly becoming more and more dependent on software as they are being extensively 
used to control safety and mission-critical systems. This has lead to very stringent verification requirements 
for ensuring that the software performs as intended. However, the testing based techniques cannot provide a 
rigorous verification due to limited computational and memory constraints and traditional formal verification 
techniques, like model checking and theorem proving, are not too straightforward to work with in the industrial 
setting. In this paper, as a first step to overcome these limitations, we describe a hybrid property based testing 
and model checking based technique for verifying both models and implementation of access control systems. 
Our approach addresses the model checking of critical properties of access control systems and aims at improv-
ing their reliability by using property based testing to analyze the corresponding software code. For illustration 
purposes, a simple example of an access control system is used. 
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1. Introduction
In today’s world, software based systems take over 
more of our lives and, it becomes hard and strange to 
find a person or a company that doesn’t use comput-
ers and software in its daily activities. Such software 
based systems made our daily life more easier and 
comfortable till the extent that we could not imagine 
our world as it is now; functions without software 
based systems. For instance, such systems are now 
widely present in our environment for many uses at 
home, bank, hospital and even for the so-called safety 
critical systems. Consequently, this variety of software 
based systems implies different quality levels that are 
directly proportional to the need for safety and relia-
bility for each systems or application domain. There-
fore, the use of adequate design approaches as well as 
rigorous analysis techniques is gaining more and more 
importance. Access control systems [6, 40] — as exam-
ple of software based systems — are one of the most 
popular crucial assets of security that play a crucial 
role in computer security, industrial research and in 
finance. In addition, access control systems (ACS) are 
mostly used as a measure to restrict the access to sen-
sitive data, specific areas, personal account informa-
tion as well as to protect valuables. At the same time, 
the access control policies play an important role in 
distributed systems, such as the case of organization-
al collaboration, in order to prevent the organization’s 
shared resources (machines and servers) from any un-
authorized use or access [49]. The presence of ACS in 
our daily life brings forth many software security re-
lated challenges to protect both individual privacy and 
enterprise property through commerce and indus-
try. This need is of paramount importance especially 
when it concerns safety and mission critical systems. 
Therefore, according to the desired security level, 
many techniques, such as passwords, signature or bi-
ometric access control have been used. In addition, it 
is essential not only to rigorously analyze these tech-
niques to ensure that they are meeting the required 
security and reliability constraints but also to confirm 
the absence of any violations in the underlying soft-
ware implementation. Traditionally, testing [30] is the 
oldest method and the dominant mean by which most 
software based systems are verified. However, testing 
does not allow the complete correctness of software 
based systems and thus cannot be used alone to rigor-
ously ensure reliability and security aspects of ACS, 

due to their complex nature and thus a huge number of 
possible cases. Formal methods such as model check-
ing [50, 25], can overcome these limitations but at the 
cost of verification experts and a significant amount 
of verification effort and time. These costs make pure 
formal verification based analysis quite infeasible for 
the industry where time-to-market is very critical and 
human resources are usually scarce.
In our opinion, these challenges can be catered for by 
using a variety of verification techniques depending 
on the different development stages. Therefore, in this 
paper, we propose a novel hybrid approach combining 
both model checking and Property-Based Testing tech-
niques (PBT) for verifying models and implementation 
of software based systems. In fact, this proposition is the 
enhancement, extension and combination of our previ-
ous works [2, 9], where we have used such techniques 
separately. The proposed approach uses Petri nets [38], 
which is a powerful formalism, in the modeling stage 
and rewriting logic [31] that represents an expressive 
universal logic, to give formal semantics to Petri nets 
models in the specification stage. Then, the Maude 
model checker [19] is used to check critical properties 
of ACS, and finally property-based testing [20, 21] as an 
automatic testing technique based on random genera-
tion of test sequences (i.e. test scenarios) to raise the 
confidence level on a given system realization.
The rest of this paper is organized as follows. Section 
2 briefly describes some elementary concepts related 
to the presented work. Then, a literature survey is pre-
sented in Section 3. In Section 4, we present a general 
description about access control systems. Thereaf-
ter, we illustrate our approach by using a simple case 
study in Section 5 to show its feasibility and validity. 
The contributions of the presented approach are dis-
cussed in Section 6. Finally, Section 7 concludes the 
paper with a summary of the present work.

2. Preliminaries
In this section, we present the main concepts related 
to the rest of the paper, such as rewriting logic, Petri 
nets, model checking and property based testing. 
More details about these topics can be accessed from 
[34, 14, 24, 46]. 
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2.1. Rewriting Logic and Petri Nets
Rewriting logic [31] mainly extends the equational al-
gebraic specifications with “rewrite rules” to deal with 
changes, dynamics and concurrencies. In rewriting log-
ic, concurrent systems models can be specified easily by 
using rewrite theory . A rewrite theory is a 4-tuple  = 
(Σ, E, L, R) composed from  the equational theory (Σ, E) 
that defines the structural part of the system, L is a set of 
labels, and R is a set of possibly conditional rewrite rules 
that represent changes in the system behavior. Rewrit-
ing logic is also known as a logic of change and a unifying 
semantic framework in which Petri net [42] and a very 
wide range of concurrency models and logics can be rep-
resented [32, 47, 48, 43, 45].
Petri nets were originally introduced in 1962 by Carl 
Adam Petri [35] and they are still considered as very 
useful and reliable tool for modeling and verifying 
discrete and dynamic systems.
Definition 1. A Petri net is a 5-tuple N = (P, T, F, W, 
M0) where:
 _ P : a finite set of places connected with,
 _ T : a finite set of transitions where P ∩ T =  ∅,
 _ F : the flow relation that relates places and transitions 

by arcs, such that F ⊆ (P × T ) ∪ (T × P), and
 _ W : F → ℕ is a weight function that assigns weights 

to each arc,
 _ M0 : P → ℕ is the initial marking.

So, a Petri net consists of a set of places, transitions 
and directed arcs connecting places with transitions. 
Places may contain different number of tokens, which 
are represented by black dots. A transition has gen-
erally input places that are connected with directed 
arcs from each input place to the transition, and out-
put places are connected with the transition by arcs 
starting from the transition. A transition is enabled if 
its input places contain sufficient tokens. Thereafter, 
the enabled transition may be unconditionally fired. 
The specification language chosen for our approach 
is Maude which is based on a rewriting logic. Maude 
specifications can be written using two different mod-
ules: functional modules (start with the keyword fmod 
... endfm) and system modules (keyword mod ... endm).
Functional modules are based on membership equa-
tional logic [33] to define basic sorts with operations 
on them, a set of terms with operations on them by 
means of equational theories, and memberships be-
tween terms and sorts.

System modules are very general rewrite theories 
that may have equations in addition to rewrite rules 
to define the dynamic part of systems. The outcome 
of the system module is obtained via highly divergent 
rewriting paths based on rewriting logic deduction 
rules. In this context, Petri nets have been successful-
ly modeled in Maude as given in [42, 31]. In addition, 
we suggest an object oriented specification for Petri 
nets in order to allow designers associating data to 
Petri net tokens such as token type, number and color. 
Moreover, by adding such information in the specifi-
cation of Petri nets, designers will be able to use in-
hibitor arcs and therefore test for zero or testing Petri 
nets boundedness can be implemented. This is illus-
trated through the following example.
Example 1. This example represents a simple vend-
ing machine to buy coffee, tea and water with a cost 
of 1 dollar, 2 and 3 quarters, respectively. This ma-
chine only accepts dollars and quarters. Figure 1 
represents the Petri net describing the behaviour of 
such a machine.

Figure 1
Petri net describing the vending machine behaviour

The corresponding object oriented specification of 
such a machine is given in the following module:
mod Vending-Machine is 
pr INT .
inc CONFIGURATION .
sorts service coin type . 
subsorts service coin < type . op PLACE : 
-> Cid .
ops tea coffe water : -> service . 
ops dolar quarter : -> coin .
op tokentype :_ : type -> Attribute 
[gather(&)] .
op tokennumber :_ : Int -> Attribute 
[gather(&)] . 
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ops $ q t w c : -> Oid .
op Initial : -> Configuration . 
vars x y z : Int .
crl [buy-c2] : < $ : PLACE | tokentype : 
dolar , tokennumber : x > < c : PLACE | 
tokentype : coffe , tokennumber : y > => < $ 
: PLACE | tokentype : dolar , tokennumber 
: x - 1 > < c : PLACE | tokentype : coffe , 
tokennumber : y + 1 > if (x > 0) .
crl [buy-t2] : < $ : PLACE | tokentype : 
dolar , tokennumber : x > < t : PLACE | 
tokentype : tea , tokennumber : y > < q : 
PLACE | tokentype : quarter , tokennumber 
: z > => < $ : PLACE | tokentype : dolar 
, tokennumber : x - 1 > < t : PLACE | 
tokentype : tea , tokennumber : y + 1 > < q 
: PLACE | tokentype : quarter , tokennumber 
: z + 2 > if (x > 0) .
crl [buy-w2] : < $ : PLACE | tokentype : 
dolar , tokennumber : x > < w : PLACE | 
tokentype : water , tokennumber : y > < q : 
PLACE | tokentype : quarter , tokennumber 
: z > => < $ : PLACE | tokentype : dolar 
, tokennumber : x - 1 > < w : PLACE | 
tokentype : water , tokennumber : y + 1 
> < q : PLACE | tokentype : quarter , 
tokennumber : z + 1 > if (x > 0) .
crl [buy-c1] : < q : PLACE | tokentype : 
quarter , tokennumber : x > < c : PLACE | 
tokentype : coffe , tokennumber : y > => < q 
: PLACE | tokentype : quarter , tokennumber 
: x - 4 > < c : PLACE | tokentype : coffe , 
tokennumber : y + 1 > if (x >= 4) .
crl [buy-t1] : < q : PLACE | tokentype : 
quarter , tokennumber : x > < t : PLACE | 
tokentype : tea , tokennumber : y > => < q 
: PLACE | tokentype : quarter , tokennumber 
: x - 2 > < t : PLACE | tokentype : tea , 
tokennumber : y + 1 > if (x >= 2) .
crl [buy-w1] : < q : PLACE | tokentype : 
quarter , tokennumber : x > < w : PLACE | 
tokentype : water , tokennumber : y > => < q 
: PLACE | tokentype : quarter , tokennumber 
: x - 3 > < w : PLACE | tokentype : water , 
tokennumber : y + 1 > if (x >= 3) . 
endm

2.2. Model-Checking
Model checking is a formal verification technique that 
is particularly well suited to prove the correctness of a 
finite state system by analyzing its design [13, 24]. As 
shown in Figure 2, it generally requires the use of for-
mal specification languages to develop a description 
(model) for the system under study and the specifi-

cation of property to be verified. Model checking ex-
plores all possible states of a system (or model) based 
on the combination of system input(s) and state(s) to 
determine whether or not a specified set of properties 
is true. If a property is not true, the model checker will 
produce a counter example execution trace to show 
why the property does not hold.

Figure 2
Model Checking Technique 

  

mod Vending-Machine is  
pr INT . 
inc CONFIGURATION . 
sorts service coin type .  
subsorts service coin < type . op PLACE : 
-> Cid . 
ops tea coffe water : -> service .  
ops dolar quarter : -> coin . 
op tokentype :_ : type -> Attribute 
[gather(&)] . 
op tokennumber :_ : Int -> Attribute 
[gather(&)] .  
ops $ q t w c : -> Oid . 
op Initial : -> Configuration .  
vars x y z : Int . 
crl [buy-c2] : < $ : PLACE | tokentype : 
dolar , tokennumber : x > < c : PLACE | 
tokentype : coffe , tokennumber : y > => < 
$ : PLACE | tokentype : dolar , 
tokennumber : x - 1 > < c : PLACE | 
tokentype : coffe , tokennumber : y + 1 > 
if (x > 0) . 
crl [buy-t2] : < $ : PLACE | tokentype : 
dolar , tokennumber : x > < t : PLACE | 
tokentype : tea , tokennumber : y > < q : 
PLACE | tokentype : quarter , tokennumber 
: z > => < $ : PLACE | tokentype : dolar , 
tokennumber : x - 1 > < t : PLACE | 
tokentype : tea , tokennumber : y + 1 > < 
q : PLACE | tokentype : quarter , 
tokennumber : z + 2 > if (x > 0) . 
crl [buy-w2] : < $ : PLACE | tokentype : 
dolar , tokennumber : x > < w : PLACE | 
tokentype : water , tokennumber : y > < q 
: PLACE | tokentype : quarter , 
tokennumber : z > => < $ : PLACE | 
tokentype : dolar , tokennumber : x - 1 > 
< w : PLACE | tokentype : water , 
tokennumber : y + 1 > < q : PLACE | 
tokentype : quarter , tokennumber : z + 1 
> if (x > 0) . 
crl [buy-c1] : < q : PLACE | tokentype : 
quarter , tokennumber : x > < c : PLACE | 
tokentype : coffe , tokennumber : y > => < 
q : PLACE | tokentype : quarter , 
tokennumber : x - 4 > < c : PLACE | 
tokentype : coffe , tokennumber : y + 1 > 
if (x >= 4) . 
crl [buy-t1] : < q : PLACE | tokentype : 
quarter , tokennumber : x > < t : PLACE | 
tokentype : tea , tokennumber : y > => < q 
: PLACE | tokentype : quarter , 
tokennumber : x - 2 > < t : PLACE | 
tokentype : tea , tokennumber : y + 1 > if 
(x >= 2) . 
crl [buy-w1] : < q : PLACE | tokentype : 
quarter , tokennumber : x > < w : PLACE | 
tokentype : water , tokennumber : y > => < 
q : PLACE | tokentype : quarter , 
tokennumber : x - 3 > < w : PLACE | 
tokentype : water , tokennumber : y + 1 > 
if (x >= 3) .  
endm 

2.2 Model-Checking 
Model checking is a formal verification technique 
that is particularly well suited to prove the 
correctness of a finite state system by analyzing its 
design [13, 24]. As shown in Figure 2, it generally 
requires the use of formal specification languages 
to develop a description (model) for the system 
under study and the specification of property to be 
verified. Model checking explores all possible states 
of a system (or model) based on the combination of 
system input(s) and state(s) to determine whether 
or not a specified set of properties is true. If a 
property is not true, the model checker will 
produce a counter example execution trace to show 
why the property does not hold. 

Figure 2 
Model Checking Technique  

 

 

 

 

 

 

The main idea behind the model checking 
technique —automata-theoretic approach—, is to 
construct a Kripke structure K that is equivalent to 
the system model M and Büchi automaton that is 
equivalent to the negation of the property B¬ϕ. 
Then, another Büchi automaton B' has to be 
constructed from K and B¬ϕ where: L(B') = L(K) ∩ 
L(B¬ϕ). Therefore, two cases are possible: 

 If L(B') = ∅, then M |= ϕ. (property ϕ is correct 
in M ). 

 Else, a counter-example is given to show 
where the property ϕ does not hold in M . 

This principle can be expressed briefly as follows: 

M ⊧ ϕ  K ⊧ ϕ  L(K)  L(ϕ)                     
L(K) ∩ L(ϕ) = ∅  L(K) ∩ L(¬ϕ) = ∅ 

2.3 Property-Based Testing 
Even when model checking has been performed on 
the model of a system, its full realization needs to 
be tested and the developers need to manually 
design and implement a suite of test cases, which 
represent specific scenarios of interaction with the 
system under test (SUT). However, this technique 

 

The main idea behind the model checking technique 
—automata-theoretic approach—, is to construct a 
Kripke structure K that is equivalent to the system 
model M and Büchi automaton that is equivalent to 
the negation of the property B¬φ. Then, another Büchi 
automaton B’ has to be constructed from K and B¬φ 
where: L(B’) = L(K) ∩ L(B¬φ). Therefore, two cases are 
possible:
 _ If L(B’) = ∅, then M |= φ. (property ϕ is correct in M).
 _ Else, a counter-example is given to show where the 

property φ does not hold in M .

This principle can be expressed briefly as follows:
M ⊧ φ  ⇔ K  ⊧ φ ⇔ L(K) ⊆ L(φ)  ⇔ 
L(K) ∩ L(φ) = ∅ ⇔ L(K) ∩ L(¬φ) = ∅

2.3. Property-Based Testing
Even when model checking has been performed on 
the model of a system, its full realization needs to be 
tested and the developers need to manually design 
and implement a suite of test cases, which represent 
specific scenarios of interaction with the system un-
der test (SUT). However, this technique often ignores 
some bugs that eventually surface during system op-
eration. There, there is a dire need for some automat-
ed testing techniques. The Property-Based Testing 
(PBT) falls in this category, with further differentia-
tion being possible on the basis of whether it is used 
before or after the real implementation.
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As shown in Figure 3, in Property-Based Testing, the 
developer has to write a universally quantified expres-
sion characterizing the behaviour of a SUT function-
ality. Therefore, instead of choosing specific input 
data, the PBT tool uses data generators to randomly 
produce acceptable input data, running as many con-
crete scenarios as desired by the developer, and diag-
nosing each of those scenarios offering counter exam-
ples for test failures.
The interest on PBT and PBT tools is growing rapidly, 
as the effort required by the developer, compared to 
the amount of tests that can be run in the same time, 
make PBT a very attractive and cost-efficient op-
tion. To date, and to the best of our knowledge, Quviq 
QuickCheck [37] is the most advanced and powerful 
PBT tool. It has been successfully used in research 
and industry to test complex, critical distributed and 
concurrent systems, implemented in Erlang and oth-
erwise [39, 3, 10, 11].

3. Related Work
The ultimate objective of software development is to 
produce correct software that satisfies its require-

Figure 3
Property-Based Testing principle
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3 Related Work  
The ultimate objective of software development is 
to produce correct software that satisfies its 
requirements. Therefore, verification and testing 
are of crucial importance for software quality 
assurance. In the context of ACS, many techniques, 
like testing [36, 30] and model checking [28, 50, 25], 
may be used to evaluate the correctness of a 
software model and implementation. For instance, 
Schaad et al. [41] used Alloy as a modeling 
formalism and its analyzer as a checking tool. 
However, since Alloy has no built-in temporal 
reasoning, it is hard to code the system states and 
the transition relations explicitly. As results, Alloy 
models are too complex and their verification is 
usually quite inefficient. In the context of testing 
ACS, structural and behavioral models of Role 
based Access Control (RBAC) policy specification 
have been developed in [30]. Then, a model-based 
strategy is proposed for the automated generation 
of a test suite from the prepared specification for 
testing implementations of access control systems 
using a well-known algorithm [12]. However, 
testing cannot be used to rigorously verify the 
reliability and security aspects of ACS, due to their 
complex nature and thus a huge number of 
possible cases. In order to overcome the 
shortcomings of testing, several formal 
specification approaches [44, 8, 27, 26, 7] have been 
proposed. The Z language has been used as a 
model-based specification language to represent 
the software specifications formally using 
mathematical models. Moreover, model checking 
has also been used for software testing in order to 
improve the quality of software specifications [1, 
22]. The counter examples generated by a model 
checker are used to create test cases. 

Based on the above-mentioned literature review, 
we can see that despite many attempts to ensure 
the safe development of software based systems, 
we cannot ensure a complete analysis in term of 
covering all development stages. However, the 
good news is that many of the explored techniques 
are complementary in nature and thus developing 
hybrid approaches, using these existing techniques, 
can certainly raise the level of completeness of 
verification for software systems. 
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tion approaches [44, 8, 27, 26, 7] have been proposed. 
The Z language has been used as a model-based spec-
ification language to represent the software specifica-
tions formally using mathematical models. Moreover, 
model checking has also been used for software test-
ing in order to improve the quality of software speci-
fications [1, 22]. The counter examples generated by a 
model checker are used to create test cases.
Based on the above-mentioned literature review, we 
can see that despite many attempts to ensure the safe 
development of software based systems, we cannot 
ensure a complete analysis in term of covering all 
development stages. However, the good news is that 
many of the explored techniques are complementa-
ry in nature and thus developing hybrid approaches, 
using these existing techniques, can certainly raise 
the level of completeness of verification for software 
systems.
In our proposed approach, the verification of Petri 
net model by using Maude model checker is very easy, 
effective and advantageous since rewriting logic on 
which Maude is based, is a very expressive logic al-
lowing the formal specification of wide range of Pe-
tri nets and permitting to designers associating data 
to the Petri net tokens. In addition, the state-space 
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explosion problem in model checking technique can 
be somewhat overcome by the use of Maude Linear 
Temporal Logic of Rewriting Model Checker (LTLR) 
[4] that supports on-the-fly explicit-state model 
checking of concurrent systems. 
Similarly, Maude allows using another complemen-
tary technique, i.e., a reachability-analysis tool that 
can explicitly check the existence/absence of critical 
states in the system from a pre-defined initial state, 
which is provided by experts in the field of study. In 
fact, this tool offers a very quick verification time if 
the best initial state is used.

4. Access Control Systems
In computer security, the term “access control” refers 
to the mechanisms of controlling users or processes 
to: 1) Perform functions included in their authorized 
level and restrict them from performing other unau-
thorized functions or 2) Access to specific resources 
(e.g., shared devices, networks, files, computers, data-
bases), confidential information, or top secret infor-
mation about national security, protective force and 
nuclear material control ... etc. However, it usually 
also refers in practice to door access control that is 
the process and mechanisms by which the entrance to 
a server room, building, a parking garage, or any other 
sensitive area is managed.
Depending to the system, the first way of access con-
trol can be achieved by a human (a guard, policeman 
or security agent) through mechanical means, such 
as locks and keys. Nevertheless, this is an extremely 
risky strategy since it is not possible to: (a) prohibit 
authorized person from duplicating keys, (b) restrict 
the key holder to specific times or dates, and (c) know 
who had entered, left and how long time they had 
passed in the monitored area. Instead of locks and 
keys, the second alternative to regulate access control 
and provide better security is the electronic access 
control systems. This new strategy can unlock doors 
for a predetermined time and records all failed and 
successful accesses. In addition, if an access card is 
lost, the card can easily be deactivated, replaced or 
removed from the list. Moreover, such systems can 
optionally sense the activity of forcefully a door and 
monitoring the entrance if it is held open for a long 
time after being unlocked.

4.1. System Architecture
A typical door access control system, depicted in 
Figure 4, consists of five main components:
1 Identity credential: It may be released by a phys-

ical object (such as a key, keycard, or fingerprint) 
or secret information (such as a keycode or pass-
word), or combination of both that is presented to 
the door reader.

2 Door reader or keypad: It is used to receive the in-
formation presented by the credential.

3 Door strike: It is designed to hold a door closed un-
til receiving an authorized entry request from the 
control panel.

4 Control panel: It must be connected to the door 
reader, the door strike and the access control serv-
er. Its role is to authenticate the identification in-
formation and even make the final access authori-
zation in simple ACS.

5 Access control server: It is a server with regis-
tered card holder accounts and access information. 
It performs the verification and allows administra-
tors to set or change access levels for each ID cre-
dential and door, view reports, and conduct audits 
to see who used a door at a certain time.

Figure 4
Access Control System architecture
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4.2. Principle
The main purpose of a door access control system is 
to control access of users to areas and resources in 
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access zones on the basis of the user identity and ac-
cess rights associated with each user. Thus, only au-
thorized users will be allowed to enter into an access 
zone but the other users will be denied. The process 
of authentication may be established by means of 
a card code and/or a password, PIN, entered by the 
user. When a user is authenticated and authorized, 
the door will be opened after sending a signal from the 
control panel to the door strike. However, if he is not 
authenticated, the door will remain locked.

The state machine diagram in Figure 5 illustrates 
this principle and describes the behaviour of the 
control panel at the general level. In this diagram, 
the state “Validate Cid” is a composite state and 
when the state machine enters this state it will be 
automatically activated. In a real scenario, a simple 
algorithm based on a white/black list could be used, 
or something more complex, like inspecting the list 
of other recent accesses to other parts of the build-
ing for suspicious patterns.

Figure 5
The general behaviour of the control panel
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4.3 System Properties 
An access control system has to satisfy the 
following properties: 

 Serving employees: This property ensures that 
whenever an employee is present and wants 
access, he can use the access card reader and 
be served, either by being authorized or by 
being denied access. 

 System evolution and deadlock absence: This 
property ensures that the access control 
system is always active whenever an employee 
is present and that both the access card reader 
and the employee will progress in their 
interaction, i.e., there is no deadlock. 

 Controlling access: This property ensures that 
only authorized employees have access to the 
restricted zone. 

 
5 Case Study 
5.1 General System Description 
We consider a simple door access control system in 
a factory that controls the access into a private 
zone. The employees of the factory use their access 
cards to enter the building. For the sake of 
simplicity, we assume that the privileged 
employees have a palindrome identification code in 
their cards which and for that an algorithm has to 
be used for verification. 

Figure 6 shows the optimal Petri net describing the 
model of this access control system, and Table 1 
presents the meaning of the Petri net places and 
transitions. 
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5.2. System and Properties Specification
5.2.1. System Specification
The associated rewrite theory specifying the Petri net 
model of Figure 6 is given in the module PN_ACS.
mod PN_ACS is pr INT .

inc CONFIGURATION . op PLACE : -> Cid .

op tokens :_ : Int -> Attribute [gather(&)] .

ops P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 : -> Oid .

var x : Int .

crl [T1] : < P1 : PLACE | tokens : 1 > < P2 

Table 1
Meaning of Petri net places and transitions

Place labels with meaning

P1 Access card reader is ready (not is use)

P2 Employee with ID card want to access

P3 Card is inserted

P4 Card is tested

P5 Employee is waiting the card testing

P6 Employee takes his invalid card (denied)

P7 Employee takes his card and waits to access

P8 Employee is in the private area

P9 Employee is occupied

P10 Employee is out of the private area

Transition labels with meaning

T1 Insert card into ACS card reader

T2 Testing employee card

T3 Rejecting card with negative test result

T4 Accepting card and opening access door shortly

T5 Entering to the private area

T6 Start doing job

T7 Ending job and exiting

T8 Exiting the private area without doing job

T9 Authorized employee returns to the ACS

T10 Non authorized employee returns to the ACS

: PLACE | tokens : x > < P3 : PLACE | tokens 
: 0 > < P5 : PLACE | tokens : 0 > => < P1 : 
PLACE | tokens : 0 > < P2 : PLACE | tokens : 
x - 1 > < P3 : PLACE |

tokens : 1 > < P5 : PLACE | tokens : 1 > if 
(x >= 1) .

rl [T2] : < P3 : PLACE | tokens : 1 > < P4 : 
PLACE | tokens : 0 > => < P3 : PLACE | tokens 
: 0 > < P4 : PLACE | tokens : 1 > .

rl [T3] : < P4 : PLACE | tokens : 1 > < P5 
: PLACE | tokens : 1 > < P6 : PLACE | tokens 
: 0 > < P1 : PLACE | tokens : 0 > => < P4 : 
PLACE | tokens : 0 > < P5 : PLACE | tokens : 
0 > < P6 : PLACE | tokens : 1 > < P1 : PLACE 
| tokens : 1 > .

rl [T4] : < P4 : PLACE | tokens : 1 > < P5 
: PLACE | tokens : 1 > < P7 : PLACE | tokens 
: 0 > < P1 : PLACE | tokens : 0 > => < P4 : 
PLACE | tokens : 0 > < P5 : PLACE | tokens : 
0 > < P7 : PLACE | tokens : 1 > < P1 : PLACE 
| tokens : 1 > .

rl [T5] : < P7 : PLACE | tokens : 1 > < P8 : 
PLACE | tokens : 0 > => < P7 : PLACE | tokens 
: 0 > < P8 : PLACE | tokens : 1 > .

rl [T6] : < P8 : PLACE | tokens : 1 > < P9 : 
PLACE | tokens : 0 > => < P8 : PLACE | tokens 
: 0 > < P9 : PLACE | tokens : 1 > .

rl [T7] : < P9 : PLACE | tokens : 1 > < P10 : 
PLACE | tokens : 0 > => < P9 : PLACE | tokens 
: 0 > < P10 : PLACE | tokens : 1 > .

rl [T8] : < P8 : PLACE | tokens : 1 > < P10 : 
PLACE | tokens : 0 > => < P8 : PLACE | tokens 
: 0 > < P10 : PLACE | tokens : 1 > .

rl [T9] : < P10 : PLACE | tokens : 1 > < P2 : 
PLACE | tokens : x > => < P10 : PLACE | tokens 
: 0 > < P2 : PLACE | tokens : x + 1 > .

rl [T10] : < P6 : PLACE | tokens : 1 > < P2 : 
PLACE | tokens : x > => < P6 : PLACE | tokens 
: 0 > < P2 : PLACE | tokens : x + 1 > .

endm

In this specification, both of the static (signature) and 
dynamic (behavior) parts of the access control sys-
tem are defined.

5.2.2. Properties Specification
After formalization, the specification of properties 
represents the next preparation step before the verifi-
cation stage. At this level, the designer has to prepare 
two modules: the first one contains the set of proper-
ties that are assumed to be verified as presented in the 
module PN-ACS_PREDS. In the second one, the de-
signer expresses the relevant properties to be checked 
in the system as given in the module ACS-CHECK.
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The sample modules for our security system are given 
as follows:
mod PN-ACS_PREDS 

is protecting PN_ACS . 

including SATISFACTION .

subsort Configuration < State .

ops Want-Access Waiting Authorized : -> Prop . 

ops Denied Enter Occupied Exiting : -> Prop . 

var A : Configuration .

var y : Int .

***------ SOME IMPORTANT PROPERTIES -------

ceq A < P2 : PLACE | tokens : y > |= Want-
Access = true if (y >= 1) .

eq A < P5 : PLACE | tokens : 1 > |= Waiting = 
true .

eq A < P7 : PLACE | tokens : 1 > |= Authorized 
= true .

eq A < P6 : PLACE | tokens : 1 > |= Denied = 
true .

eq A < P8 : PLACE | tokens : 1 > |= Enter = 
true .

eq A < P9 : PLACE | tokens : 1 > |= Occupied 
= true .

eq A < P10 : PLACE | tokens : 1 > |= Exiting 
= true . 

endm

mod ACS-CHECK is 

inc PN-ACS_PREDS .

inc MODEL-CHECKER . 

inc LTL-SIMPLIFIER .

ops initial-state : -> Configuration .

eq initial-state = < P1 : PLACE | tokens : 1 
> < P2 : PLACE | tokens : 20 > < P3 : PLACE 
| tokens : 0 > < P4 : PLACE | tokens : 0 > 
< P5 : PLACE | tokens : 0 > < P6 : PLACE | 
tokens : 0 > < P7 : PLACE | tokens : 0 > < P8 
: PLACE | tokens : 0 > < P9 : PLACE | tokens 
: 0 > < P10 : PLACE | tokens : 0 > .

ops no-deadlock serving : -> Prop . 

eq serving = []((Want-Access) -> <> (Authorized 
\/ Denied)) . 

eq no-deadlock = [](Want-Access \/ Authorized 
\/ Denied \/ Waiting \/ Enter \/ Occupied \/ 
Exiting) .

endm

5.2.3. Verification
Next, the two properties described in the module 
ACS-CHECK are verified by using Maude LTL mod-
el-checker. We have also supposed that there are 20 
employees in the initial state for these properties. The 
following results have been tested using the Version 
2.7 of Maude system with Eclipse 4.2.2.
 _ Serving employees: This property is formally 

specified as the following LTL formula:
[]((Want-Access) -> <> (Authorized \/ Denied))

After verification, the LTL model checker confirms 
the correctness of this property as follows:
Maude> reduce in ACS-CHECK : 
modelCheck(initial-state, serving) .

rewrites: 744 in 29843475119ms cpu (15ms 
real) (~ rewrites/second)

result Bool: true

 _ System evolution and deadlock absence: This 
property is formally expressed as follows:
[]( Want-Access \/ Authorized \/ Denied \/ 
Waiting \/ Enter \/ Occupied \/ Exiting)

This property is also verified as follows:
Maude> reduce in ACS-CHECK : 
modelCheck(initial-state, no-deadlock) .

rewrites: 857 in 41773847050ms cpu (15ms 
real) (~ rewrites/second)

result Bool: true

5.2.4. Testing
The formalization and verification performed so far 
has focused on the most critical aspect of a security 
system, i.e., availability. Another interesting proper-
ty is “controlling access” mentioned in Section 4.3. 
This property concerns directly the composite state 
“Validate Cid” of the state diagram, given in Figure 5, 
which is practically implemented by means of the pal-
indrome algorithm testing as mentioned in Section 
5.1. Unfortunately, this property is not expressible as 
a LTL formula and for that the Property-Based Test-
ing technique is used.
The proposed C function to check whether a card 
code is palindrome or not is given as follows:
int isPalindrome(char code[])

{ char reverse_code[];

  int i;

  int h = strlen(code);
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    // inversing code string characters 

  for (i = h - 1; i >= 0 ; i--)

  {

    reverse_code[h - i - 1] = code[i];

  }

  if (strcmp(code,reverse_code) == 0)

  {

    return 0; // code is palindrome

  }

  else

  {

    return 1; // code is not palindrome

  }

}

Formalizing this function is probably not worth the 
time and effort, but its property-based testing will 
provide much more confidence in its realization than 
mere unit testing. Therefore, the universally quanti-
fied expression that we use as a property is:
prop_priviledged_employee_algorithm() ->

?FORALL(P,maybe_palindrome(),sut:validate_
user(P) == is_palindrome(P)).

where maybe_palindrome/0 is an input generation 
function, sut:validate_user/1 is the algorithm im-
plementation to be tested, and is_palindrome/1 is 
our oracle function.
maybe_palindrome() -> oneof([palindrome(), 
string()]).

palindrome() ->

 ?LET(Base, string(),

   ?LET(Middle, oneof([[], [char()]]),

     Base ++ Middle ++ lists:reverse(Base))).

string() -> list(char()).

is_palindrome(S) -> S == lists:reverse(S).

In other words, we use the maybe_palindrome/0 
function to generate user identifications (i.e. strings, 
sometimes palindromes, sometimes just lists of char-
acters) to test whether they are considered palin-
dromes (and thus, are granted access) by the system 
implementation in the same way as our oracle (is_
palindrome/1) does. The execution of such property 
using QuickCheck reassures us in that this is, indeed, 
the case:

>eqc:quickcheck(prop_priviledged_
employee()).

............................................

OK, passed 100 tests 

true

And the more time we can allocate to execute more 
tests, the greater the confidence level is:
>eqc:quickcheck(eqc:numtests(10000,palindrome 
: prop_check_indices())).

.......................................(x10)

......................................(x100)

...........................................

OK, passed 10000 tests 

true

6. Discussion and Contributions
The software design process is often viewed as a se-
quence of phases that transforms a set of informal 
specifications into a detailed technical specification 
that can be used for the development. All the inter-
mediate phases are characterized by a transformation 
from a more abstract description to a more detailed 
one until we have the final software product. Our ap-
proach for the development of software based sys-
tems contemplates the following phases of software 
development: modeling, specification, verification 
and testing. Note that it is not our intention to pro-
pose a methodological development lifecycle, but a 
systematic approach to systems analysis.
First, we start from an abstract description of the sys-
tem using Petri nets that represents a well-suited the-
oretical model of concurrency — for both industry and 
academia — in which the temporal ordering and caus-
al relationship between system components can eas-
ily be represented. However, basic Petri nets exhibit 
some known limitations [5, 29]. For instance, since 
the primary concern of Petri nets is behavior model-
ing and analysis [18], their most widely voiced criti-
cism, is the lack of algebraic structuring primitives or 
modularity, which often leads to unstructured models 
and inadequate abstractions of real systems. 
In addition, tokens circulating in Petri nets are undif-
ferentiated entities and Petri nets describe only the 
control structure of the system without references to 
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its data structure. Another practical limitation con-
cerns the number of reachable states that explodes 
especially when Petri nets contain a large number of 
tokens [17]. Moreover, a Petri nets cannot be used to 
express all kinds of behavior, acts and routing that are 
frequently encountered in real systems.
In order to cater for the above-mentioned issues, we 
advocate the use of Maude [16, 15] as a formal speci-
fication language based on rewriting logic [31] for de-
scribing Petri nets models of access control systems. 
This choice is also motivated by the expressiveness of 
rewriting logic, which is a unifying framework for spec-
ifying and analyzing a wide range of Petri nets [42]. In 
addition, its distinguishing features include the inte-
gration of the quasi-totality of OBJ3 features [23], such 
as parameterized programming, multiple inheritance, 
module instantiation, views, and a large set of pro-
gramming techniques. Furthermore, the availability of 
an integrated rich tool set for the formal analysis, such 
as model checking [19] and Maude reachability tool in 
Maude; facilitates the overall analysis considerably.
Then, Model checking can be considered as one of the 
most successful and widely used verification tech-
niques. However, it exhibits some shortcomings as well.
1 Model checking is generally deemed inadequate to 

analyze software of access control systems because 
of their dynamic nature and complexity, which of-
ten leads to the state-space explosion problem.

2 Model checking is used to automatically check 
whether a model meets a formal specification giv-
en by a temporal logic formula. However, certain 
properties of practical interest are not expressible 
in temporal logic.

In the proposed approach, these limitations can be 
somewhat overcome by the use of Maude LTLR model 
checker and Maude reachability-analysis tool. While 
the former supports on-the-fly explicit-state model 
checking of concurrent systems, the latter can be used 
to overcome the lack of expressiveness of the support-
ed temporal logic when using LTLR model checker.
Besides the formal verification, we advocate the use 

of Property-Based Testing [20] on the testing stage. 
Property-Based Testing is an automatic testing tech-
nique of the proposed code skeletons based on ran-
dom generation of test sequences (i.e. test scenarios). 
Contrary to the classic testing, Property-Based Test-
ing technique is used to test code skeletons or algo-
rithms before implementation. Such generated tests 
attain a high degree from “the whole control test cov-
erage” of the system implementation and, thus PBT 
techniques are found to be more effective in the de-
tection of faults earlier in the life cycle of product de-
velopment, allowing an efficient resource allocation 
and minimization of the system maintenance costs.

7. Conclusion
In this paper, we have proposed a hybrid approach for 
the formal development of software based systems. 
Therefore, a Petri net based model is prepared for the 
studied software based system with the correspond-
ing rewriting logic specification. Then, the associated 
Maude model checker is used for the formal verifica-
tion of such a Petri net model. At the last stage, prop-
erty based testing technique is used to test the pro-
posed system implementation before its realization.
The proposed approach permits us to check most of 
the important properties of such systems including, 
safety and liveness. Furthermore, some critical prop-
erties for access control system are not expressible 
with LTL formulas and thus, the integration of Prop-
erty-Based Testing technique allows us to capture 
more informal conjectures about the source code and 
test such properties in the proposed implementation.
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