
393Information Technology and Control 2018/3/47

Towards the Formal Development
of Software Based Systems: Access
Control System as a Case Study

ITC 3/47
Journal of Information Technology
and Control
Vol. 47 / No. 3 / 2018
pp. 393-405
DOI 10.5755/j01.itc.47.3.20330
© Kaunas University of Technology

Towards the Formal Development of Software Based Systems:
Access Control System as a Case Study

Received 2018/03/11 Accepted after revision 2018/08/16

 http://dx.doi.org/10.5755/j01.itc.47.3.20330

Corresponding author: ammar-boucherit@univ-el-oued.dz

Ammar Boucherit
Faculty of Sciences, University of Ferhat Abbas, Setif, Algeria
Department of Computer Science, University of Echahid Hamma Lakhdar, El-Oued, Algeria

Laura M. Castro
Department of Computer Science, Models and Applications of Distributed Systems Group,
Ã Coruña University, Spain

Abdallah Khababa
Faculty of Sciences,University of Ferhat Abbas, Setif, Algeria

Osman Hasan
School of Electrical Engineering and Computer Science, National University of Sciences and Technology,
Islamabad, Pakistan

Our daily life is increasingly becoming more and more dependent on software as they are being extensively
used to control safety and mission-critical systems. This has lead to very stringent verification requirements
for ensuring that the software performs as intended. However, the testing based techniques cannot provide a
rigorous verification due to limited computational and memory constraints and traditional formal verification
techniques, like model checking and theorem proving, are not too straightforward to work with in the industrial
setting. In this paper, as a first step to overcome these limitations, we describe a hybrid property based testing
and model checking based technique for verifying both models and implementation of access control systems.
Our approach addresses the model checking of critical properties of access control systems and aims at improv-
ing their reliability by using property based testing to analyze the corresponding software code. For illustration
purposes, a simple example of an access control system is used.
KEYWORDS: Access Control System, Model-Checking, Petri nets, Property-Based Testing, Rewriting Logic.

Information Technology and Control 2018/3/47394

1. Introduction
In today’s world, software based systems take over
more of our lives and, it becomes hard and strange to
find a person or a company that doesn’t use comput-
ers and software in its daily activities. Such software
based systems made our daily life more easier and
comfortable till the extent that we could not imagine
our world as it is now; functions without software
based systems. For instance, such systems are now
widely present in our environment for many uses at
home, bank, hospital and even for the so-called safety
critical systems. Consequently, this variety of software
based systems implies different quality levels that are
directly proportional to the need for safety and relia-
bility for each systems or application domain. There-
fore, the use of adequate design approaches as well as
rigorous analysis techniques is gaining more and more
importance. Access control systems [6, 40] — as exam-
ple of software based systems — are one of the most
popular crucial assets of security that play a crucial
role in computer security, industrial research and in
finance. In addition, access control systems (ACS) are
mostly used as a measure to restrict the access to sen-
sitive data, specific areas, personal account informa-
tion as well as to protect valuables. At the same time,
the access control policies play an important role in
distributed systems, such as the case of organization-
al collaboration, in order to prevent the organization’s
shared resources (machines and servers) from any un-
authorized use or access [49]. The presence of ACS in
our daily life brings forth many software security re-
lated challenges to protect both individual privacy and
enterprise property through commerce and indus-
try. This need is of paramount importance especially
when it concerns safety and mission critical systems.
Therefore, according to the desired security level,
many techniques, such as passwords, signature or bi-
ometric access control have been used. In addition, it
is essential not only to rigorously analyze these tech-
niques to ensure that they are meeting the required
security and reliability constraints but also to confirm
the absence of any violations in the underlying soft-
ware implementation. Traditionally, testing [30] is the
oldest method and the dominant mean by which most
software based systems are verified. However, testing
does not allow the complete correctness of software
based systems and thus cannot be used alone to rigor-
ously ensure reliability and security aspects of ACS,

due to their complex nature and thus a huge number of
possible cases. Formal methods such as model check-
ing [50, 25], can overcome these limitations but at the
cost of verification experts and a significant amount
of verification effort and time. These costs make pure
formal verification based analysis quite infeasible for
the industry where time-to-market is very critical and
human resources are usually scarce.
In our opinion, these challenges can be catered for by
using a variety of verification techniques depending
on the different development stages. Therefore, in this
paper, we propose a novel hybrid approach combining
both model checking and Property-Based Testing tech-
niques (PBT) for verifying models and implementation
of software based systems. In fact, this proposition is the
enhancement, extension and combination of our previ-
ous works [2, 9], where we have used such techniques
separately. The proposed approach uses Petri nets [38],
which is a powerful formalism, in the modeling stage
and rewriting logic [31] that represents an expressive
universal logic, to give formal semantics to Petri nets
models in the specification stage. Then, the Maude
model checker [19] is used to check critical properties
of ACS, and finally property-based testing [20, 21] as an
automatic testing technique based on random genera-
tion of test sequences (i.e. test scenarios) to raise the
confidence level on a given system realization.
The rest of this paper is organized as follows. Section
2 briefly describes some elementary concepts related
to the presented work. Then, a literature survey is pre-
sented in Section 3. In Section 4, we present a general
description about access control systems. Thereaf-
ter, we illustrate our approach by using a simple case
study in Section 5 to show its feasibility and validity.
The contributions of the presented approach are dis-
cussed in Section 6. Finally, Section 7 concludes the
paper with a summary of the present work.

2. Preliminaries
In this section, we present the main concepts related
to the rest of the paper, such as rewriting logic, Petri
nets, model checking and property based testing.
More details about these topics can be accessed from
[34, 14, 24, 46].

395Information Technology and Control 2018/3/47

2.1. Rewriting Logic and Petri Nets
Rewriting logic [31] mainly extends the equational al-
gebraic specifications with “rewrite rules” to deal with
changes, dynamics and concurrencies. In rewriting log-
ic, concurrent systems models can be specified easily by
using rewrite theory . A rewrite theory is a 4-tuple =
(Σ, E, L, R) composed from the equational theory (Σ, E)
that defines the structural part of the system, L is a set of
labels, and R is a set of possibly conditional rewrite rules
that represent changes in the system behavior. Rewrit-
ing logic is also known as a logic of change and a unifying
semantic framework in which Petri net [42] and a very
wide range of concurrency models and logics can be rep-
resented [32, 47, 48, 43, 45].
Petri nets were originally introduced in 1962 by Carl
Adam Petri [35] and they are still considered as very
useful and reliable tool for modeling and verifying
discrete and dynamic systems.
Definition 1. A Petri net is a 5-tuple N = (P, T, F, W,
M0) where:
 _ P : a finite set of places connected with,
 _ T : a finite set of transitions where P ∩ T = ∅,
 _ F : the flow relation that relates places and transitions

by arcs, such that F ⊆ (P × T) ∪ (T × P), and
 _ W : F → ℕ is a weight function that assigns weights

to each arc,
 _ M0 : P → ℕ is the initial marking.

So, a Petri net consists of a set of places, transitions
and directed arcs connecting places with transitions.
Places may contain different number of tokens, which
are represented by black dots. A transition has gen-
erally input places that are connected with directed
arcs from each input place to the transition, and out-
put places are connected with the transition by arcs
starting from the transition. A transition is enabled if
its input places contain sufficient tokens. Thereafter,
the enabled transition may be unconditionally fired.
The specification language chosen for our approach
is Maude which is based on a rewriting logic. Maude
specifications can be written using two different mod-
ules: functional modules (start with the keyword fmod
... endfm) and system modules (keyword mod ... endm).
Functional modules are based on membership equa-
tional logic [33] to define basic sorts with operations
on them, a set of terms with operations on them by
means of equational theories, and memberships be-
tween terms and sorts.

System modules are very general rewrite theories
that may have equations in addition to rewrite rules
to define the dynamic part of systems. The outcome
of the system module is obtained via highly divergent
rewriting paths based on rewriting logic deduction
rules. In this context, Petri nets have been successful-
ly modeled in Maude as given in [42, 31]. In addition,
we suggest an object oriented specification for Petri
nets in order to allow designers associating data to
Petri net tokens such as token type, number and color.
Moreover, by adding such information in the specifi-
cation of Petri nets, designers will be able to use in-
hibitor arcs and therefore test for zero or testing Petri
nets boundedness can be implemented. This is illus-
trated through the following example.
Example 1. This example represents a simple vend-
ing machine to buy coffee, tea and water with a cost
of 1 dollar, 2 and 3 quarters, respectively. This ma-
chine only accepts dollars and quarters. Figure 1
represents the Petri net describing the behaviour of
such a machine.

Figure 1
Petri net describing the vending machine behaviour

The corresponding object oriented specification of
such a machine is given in the following module:
mod Vending-Machine is
pr INT .
inc CONFIGURATION .
sorts service coin type .
subsorts service coin < type . op PLACE :
-> Cid .
ops tea coffe water : -> service .
ops dolar quarter : -> coin .
op tokentype :_ : type -> Attribute
[gather(&)] .
op tokennumber :_ : Int -> Attribute
[gather(&)] .

Information Technology and Control 2018/3/47396

ops $ q t w c : -> Oid .
op Initial : -> Configuration .
vars x y z : Int .
crl [buy-c2] : < $: PLACE | tokentype :
dolar , tokennumber : x > < c : PLACE |
tokentype : coffe , tokennumber : y > => < $
: PLACE | tokentype : dolar , tokennumber
: x - 1 > < c : PLACE | tokentype : coffe ,
tokennumber : y + 1 > if (x > 0) .
crl [buy-t2] : < $: PLACE | tokentype :
dolar , tokennumber : x > < t : PLACE |
tokentype : tea , tokennumber : y > < q :
PLACE | tokentype : quarter , tokennumber
: z > => < $: PLACE | tokentype : dolar
, tokennumber : x - 1 > < t : PLACE |
tokentype : tea , tokennumber : y + 1 > < q
: PLACE | tokentype : quarter , tokennumber
: z + 2 > if (x > 0) .
crl [buy-w2] : < $: PLACE | tokentype :
dolar , tokennumber : x > < w : PLACE |
tokentype : water , tokennumber : y > < q :
PLACE | tokentype : quarter , tokennumber
: z > => < $: PLACE | tokentype : dolar
, tokennumber : x - 1 > < w : PLACE |
tokentype : water , tokennumber : y + 1
> < q : PLACE | tokentype : quarter ,
tokennumber : z + 1 > if (x > 0) .
crl [buy-c1] : < q : PLACE | tokentype :
quarter , tokennumber : x > < c : PLACE |
tokentype : coffe , tokennumber : y > => < q
: PLACE | tokentype : quarter , tokennumber
: x - 4 > < c : PLACE | tokentype : coffe ,
tokennumber : y + 1 > if (x >= 4) .
crl [buy-t1] : < q : PLACE | tokentype :
quarter , tokennumber : x > < t : PLACE |
tokentype : tea , tokennumber : y > => < q
: PLACE | tokentype : quarter , tokennumber
: x - 2 > < t : PLACE | tokentype : tea ,
tokennumber : y + 1 > if (x >= 2) .
crl [buy-w1] : < q : PLACE | tokentype :
quarter , tokennumber : x > < w : PLACE |
tokentype : water , tokennumber : y > => < q
: PLACE | tokentype : quarter , tokennumber
: x - 3 > < w : PLACE | tokentype : water ,
tokennumber : y + 1 > if (x >= 3) .
endm

2.2. Model-Checking
Model checking is a formal verification technique that
is particularly well suited to prove the correctness of a
finite state system by analyzing its design [13, 24]. As
shown in Figure 2, it generally requires the use of for-
mal specification languages to develop a description
(model) for the system under study and the specifi-

cation of property to be verified. Model checking ex-
plores all possible states of a system (or model) based
on the combination of system input(s) and state(s) to
determine whether or not a specified set of properties
is true. If a property is not true, the model checker will
produce a counter example execution trace to show
why the property does not hold.

Figure 2
Model Checking Technique

mod Vending-Machine is
pr INT .
inc CONFIGURATION .
sorts service coin type .
subsorts service coin < type . op PLACE :
-> Cid .
ops tea coffe water : -> service .
ops dolar quarter : -> coin .
op tokentype :_ : type -> Attribute
[gather(&)] .
op tokennumber :_ : Int -> Attribute
[gather(&)] .
ops $ q t w c : -> Oid .
op Initial : -> Configuration .
vars x y z : Int .
crl [buy-c2] : < $: PLACE | tokentype :
dolar , tokennumber : x > < c : PLACE |
tokentype : coffe , tokennumber : y > => <
$: PLACE | tokentype : dolar ,
tokennumber : x - 1 > < c : PLACE |
tokentype : coffe , tokennumber : y + 1 >
if (x > 0) .
crl [buy-t2] : < $: PLACE | tokentype :
dolar , tokennumber : x > < t : PLACE |
tokentype : tea , tokennumber : y > < q :
PLACE | tokentype : quarter , tokennumber
: z > => < $: PLACE | tokentype : dolar ,
tokennumber : x - 1 > < t : PLACE |
tokentype : tea , tokennumber : y + 1 > <
q : PLACE | tokentype : quarter ,
tokennumber : z + 2 > if (x > 0) .
crl [buy-w2] : < $: PLACE | tokentype :
dolar , tokennumber : x > < w : PLACE |
tokentype : water , tokennumber : y > < q
: PLACE | tokentype : quarter ,
tokennumber : z > => < $: PLACE |
tokentype : dolar , tokennumber : x - 1 >
< w : PLACE | tokentype : water ,
tokennumber : y + 1 > < q : PLACE |
tokentype : quarter , tokennumber : z + 1
> if (x > 0) .
crl [buy-c1] : < q : PLACE | tokentype :
quarter , tokennumber : x > < c : PLACE |
tokentype : coffe , tokennumber : y > => <
q : PLACE | tokentype : quarter ,
tokennumber : x - 4 > < c : PLACE |
tokentype : coffe , tokennumber : y + 1 >
if (x >= 4) .
crl [buy-t1] : < q : PLACE | tokentype :
quarter , tokennumber : x > < t : PLACE |
tokentype : tea , tokennumber : y > => < q
: PLACE | tokentype : quarter ,
tokennumber : x - 2 > < t : PLACE |
tokentype : tea , tokennumber : y + 1 > if
(x >= 2) .
crl [buy-w1] : < q : PLACE | tokentype :
quarter , tokennumber : x > < w : PLACE |
tokentype : water , tokennumber : y > => <
q : PLACE | tokentype : quarter ,
tokennumber : x - 3 > < w : PLACE |
tokentype : water , tokennumber : y + 1 >
if (x >= 3) .
endm

2.2 Model-Checking
Model checking is a formal verification technique
that is particularly well suited to prove the
correctness of a finite state system by analyzing its
design [13, 24]. As shown in Figure 2, it generally
requires the use of formal specification languages
to develop a description (model) for the system
under study and the specification of property to be
verified. Model checking explores all possible states
of a system (or model) based on the combination of
system input(s) and state(s) to determine whether
or not a specified set of properties is true. If a
property is not true, the model checker will
produce a counter example execution trace to show
why the property does not hold.

Figure 2
Model Checking Technique

The main idea behind the model checking
technique —automata-theoretic approach—, is to
construct a Kripke structure K that is equivalent to
the system model M and Büchi automaton that is
equivalent to the negation of the property B¬ϕ.
Then, another Büchi automaton B' has to be
constructed from K and B¬ϕ where: L(B') = L(K) ∩
L(B¬ϕ). Therefore, two cases are possible:

 If L(B') = ∅, then M |= ϕ. (property ϕ is correct
in M).

 Else, a counter-example is given to show
where the property ϕ does not hold in M .

This principle can be expressed briefly as follows:

M ⊧ ϕ  K ⊧ ϕ  L(K)  L(ϕ) 
L(K) ∩ L(ϕ) = ∅  L(K) ∩ L(¬ϕ) = ∅

2.3 Property-Based Testing
Even when model checking has been performed on
the model of a system, its full realization needs to
be tested and the developers need to manually
design and implement a suite of test cases, which
represent specific scenarios of interaction with the
system under test (SUT). However, this technique

The main idea behind the model checking technique
—automata-theoretic approach—, is to construct a
Kripke structure K that is equivalent to the system
model M and Büchi automaton that is equivalent to
the negation of the property B¬φ. Then, another Büchi
automaton B’ has to be constructed from K and B¬φ
where: L(B’) = L(K) ∩ L(B¬φ). Therefore, two cases are
possible:
 _ If L(B’) = ∅, then M |= φ. (property ϕ is correct in M).
 _ Else, a counter-example is given to show where the

property φ does not hold in M .

This principle can be expressed briefly as follows:
M ⊧ φ ⇔ K ⊧ φ ⇔ L(K) ⊆ L(φ) ⇔
L(K) ∩ L(φ) = ∅ ⇔ L(K) ∩ L(¬φ) = ∅

2.3. Property-Based Testing
Even when model checking has been performed on
the model of a system, its full realization needs to be
tested and the developers need to manually design
and implement a suite of test cases, which represent
specific scenarios of interaction with the system un-
der test (SUT). However, this technique often ignores
some bugs that eventually surface during system op-
eration. There, there is a dire need for some automat-
ed testing techniques. The Property-Based Testing
(PBT) falls in this category, with further differentia-
tion being possible on the basis of whether it is used
before or after the real implementation.

397Information Technology and Control 2018/3/47

As shown in Figure 3, in Property-Based Testing, the
developer has to write a universally quantified expres-
sion characterizing the behaviour of a SUT function-
ality. Therefore, instead of choosing specific input
data, the PBT tool uses data generators to randomly
produce acceptable input data, running as many con-
crete scenarios as desired by the developer, and diag-
nosing each of those scenarios offering counter exam-
ples for test failures.
The interest on PBT and PBT tools is growing rapidly,
as the effort required by the developer, compared to
the amount of tests that can be run in the same time,
make PBT a very attractive and cost-efficient op-
tion. To date, and to the best of our knowledge, Quviq
QuickCheck [37] is the most advanced and powerful
PBT tool. It has been successfully used in research
and industry to test complex, critical distributed and
concurrent systems, implemented in Erlang and oth-
erwise [39, 3, 10, 11].

3. Related Work
The ultimate objective of software development is to
produce correct software that satisfies its require-

Figure 3
Property-Based Testing principle

often ignores some bugs that eventually surface
during system operation. There, there is a dire need
for some automated testing techniques. The
Property-Based Testing (PBT) falls in this category,
with further differentiation being possible on the
basis of whether it is used before or after the real
implementation.

Figure 3

Property-Based Testing principle

As shown in Figure 3, in Property-Based Testing,
the developer has to write a universally quantified
expression characterizing the behaviour of a SUT
functionality. Therefore, instead of choosing
specific input data, the PBT tool uses data
generators to randomly produce acceptable input
data, running as many concrete scenarios as desired
by the developer, and diagnosing each of those
scenarios offering counter examples for test
failures.

The interest on PBT and PBT tools is growing
rapidly, as the effort required by the developer,
compared to the amount of tests that can be run in
the same time, make PBT a very attractive and cost-
efficient option. To date, and to the best of our
knowledge, Quviq QuickCheck [37] is the most
advanced and powerful PBT tool. It has been
successfully used in research and industry to test

complex, critical distributed and concurrent
systems, implemented in Erlang and otherwise [39,
3, 10, 11].

3 Related Work
The ultimate objective of software development is
to produce correct software that satisfies its
requirements. Therefore, verification and testing
are of crucial importance for software quality
assurance. In the context of ACS, many techniques,
like testing [36, 30] and model checking [28, 50, 25],
may be used to evaluate the correctness of a
software model and implementation. For instance,
Schaad et al. [41] used Alloy as a modeling
formalism and its analyzer as a checking tool.
However, since Alloy has no built-in temporal
reasoning, it is hard to code the system states and
the transition relations explicitly. As results, Alloy
models are too complex and their verification is
usually quite inefficient. In the context of testing
ACS, structural and behavioral models of Role
based Access Control (RBAC) policy specification
have been developed in [30]. Then, a model-based
strategy is proposed for the automated generation
of a test suite from the prepared specification for
testing implementations of access control systems
using a well-known algorithm [12]. However,
testing cannot be used to rigorously verify the
reliability and security aspects of ACS, due to their
complex nature and thus a huge number of
possible cases. In order to overcome the
shortcomings of testing, several formal
specification approaches [44, 8, 27, 26, 7] have been
proposed. The Z language has been used as a
model-based specification language to represent
the software specifications formally using
mathematical models. Moreover, model checking
has also been used for software testing in order to
improve the quality of software specifications [1,
22]. The counter examples generated by a model
checker are used to create test cases.

Based on the above-mentioned literature review,
we can see that despite many attempts to ensure
the safe development of software based systems,
we cannot ensure a complete analysis in term of
covering all development stages. However, the
good news is that many of the explored techniques
are complementary in nature and thus developing
hybrid approaches, using these existing techniques,
can certainly raise the level of completeness of
verification for software systems.

ments. Therefore, verification and testing are of
crucial importance for software quality assurance.
In the context of ACS, many techniques, like test-
ing [36, 30] and model checking [28, 50, 25], may be
used to evaluate the correctness of a software model
and implementation. For instance, Schaad et al. [41]
used Alloy as a modeling formalism and its analyzer
as a checking tool. However, since Alloy has no built-
in temporal reasoning, it is hard to code the system
states and the transition relations explicitly. As re-
sults, Alloy models are too complex and their veri-
fication is usually quite inefficient. In the context of
testing ACS, structural and behavioral models of Role
Based Access Control (RBAC) policy specification
have been developed in [30]. Then, a model-based
strategy is proposed for the automated generation of
a test suite from the prepared specification for test-
ing implementations of access control systems using
a well-known algorithm [12]. However, testing cannot
be used to rigorously verify the reliability and security
aspects of ACS, due to their complex nature and thus
a huge number of possible cases. In order to overcome
the shortcomings of testing, several formal specifica-
tion approaches [44, 8, 27, 26, 7] have been proposed.
The Z language has been used as a model-based spec-
ification language to represent the software specifica-
tions formally using mathematical models. Moreover,
model checking has also been used for software test-
ing in order to improve the quality of software speci-
fications [1, 22]. The counter examples generated by a
model checker are used to create test cases.
Based on the above-mentioned literature review, we
can see that despite many attempts to ensure the safe
development of software based systems, we cannot
ensure a complete analysis in term of covering all
development stages. However, the good news is that
many of the explored techniques are complementa-
ry in nature and thus developing hybrid approaches,
using these existing techniques, can certainly raise
the level of completeness of verification for software
systems.
In our proposed approach, the verification of Petri
net model by using Maude model checker is very easy,
effective and advantageous since rewriting logic on
which Maude is based, is a very expressive logic al-
lowing the formal specification of wide range of Pe-
tri nets and permitting to designers associating data
to the Petri net tokens. In addition, the state-space

Information Technology and Control 2018/3/47398

explosion problem in model checking technique can
be somewhat overcome by the use of Maude Linear
Temporal Logic of Rewriting Model Checker (LTLR)
[4] that supports on-the-fly explicit-state model
checking of concurrent systems.
Similarly, Maude allows using another complemen-
tary technique, i.e., a reachability-analysis tool that
can explicitly check the existence/absence of critical
states in the system from a pre-defined initial state,
which is provided by experts in the field of study. In
fact, this tool offers a very quick verification time if
the best initial state is used.

4. Access Control Systems
In computer security, the term “access control” refers
to the mechanisms of controlling users or processes
to: 1) Perform functions included in their authorized
level and restrict them from performing other unau-
thorized functions or 2) Access to specific resources
(e.g., shared devices, networks, files, computers, data-
bases), confidential information, or top secret infor-
mation about national security, protective force and
nuclear material control ... etc. However, it usually
also refers in practice to door access control that is
the process and mechanisms by which the entrance to
a server room, building, a parking garage, or any other
sensitive area is managed.
Depending to the system, the first way of access con-
trol can be achieved by a human (a guard, policeman
or security agent) through mechanical means, such
as locks and keys. Nevertheless, this is an extremely
risky strategy since it is not possible to: (a) prohibit
authorized person from duplicating keys, (b) restrict
the key holder to specific times or dates, and (c) know
who had entered, left and how long time they had
passed in the monitored area. Instead of locks and
keys, the second alternative to regulate access control
and provide better security is the electronic access
control systems. This new strategy can unlock doors
for a predetermined time and records all failed and
successful accesses. In addition, if an access card is
lost, the card can easily be deactivated, replaced or
removed from the list. Moreover, such systems can
optionally sense the activity of forcefully a door and
monitoring the entrance if it is held open for a long
time after being unlocked.

4.1. System Architecture
A typical door access control system, depicted in
Figure 4, consists of five main components:
1 Identity credential: It may be released by a phys-

ical object (such as a key, keycard, or fingerprint)
or secret information (such as a keycode or pass-
word), or combination of both that is presented to
the door reader.

2 Door reader or keypad: It is used to receive the in-
formation presented by the credential.

3 Door strike: It is designed to hold a door closed un-
til receiving an authorized entry request from the
control panel.

4 Control panel: It must be connected to the door
reader, the door strike and the access control serv-
er. Its role is to authenticate the identification in-
formation and even make the final access authori-
zation in simple ACS.

5 Access control server: It is a server with regis-
tered card holder accounts and access information.
It performs the verification and allows administra-
tors to set or change access levels for each ID cre-
dential and door, view reports, and conduct audits
to see who used a door at a certain time.

Figure 4
Access Control System architecture

In our proposed approach, the verification of Petri
net model by using Maude model checker is very
easy, effective and advantageous since rewriting
logic on which Maude is based, is a very expressive
logic allowing the formal specification of wide
range of Petri nets and permitting to designers
associating data to the Petri net tokens. In addition,
the state-space explosion problem in model
checking technique can be somewhat overcome by
the use of Maude Linear Temporal Logic of
Rewriting Model Checker (LTLR) [4] that supports
on-the-fly explicit-state model checking of
concurrent systems.

Similarly, Maude allows using another
complementary technique, i.e., a reachability-
analysis tool that can explicitly check the
existence/absence of critical states in the system
from a pre-defined initial state, which is provided
by experts in the field of study. In fact, this tool
offers a very quick verification time if the best
initial state is used.

4 Access Control Systems
In computer security, the term "access control"
refers to the mechanisms of controlling users or
processes to: 1) Perform functions included in their
authorized level and restrict them from performing
other unauthorized functions or 2) Access to
specific resources (e.g., shared devices, networks,
files, computers, databases), confidential
information, or top secret information about
national security, protective force and nuclear
material control ... etc. However, it usually also
refers in practice to door access control that is the
process and mechanisms by which the entrance to a
server room, building, a parking garage, or any
other sensitive area is managed.

Depending to the system, the first way of access
control can be achieved by a human (a guard,
policeman or security agent) through mechanical
means, such as locks and keys. Nevertheless, this is
an extremely risky strategy since it is not possible
to: (a) prohibit authorized person from duplicating
keys, (b) restrict the key holder to specific times or
dates, and (c) know who had entered, left and how
long time they had passed in the monitored area.
Instead of locks and keys, the second alternative to
regulate access control and provide better security
is the electronic access control systems. This new
strategy can unlock doors for a predetermined time

and records all failed and successful accesses. In
addition, if an access card is lost, the card can easily
be deactivated, replaced or removed from the list.
Moreover, such systems can optionally sense the
activity of forcefully a door and monitoring the
entrance if it is held open for a long time after being
unlocked.

4.1 System Architecture
A typical door access control system, depicted in
Figure 4, consists of five main components:

1. Identity credential: It may be released by a
physical object (such as a key, keycard, or
fingerprint) or secret information (such as a
keycode or password), or combination of both
that is presented to the door reader.

2. Door reader or keypad: It is used to receive
the information presented by the credential.

3. Door strike: It is designed to hold a door
closed until receiving an authorized entry
request from the control panel.

4. Control panel: It must be connected to the
door reader, the door strike and the access
control server. Its role is to authenticate the
identification information and even make the
final access authorization in simple ACS.

5. Access control server: It is a server with
registered card holder accounts and access
information. It performs the verification and
allows administrators to set or change access
levels for each ID credential and door, view
reports, and conduct audits to see who used a
door at a certain time.

Figure 4

Access Control System architecture

4.2. Principle
The main purpose of a door access control system is
to control access of users to areas and resources in

399Information Technology and Control 2018/3/47

access zones on the basis of the user identity and ac-
cess rights associated with each user. Thus, only au-
thorized users will be allowed to enter into an access
zone but the other users will be denied. The process
of authentication may be established by means of
a card code and/or a password, PIN, entered by the
user. When a user is authenticated and authorized,
the door will be opened after sending a signal from the
control panel to the door strike. However, if he is not
authenticated, the door will remain locked.

The state machine diagram in Figure 5 illustrates
this principle and describes the behaviour of the
control panel at the general level. In this diagram,
the state “Validate Cid” is a composite state and
when the state machine enters this state it will be
automatically activated. In a real scenario, a simple
algorithm based on a white/black list could be used,
or something more complex, like inspecting the list
of other recent accesses to other parts of the build-
ing for suspicious patterns.

Figure 5
The general behaviour of the control panel

4.2 Principle
The main purpose of a door access control system is
to control access of users to areas and resources in
access zones on the basis of the user identity and
access rights associated with each user. Thus, only
authorized users will be allowed to enter into an
access zone but the other users will be denied. The
process of authentication may be established by
means of a card code and/or a password, PIN,
entered by the user. When a user is authenticated
and authorized, the door will be opened after
sending a signal from the control panel to the door
strike. However, if he is not authenticated, the door
will remain locked.

The state machine diagram in Figure 5 illustrates
this principle and describes the behaviour of the
control panel at the general level. In this diagram,
the state "Validate Cid" is a composite state and
when the state machine enters this state it will be
automatically activated. In a real scenario, a simple
algorithm based on a white/black list could be used,
or something more complex, like inspecting the list
of other recent accesses to other parts of the
building for suspicious patterns.

Figure 5

The general behaviour of the control panel

4.3 System Properties
An access control system has to satisfy the
following properties:

 Serving employees: This property ensures that
whenever an employee is present and wants
access, he can use the access card reader and
be served, either by being authorized or by
being denied access.

 System evolution and deadlock absence: This
property ensures that the access control
system is always active whenever an employee
is present and that both the access card reader
and the employee will progress in their
interaction, i.e., there is no deadlock.

 Controlling access: This property ensures that
only authorized employees have access to the
restricted zone.

5 Case Study
5.1 General System Description
We consider a simple door access control system in
a factory that controls the access into a private
zone. The employees of the factory use their access
cards to enter the building. For the sake of
simplicity, we assume that the privileged
employees have a palindrome identification code in
their cards which and for that an algorithm has to
be used for verification.

Figure 6 shows the optimal Petri net describing the
model of this access control system, and Table 1
presents the meaning of the Petri net places and
transitions.

Figure 6

Petri net model of the access control system

4.3. System Properties
An access control system has to satisfy the following
properties:
 _ Serving employees: This property ensures that

whenever an employee is present and wants
access, he can use the access card reader and be
served, either by being authorized or by being
denied access.

 _ System evolution and deadlock absence: This
property ensures that the access control system is
always active whenever an employee is present and
that both the access card reader and the employee
will progress in their interaction, i.e., there is no
deadlock.

 _ Controlling access: This property ensures that
only authorized employees have access to the
restricted zone.

5. Case Study

5.1. General System Description
We consider a simple door access control system
in a factory that controls the access into a private
zone. The employees of the factory use their access
cards to enter the building. For the sake of simplic-
ity, we assume that the privileged employees have
a palindrome identification code in their cards
which and for that an algorithm has to be used for
verification.
Figure 6 shows the optimal Petri net describing
the model of this access control system, and Table
1 presents the meaning of the Petri net places and
transitions.

Figure 6
Petri net model of the access control system

4.2 Principle
The main purpose of a door access control system is
to control access of users to areas and resources in
access zones on the basis of the user identity and
access rights associated with each user. Thus, only
authorized users will be allowed to enter into an
access zone but the other users will be denied. The
process of authentication may be established by
means of a card code and/or a password, PIN,
entered by the user. When a user is authenticated
and authorized, the door will be opened after
sending a signal from the control panel to the door
strike. However, if he is not authenticated, the door
will remain locked.

The state machine diagram in Figure 5 illustrates
this principle and describes the behaviour of the
control panel at the general level. In this diagram,
the state "Validate Cid" is a composite state and
when the state machine enters this state it will be
automatically activated. In a real scenario, a simple
algorithm based on a white/black list could be used,
or something more complex, like inspecting the list
of other recent accesses to other parts of the
building for suspicious patterns.

Figure 5

The general behaviour of the control panel

4.3 System Properties
An access control system has to satisfy the
following properties:

 Serving employees: This property ensures that
whenever an employee is present and wants
access, he can use the access card reader and
be served, either by being authorized or by
being denied access.

 System evolution and deadlock absence: This
property ensures that the access control
system is always active whenever an employee
is present and that both the access card reader
and the employee will progress in their
interaction, i.e., there is no deadlock.

 Controlling access: This property ensures that
only authorized employees have access to the
restricted zone.

5 Case Study
5.1 General System Description
We consider a simple door access control system in
a factory that controls the access into a private
zone. The employees of the factory use their access
cards to enter the building. For the sake of
simplicity, we assume that the privileged
employees have a palindrome identification code in
their cards which and for that an algorithm has to
be used for verification.

Figure 6 shows the optimal Petri net describing the
model of this access control system, and Table 1
presents the meaning of the Petri net places and
transitions.

Figure 6

Petri net model of the access control system

Information Technology and Control 2018/3/47400

5.2. System and Properties Specification
5.2.1. System Specification
The associated rewrite theory specifying the Petri net
model of Figure 6 is given in the module PN_ACS.
mod PN_ACS is pr INT .

inc CONFIGURATION . op PLACE : -> Cid .

op tokens :_ : Int -> Attribute [gather(&)] .

ops P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 : -> Oid .

var x : Int .

crl [T1] : < P1 : PLACE | tokens : 1 > < P2

Table 1
Meaning of Petri net places and transitions

Place labels with meaning

P1 Access card reader is ready (not is use)

P2 Employee with ID card want to access

P3 Card is inserted

P4 Card is tested

P5 Employee is waiting the card testing

P6 Employee takes his invalid card (denied)

P7 Employee takes his card and waits to access

P8 Employee is in the private area

P9 Employee is occupied

P10 Employee is out of the private area

Transition labels with meaning

T1 Insert card into ACS card reader

T2 Testing employee card

T3 Rejecting card with negative test result

T4 Accepting card and opening access door shortly

T5 Entering to the private area

T6 Start doing job

T7 Ending job and exiting

T8 Exiting the private area without doing job

T9 Authorized employee returns to the ACS

T10 Non authorized employee returns to the ACS

: PLACE | tokens : x > < P3 : PLACE | tokens
: 0 > < P5 : PLACE | tokens : 0 > => < P1 :
PLACE | tokens : 0 > < P2 : PLACE | tokens :
x - 1 > < P3 : PLACE |

tokens : 1 > < P5 : PLACE | tokens : 1 > if
(x >= 1) .

rl [T2] : < P3 : PLACE | tokens : 1 > < P4 :
PLACE | tokens : 0 > => < P3 : PLACE | tokens
: 0 > < P4 : PLACE | tokens : 1 > .

rl [T3] : < P4 : PLACE | tokens : 1 > < P5
: PLACE | tokens : 1 > < P6 : PLACE | tokens
: 0 > < P1 : PLACE | tokens : 0 > => < P4 :
PLACE | tokens : 0 > < P5 : PLACE | tokens :
0 > < P6 : PLACE | tokens : 1 > < P1 : PLACE
| tokens : 1 > .

rl [T4] : < P4 : PLACE | tokens : 1 > < P5
: PLACE | tokens : 1 > < P7 : PLACE | tokens
: 0 > < P1 : PLACE | tokens : 0 > => < P4 :
PLACE | tokens : 0 > < P5 : PLACE | tokens :
0 > < P7 : PLACE | tokens : 1 > < P1 : PLACE
| tokens : 1 > .

rl [T5] : < P7 : PLACE | tokens : 1 > < P8 :
PLACE | tokens : 0 > => < P7 : PLACE | tokens
: 0 > < P8 : PLACE | tokens : 1 > .

rl [T6] : < P8 : PLACE | tokens : 1 > < P9 :
PLACE | tokens : 0 > => < P8 : PLACE | tokens
: 0 > < P9 : PLACE | tokens : 1 > .

rl [T7] : < P9 : PLACE | tokens : 1 > < P10 :
PLACE | tokens : 0 > => < P9 : PLACE | tokens
: 0 > < P10 : PLACE | tokens : 1 > .

rl [T8] : < P8 : PLACE | tokens : 1 > < P10 :
PLACE | tokens : 0 > => < P8 : PLACE | tokens
: 0 > < P10 : PLACE | tokens : 1 > .

rl [T9] : < P10 : PLACE | tokens : 1 > < P2 :
PLACE | tokens : x > => < P10 : PLACE | tokens
: 0 > < P2 : PLACE | tokens : x + 1 > .

rl [T10] : < P6 : PLACE | tokens : 1 > < P2 :
PLACE | tokens : x > => < P6 : PLACE | tokens
: 0 > < P2 : PLACE | tokens : x + 1 > .

endm

In this specification, both of the static (signature) and
dynamic (behavior) parts of the access control sys-
tem are defined.

5.2.2. Properties Specification
After formalization, the specification of properties
represents the next preparation step before the verifi-
cation stage. At this level, the designer has to prepare
two modules: the first one contains the set of proper-
ties that are assumed to be verified as presented in the
module PN-ACS_PREDS. In the second one, the de-
signer expresses the relevant properties to be checked
in the system as given in the module ACS-CHECK.

401Information Technology and Control 2018/3/47

The sample modules for our security system are given
as follows:
mod PN-ACS_PREDS

is protecting PN_ACS .

including SATISFACTION .

subsort Configuration < State .

ops Want-Access Waiting Authorized : -> Prop .

ops Denied Enter Occupied Exiting : -> Prop .

var A : Configuration .

var y : Int .

***------ SOME IMPORTANT PROPERTIES -------

ceq A < P2 : PLACE | tokens : y > |= Want-
Access = true if (y >= 1) .

eq A < P5 : PLACE | tokens : 1 > |= Waiting =
true .

eq A < P7 : PLACE | tokens : 1 > |= Authorized
= true .

eq A < P6 : PLACE | tokens : 1 > |= Denied =
true .

eq A < P8 : PLACE | tokens : 1 > |= Enter =
true .

eq A < P9 : PLACE | tokens : 1 > |= Occupied
= true .

eq A < P10 : PLACE | tokens : 1 > |= Exiting
= true .

endm

mod ACS-CHECK is

inc PN-ACS_PREDS .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

ops initial-state : -> Configuration .

eq initial-state = < P1 : PLACE | tokens : 1
> < P2 : PLACE | tokens : 20 > < P3 : PLACE
| tokens : 0 > < P4 : PLACE | tokens : 0 >
< P5 : PLACE | tokens : 0 > < P6 : PLACE |
tokens : 0 > < P7 : PLACE | tokens : 0 > < P8
: PLACE | tokens : 0 > < P9 : PLACE | tokens
: 0 > < P10 : PLACE | tokens : 0 > .

ops no-deadlock serving : -> Prop .

eq serving = []((Want-Access) -> <> (Authorized
\/ Denied)) .

eq no-deadlock = [](Want-Access \/ Authorized
\/ Denied \/ Waiting \/ Enter \/ Occupied \/
Exiting) .

endm

5.2.3. Verification
Next, the two properties described in the module
ACS-CHECK are verified by using Maude LTL mod-
el-checker. We have also supposed that there are 20
employees in the initial state for these properties. The
following results have been tested using the Version
2.7 of Maude system with Eclipse 4.2.2.
 _ Serving employees: This property is formally

specified as the following LTL formula:
[]((Want-Access) -> <> (Authorized \/ Denied))

After verification, the LTL model checker confirms
the correctness of this property as follows:
Maude> reduce in ACS-CHECK :
modelCheck(initial-state, serving) .

rewrites: 744 in 29843475119ms cpu (15ms
real) (~ rewrites/second)

result Bool: true

 _ System evolution and deadlock absence: This
property is formally expressed as follows:
[](Want-Access \/ Authorized \/ Denied \/
Waiting \/ Enter \/ Occupied \/ Exiting)

This property is also verified as follows:
Maude> reduce in ACS-CHECK :
modelCheck(initial-state, no-deadlock) .

rewrites: 857 in 41773847050ms cpu (15ms
real) (~ rewrites/second)

result Bool: true

5.2.4. Testing
The formalization and verification performed so far
has focused on the most critical aspect of a security
system, i.e., availability. Another interesting proper-
ty is “controlling access” mentioned in Section 4.3.
This property concerns directly the composite state
“Validate Cid” of the state diagram, given in Figure 5,
which is practically implemented by means of the pal-
indrome algorithm testing as mentioned in Section
5.1. Unfortunately, this property is not expressible as
a LTL formula and for that the Property-Based Test-
ing technique is used.
The proposed C function to check whether a card
code is palindrome or not is given as follows:
int isPalindrome(char code[])

{ char reverse_code[];

 int i;

 int h = strlen(code);

Information Technology and Control 2018/3/47402

 // inversing code string characters

 for (i = h - 1; i >= 0 ; i--)

 {

 reverse_code[h - i - 1] = code[i];

 }

 if (strcmp(code,reverse_code) == 0)

 {

 return 0; // code is palindrome

 }

 else

 {

 return 1; // code is not palindrome

 }

}

Formalizing this function is probably not worth the
time and effort, but its property-based testing will
provide much more confidence in its realization than
mere unit testing. Therefore, the universally quanti-
fied expression that we use as a property is:
prop_priviledged_employee_algorithm() ->

?FORALL(P,maybe_palindrome(),sut:validate_
user(P) == is_palindrome(P)).

where maybe_palindrome/0 is an input generation
function, sut:validate_user/1 is the algorithm im-
plementation to be tested, and is_palindrome/1 is
our oracle function.
maybe_palindrome() -> oneof([palindrome(),
string()]).

palindrome() ->

 ?LET(Base, string(),

 ?LET(Middle, oneof([[], [char()]]),

 Base ++ Middle ++ lists:reverse(Base))).

string() -> list(char()).

is_palindrome(S) -> S == lists:reverse(S).

In other words, we use the maybe_palindrome/0
function to generate user identifications (i.e. strings,
sometimes palindromes, sometimes just lists of char-
acters) to test whether they are considered palin-
dromes (and thus, are granted access) by the system
implementation in the same way as our oracle (is_
palindrome/1) does. The execution of such property
using QuickCheck reassures us in that this is, indeed,
the case:

>eqc:quickcheck(prop_priviledged_
employee()).

..

OK, passed 100 tests

true

And the more time we can allocate to execute more
tests, the greater the confidence level is:
>eqc:quickcheck(eqc:numtests(10000,palindrome
: prop_check_indices())).

.......................................(x10)

......................................(x100)

...

OK, passed 10000 tests

true

6. Discussion and Contributions
The software design process is often viewed as a se-
quence of phases that transforms a set of informal
specifications into a detailed technical specification
that can be used for the development. All the inter-
mediate phases are characterized by a transformation
from a more abstract description to a more detailed
one until we have the final software product. Our ap-
proach for the development of software based sys-
tems contemplates the following phases of software
development: modeling, specification, verification
and testing. Note that it is not our intention to pro-
pose a methodological development lifecycle, but a
systematic approach to systems analysis.
First, we start from an abstract description of the sys-
tem using Petri nets that represents a well-suited the-
oretical model of concurrency — for both industry and
academia — in which the temporal ordering and caus-
al relationship between system components can eas-
ily be represented. However, basic Petri nets exhibit
some known limitations [5, 29]. For instance, since
the primary concern of Petri nets is behavior model-
ing and analysis [18], their most widely voiced criti-
cism, is the lack of algebraic structuring primitives or
modularity, which often leads to unstructured models
and inadequate abstractions of real systems.
In addition, tokens circulating in Petri nets are undif-
ferentiated entities and Petri nets describe only the
control structure of the system without references to

403Information Technology and Control 2018/3/47

its data structure. Another practical limitation con-
cerns the number of reachable states that explodes
especially when Petri nets contain a large number of
tokens [17]. Moreover, a Petri nets cannot be used to
express all kinds of behavior, acts and routing that are
frequently encountered in real systems.
In order to cater for the above-mentioned issues, we
advocate the use of Maude [16, 15] as a formal speci-
fication language based on rewriting logic [31] for de-
scribing Petri nets models of access control systems.
This choice is also motivated by the expressiveness of
rewriting logic, which is a unifying framework for spec-
ifying and analyzing a wide range of Petri nets [42]. In
addition, its distinguishing features include the inte-
gration of the quasi-totality of OBJ3 features [23], such
as parameterized programming, multiple inheritance,
module instantiation, views, and a large set of pro-
gramming techniques. Furthermore, the availability of
an integrated rich tool set for the formal analysis, such
as model checking [19] and Maude reachability tool in
Maude; facilitates the overall analysis considerably.
Then, Model checking can be considered as one of the
most successful and widely used verification tech-
niques. However, it exhibits some shortcomings as well.
1 Model checking is generally deemed inadequate to

analyze software of access control systems because
of their dynamic nature and complexity, which of-
ten leads to the state-space explosion problem.

2 Model checking is used to automatically check
whether a model meets a formal specification giv-
en by a temporal logic formula. However, certain
properties of practical interest are not expressible
in temporal logic.

In the proposed approach, these limitations can be
somewhat overcome by the use of Maude LTLR model
checker and Maude reachability-analysis tool. While
the former supports on-the-fly explicit-state model
checking of concurrent systems, the latter can be used
to overcome the lack of expressiveness of the support-
ed temporal logic when using LTLR model checker.
Besides the formal verification, we advocate the use

of Property-Based Testing [20] on the testing stage.
Property-Based Testing is an automatic testing tech-
nique of the proposed code skeletons based on ran-
dom generation of test sequences (i.e. test scenarios).
Contrary to the classic testing, Property-Based Test-
ing technique is used to test code skeletons or algo-
rithms before implementation. Such generated tests
attain a high degree from “the whole control test cov-
erage” of the system implementation and, thus PBT
techniques are found to be more effective in the de-
tection of faults earlier in the life cycle of product de-
velopment, allowing an efficient resource allocation
and minimization of the system maintenance costs.

7. Conclusion
In this paper, we have proposed a hybrid approach for
the formal development of software based systems.
Therefore, a Petri net based model is prepared for the
studied software based system with the correspond-
ing rewriting logic specification. Then, the associated
Maude model checker is used for the formal verifica-
tion of such a Petri net model. At the last stage, prop-
erty based testing technique is used to test the pro-
posed system implementation before its realization.
The proposed approach permits us to check most of
the important properties of such systems including,
safety and liveness. Furthermore, some critical prop-
erties for access control system are not expressible
with LTL formulas and thus, the integration of Prop-
erty-Based Testing technique allows us to capture
more informal conjectures about the source code and
test such properties in the proposed implementation.

Acknowledgements
This work would not have been possible without the
financial support No: 034/PNE/ENS/Spain/13-14
received through the Algerian ministry of higher ed-
ucation and scientific research.

References
1. Ammann, P. E., Black, P. E., Majurski, W. Using Model

Checking to Generate Tests from Specifications. Pro-

ceedings Second International Conference on For-
mal Engineering Methods (Cat.No.98EX241), Bris-

Information Technology and Control 2018/3/47404

bane, Queensland, Australia, 1998, 46-54. https://doi.
org/10.1109/ICFEM.1998.730569

2. Ammar, B., Abdallah, K. Towards the Formal Specifi-
cation and Verification of multi-Agent Based Systems.
IJCSI, 2011, 8(4), 200-210.

3. Arts, T., Castro, L. M., Hughes, J. Testing Erlang Data
Types with Quviq QuickCheck. 7th ACM SIGPLAN
Workshop on ERLANG (Erlang’08), ACM, Victoria,
BC, Canada, September 20-28, 2008, 1–8.

4. Bae, K., Meseguer, J. The Linear Temporal Logic of Re-
writing Maude Model Checker. WRLA, Springer, 2010,
208-225.

5. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin,
N. Petri Nets Compositional Modeling and Verifica-
tion of Flexible Manufacturing Systems. 2011 IEEE
Conference on Automation Science and Engineer-
ing (CASE), 2011, 588-593. https://doi.org/10.1109/
CASE.2011.6042488

6. Benantar, M. Access Control Systems: Security, Identi-
ty Management and Trust Models. Springer Science &
Business Media, 2006.

7. Bernot, G., Gaudel, M.C., Marre, B. Software Testing
Based on Formal Specifications: A Theory and a Tool.
Software Engineering Journal, 1991, 6(6), 387-405.
https://doi.org/10.1049/sej.1991.0040

8. Burton, S., York, H. Automated Testing from Z Speci-
fications. Technical Report, Department of Computer
Science, University of York, 2000.

9. Castro, L. M. Advanced Management of Data Integrity:
Property-Based Testing for Business Rules. Journal of
Intelligent Information Systems, 2015, 44(3), 355-380.
https://doi.org/10.1007/s10844-014-0335-2

10. Castro, L. M., Arts, T. Testing Data Consistency of Da-
ta-Intensive Applications Using QuickCheck. 10th
Spanish Conference on Programming and Languages
(PROLE’10), Valencia, Spain, September 8- 10, 2010.
Revised Selected Papers, Electronic Notes in Theoret-
ical Computer Science, Elsevier Science Publishers,
Amsterdam, the Netherlands, 2011, 271, 41–62. https://
doi.org/10.1016/j.entcs.2011.02.010

11. Castro, L. M., Francisco, M. A., Gulías, V. M. Testing
Integration of Applications with QuickCheck. Interna-
tional Conference on Computer Aided Systems Theory,
2009.

12. Chow, T. S. Testing Software Design Modeled by Fi-
nite-State Machines. IEEE Transactions on Soft-
ware Engineering, 1978, SE-4(3), 178-187. https://doi.
org/10.1109/TSE.1978.231496

13. Clarke, E. M., Emerson, E. A. Design and Synthe-
sis of Synchronization Skeletons Using Branching
Time Temporal Logic. Springer, 1982. https://doi.
org/10.1007/BFb0025774

14. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet,
N., Meseguer, J., Quesada, J. A Maude Tutorial. Com-
puter Science Laboratory, SRI International, 2000.

15. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet,
N., Meseguer, J., Quesada, J. F. Maude: Specification
and Programming in Rewriting Logic. Theoretical
Computer Science, 2002, 285(2), 187-24. https://doi.
org/10.1016/S0304-3975(01)00359-0

16. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N.,
Meseguer, J., Talcott, C. All About Maude – A High-Per-
formance Logical Framework: How to Specify, Program
and Verify Systems in Rewriting Logic. Springer-Ver-
lag, 2007.

17. David, R., Alla, H. On Hybrid Petri Nets. Discrete Event
Dynamic Systems, 2001, 11(1-2), 9-40. https://doi.
org/10.1023/A:1008330914786

18. Deng, Y., Lu, S., Evangelist, M. A Formal Approach for
Architectural Modeling and Prototyping of Distributed
Real-Time Systems. System Sciences, 1997, 1, 481-490.
https://doi.org/10.1109/HICSS.1997.667304

19. Eker, S., Meseguer, J., Sridharanarayanan, A. The
Maude LTL Model Checker. Electronic Notes in Theo-
retical Computer Science, 2004, 71, 162-187. https://doi.
org/10.1016/S1571-0661(05)82534-4

20. Fink, G., Bishop, M. Property-Based Testing: A New Ap-
proach to Testing for Assurance. ACM SIGSOFT Soft-
ware Engineering Notes, 1997, 22(4), 74-80. https://doi.
org/10.1145/263244.263267

21. Fink, G., Levitt, K. Property-Based Testing of Privileged
Programs. Proceedings 10th Annual Computer Securi-
ty Applications Conference, 1994, 154-163. https://doi.
org/10.1109/CSAC.1994.367311

22. Gargantini, A., Heitmeyer, C. Using Model Check-
ing to Generate Tests from Requirements Speci-
fications. ACM SIGSOFT Software Engineering
Notes, Springer-Verlag, 1999, 24, 146-162. https://doi.
org/10.1145/318774.318939

23. Goguen, J., Kirchner, C., Kirchner, H., Mégrelis, A.,
Meseguer, J., Winkler, T. An Introduction to OBJ 3. In-
ternational Workshop on Conditional Term Rewriting
Systems, Springer, 1987, 258-263.

24. Grumberg, O., Veith, H. 25 Years of Model Checking:
History, Achievements, Perspectives. Springer, 2008,
5000. https://doi.org/10.1007/978-3-540-69850-0

405Information Technology and Control 2018/3/47

25. Guelev, D. P., Ryan, M., Schobbens, P. Y. Model-Check-
ing Access Control Policies. International Confer-
ence on Information Security, Springer, 2004, 219230.
https://doi.org/10.1007/978-3-540-30144-8_19

26. Hierons, R. M. Testing from a Z Specification. Soft-
ware Testing, Verification and Reliability, 1997,
7(1), 19-33. https://doi.org/10.1002/(SICI)1099-
1689(199703)7:1<19::AID-STVR124>3.0.CO;2-N

27. Hörcher, H. M. Improving Software Tests Using Z Spec-
ifications. International Conference of Z Users, Spring-
er, 1995, 152-166.

28. Hu, V. C., Kuhn, D. R., Xie, T., Hwang, J. Model Checking
for Verification of Mandatory Access Control Models
and Properties. International Journal of Software En-
gineering and Knowledge Engineering, 2011, 21(1), 103-
127. https://doi.org/10.1142/S021819401100513X

29. Kolagari, A. R. T. Transformation of Open and Algebra-
ic High-level Petri Net Classes. Technische Universität
Berlin, Fakultät IV, Elektrotechnik und Informatik, 2002.

30. Masood, A., Bhatti, R., Ghafoor, A., Mathur, A. Mod-
el-Based Testing of Access Control Systems that Employ
RBAC Policies. Technical Report SERC-TR- 277, 2005.

31. Meseguer, J. Conditional Rewriting Logic as a Unified
Model of Concurrency. Theoretical Computer Science,
1992, 96(1), 73-155. https://doi.org/10.1016/0304-
3975(92)90182-F

32. Meseguer, J. Rewriting Logic as a Semantic Framework
for Concurrency: A Progress Report. CONCUR’96: Con-
currency Theory, Springer, 1996, 331-372.

33. Meseguer, J. Membership Algebra as a Logical Frame-
work for Equational Specification. Recent Trends in Al-
gebraic Development Techniques, Springer, 1997, 18-61.

34. Meseguer, J. Twenty Years of Rewriting Logic. The Jour-
nal of Logic and Algebraic Programming, 2012, 81(7),
721-781. https://doi.org/10.1016/j.jlap.2012.06.003

35. Petri, C. A. Kommunikation mit Automaten. Ph.D. The-
sis, Darmstadt University of Technology, Germany, 1962.

36. Pretschner, A., Mouelhi, T., Le Traon, Y. Model-Based
Tests for Access Control Policies. 1st International
Conference on Software Testing, Verification, and Val-
idation, IEEE, 2008, 338-347. https://doi.org/10.1109/
ICST.2008.44

37. Quviq a. b. http://www.quviq.com (2008)

38. Reisig, W. A Primer in Petri Net Design. Springer Sci-
ence & Business Media, 2012.

39. Rivas, S., Francisco, M. A., Gulías, V. M. Property Driv-
en Development in Erlang, by Example. 5th Work-
shop on Automation of Software Test (ASE’10), Cape
Town, South Africa, May 1-8, 2010, 75-78. https://doi.
org/10.1145/1808266.1808277

40. Sandhu, R. S., Samarati, P. Access Control: Principle
and Practice. IEEE Communications Magazine, 1994,
32(9), 40-48. https://doi.org/10.1109/35.312842

41. Schaad, A., Moffett, J. D. A Lightweight Approach to
Specification and Analysis of Role-Based Access Con-
trol Extensions. Proceedings of the Seventh ACM Sym-
posium on Access Control Models and Technologies,
2002, 1322. https://doi.org/10.1145/507711.507714

42. Stehr, M. O., Meseguer, J., Ölveczky, P. C. Rewriting Log-
ic as a Unifying Framework for Petri Nets. Unifying Pe-
tri Nets, 2001, 2128, 250-303. https://doi.org/10.1007/3-
540-45541-8_9

43. Stehr, M. O., Talcott, C. L. Plan in Maude Specifying an Ac-
tive Network Programming Language. Electronic Notes
in Theoretical Computer Science, 2004, 71, 240-260.
https://doi.org/10.1016/S1571-0661(05)82538-1

44. Stocks, P. A. Applying Formal Methods to Software
Testing. Ph.D. Thesis, University of Queensland,
1993.

45. Thati, P., Sen, K., Martí-Oliet, N. An Executable Spec-
ification of Asynchronous Pi-Calculus Semantics and
May Testing in Maude 2.0. Electronic Notes in Theo-
retical Computer Science, 2004, 71, 261-281. https://
doi.org/10.1016/S1571-0661(05)82539-3

46. Utting, M., Legeard, B. Practical Model-Based Testing:
A Tools Approach. Morgan Kaufmann, 2010.

47. Verdejo, A., Martı-Oliet, N. Executing E-LOTOS Pro-
cesses in Maude. INT, Citeseer, 2000, 49-53.

48. Verdejo López, J. A., Martí Oliet, N. Executing and
Verifying CCS in Maude. Technical Report, 2000, 99,
1-47.

49. Xiang, H., Xia, X., Hu, H., Wang, S., Sang, J., Ye, C. Ap-
proaches to Access Control Policy Comparison and
the Inter-Domain Role Mapping Problem. Informa-
tion Technology and Control, 2016, 45(3), 278-288.
https://doi.org/10.5755/j01.itc.45.3.13187

50. Zhang, N., Ryan, M., Guelev, D. P. Evaluating Access
Control Policies Through Model Checking. Interna-
tional Conference on Information Security, Springer,
2005, 446-460. https://doi.org/10.1007/11556992_32

