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Online knowledge collaborations, where distributed members without hierarchies self-organize themselves to 
create valuable contents, are prevalent in many open production systems such as Wikipedia, GitHub and social 
networks. While many existing studies from network science have been brought to analyze the general interac-
tive behavior patterns embedded in these systems, how the collaborations influence the achievement outcomes 
has not been thoroughly investigated. In this paper, we mine the collaboration patterns from a micro perspec-
tive to deeply understand the relationships between the collaboration among participants and the qualities of 
the Wikipedia articles. In particular, the subgraphs contained in the collaboration networks derived from the 
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Wikipedia revision histories are taken as the fundamental units to analyze the collaboration diversities from 
the subgraph properties such as size and topology. In contrast to the predefined static motifs adopted by the 
previous works, the collaboration subgraphs are directly found from Wikipedia dataset by a frequent subgraph 
mining algorithm GRAMI, which is able to capture the real dynamic collaboration patterns. Moreover, the rela-
tionships between the co-authors in the subgraphs are also discriminated to further explore the collaboration 
patterns. The experiments exhibit the statistical properties of the collaboration subgraphs and the efficiency 
of them as the metrics for the article quality assessments. We conclude that a small group of editors with rela-
tive frequent fixed collaboration patterns contribute more to the excellent article quality than the professional 
extents of arbitrary individuals in the collaboration group. This discovery confirms the common insight about 
collaboration that many heads are always better than one and concretely suggests a potential explanation for 
the increasing prevalence and success of the online knowledge collaborations.
KEYWORDS: collaboration, data mining, Wikipedia, article quality, social network analysis.

1. Introduction
With the widely spreading of the Internet, on-line 
collaboration has increasingly become a prevailing 
strategy by which information, contents and knowl-
edge are created by a group of flat-organized people. 
The collaboration is inherently a self-organizing ac-
tivity where arbitrary participant is allowed to con-
tribute her or his specific efforts and interact with any 
others along the evolution process of the collabora-
tion [3, 31]. One of the primary interesting questions 
arising from the web collaboration is the correlations 
between the variance of collaboration patterns and 
the expected targets of the collaboration activity. For 
instance, whether an expert is necessary for a suc-
cessful collaboration or how the value of the aggregat-
ed knowledge produced by a crowd of heterogeneous 
volunteers is influenced by the collaboration interac-
tions among them?
To investigate the above problems, some research ef-
forts have been carried out [4, 19, 23, 34]. Like many 
of them, we also take Wikipedia as the targeting open 
on-line collaboration system to study these problems 
[8, 32]. In Wikipedia, editors who may be not famil-
iar with each other can collaboratively edit article 
arbitrarily. An article could be edited by thousands of 
editors, with its edition duration spanning even ten 
years. Hence Wikipedia is deemed to be a suitable 
subjective for researching on-line collaboration. Fur-
thermore, the editors’ engagement and collaboration 
vary dramatically owing to their purpose, context 
and prior knowledge or other relevant attributes [7, 
28, 32]. Taking the quality of user generated article 
in Wikipedia as the metric to evaluate the collabora-
tion effects, researchers have found that the articles 

in Wikipedia are rather diverse in terms of the qual-
ity and reliability [5, 7, 18, 21, 23, 30]. Moreover, the 
collaboration pattern in Wikipedia has been regarded 
as one of dominators leading to Wikipedia’s diverse 
achievements and there has been some research work 
addressing Wikipedia collaboration patterns recent-
ly [23, 32]. Wu et al. [34] constructed edit network to 
represent collaboration activities of editing a Wiki-
pedia article and then retrieved motifs from the edit 
network. Based on network motif counts and ratio, 
qualities of articles in Wikipedia could be inferred. 
Robertie et al. [23] utilized co-edit graph which could 
model collaboration among editors to measure Wiki-
pedia article quality. Because motifs have the inherent 
flaw that they are predefined and co-edit graphs are 
unable to reflect the effect that collaboration patterns 
exert on a specific article, there still exists potential 
room to further explore collaboration patterns.
Actually, constructing collaboration networks and 
then mining collaborative patterns from them is also 
a view on researching the collaboration and this view 
can also make up for the flaws of motifs and the co-ed-
it graph. The collaboration patterns are dynamically 
discovered from collaboration networks and these 
collaboration networks are representative for the rea-
son that they frequently appear in collaboration net-
works. Furthermore, every article in Wikipedia has 
a corresponding collaboration network. Hence the 
influence of collaboration on any article can be eas-
ily researched through corresponding collaboration 
network. In this paper, each collaboration subgraph 
mined from collaboration networks is representative 
of a collaboration pattern that constantly appears in 
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the evolution process that contents are collaborative-
ly created. And these collaboration patterns are likely 
to determine the qualities of contents. However, re-
searches on this aspect are not enough so far. There-
fore, motivated by current insufficient researches on 
it, we conducted a series of experiments on Wikipedia 
to attempt to research collaboration and unveil the in-
fluence of collaboration on the qualities of collabora-
tive outcome. 
Hence, the skeleton of our methodology is as follows. 
For an article in Wikipedia has a sequence of revi-
sion histories [30], we can construct a collaboration 
network for the article from these revision histories. 
The collaboration network can capture structure 
and temporal dynamics which will emerge once one 
editor modifies an article which has been edited by a 
previous editor. In other words, the collaboration net-
work can record various interactions among editors 
who have edited the same article. Because the col-
laboration network can capture substantial complex 
interactions and dependencies among editors, it can 
model that an article was collaboratively revised by 
many authors. Utilizing the collaboration network, a 
structural approach, we can characterize collabora-
tion patterns among editors in an effective way and 
insight to the global collaboration among all editors at 
a macro level. Furthermore, collaboration subgraphs 
mined from collaboration networks can reflect the 
feature of collaboration networks at a micro level and 
are representative of various collaboration patterns 
that appear frequently. 
In short, the main process of our work can be sketched 
as follows. As can be seen in Figure 1, in the first step, 
articles are crawled from Wikipedia and a sequence 
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In short, the main process of our work can be 
sketched as follows. As can be seen in Figure 1, in 
the first step, articles are crawled from Wikipedia 
and a sequence of corresponding revision histories 
are also crawled at the same time. In the second 
step, we utilize a sequence of revision histories of 
an article to construct a collaboration network. In 
the final step, we apply frequent subgraph mining 
algorithm to discover collaboration subgraphs 
which appear frequently from these collaboration 
networks. Through analyzing collaboration sub-
graphs, we discovered some interesting experi-
mental phenomena. The collaboration patterns of 
which the topologies are stars usually produce 
high quality articles. The influence of a successful 
collaboration pattern on article quality is more 

remarkable than that of anyone in a collabo-
ration pattern. Furthermore, some editors 
constantly cooperate with each other in a 
fixed collaboration pattern to produce high 
quality articles. Finally, we also performed 
some classification tasks to testify the influ-
ence of collaboration patterns on the qualities 
of collaborative outcome. We found that the 
results of the classification task were good. 

Hence, the view that we construct collabora-
tion networks and mine collaboration sub-
graphs from them is worthwhile. The view 
has been verified on Wikipedia by our work 
and it also has some reference value to other 
on-line collaboration systems. 

In a word, we mainly apply the knowledge of 
graph theory [26] and the approach of fre-
quent subgraphs mining to research self-
organization collaboration patterns among 
editors. Our contributions are as follows. 

1. Applying frequent subgraph mining to re-
search on-line self-organization collaboration. 

2. Making up for the flaws of motifs. 

3. Discovering various meaningful collabora-
tion patterns. 

4. Proposing several metrics related to the 
outcome of collaboration patterns. 

The remainder of this article unfolds as fol-
lows. In the next section, we will introduce 
some researches related with our work. In 
Sect.3, we will explain how the collaboration 
network is constructed in detail. In Sect.4, we 
will introduce several algorithms we utilize 
in experiments and some related basic con-
cepts. In Sect.5, we will exhibit experimental 
results and corresponding analysis. In the fi-
nal section, we will discuss the influence of 
collaboration on the outcome of collaboration 
patterns and conclude our work with a 
summary. 

 
 

2. Related Work 
The graph based approach has been long ex-
plored to represent the basic structures and 
properties of the collaboration behaviours in 
Wikipedia, which facilitates the understand-
ings of the collaborative activities from the 
view point of interdependent relations 
among the participants. Korfiatis et al. [16]  
proposed a contributors network, where a 
vertex represents an editor and an edge rep-

of corresponding revision histories are also crawled 
at the same time. In the second step, we utilize a se-
quence of revision histories of an article to construct 
a collaboration network. In the final step, we apply 
frequent subgraph mining algorithm to discover col-
laboration subgraphs which appear frequently from 
these collaboration networks. Through analyzing col-
laboration subgraphs, we discovered some interesting 
experimental phenomena. The collaboration patterns 
of which the topologies are stars usually produce high 
quality articles. The influence of a successful collab-
oration pattern on article quality is more remarkable 
than that of anyone in a collaboration pattern. Fur-
thermore, some editors constantly cooperate with 
each other in a fixed collaboration pattern to produce 
high quality articles. Finally, we also performed some 
classification tasks to testify the influence of collabo-
ration patterns on the qualities of collaborative out-
come. We found that the results of the classification 
task were good.
Hence, the view that we construct collaboration net-
works and mine collaboration subgraphs from them 
is worthwhile. The view has been verified on Wikipe-
dia by our work and it also has some reference value to 
other on-line collaboration systems.
In a word, we mainly apply the knowledge of graph 
theory [26] and the approach of frequent subgraphs 
mining to research self-organization collaboration 
patterns among editors. Our contributions are as fol-
lows.
1 Applying frequent subgraph mining to research 

on-line self-organization collaboration.
2 Making up for the flaws of motifs.
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3 Discovering various meaningful collaboration pat-
terns.

4 Proposing several metrics related to the outcome 
of collaboration patterns.

The remainder of this article unfolds as follows. In the 
next section, we will introduce some researches relat-
ed with our work. In Sect.3, we will explain how the col-
laboration network is constructed in detail. In Sect.4, 
we will introduce several algorithms we utilize in ex-
periments and some related basic concepts. In Sect.5, 
we will exhibit experimental results and correspond-
ing analysis. In the final section, we will discuss the 
influence of collaboration on the outcome of collabora-
tion patterns and conclude our work with a summary.

2. Related Work
The graph based approach has been long explored to 
represent the basic structures and properties of the 
collaboration behaviours in Wikipedia, which facili-
tates the understandings of the collaborative activi-
ties from the view point of interdependent relations 
among the participants. Korfiatis et al. [16]  proposed 
a contributors network, where a vertex represents an 
editor and an edge represents the sequence of their 
interactions, to evaluate the contribution importance 
of the collaborative editors working on the same ar-
ticles. While the definition of the vertex keeps the 
same with ours, the edge of our collaboration graph 
represents the collaborative event between the edi-
tors rather than the sequences. Similar to the contrib-
utors-network mentioned above, Laniado and Tas-
so [17] constructed a co-authorship network where 
nodes represent editors and edges represent co-au-
thorship between editors. While inexperienced edi-
tors whose contributions are too few will not appear 
in the co-author network, our work takes all editors 
into consideration. We construct a network for every 
article from revision histories of the articles. Our net-
work, therefore, can reflect editors’ interactions on 
every specific article.
Except the form of network mentioned above, trajec-
tory network is also widely used to research collabora-
tion [15]. Iba et al. [12] constructed trajectory network 
for an article in Wikipedia, which can describe the 
development of the article. They focused on finding 

different editor roles, namely egoboosters and cool-
farmers, according to editing pattern presented in the 
network. In contrast, our work pays closer attention to 
various collaboration patterns among several editors 
rather than some featured editor. Furthermore, the 
editor-editor network proposed by Flöck and Acosta 
[11] is also a trajectory network, which is constructed 
dynamically over time. Through mining interactions 
from editor-editor network, interactions among edi-
tors can be visualized as time has passed. Their work 
gives us a transparent and intuitive understanding of 
the dynamic collaboration among editors. While their 
work only takes the disagreement interactions among 
the editors into consideration, our work mainly fo-
cuses on how the editors cooperating with each other 
can produce a good outcome. 
Being different from all networks above, the networks 
of which nodes represent editors or articles and edges 
represent editing relations are also utilized by many 
researchers to research collaboration. For example, 
Li et al. [19] exploited article editor networks to as-
sess qualities of articles in Wikipedia. They proposed 
three models that could be used to calculate the val-
ue of nodes in article-editor networks. Because they 
incorporated manual evaluation results into the third 
model, their experimental results may be susceptible 
to the number of featured articles in their datasets.
Furthermore, based on various networks, applying 
the analysis of motifs to study the properties of net-
works is a good way to research collaboration [14]. 
Wu and Cunningham [33] integrated three network 
views to predict the qualities of articles, among which 
are the temporal  network that considers article re-
vision histories as sequence of editor’s interactions, 
ego network which is a static bipartite network with 
edges representing edits performed by editors to ar-
ticles and trajectory network which is representative 
of revisions of an article through a sequence of edi-
tors. Then they conducted a binary classification task, 
based on motifs discovered in the three networks, to 
assess the effectiveness of their method. The three dif-
ferent network views capture three different aspects 
of interactions among authors. The performance pre-
dicting the qualities of articles, therefore, is expected-
ly improved by the integration of them. There is also a 
fly in the ointment because motifs are predefined and 
consequently not as flexible as frequent subgraphs. 
Furthermore, it remains to be seen how accurate the 
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results of their classification task will be when they 
classify articles into six classes.
There also exist non-graph-based studies. For in-
stance, Adler and De Alfaro [1] proposed a con-
tent-driven reputation system for Wikipedia editors. 
In their reputation system, if the edits that one ed-
itor performed to Wikipedia articles are preserved 
by subsequent editors, then the editor will gain rep-
utation otherwise reputations of the editor will be re-
duced. Hence, utilizing the characteristic that editors 
can influence and control each other, this system can 
apparently encourage editors to collaboratively write 
high-quality articles. Furthermore, one of prominent 
functions in the system is to predict the quality of a 
new article that has not yet been edited by others ac-
cording to the reputation of its initial editor. In their 
[2] later work, after comparing seven methods to 
measure editor’s contributions, they found that edit 
longevity outperforms the six methods remaining. 
Dalip et al. [9] extracted 69 quality indicators from 
three aspects, namely textual feature, review feature 
and network feature. Based on a machine learning 
algorithm, they utilized these 69 indicators to assess 
the qualities of articles. Lipka and Stein [20] repre-
sented an article as an n-dimensional vector of which 
each dimension is representative of a kind of trigram 
which is originally applied for writing style analysis. 
Then they utilized the n-dimensional vector, based on 
Support Vector Machine and Naive Bayes, to deter-
mine whether an article is a featured article or not. As 
can be seen, they all researched article quality from 
the perspective of article content. Indeed, the content 
of an article is directly related to the quality of it. Nev-
ertheless, collaboration is also an important factor 
that cannot be ignored. If collaboration among editors 
can be also taken into consideration, their experimen-
tal results may be better.

3. Collaboration Network
In this section, we will elaborate how to construct a 
collaboration network from revision histories of an 
article. Jurgens and Lu [13] proposed a network per-
spective that articles can be viewed as a sequence of 
revisions ordered by the edits times. A sequence of re-
visions is fundamental elements for constructing our 
collaboration network. In our datasets, every revision 
history has been attached some edit information in-
cluding not only title, revision id, parent revision id 
and minor but also editor name, editor id, timestamps 
and size. The information can be seen in the instance 
presented in Figure 2. Among this edit information, 
minor is a strange concept. In brief, a minor edit signi-
fies that there are only superficial differences, such as 
typographical corrections, between the current ver-
sions and the previous versions. Conversely, a major 
edit should be reviewed for its acceptability to all con-
cerned editors. Any changes affecting the meaning of 
an article are not a minor edit. For the sake of simplic-
ity, we denote minor edit as 1 and major edit as 0. 
Utilizing revision histories of an article mentioned 
above, we can construct a collaboration network for 
the article. For an article, firstly we establish a node 
representing the editor who created the first rever-
sion of the article, and label the node with a unique 
number. Secondly, we establish the next node repre-
senting the editor who has edited the article and then 
produced the second reversion, and we also label this 
node with another unique number. Thirdly, we es-
tablish a directed edge pointing from the first node to 
the second one with the edge being labelled with 0 or 
1 according to the edit type of this edit performed by 
the second editor. For the revision histories remain-
ing, continue in this way. Then a collaboration net-
work can be constructed completely. It is noteworthy 

Figure 2
Edit information of seven revision histories of an article
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work can be constructed completely. It is notewor-
thy that when constructing a collaboration net-
work for an article, self-loop edges are neglected 
to avoid the case that an article was continuously 
edited multiple times by the same editors. Figure 3 

demonstrates the process of how the collabo-
ration network is constructed from the in-
formation in Figure 2. 

As is shown in Figure 3, Hawkeye created a 
new article. This is the first revision of the ar-
ticle. Then Anthony edited this article. The 
second revision consequently comes into be-
ing. For these two revisions, we establish two 
nodes for them which are just the node H 
and node A in Figure 3. Owing to the edit 
performed by Anthony is a major edit, the di-
rected edge pointing from node H to node A 
is labelled with 0. In the next time, Frietjes 
edits the revision of Anthony and then the 
directed edge pointing from node A to node 
F is labelled with 1 for the edit performed by 
Frietjes to the revision of Anthony is a minor 
edit. Following Frietjes’s editing to the revi-
sion of Anthony, Yobot edited the revision of 
Frietjes. The label of the edge is 1 for the 
same reason. Then Anthony returned to edit 
the revision of Yobot with the edge being la-
belled with 0. The process for Dexbot and 
Jarble is similar to previous editors and we 
will not give unnecessary details here. 
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that when constructing a collaboration network for 
an article, self-loop edges are neglected to avoid the 
case that an article was continuously edited multi-
ple times by the same editors. Figure 3 demonstrates 
the process of how the collaboration network is con-
structed from the information in Figure 2.
As is shown in Figure 3, Hawkeye created a new article. 
This is the first revision of the article. Then Anthony 
edited this article. The second revision consequently 
comes into being. For these two revisions, we establish 
two nodes for them which are just the node H and node 
A in Figure 3. Owing to the edit performed by Anthony 
is a major edit, the directed edge pointing from node H 
to node A is labelled with 0. In the next time, Frietjes 
edits the revision of Anthony and then the directed 
edge pointing from node A to node F is labelled with 
1 for the edit performed by Frietjes to the revision of 
Anthony is a minor edit. Following Frietjes’s editing 
to the revision of Anthony, Yobot edited the revision of 
Frietjes. The label of the edge is 1 for the same reason. 
Then Anthony returned to edit the revision of Yobot 
with the edge being labelled with 0. The process for 
Dexbot and Jarble is similar to previous editors and 
we will not give unnecessary details here.
It is noteworthy that the collaboration network does 
not contain complete time information. Although a 
sequence of revision histories is ordered chronolog-
ically, our work mainly focuses on whether an editor 
interacts with another editor or not. We do not care 
the specific chronological sequence. In other words, 
it is unnecessary to know exactly which editor edited 
the article before which one.
For every article in our datasets, a collaboration net-
work can be constructed according to the process 

Figure 3
A simple example which demonstrates the process of constructing a collaboration network from several revision histories 
of an article. Each node label is the initial of corresponding editor’ name

 
 

 

Machine and Naive Bayes, to determine whether 
an article is a featured article or not. As can be 
seen, they all researched article quality from the 
perspective of article content. Indeed, the content 
of an article is directly related to the quality of it. 
Nevertheless, collaboration is also an important 
factor that cannot be ignored. If collaboration 
among editors can be also taken into consideration, 
their experimental results may be better. 

 
 

3. Collaboration Network 
In this section, we will elaborate how to construct 
a collaboration network from revision histories of 
an article. Jurgens and Lu [13] proposed a network 
perspective that articles can be viewed as a se-
quence of revisions ordered by the edits times. A 
sequence of revisions is fundamental elements for 
constructing our collaboration network. In our da-
tasets, every revision history has been attached 
some edit information including not only title, re-
vision id, parent revision id and minor but also 
editor name, editor id, timestamps and size. The 
information can be seen in the instance presented 
in Figure 2. Among this edit information, minor is 
a strange concept. In brief, a minor edit signifies 
that there are only superficial differences, such as 
typographical corrections, between the current 
versions and the previous versions. Conversely, a 
major edit should be reviewed for its acceptability 
to all concerned editors. Any changes affecting the 
meaning of an article are not a minor edit. For the 
sake of simplicity, we denote minor edit as 1 and 
major edit as 0.  

Utilizing revision histories of an article mentioned 
above, we can construct a collaboration network 
for the article. For an article, firstly we establish a 
node representing the editor who created the first 
reversion of the article, and label the node with a 
unique number. Secondly, we establish the next 
node representing the editor who has edited the 
article and then produced the second reversion, 
and we also label this node with another unique 
number. Thirdly, we establish a directed edge 
pointing from the first node to the second one 
with the edge being labelled with 0 or 1 according 
to the edit type of this edit performed by the sec-
ond editor. For the revision histories remaining, 
continue in this way. Then a collaboration net-
work can be constructed completely. It is notewor-
thy that when constructing a collaboration net-
work for an article, self-loop edges are neglected 
to avoid the case that an article was continuously 
edited multiple times by the same editors. Figure 3 

demonstrates the process of how the collabo-
ration network is constructed from the in-
formation in Figure 2. 

As is shown in Figure 3, Hawkeye created a 
new article. This is the first revision of the ar-
ticle. Then Anthony edited this article. The 
second revision consequently comes into be-
ing. For these two revisions, we establish two 
nodes for them which are just the node H 
and node A in Figure 3. Owing to the edit 
performed by Anthony is a major edit, the di-
rected edge pointing from node H to node A 
is labelled with 0. In the next time, Frietjes 
edits the revision of Anthony and then the 
directed edge pointing from node A to node 
F is labelled with 1 for the edit performed by 
Frietjes to the revision of Anthony is a minor 
edit. Following Frietjes’s editing to the revi-
sion of Anthony, Yobot edited the revision of 
Frietjes. The label of the edge is 1 for the 
same reason. Then Anthony returned to edit 
the revision of Yobot with the edge being la-
belled with 0. The process for Dexbot and 
Jarble is similar to previous editors and we 
will not give unnecessary details here. 

 
Figure 2 

Edit information of seven revision histories 
of an article. 

 

 
 
Figure 3 

A simple example which demonstrates the 
process of constructing a collaboration 
network from several revision histories of an 
article. Each node label is the initial of co-
rresponding editor’ name. 

 

 
 

It is noteworthy that the collaboration net-
work does not contain complete time infor-

mentioned above. Finally, we select a collaboration 
network from 3916 collaboration networks as an ex-
ample, which is presented in Figure 4. 

Figure 4
A complete collaboration network of a ”FA” article (Each 
label of a node is the id of the corresponding editor)

  

tories is ordered chronologically, our work mainly 
focuses on whether an editor interacts with anoth-
er editor or not. We do not care the specific chron-
ological sequence. In other words, it is unneces-
sary to know exactly which editor edited the arti-
cle before which one. 

For every article in our datasets, a collaboration 
network can be constructed according to the pro-
cess mentioned above. Finally, we select a collabo-
ration network from 3916 collaboration networks 
as an example, which is presented in Figure 4.  

 
Figure 4 

A complete collaboration network of a ”FA” arti-
cle (Each label of a node is the id of the corre-
sponding editor). 

 

 
 

 

4. Algorithms 
In this section, we will introduce two algorithms 
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highlighted with circles and a corresponding MNI 
table calculated according to these solutions. A valid 
solution is a mapping from S to a subgraph of G ac-
cording to labels of nodes and edges. For all columns 
in the MNI table, the minimum size of all the columns 
is 5. So the support of S is 5. If the threshold is no more 
than 5, then S is a frequent subgraph of G.

5. Experiment

5.1. Datasets
According to Wikipedia article quality scale, articles in 
Wikipedia can be classified to seven classes as follows:
FA: these articles are the best and they are outstand-
ing, thorough and professional.
A: these articles are pretty complete but to be promot-
ed “FA”, some problems still need solving.
GA: these articles have no obvious problems and al-
most every user thinks that these articles are useful.
B: these articles, in terms of content, are complete 
and have no major problems.
C: these articles are substantial while they miss the 
content of importance yet or contain much irrelevant 
material.
Start: these articles are incomplete and need to be 
perfected further.

Figure 6
A single graph G and its subgraph S
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#articles 316 437 611 715 1156 681 

In short, frequent subgraph mining is the process 
of discovering in graph database or in a single 
large graph all subgraphs whose frequencies of 
occurrences are no less than a specific threshold 
previously set by users. The frequency of occur-
rences is called support and denoted as supp. As 
is shown in Figure 5, there are three collaboration 
networks constructed from revision histories of 
three articles. Six frequent subgraphs can be 
mined when the threshold equals 3.  

Currently, frequent subgraph mining technologies 
are rather mature and there are many algorithms 
for frequent subgraph mining such as CloseGraph, 
FSG, gSpan, GRAMI [10, 22]. Different frequent 
subgraph mining algorithms are applicable for dif-
ferent types of graphs and also different in per-
formance. Taking above factors into consideration 
synthetically, we finally selected the last one. Fur-
thermore, the algorithm GRAMI also possesses 
some merits mentioned below. 

The algorithm GRAMI only finds the minimum 
set of instances of a candidate subgraph. That is to 
say, the algorithm will terminate the progress of 
discovering instances of a candidate subgraph as 
soon as the number of instances of the candidate 
subgraph is no less than the support threshold. 
Hence, this feature of the algorithm can improve 
the performance of the algorithm. To handle single 
large graphs, the algorithm adopts two optimiza-
tions which improve the performance of the algo-
rithm significantly. The first optimization is to 
evaluate expensive nodes after evaluating light-
weight ones. The second optimization is to prune 
the search space by utilizing the previous sub-
graph evaluations and the features of graph struc-
ture. 
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Hence the ranking of these seven classes of 
articles, in terms of quality, is as follows: 

FA A GA B C Start Stub      . 

Stub: these articles just describe some basic content 
of a topic.
Hence the ranking of these seven classes of articles, in 
terms of quality, is as follows:  

Table 2 

The sizes of six types of collaboration networks 
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The datasets we select for our experiments consist 
of 3916 articles which were collected on February 
20, 2016. These articles have totally 2364520 revi-
sion histories. Table 1 shows the article distribu-
tion in our datasets. By the way, the reason why 
“A” class articles are not included in our datasets 
is that these articles are too few in Wikipedia and 
we grouped “A” class articles with “GA” class ar-
ticles. From Table 1, we can catch sight of that the 
quantity of high quality articles, generally speak-
ing, is less than the quantity of less excellent arti-
cles. In fact, it is similar to the articles distribution 
in Wikipedia as well. Anyone can get Wikipedia 
articles by aid of MediaWiki API help and API 
sandbox. 

 

For the sake of simplicity, we divided the original 
datasets into six parts according to Table 1 and 
then constructed collaboration networks respec-
tively. Finally, we mined collaboration subgraphs 
from these six types of collaboration networks 
separately. The sizes of these six types of collabo-
ration networks are displayed in Table 2. It is 
noteworthy that thresholds set to mine collabora-
tion subgraphs from six types of collaboration 
networks are in proportion to the number of cor-
responding class articles in our datasets. Therefore, 
according to Table 1, the thresholds denoted as th 
for six types of collaboration networks satisfy the 
equation below: 

316 437 611 715 1156 681
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= = = = = . 

For example, if the threshold of “FA” collabora-
tion networks is 4, then the thresholds for the oth-
er five types of collaboration networks are 6, 8, 10, 
15 and 9, respectively. For the sake of simplicity, 
without specific explanations, we only give the 
threshold of “FA” collaboration networks later 
and the thresholds for the other five types of col-
laboration networks can be easily got by this equa-
tion. 

 

5.2 Experimental Results and Analysis 
5.2.1 Analysing Collaboration Patterns among 
Editors 

As can be observed from Figure 7, collabora-
tion subgraphs of “FA” collaboration net-
works, in terms of size, are more diverse than 
those of the other five types of collaboration 
networks. Furthermore, the sizes 2, 3, 4, 5 or 
6 are common. To be more specific, the col-
laboration patterns that 2 to 6 people coau-
thor articles in Wikipedia are very common. 
Moreover, compared to the other five classes 
of articles, frequent collaboration patterns in 
“FA” articles are more diverse and the scale 
of these frequent collaboration patterns is 
larger. 
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of it here. 
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cific explanations, we only give the threshold of “FA” 
collaboration networks later and the thresholds for 
the other five types of collaboration networks can be 
easily got by this equation.

Table 2
The sizes of six types of collaboration networks

Class FA GA B C Start Stub

#nodes 173217 164317 299280 243191 97102 17876

#edges 310486 290131 494794 368404 128772 20829

5.2. Experimental Results and Analysis
5.2.1. Analysing Collaboration Patterns among 
Editors
As can be observed from Figure 7, collaboration sub-
graphs of “FA” collaboration networks, in terms of 
size, are more diverse than those of the other five types 
of collaboration networks. Furthermore, the sizes 2, 3, 
4, 5 or 6 are common. To be more specific, the collab-
oration patterns that 2 to 6 people coauthor articles 
in Wikipedia are very common. Moreover, compared 
to the other five classes of articles, frequent collabo-
ration patterns in “FA” articles are more diverse and 
the scale of these frequent collaboration patterns is 
larger.

Figure 7
The distribution of collaboration subgraphs size. The threshold 
is 4. The quantity of nodes in a collaboration subgraph is the 
size of it here

Figure 8
The distribution of collaboration subgraphs size at the 
thresholds 4, 5 and 6, respectively. The quantity of nodes in 
a collaboration subgraph is the size of it here
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FA A GA B C Start Stub      . 

The datasets we select for our experiments consist 
of 3916 articles which were collected on February 
20, 2016. These articles have totally 2364520 revi-
sion histories. Table 1 shows the article distribu-
tion in our datasets. By the way, the reason why 
“A” class articles are not included in our datasets 
is that these articles are too few in Wikipedia and 
we grouped “A” class articles with “GA” class ar-
ticles. From Table 1, we can catch sight of that the 
quantity of high quality articles, generally speak-
ing, is less than the quantity of less excellent arti-
cles. In fact, it is similar to the articles distribution 
in Wikipedia as well. Anyone can get Wikipedia 
articles by aid of MediaWiki API help and API 
sandbox. 

 

For the sake of simplicity, we divided the original 
datasets into six parts according to Table 1 and 
then constructed collaboration networks respec-
tively. Finally, we mined collaboration subgraphs 
from these six types of collaboration networks 
separately. The sizes of these six types of collabo-
ration networks are displayed in Table 2. It is 
noteworthy that thresholds set to mine collabora-
tion subgraphs from six types of collaboration 
networks are in proportion to the number of cor-
responding class articles in our datasets. Therefore, 
according to Table 1, the thresholds denoted as th 
for six types of collaboration networks satisfy the 
equation below: 

316 437 611 715 1156 681
GA C Start StubFA Bth th th thth th

= = = = = . 

For example, if the threshold of “FA” collabora-
tion networks is 4, then the thresholds for the oth-
er five types of collaboration networks are 6, 8, 10, 
15 and 9, respectively. For the sake of simplicity, 
without specific explanations, we only give the 
threshold of “FA” collaboration networks later 
and the thresholds for the other five types of col-
laboration networks can be easily got by this equa-
tion. 

 

5.2 Experimental Results and Analysis 
5.2.1 Analysing Collaboration Patterns among 
Editors 

As can be observed from Figure 7, collabora-
tion subgraphs of “FA” collaboration net-
works, in terms of size, are more diverse than 
those of the other five types of collaboration 
networks. Furthermore, the sizes 2, 3, 4, 5 or 
6 are common. To be more specific, the col-
laboration patterns that 2 to 6 people coau-
thor articles in Wikipedia are very common. 
Moreover, compared to the other five classes 
of articles, frequent collaboration patterns in 
“FA” articles are more diverse and the scale 
of these frequent collaboration patterns is 
larger. 
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The distribution of collaboration subgraphs 
size. The threshold is 4. The quantity of 
nodes in a collaboration subgraph is the size 
of it here. 

 

 
 
Figure 8 

The distribution of collaboration subgraphs 
size at the thresholds 4, 5 and 6, respectively. 
The quantity of nodes in a collaboration sub-
graph is the size of it here. 

 

 

Figure 8 depicts the quantities of collaboration 
subgraphs of different sizes under three   different 
thresholds, which only belong to “FA” collaboration 
networks. Owing to the quantities of different sizes, 
collaboration subgraphs belonging to the other five 
types of collaboration networks are too small, as can 
be seen from Figure 7, we did not present them in this 
figure. As can be seen from Figure 8, as the threshold 

goes higher, the quantity of collaboration subgraphs 
of the same size goes down. In other words, when the 
scales of collaboration patterns are the same, types of 
frequent collaboration patterns are less than those of 
less frequent collaboration patterns.
Figure 9 shows that the topological structures of col-
laboration subgraphs belonging to “FA” collaboration 
networks are often star topologies and the topological 
structures of collaboration subgraphs that belong to 
the other five types of collaboration networks are fre-

Figure 9
The typical topological structures of collaboration subgraphs 
corresponding to different types of collaboration networks. 
Figure 9.a belongs to “FA” collaboration networks. Figure 9.b 
belongs to the collaboration networks of “GA” and ”B”. Figure 
9.c belongs to the other three types of collaboration networks

 

Table 3 

Number of edits performed by editor "Ealdgyth" 
to per class articles 

Class FA GA B C Start Stub 

#edits 7250 2606 100 228 339 190 

Figure 8 depicts the quantities of collaboration 
subgraphs of different sizes under three   different 
thresholds, which only belong to “FA” collabora-
tion networks. Owing to the quantities of different 
sizes, collaboration subgraphs belonging to the 
other five types of collaboration networks are too 
small, as can be seen from Figure 7, we did not 
present them in this figure. As can be seen from 
Figure 8, as the threshold goes higher, the quantity 
of collaboration subgraphs of the same size goes 
down. In other words, when the scales of collabo-
ration patterns are the same, types of frequent col-
laboration patterns are less than those of less fre-
quent collaboration patterns. 
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The typical topological structures of collaboration 
subgraphs corresponding to different types of col-
laboration networks. Figure 9.a belongs to “FA” 
collaboration networks. Figure 9.b belongs to the 
collaboration networks of “GA” and ”B”. Figure 
9.c belongs to the other three types of collabora-
tion networks. 

 

 

 

 

 

 

 

 

 
  

Figure 9 shows that the topological structures of 
collaboration subgraphs belonging to “FA” col-
laboration networks are often star topologies and 
the topological structures of collaboration sub-
graphs that belong to the other five types of col-
laboration networks are frequently linear topolo-
gies. Figure 9.a stands for a collaboration pattern 
that several editors coauthor on an article and one 
of them plays leading role in the process of collab-
oratively producing the article. Figure 9.b and 
Figure 9.c are representative of two collaboration 
patterns, respectively. The collaboration pattern 
consisting of three editors also has one editor who 
plays leading role. The collaboration pattern 
which is composed of two editors is the simplest 
case and the importance of these two editors is 
equal in essence. Figure 9 indicates that the collab-

oration patterns that Figure 9.a stands for 
constantly produce articles of high quality. In 
fact, a successful collaboration team often has 
relatively more complex relationship among 
members of the team and there constantly ex-
ist some people in the team shouldering im-
portant responsibility. The person should 
lead the team and coordinate members of the 
team in order to lead the outcome of the team 
to develop towards a good direction.  

 

 

Table 3 shows that how many edits editor 
"Ealdgyth" has performed respectively to six 
classes of articles in our datasets. The editor 
often edited articles of “FA” class, but the ed-
itor edited articles of other classes not so of-
ten. From the results of collaboration sub-
graphs mined from collaboration networks, 
we discovered that the node that editor 
"Ealdgyth" stands for appears in the center of 
many collaboration subgraphs of “FA” col-
laboration networks and also appears in the 
collaboration subgraphs of “Stub” collabora-
tion networks. To be more specific, the editor 
plays an important role in the collaboration 
patterns that constantly appear in “FA” arti-
cles. However, the role of the editor in col-
laboration patterns that frequently appear in 
“Stub” articles is not so important. These col-
laboration patterns that respectively appear 
in these two classes of articles are actually 
different. Although the editors who play an 
important role in the evolution of these two 
classes of articles are same, the qualities of 
them differ greatly. 

Table 4 shows that how many edits editor 
"Addbot" has performed, respectively, to six 
classes of articles in our datasets. The editor 
constantly edited articles of “Start” class and 
performed many edits to other classes of arti-
cles as well. According to results of collabora-
tion subgraph mined from collaboration 
networks, we found that the node the editor 
is representative of is a node in most frequent 
subgraphs of “Start” collaboration networks. 
The editor who constantly appears in bad 

(a) (b) (c)
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quently linear topologies. Figure 9.a stands for a col-
laboration pattern that several editors coauthor on an 
article and one of them plays leading role in the process 
of collaboratively producing the article. Figure 9.b and 
Figure 9.c are representative of two collaboration pat-
terns, respectively. The collaboration pattern consist-
ing of three editors also has one editor who plays lead-
ing role. The collaboration pattern which is composed 
of two editors is the simplest case and the importance 
of these two editors is equal in essence. Figure 9 indi-
cates that the collaboration patterns that Figure 9.a 
stands for constantly produce articles of high quality. 
In fact, a successful collaboration team often has rela-
tively more complex relationship among members of 
the team and there constantly exist some people in the 
team shouldering important responsibility. The person 
should lead the team and coordinate members of the 
team in order to lead the outcome of the team to devel-
op towards a good direction. 
Table 3 shows that how many edits editor “Ealdgyth” 
has performed respectively to six classes of articles in 
our datasets. The editor often edited articles of “FA” 
class, but the editor edited articles of other classes not 
so often. From the results of collaboration subgraphs 
mined from collaboration networks, we discovered 
that the node that editor “Ealdgyth” stands for ap-
pears in the center of many collaboration subgraphs 
of “FA” collaboration networks and also appears in 
the collaboration subgraphs of “Stub” collaboration 
networks. To be more specific, the editor plays an 
important role in the collaboration patterns that con-
stantly appear in “FA” articles. However, the role of 
the editor in collaboration patterns that frequently 
appear in “Stub” articles is not so important. These 
collaboration patterns that respectively appear in 
these two classes of articles are actually different. Al-
though the editors who play an important role in the 
evolution of these two classes of articles are same, the 
qualities of them differ greatly.
Table 4 shows that how many edits editor “Addbot” 
has performed, respectively, to six classes of articles 

Table 3
Number of edits performed by editor “Ealdgyth” to per class 
articles

Class FA GA B C Start Stub

#edits 7250 2606 100 228 339 190

in our datasets. The editor constantly edited articles 
of “Start” class and performed many edits to oth-
er classes of articles as well. According to results of 
collaboration subgraph mined from collaboration 
networks, we found that the node the editor is repre-
sentative of is a node in most frequent subgraphs of 
“Start” collaboration networks. The editor who con-
stantly appears in bad collaboration patterns, howev-
er, has also collaborated with other editors to produce 
many “FA” articles and “GA” articles. 
Therefore, Tables 3 and 4 indicate that collaboration 
patterns among editors can exert more remarkable 
influence on article quality than that of the ability of 
any editor in these collaboration patterns. Without a 
successful collaboration pattern among editors, they 
may also produce articles of bad quality though some 
of them may be rather capable. While many editors 
who may not be very capable, they can also produce 
articles of high quality with a successful collaboration 
among them.
Furthermore, we also found that there exist some 
collaboration subgraphs that only appear in “FA” or 
“GA” collaboration networks. Some collaboration 
subgraphs can be only discovered in “Start” or “Stub” 
collaboration networks. The former is larger in size 
than the latter and the quantity of the latter is much 
less than that of the former as well. This experimental 
phenomenon infers that there are some editors con-
stantly cooperating with each other in a fixed collabo-
ration pattern to produce articles of high quality. 
In general, as can be noted from Figure 10, from Fig-
ure 10.a to Figure 10.f, curves in each figure go denser. 
Only the case that curves in Figure 10.b are sparser 
than curves in Figure 10.c is an exception. Denser 
curves in Figure 10 mean closer collaboration among 
editors. Consequently, Figure 10 implies that closer 
collaboration among editors will produce more excel-
lent articles more often than not. 
In conclusion, without appropriate collaboration 
among members of a team, the sum of one plus one 
may be less than one. One plus one may be greater than 

Table 4
Number of edits performed by editor “Addbot”” to per class 
articles

Class FA GA B C Start Stub

#edits 285 311 506 587 718 362
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two if all the members cooperate with each other ap-
propriately. Hence discovering and analysing various 
collaboration patterns is of great importance. Based 
on analysing various collaboration patterns which 
have been discovered already, evaluation of current 
collaboration and some suggestions may be given.

Figure 10
Figure 10a stands for the frequent collaborations in “FA” 
class articles among top 50 editors who edit most “FA” 
articles. If the number of “FA” articles that two editors 
have coauthored surpasses the threshold 25, there will be a 
curve connecting one node with another node. Each node 
stands for an editor. The bigger the size of a node is, the 
more “FA” articles the editor, the node is representative of, 
has edited. It is the same case to the five figures remaining

5.2.2. Analysing the Influences of Collaboration 
Patterns on Collaborative Outcome
As is shown in Figure 11.a, the lower the quality of 
articles is, the less the quantity of collaboration sub-
graphs is. Only the case that quantity of collaboration 
subgraphs of “Start” collaboration networks is less 
than that of collaboration subgraphs of “Stub” collab-
oration networks is an exception.
To reveal the correlation between quality of articles 
and the quantity of collaboration subgraphs further, 
we respectively sampled 500, 1000 and 1500 articles 
at random from our datasets according to the article 
class distribution in Table 1. Then we gave each article 
a ranking according to the quantity of collaboration 
subgraphs belonging to it. Articles will be given the 
same ranking if quantities of collaboration subgraphs 
belonging to them are equal. Finally, we calculated av-
erage ranking of six classes of articles, respectively. As 

can be observed in Figure 11.b, the higher the quality 
of articles is, the higher the average ranking of them is. 
Figure 11.c indicates that the average sizes of frequent 
subgraphs mined from “FA” collaboration networks is 
the biggest and from the other five types of collabora-
tion networks remaining is almost the same.
We can intuitively imagine that if two graphs have the 
same number of nodes but the number of edges in one 
graph is more than that in another, then the former 
will be deemed more complex than the latter. We can 
also imagine that if the number of edges in a graph di-
vided by the number of nodes in it equals that of an-
other, the graph which has more nodes will be deemed 
more complex. Hence the complexity of a graph is 
simply defined by us as follows:

 
 

 

Table 5 

Result of frequent itemset mining. For there are 316 
“FA” articles in our datasets, there are 316 corre-
sponding transactions. Each transaction is composed 
of all editors of corresponding article. It is the same 
case to “GA”, ”B”, “C”, “Start” and “Stub” articles. 
The threshold for frequent itemset mining is 50 

Class FA GA B C Start Stub 

1-itemse 120 52 70 48 16 5 

2-itemse 1326 204 442 184 12 2 

3-itemse 4828 186 911 223 2 0 

4-itemse 8587 44 800 118 0 0 

5-itemse 7250 0 277 23 0 0 

6-itemse 2772 0 29 1 0 0 

7-itemse 414 0 0 0 0 0 

8-itemse 12 0 0 0 0 0 

sum 25309 486 2529 597 30 7 

 

 

other five types of collaboration networks remain-
ing is almost the same. 

 
Figure 11 

Figure 11.a shows the quantities of collaboration 
subgraphs respectively mined from six types of 
collaboration networks under three different 
thresholds. Figure 11.b is average rankings of six 
classes of articles. Figure 11.c is average size of col-
laboration subgraphs respectively mined from six 
types of collaboration networks under three dif-
ferent thresholds and the number of nodes in a 
collaboration subgraph is the size of it. Figure 11.d 
is average complexity of collaboration subgraphs 
respectively mined from six types of collaboration 
networks under three different thresholds. Corre-
sponding standard deviations have been attached 
in appendices 

 

 
 

We can intuitively imagine that if two graphs have 
the same number of nodes but the number of edg-
es in one graph is more than that in another, then 
the former will be deemed more complex than the 
latter. We can also imagine that if the number of 
edges in a graph divided by the number of nodes 
in it equals that of another, the graph which has 
more nodes will be deemed more complex. Hence 
the complexity of a graph is simply defined by us 
as follows: 
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where edgeN is the number of edges and nodeN  is 
the number of nodes. According to this definition, 
we calculated average complexity of collaboration 
subgraphs mined from six types of collaboration 

networks, respectively. Then Figure 11.d in-
dicates that the average complexity of collab-
oration subgraphs mined from “FA” collabo-
ration networks is the most complex and 
from the five types of collaboration networks 
remaining is almost the same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental results presented in Figure 
11.c and Figure 11.d indicate that the metric 
average size of frequent subgraphs and the 
metric average complexity of frequent sub-
graphs can distinguish “FA” class articles 
from other classes of articles very well but 
the two metrics cannot work very well in dis-
tinguishing among the other five classes of 
articles. Figure 12.a can also illustrate this ex-
perimental phenomenon. 

Furthermore the results of frequent subgraph 
mining above, we also utilize the algorithm 
FPGrowth to mine frequent itemsets from 
our datasets [24, 25, 27]. This experiment is 
complementary to the experiment of frequent 
subgraph mining. As is shown in Table 5, for 
the same column in the table, the quantity of 
frequent itemsets goes lower from “FA” to 
“Stub” except “GA”. Hence, generally speak-
ing, the experimental results indicate that 
there are strong and positive correlations be-
tween the quantity of frequent itemsets and 
the qualities of articles. The results of fre-

Figure 11
Figure 11.a shows the quantities of collaboration subgraphs 
respectively mined from six types of collaboration networks 
under three different thresholds. Figure 11.b is average 
rankings of six classes of articles. Figure 11.c is average size 
of collaboration subgraphs respectively mined from six types 
of collaboration networks under three different thresholds 
and the number of nodes in a collaboration subgraph is the 
size of it. Figure 11.d is average complexity of collaboration 
subgraphs respectively mined from six types of collaboration 
networks under three different thresholds. Corresponding 
standard deviations have been attached in appendices

  

Table 4 

Number of edits performed by editor "Addbot"" 
to per class articles 

Class FA GA B C Start Stub 

#edits 285 311 506 587 718 362 

collaboration patterns, however, has also collabo-
rated with other editors to produce many “FA” ar-
ticles and “GA” articles.  

 

Therefore, Tables 3 and 4 indicate that collabora-
tion patterns among editors can exert more re-
markable influence on article quality than that of 
the ability of any editor in these collaboration pat-
terns. Without a successful collaboration pattern 
among editors, they may also produce articles of 
bad quality though some of them may be rather 
capable. While many editors who may not be very 
capable, they can also produce articles of high 
quality with a successful collaboration among 
them. 

Furthermore, we also found that there exist some 
collaboration subgraphs that only appear in “FA” 
or “GA” collaboration networks. Some collabora-
tion subgraphs can be only discovered in “Start” 
or “Stub” collaboration networks. The former is 
larger in size than the latter and the quantity of the 
latter is much less than that of the former as well. 
This experimental phenomenon infers that there 
are some editors constantly cooperating with each 
other in a fixed collaboration pattern to produce 
articles of high quality.  

In general, as can be noted from Figure 10, from 
Figure 10.a to Figure 10.f, curves in each figure go 
denser. Only the case that curves in Figure 10.b are 
sparser than curves in Figure 10.c is an exception. 
Denser curves in Figure 10 mean closer collabora-
tion among editors. Consequently, Figure 10 im-
plies that closer collaboration among editors will 
produce more excellent articles more often than 
not.  

In conclusion, without appropriate collaboration 
among members of a team, the sum of one plus 
one may be less than one. One plus one may be 
greater than two if all the members cooperate with 
each other appropriately. Hence discovering and 
analysing various collaboration patterns is of great 
importance. Based on analysing various collabora-
tion patterns which have been discovered already, 
evaluation of current collaboration and some sug-
gestions may be given. 

Figure 10 

Figure 10a stands for the frequent collabora-
tions in “FA” class articles among top 50 edi-
tors who edit most “FA” articles. If the num-
ber of “FA” articles that two editors have co-
authored surpasses the threshold 25, there 
will be a curve connecting one node with an-
other node. Each node stands for an editor. 
The bigger the size of a node is, the more “FA” 
articles the editor, the node is representative 
of, has edited. It is the same case to the five 
figures remaining. 

 

 
 
5.2.2 Analysing the Influences of Collaboration 
Patterns on Collaborative Outcome 
As is shown in Figure 11.a, the lower the 
quality of articles is, the less the quantity of 
collaboration subgraphs is. Only the case that 
quantity of collaboration subgraphs of “Start” 
collaboration networks is less than that of 
collaboration subgraphs of “Stub” collabora-
tion networks is an exception. 

To reveal the correlation between quality of 
articles and the quantity of collaboration 
subgraphs further, we respectively sampled 
500, 1000 and 1500 articles at random from 
our datasets according to the article class dis-
tribution in Table 1. Then we gave each arti-
cle a ranking according to the quantity of col-
laboration subgraphs belonging to it. Articles 
will be given the same ranking if quantities 
of collaboration subgraphs belonging to them 
are equal. Finally, we calculated average 
ranking of six classes of articles, respectively. 
As can be observed in Figure 11.b, the higher 
the quality of articles is, the higher the aver-
age ranking of them is.  

Figure 11.c indicates that the average sizes of 
frequent subgraphs mined from “FA” collab-
oration networks is the biggest and from the 
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Table 5
Result of frequent itemset mining. For there are 316 “FA” 
articles in our datasets, there are 316 corresponding 
transactions. Each transaction is composed of all editors 
of corresponding article. It is the same case to “GA”, ”B”, 
“C”, “Start” and “Stub” articles. The threshold for frequent 
itemset mining is 50

Class FA GA B C Start Stub

1-itemse 120 52 70 48 16 5

2-itemse 1326 204 442 184 12 2

3-itemse 4828 186 911 223 2 0

4-itemse 8587 44 800 118 0 0

5-itemse 7250 0 277 23 0 0

6-itemse 2772 0 29 1 0 0

7-itemse 414 0 0 0 0 0

8-itemse 12 0 0 0 0 0

sum 25309 486 2529 597 30 7

where Nedge is the number of edges and Nnode is the 
number of nodes. According to this definition, we 
calculated average complexity of collaboration sub-
graphs mined from six types of collaboration net-
works, respectively. Then Figure 11.d indicates that 
the average complexity of collaboration subgraphs 
mined from “FA” collaboration networks is the most 
complex and from the five types of collaboration net-
works remaining is almost the same.

The experimental results presented in Figure 11.c and 
Figure 11.d indicate that the metric average size of 
frequent subgraphs and the metric average complex-
ity of frequent subgraphs can distinguish “FA” class 
articles from other classes of articles very well but the 
two metrics cannot work very well in distinguishing 
among the other five classes of articles. Figure 12.a 
can also illustrate this experimental phenomenon.
Furthermore the results of frequent subgraph min-
ing above, we also utilize the algorithm FPGrowth to 
mine frequent itemsets from our datasets [24, 25, 27]. 
This experiment is complementary to the experiment 
of frequent subgraph mining. As is shown in Table 5, 
for the same column in the table, the quantity of fre-
quent itemsets goes lower from “FA” to “Stub” except 
“GA”. Hence, generally speaking, the experimental re-
sults indicate that there are strong and positive cor-
relations between the quantity of frequent itemsets 

and the qualities of articles. The results of frequent 
itemset mining are consistent with the results of fre-
quent subgraph mining. 

5.2.3. Testifying the Influence of Collaboration 
Networks on Collaborative Outcome
To further testify the correlations between collabo-
ration and the qualities of collaborative outcome, we 
performed a six-classification task. We sampled 1506 
articles from our datasets, in which the quantities of 
“FA”, “GA”, “B”, “C”, “Start” and “Stub” articles are all 
251. We selected 100 articles from the 1506 articles 
at random as test set data, in which the numbers of 
“FA” and “GA” articles are both 16 and the numbers 
of the remaining four classes of articles are all 17. The 
1406 articles remaining were selected as training set 
data. We then mined collaboration subgraphs from 
collaboration networks constructed from these 1506 
articles at the threshold of 6. Here, 1506 collaboration 
networks are constructed from the 1506 articles and 
collaboration subgraphs are mined from the 1506 col-
laboration networks together at the threshold of 6. In 
the next step, we extracted features from those collab-
oration subgraphs and each collaboration network. 
In Figure 12.a, the first three features are mentioned 
above. Furthermore, P, C and L are three statistical 
properties of complex networks, which are defined 
in [29]. In this paper, P, C and L are the properties 
of frequent subgraphs which can also be regarded as 
complex networks. It is noteworthy that C is defined 
in [29] as follows:

  

quent itemset mining are consistent with the re-
sults of frequent subgraph mining.  

 
5.2.3 Testifying the Influence of Collaboration Net-
works on Collaborative Outcome 

To further testify the correlations between collabo-
ration and the qualities of collaborative outcome, 
we performed a six-classification task. We sam-
pled 1506 articles from our datasets, in which the 
quantities of “FA”, “GA”, “B”, “C”, “Start” and 
“Stub” articles are all 251. We selected 100 articles 
from the 1506 articles at random as test set data, in 
which the numbers of “FA” and “GA” articles are 
both 16 and the numbers of the remaining four 
classes of articles are all 17. The 1406 articles re-
maining were selected as training set data. We 
then mined collaboration subgraphs from collabo-
ration networks constructed from these 1506 arti-
cles at the threshold of 6. Here, 1506 collaboration 
networks are constructed from the 1506 articles 
and collaboration subgraphs are mined from the 
1506 collaboration networks together at the 
threshold of 6. In the next step, we extracted fea-
tures from those collaboration subgraphs and each 
collaboration network. In Figure 12.a, the first 
three features are mentioned above. Furthermore, 
P, C and L are three statistical properties of com-
plex networks, which are defined in [29]. In this 
paper, P, C and L are the properties of frequent 
subgraphs which can also be regarded as complex 
networks. It is noteworthy that C is defined in [29] 
as follows: 
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where ik  is the degree of a node in a network and 
n is the number of nodes in the network. However, 
if ik  = 1, then C is infinite. In our collaboration 
subgraphs the degree of a node may equal 1. To 
avoid this case, we revised it into the following: 
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The nodes size and edges size in Figure 12.a are 
the quantities of nodes and edges in a collabora-
tion network, respectively. The feature of lifetime 
is the time of existence of an article. The feature of 
average interaction time is the mean of time that 
how long editors interact with each other one 
times. This feature reflects the frequency of inter-

actions among editors. The last feature is the 
average size of revision histories of an article 
which is the mean of all revision histories’ 
size. As can be seen from Figure 12.a, all the 
features do have something to do with the 
quality of an article. The accuracy of classifi-
cation by combining all 11 features is as high 
as 62%. Without learning about anything 
about the content of an article, we can just 
utilize these features to identify the class of 
an article with an accuracy of 62%. Therefore, 
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Figure 12
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as one class and the remaining articles are treated as another 
class. The detail parameterizations of classifiers in Figure 12.b 
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classification are good. The recall per class in Table 6 
is not inferior to that in [23].
Due to many other researchers [5, 33, 34], applying 
various classification algorithms, classified articles 
into two classes, we also utilized the combination of 
11 features presented in Figure 12.b, based on six types 
of classification algorithms, to classify articles into 
two classes, respectively. From Figure 12.b, we can see 
that the classification accuracy of Ensemble Learning 
(ensembles for Boosting, Bagging and Random Sub-
space) is the highest, which is nearly 100%. The clas-
sification accuracy of SVM (Support Vector Machine) 
is the lowest with accuracy of 78%. It was noteworthy 
that the high classification accuracy can be expected 
for the reason that “FA” articles can be apparently dis-
tinguished from other articles by these features, which 
can be clearly seen in Figure 11. Hence the accuracy of 
classification in our work is very high and exceeds, to 
the best of our knowledge, the accuracy of classifica-
tion in all related work performed by other researchers.

itors interact with each other one times. This feature 
reflects the frequency of interactions among editors. 
The last feature is the average size of revision his-
tories of an article which is the mean of all revision 
histories’ size. As can be seen from Figure 12.a, all the 
features do have something to do with the quality of 
an article. The accuracy of classification by combin-
ing all 11 features is as high as 62%. Without learning 
about anything about the content of an article, we can 
just utilize these features to identify the class of an 
article with an accuracy of 62%. Therefore, 62% is a 
relatively high accuracy in fact. 
Furthermore, we also calculated recall per class ac-
cording to the results of classification mentioned 
above. Table 6 also indicates that the results of the 

Table 6
Recall per class

Class FA GA B C Start Stub

Recall 1.00 0.4375 0.5882 0.41.18 0.4706 0.8224

Table 7
The results of the quantity of nodes and quantity of edges 
in Table 2 divided by the quantity of articles in Table 1

Class FA GA B C Start Stub

#nodes/#articles 548 376 489 340 84 26

#edges/#articles 983 664 810 515 111 31

Table 8
Result of quantity of edges divided by quantity of nodes in 
Table 2

Class FA GA B C Start Stub

#edges/#nodes 1.792 1.766 1.653 1.515 1.326 1.165

6. Discussion and Conclusion
Researching collaboration among editors in online col-
laboration systems is a significant challenge. In this pa-
per, we have utilized collaborative subgraphs to deeply 
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Table 9
The standard deviation for Figure 11.b

#articles FA GA B C Start Stub

500 1.1412 0.9279 0.7743 0.9233 0.6723 0.5430

1000 6.0686 3.8332 3.0273 1.9459 1.6689 1.4675

1500 8.2465 5.1357 4.6544 4.2470 1.8949 1.7258

anatomize the influences of collaboration patterns on 
the collaborative outcome. Some corresponding classi-
fication tasks are performed to testify the influence on 
the collaborative outcome. There, in fact, exist some ex-
planations for the correlations between collaboration 
characteristics among editors and the collaborative 
outcome. Compared with a less excellent article, arti-
cles of high quality, generally speaking, will be edited 
by more editors and many of them may edit these arti-
cles repeatedly. That is to say, usually an article of high 
quality will be produced by the closer collaboration 
among more editors. The collaboration networks of 
excellent articles are accordingly larger and more com-
plex. From Table 7, it can be verified that collaboration 
networks of high quality articles are, on average, larger 
than networks of less excellent articles. From Table 8, 
we can roughly see that collaboration networks of high 
quality articles are, on average, more complex than 
collaboration networks of less excellent articles. Nat-
urally, the quantity of collaboration subgraphs mined 
from the former collaboration networks is more than 
that of collaboration subgraphs mined from the latter 
collaboration networks and collaboration subgraphs 
mined from the former are more complex than those 
mined from the latter as well. Figure 13 can intuitively 
demonstrate the explanations stated above.
In future work, we will further explore the view pro-
posed in this paper and the features of collaboration 
subgraphs. We will apply this view to other online 
collaboration systems to further verify this view. Fur-
thermore, because the process of producing contents 

Figure 13
A simple example of two collaboration networks, among which the left belongs to a less excellent article and the right 
belongs to an article of high quality. Edge labels are ignored to simplify the visualization
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6. Discussion and Conclusion 
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online collaboration systems is a significant 
challenge. In this paper, we have utilized col-
laborative subgraphs to deeply anatomize the 
influences of collaboration patterns on the 
collaborative outcome. Some corresponding 
classification tasks are performed to testify 
the influence on the collaborative outcome. 
There, in fact, exist some explanations for the 
correlations between collaboration character-
istics among editors and the collaborative 
outcome. Compared with a less excellent ar-
ticle, articles of high quality, generally speak-
ing, will be edited by more editors and many 
of them may edit these articles repeatedly. 
That is to say, usually an article of high quali-
ty will be produced by the closer collabora-
tion among more editors. The collaboration 
networks of excellent articles are accordingly 
larger and more complex. From Table 7, it 
can be verified that collaboration networks of 
high quality articles are, on average, larger 
than networks of less excellent articles. From 
Table 8, we can roughly see that collabora-
tion networks of high quality articles are, on 
average, more complex than collaboration 
networks of less excellent articles. Naturally, 
the quantity of collaboration subgraphs 
mined from the former collaboration net-
works is more than that of collaboration sub-
graphs mined from the latter collaboration 
networks and collaboration subgraphs mined 
from the former are more complex than those 
mined from the latter as well. Figure 13 can 
intuitively demonstrate the explanations 
stated above. 

 

 Figure 13 

A simple example of two collaboration net-
works, among which the left belongs to a less 
excellent article and the right belongs to an 
article of high quality. Edge labels are ig-
nored to simplify the visualization 

 

 

by collaboration among editors is dynamic, the quality 
of contents created collaboratively in these systems 
may gain improvement materially assuming authors 
can learn about the status of current collaboration and 
adopt corresponding suggestions for future collabo-
ration. These suggestions may be provided based on 
our future work. Therefore, in the future, we will try to 
research how to concretely guide editors according to 
collaboration patterns discovered in this paper to col-
laboratively create contents of high quality.

Appendices

Table 10
The standard deviation for Figure 11.c

Thresholds FA GA B C Start Stub

4 1.0329 0.2764 0.3454 0 0 0

5 0.9368 0.2421 0.3222 0 0 0

6 0.8669 0.1998 0 0 0 0
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Table 11
The standard deviation for Figure 11.d

Table 12
The parameterizations of classifiers in MATLAB for Figure 12.b

Thresholds FA GA B C Start Stub

4 1.1337 0.3426 0.4890 0.1041 0 0

5 1.0589 0.2887 0.4092 0.1090 0 0

6 1.0050 0.2496 0 0 0 0

Classifiers parameterizations of classifiers

Ensemble 
Learning

(d , , ' 1',
100, ' ', ' , ' ')
fitensemble ata lables AdaBoostM

tree type classification

Random 
Reforest

(5, , )TreeBagger trainData trainLable

KNN
. ( , , '

',5)
ClassificationKNN fit data labels
NumNeighbors
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