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This paper investigates H, control method for a class of Singular Network Control Systems (SNCS) based on
singular plant. Considering the network delay, external disturbance, impulse behavior and structural instabil-
ity of singular plant, the H_ control of SNCS with state feedback and dynamic output feedback are investigated
respectively by approach of Linear Matrix Inequality (LMI). The existence of the H, control law, the solving of
the H  control law and the disturbance degree are discussed in the following sections of the paper. Simulation
results illustrate the effectiveness and feasibility of the given approach.

KEYWORDS: Singular Network Controls, H, control, Linear Matrix Inequality, Network delay.

1. Introduction

Network Control System (NCS) is a distributed and
a real-time feedback control system where the sys-
tem node situated at different geographical position
exchanges state information and control informa-
tion with the controller through a communication
network [20]. Network bandwidth and restraint of
communication mechanism such as network delay
and data packet loss exist typically in network com-
munication channel, which makes NCS loses invari-
ability, integrality, causality and certainty [18], and
due to this fact the study of NCS is more complicated
and challenging.

The traditional control theories and methods are not
suitable for NCS, which makes rapid development
over the past few years. Since the end of the last centu-
ry, the research of NCS experiences the process from
simple to complex, from single to comprehensive and
from special to general. Alarge number of results have
been reported, for instance, system complexity analy-
sis [23], quantized dynamic output feedback control
[3], observer-based controller design [25], state esti-
mation and stabilization [6], H,, control method [24],
fault-tolerant control [4], guaranteed cost control [8],
co-design [10].

The results in the existing literature are focused on
linear system. However, the study of SNCS based on
singular system has not been addressed intensively.
The dynamics of singular system is quite different
from normal linear system and have many character-
istics such as no causality, no solution, no uniqueness
and structure instability, etc. [22]. In fact, the research
on SNCS is still in the primary stage, and the existing
results are limited to system modeling, stability anal-
ysis and control method [1-2, 5,11-12, 14-17].

This paper aims to study the stabilization and H, con-
trol method for a class of SNCS subject to the double
characteristics of a singular systems and NCS. Net-

work delay, input disturbance of limited energy, and
impulse behavior are taken into consideration. The
H_ control method of SNCS with state feedback and
dynamic output feedback are presented respectively
by means of LMI. The existence H, control law, H
control law approach and disturbance attenuation
degree in different feedback are presented. Finally, a
simulation is given to illustrate the effectiveness of
the proposed method [7, 9, 13, 19, 21].

Schur Formula and Schur Complement Lemma
Let AcR™",BeR""",CeR""™" ,DeR" """,
and A be an invertible matrix. The Schur formula has
the following three forms:

0) [A B ]_[ I 0 ][A B]
0 D—-CA'Bl " [-CA™" Ipp|lc DY

(ii) [A 0 | = A B] Iy —A7'B
c p—caBlTlc pl|o 1]

0 D-cA'Bl
=[ Iy 0 ]A B] [lm —A_lB]
_CA_l I(n_r) C D O I(n—r) !

in which, e.g., I ,denotes identity matrix of the size
rxr. The other identity matrices are of sizes that fit
the Schur lemma.

Schur Complement Lemma:

LetQe R™",Se R~ Re R‘”*’)X("*’)and[‘sg ; ]<0.
Then if and only if

(i) R<0, Q-SR'S7<0

or

(ii) Q<0, R-STQ'S<0.
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Proof: Since the contract transform does not change
the matrix positive definition, we first prove that

S
[ST R]<0 is equivalent to R<0, Q-SR'S”.

If Q<0, through the Schur formula, we have the fol-
lowing:

[[(r) —SR_I] ][ Iy
0 I -1gT

=[Q — SR™1sT 0]‘

In- r)]

Correspondingly, [Q
Q-SR1S7<0.

[End of Proof]
Notes: Q- SRS”is the Schur complement of Q.

S]<0 is equivalent to R<O,

Problem Description

The singular sample of the network control system is
described as presented in [1].

In Figure 1, u, w and z are control input, measurement
state or measurement output, input external distur-
bance and expectation output, and 7 is network-in-
duced delay. The aim of positioning is to guarantee
stable running of the system independently of any ex-
ternal disturbances so that the expected output of the
system is not affected.

Figure 1
General Structure of SNCS

W " ) L

—» Smgular Plant
i

For singular plant, its state response contains not only
the exponential term as normal systems, but also the
pulse term and input derivative item, which will make
the whole system has a pulse behavior. The pulse be-
havior decreases not only the system performance
and even leads to the unstable state, which is a fatal
destructiveness to the system. For network communi-
cation, due to the limited network bandwidth and the
restraint of communication mechanism, the network
communication obtains uncertainty and complexity.
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The presented model shows a singular system state:

E, & (t) = Ax(t)+ Bu(t - + Hyw(1))
y(@)=C X @)+ Hw(t) , €)
2(t) = Cox(t) + H,w(t)

where x(t) € R* u(t) € R™ y(t) € R'and z(t) € R'are
state vector, control input’vector, output vector and
expectation output vector, respectively. A € R, B
€ R™™ and C, C, € R™ are constant matrices, E €
R™" is a singular matrix; w(t) is finite energy external
disturbance, and H,, H,, H, are constant matrices.

When the singular plant is regular and impulse free,
the equation (1) can be equivalently transformed as:
x, & () = A x, () + Bu(t = 1)+ Ww(t)
X, &) =x,(t)+B,(t-1)+W,w(t)

¥(@) = Cx, (1) + Cox, (1) + H w(?)
z(t) = Cyyx, () + Cpox, () + H,ow(2)
The state feedback control is

x, (k)
u(k)=[K, Kz]{ : } :

X, (k)
Let 2= xI (k) uT(k — 1)]7, the state feedback SNCS
close-loop model is

p?(k+1)=[(Ad + B}(Ol(l) K1) (311(L)_— IB(:OB(ZZ) K,B,

N Wo_Blo(l) Kz Wz
x+[ o |,

The dynamic output feedback controller is
{xc(k +1) =Ax. (k) + ch(k)
u(k) = C.x.(k)

Let x=[ xI xI uT]T, the SNCS close-loop model is

as follows:
A4, B(DC,  by()
X(k+1)=| B, A, -B.C,B,
0 C. 0
@
W,
X(k)+| B.H, —BcC,W, \w(k).
0
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Whether the system uses state feedback and output
feedback or not, the SNCS close-loop system model
is alinear normal system depending on time delay 7.

H_Control
1. State feedback H, control

Theorem 1: If there exist positive definite matrices S s
R such that

-S 0 SMmM] SK
0 —-R RM! RM!
_ _ 2 <0, ®)
MS M,R -S§ 0
KS MR 0 -R

where M= A, + B,,(DK,, M,= B,() - B,,(DK,B, and
M,= - K,B,, then the system (2) is asymptotically sta-
ble.

Proof: Choose positive definite matrices S and R and
define a Lyapunov function as follows:

V(K)= xT (k)Sx, (k)+ uT (k — DRu(k-1).

Then the forward differential
VV(k)= (k)] x(k), where

of V(k) is

| M[SM,+K[RK,-S M/SM,+K]RK,
MISM,+M]RK, M!SM,+M!RM,-R |
My = Ay + ByoKy, My = By — B1oK3B3, M3 = =K By,
2=[ xI(k)  uT(k—D]".

By Lyapunov stability theory, if AV(k)<0, then the
system (2) is asymptotically stable and asymptotical
stability condition is

M/SM,+K'RK,—S M/SM,+K/RK, -0
MISM,+M!RK, M]SM,+M!RM,~R|

By Schur complement lemma, the equation (3) can be
transformed to

-S 0 M K/
0 -R M, M/

M, M, -S' 0

K M, 0 -R

Multiplying diag (.S, R, I, I) on the left-hand side
and the right-hand side of the equation it is derived
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that
-5 0 S'mM/ STk
0 -R" R'M; R'M]
MS' MR -5 0o |
KS' MR 0 -R'

where we denote § =§-1 R = R~1, then the equa-
tion is equivalent to (3).

[End of Proof]

Theorem 2: For the singular plant (1), under state

feedback controller, for given y > 0, if there exists sym-
metric positive definite matrices S, R, such that

-s 0 o0 M k' cI]
0 -R M M] M)
0 0 _}/2[ WzT VV3T W4T <0 "
M, M, W, 0 0 0
M, M; W, 0 -R' 0
G, M, W, 0 0 -1]

where M,= A, + B,,K,, M,= B,, - B,,K,B,, M,= - K,B,,
M, = -C,,B,, Wy = H-C,,W,, W= W, - B,,(DK,B,,
W, = - K,W,, then the singular plant model (1) will re-
alize second best state feedback H _control.

Proof: The external disturbance is taken into ac-
count, in order to make the following equation exist
Izl < v |Iw®I,. Let J, = XN&,[27(k)z(k) -
y2wT (k)w(k)], we can take positive definite matrices
S, R, and define a Lyapunov function V(k) as follows:
V(k)= xT(k)Sx; (k) + uT(k — DRu(k — 1).

For the system (2), when it satisfies Theorem
1, it is asymptotically stable in the zero initial
conditions Vw(k) € L,[0,) it is derived that
Tl 2 (K)2(k) — y2wT (k)w (k) + AV (K)] < 0.

Let us denote M, = -C,,B,, W,= W, - B,,(DK,B,,
wW,=-K,W,, W,= H,-C,,W,, so that it is derived that
xTdx < 0,where

x=[ xT(k) uT(k—1)

Aqq * *
wl(k) 17, D=[4,; Ay, * |<0.
A3y Azp Asz

All = M{SM:[ + K]_TRKl -S + C;].CZIJ
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Ayy = MISM, + MTRK, + MIC,,,

Ay, = MTSM, + MTRM;—R + MIM,,

A3 =WISM, + WIR + WZC,,,

Asy = WISM, + WIR + WIM,,

Asy = WISW, + WIWs + WIRM, — y2I.

By Schur complement, Equation (4) can be trans-
formed as

__S+ CZTICZI CleM4 CZTIVVS MIT KIT |
CZTICZI _R+M4TM4 M4TW5 MzT M3T
WSTC21 WsTM4 WSTWS - 72[ W3T W4T < 0.

M, M, M, -s57 0
K, M, w, 0 -R"

®)

Similarly, by further transforming, we can derive (4).
[End of Proof]

Theorem 3: For the singular plant (1), under the ac-
tion of state feedback controller, if there exist sym-
metric positive definite matrices §, R, matrices Y, Y,
Y, scalars £ > 0,g; > 0, > 0 and compatible dimen-
sion unit matrix I, such that

_S * % % % * % * % %
0 R * % * * % * % %
O 0 7ﬁ1 * * * * * * *
Ad‘§+BIOYI BI 11é Wo _S * * * * * *
R ox ok ok ox %
xA 0 A 0 0 -R 0.
C,8 —C,B,R HC,W, 0 0 - * * = *
0  BR w, 0 0 0 —el * * *
0  BR W, 0 0 0 0 —gf * *
0 0 0 YB,, 0 0 0 0 -l *
L 0 0 0 0 Y, 0 0 0 0-g/]
(6)
The H, control law is

)

u (O =[r8y] /gl][)d(k) }

x2(k)

Proof: For plant (1), if second best state feedback ¢
H_control law exists, then Theorem 2 is established.
Spread out M, ~M,, W;~W,, and then Equation (4) in
Theorem 2 can be expressed as
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S * * * * *
0 -R 0 L
0 0 e L L
4 <0.
Ad+BIOK1 Bn Wo =) * *
C  -K,B, KW, 0 —R' *
C21 _szBz Hz - C22W2 0 0 -1 ]
®
Equation (8) can be rewritten as:
B -S * * * * *
0 -R 0 * * *
2
0 0 -1 * * * .
A4, +BK, By, W, -s" * *
C -K,B, -KW, 0 -R' *
CZI _szBz Hz_ szWz 0 0 -1 |
[0 ] [0 7
0
0 0
+ 1o B, w, 0 0 o)i" <0
B, K, Bk,
0 0
_0 . _0 -l

(€)

From Schur Lemma 1, we can say that the above (9)
exists, if and only if there is a scalar &€ > 0, such that

- S * * * % *
0 R 0 * * *
_ 2 * * *
0 0 vl 1 N
Ad +BIOK1 Bll I/Vo - * *
C -K,B, —K,W, 0 -Rr' *
C21 _szBz Hz _szWz 0 0 -1 |
o —T—O 7
0 0
0 0
+ g +
BIOKZ BloKz
0 0
_O . _0 -

te'lo B, w, 0 0 of[o B, w, 0 0 0]<0

(10)
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By Schur complement, Equation (10) can be transformed as

Y * % * * % 0]
0 —R * * * * BzT
0 0 _7/2[ * %k * VI/ZT
A+B, K, B, w, —SteB,K,(B,K) * * 0 |<0. o
K, -K,B, -K,W, 0 —R! * 0
C21 _szBz H Z_CZZVVZ 0 0 -1 0
0 B, W, 0 0 0 -l |
Similarly, it is derived that
[ -S * * * * * * 0 7
0 -R * * * * * B2T
0 0 o * * A
Ai+B K, By W, —57#8310&(BIOK2)T * * * 0 .
_ <U. 12)
K, 0 0 0 R K, K" * * 0
CZI _szBz Hz_czszz 0 0 -1 * 0
0 B, W, 0 0 0 —el 0
0 B, W, 0 0 0 0 gl
State feedback H, controller parameter is where Mg = B,,(L)C,, Mg = By, (L), M,=B.C,,,

K, =Y,S7LK, =Y Je,_ Y] Je.
The state feedback H, control law (7) is obtained.
[End of Proof]

2. Dynamic output feedback H, control

Theorem 4 when the external disturbance is not tak-
en into account, under the action of dynamic output
feedback controller, if there exist positive P, 9, S, such
that

-p * * * * *
0 _Q 0 * * *
0

- 13)
4, MO

M,P

0 c.0 0 0 0

Mg = —B.C;,B, ,then the system (2) is asymptotical-
ly stable.

Proof: Denote Ms=B;,(L)C;, M¢=B;,(L), M;=B.Cy4,
Mg = —B.Cy;,B, ,W, = B.(H, — C;,W,), so that Equa-
tion (2) can be written as

Ag Ms M Wo
ik+1)=|M, A, Mgl f(k)+[Wﬁl w(k).
0 Mg O 0

‘When the external disturbance of the system is not
taken into account, choose positive definite matrices
P,0,S and define a Lyapunov function as follows:

V(k)=x1 (k)P (k)+x." (k))Qxc (k)+ u’(k — DSu(k-1)

Then the forward differential of V(%) along trajectory
of close-loop system (6) is as follows:
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AV(K) =

T AG" + xT(RMT + uT (k — 1)Mg" PAgx, (k) +
I (RAL" + x T(k)Ms™+ uT (k — 1)Mg" PMsx, (k)+
(xT () AL" +x T ()Ms™+ uT (k —1)Mg" PMgu(k—1)+
(UM, + xTU)A +u” (ke — 1)Mg")QMyx, (k)+
(X ()M, +x . T()A" + ul (k — 1)Mg")QAcxc (k) +
(xT ()M, T +x, T () A"+ uT (k—1)Mg") QMgu(k—1) +
xcT(k)Ce' SCexe () = x,T () Qe () —

u” (k — 1)Su(k — 1).

We define  #(k) = [(x] (k) x.T(k) u"(k — 1) T,

for which the above equation can be written as
VV(k)=x"¥x,

Dyq * *
@=|D21 Dy x|
D31 D3; Dss

where Dy;=A, PAy + M;"QM, —P, D,; = Ms"PA4+
A."QM;,  Dyp = Ms"PMs+ATQA. + Cc"SCc — Q
D3y = M" PAg+Mg' QM;, D3, = Mg PMs + Mg" QA,,
D33 = M{"PMy + Mg"QMg — S.

By Schur complement, the above equation can be

transformed to
M_ P * * * * * ]
0 -0 0 * * *
0 o -5 * * *
A, M, M, -P * x| o
M, 4 M, 0 -Q' *
| 0 C, 0 0 0 -5 ]
[End of Proof]

Theorem 5: For the plant in Figure 1, under dynamic
output feedback controller, for y > 0, if there are sym-
metric positive definite matrices P,Q,S that

2018/1/47

- P * * * * * * *
O _ Q ] * b * * *
O 0 _S * * * * *
0 0 0 - 7,2 * % * %
A4, M, M, W, -p' * e w0
M7 Ac MS W6 0 - Qil * *
0o C 0 0 0 0 -85 =
1Cy 0 M, W, 0 0 0 -1

5

then the plant in Fig. 1 realizes suboptimal dynamic
output feedback H_ control.

Proof: The external disturbance is considered
in order to make the following equation exist

[1zAOll2 < v |Iw@Il,-

Let Jz = Y=ol 2" (R)z(k) — y*w" (k)w(k)], choose
positive definite matrices P,Q,S, and construct a
Lyapunov function V(k)=xT (k)Px, (k)+x.T (k)
Qx. (k)+. uT (k — 1)Su(k-1).

The dynamic output feedback close-loop system
modeled in (2), if satisfies Theorem 4, the system is
asymptotically stable in zero initial conditions for
vw(k) € L,[0, ). Then we have

Yicolz" (K)z(k) — y*w' (k)w(k)] + AV (k) < 0.
Let Wg=B_.(H,—C1;Ws), My = —Cy3B5, Ws=H,— Cy, W5,
=B % ul wT O we have 27 (k)z(k) -

2wl (k)w(k)] + AV (k) = xTQx,

A * *k
| 22 .
Q= A, A, A, * e
31 32 33
A41 A42 A43 A44

Aqq =AdTPAd +M7TQM7 —P+ C21TCZ1/ Azq =M5TPAd
+A."QM;, Ay, =Ms" PMs+A. QA +Cc"SCc—Q, A3y =
Mg PAG+Mg" QM; +M," Cyy, Azy= Mg PMs + Mg" QA,,
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Azz=Mg"PMg+Mg" QMg —S+M," My, Ayy= Wy PAq +
WsTCyy + W,TQM,, Ayy = WoTPMs + W, QA,, Ays=
Wo P M+ Wy My+ WeT QMg, Ags=Ws" W5 =y 2+ W, PW,
+ w,TQw,.

Now Equation (15) can be transformed to

—P+C,/C, 0 * ok k%
0 _Q k * * * *
M,’”C,, 0 MM-S * * =* =*

WiC, 0 WM, Wii-y** * * <O
A, M, M, w, —ptx %
M7 AL» Mx VV(: 0 _Q71 *
i 0 C 0 0 0 0 —S_l_
an
[End of Proof]

Theorem 6: For vy > 0, if there exists a symmetric pos-
itive definite matrix P= PT >0 which satisfies

(A+AA)p+p((A+AA)+I p(A,+AA,) p(B+AB) C*

(A+A4)p -1 0 0,
(B+AB)'p 0 -7 0|
c 0 0 I

(18)

system (1) is robust stable.

Proof: From Schur complement lemma, (18) is equiv-
alent to

A+AA p+p((A+ A+ p(A,+AA) p(B+AB)| |CT

(4, +A4,)" p -1 0 [+HO |[coo0]<0.
(B+AB) p 0 -1 0
19)
Thatis,

A+AA p+p(A+ A+ p(A+AA4,) p(B+AB)| |CT

(4, +AAd)Tp -1 0
(B+AB) p 0 -7’ | |0

(20)

+0 |[Coo0]<o.
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[(A4+A4) p+ p(A+Ad)+
P(Ad + AAd)(Ad + AAd)" o
p+I+C"C+y*P(B+AB)

(B+AB) p]<o0.

We consider Lyapunov functional
J(x(t),t) = x" () Px(t) +
[ " yde+y7x" P(B+AB) Prdz +

jl Xt +1) (1+1)de > 0,

differentiating with respect to t at the both sides of
J(x(t),t), we have

J(x(t), )=xT()Px(t)+ xT (t)Px&(t)+
xT@®)CTCx(t) + xT(O)x(t) +
y~2xTP(B + AB)(B + AB)"Px(t) —

xT(t = Dx(t = D).

Then
J(x(t),6)= XT(t) ((A+AA)TP+P(A+AA)++CT C +
y~2 P(B + AB)(B + AB)"Px(t)+

xT(t — D(Ag + AAg)Px(ty+ XT()P(Ag +
AAG Yx(t-1)- xT (¢ — Dx(t — 1),

(24)

further,

J(x(1),)= XT(t) ((A+AA)TP+P(A+AA )+
P(Ag + AAg) (Ag + AAy)™P+I+CTC +

y~2 P(B + AB)(B + AB)"Px(t) (25)
((Ag +AA4,)"Px(t) —x(t—D™(A4q

+ AA 4 )TPx(t)-x(t-1)).

From (21), we have J(x(t),t)<0, so the plant (1) is ro-
bust stable.

[End of Proof]
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2. Simulation Results

1 Simulation of a Typical Singular Plant

We take state feedback case to illustrate the effective-
ness of the proposed method. A typical singular plant
model with input external disturbance is as follows:

x1(8) 07 %1 (2) 0 0
1 o 0 1||x®] .| o 0
lxs(t)‘ 00 0 xz(t) H oo [uE=D ] g (WO,
1 iyl =1 0.1
z)=[1 1 1 1]x(t)+0.1w(b)

The sampling period T is 0.1s, the network-induced
delay is 7,= 0.01. The plant model can be transformed
as

X, ()= [‘11 ‘01] X, (t—1)+ [(1)] u(t) + [‘8-1] w(t)

0= x,(t) + [_Ol]u(t - [Oél]w(t)
z(t) =[0 1lx (&) +[1 1]x,(t) + 0.1w(t)

Its discrete model parameters are

0.9 —0.1] B. = [0.01

4a= g1 1= .01k

B, = [_01]/ C;=[1 0],

sz = [1 1], and Hz =0.1.

We find the solution of the plant through LMI tool-
box using u(t)=[-5 -4 0 0]x(t) for which the system is
asymptotically stable. When initial state x(0)=(0,2,1,-
1) the system state response external trajectory since
disturbance is as solid line shown in Fig. 2.

For H, control, we use Theorem 3. Therefore
Y= \/E = 35.92 is obtained, and the y —subopti-
mal state feedback H, control law is u(t)=[-0.290
-0.034 0 0]x(t). Under the same conditions, the sys-
tem state response trajectory is as dotted line shown
in Figure 2.

By LMI tool-box, we present solutions for Theorem 4,
the obtained corresponding solutions are

o[ 0.0951 —0.0002] . . ¢
=001 oi0s1 b =107[-0211 0.013]
v; = s = [0].8° = 0.009.

Therefore, the minimum disturbance attenuation is
y* =,/B* = 0.095,, the y-optimal state feedback H,

2018/1/47

~5[-0.22 0.01 0 0]x(t).
After putting optimal H_ into effect, the system state
response trajectory is as dot dash line shown in Fig-
ure 2. Before and after optimization control, the sys-
tem expectation output is presented as solid line and
dotted line shown in Figure 3.

control law is u(t)=1.0

Figure 2
State response simulation

w1t H2t)

0.5

o a0 100 1} a0 100

3 )
1 u]
0s 02 s optimal H control
0 Lg before H control
0.6
0E ogh ----———- after H contral
-1 -1
u] 50 100 1] 50 100

Figure 3
Expectation output simulation

zit)
0.2 T

0

-0.2 H

-0.4 7

-0.6

-08F

Tt hefare H cantrol

o 10 20 30 40 a0 B0 70 a0 a0 100

Further,

« _ [ 0.097
~0.015

—0.015

0,094 ],y1 =[-0.028 0.001],

Y, =Y, = [8],3 — 1288.6,



Information Technology and Control

and the system simulation shows that after imple-
mentation H, control and H, optimization control,
y can decrease to 0.06 from the primary 35.9, and
the anti-interference performance of the system is
enhanced markedly. As a result, the stability perfor-
mance of system has been improved.

2 Simulation of a Torpedo

The longitudinal motion of the dynamic equation of a
torpedo at the speed v =25.7m /s can be described by
the following state equation:

e[ 14 0.22 + 0.1752] N
¥ =110 + 0.256, 54 |
-13 0.22 — 0.257,
-+
10 — 0.257, -5 ]"(t D
[ —0.28 _0'0352]5
—0.035, —4.13 ]°%,

y©o =[5 9«

where x, is the attack angle of the torpedo, x, is the an-
gular velocity of the torpedo, &, is the rudder angle of

thetorpedo,and 16;] <1,|n;| <£1,i =1,2,

the simulation result is shown in Figure 4.

Figure 4
Torpedo system simulation
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