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The study considers the problem of optimal control for linear discrete systems with a free right end of the tra-
jectory and constraints on control. A new approach to constructing a discrete system is proposed and control 
is determined at discrete instants of time. Necessary and sufficient conditions for optimality are obtained and 
a method is proposed for the exact solution of the boundary value problem, which is reduced to solving a finite 
number of systems of algebraic equations. The proposed method for solving the optimal control problem for 
a discrete system allows to represent the desired optimal control in the form of synthesising control. For this, 
a positively definite symmetric matrix is defined that satisfies a difference equation of Riccati type. An algo-
rithm for constructing control for discrete systems is developed, based on the feedback principle, taking into 
account constraints on the values of controls. The problem is solved using the Lagrange multipliers of a special 
form, which depend on the phase coordinates at discrete instants of time. The proposed method for solving the 
problem of optimal control with constraints on control values is implemented on a computer with an applica-
tion package and tested for the task of planning production and storage of products. Numerical calculations are 
carried out on a computer using the described problem-solving algorithm in which it is possible to take into 
account restrictions on the values of controls. Optimal values are determined and appropriate schedules of the 
production plan, storage of products and limited management at discrete instants of time are constructed.
KEYWORDS: optimal control problem, Lagrange multiplier method, discrete systems, quadratic functional, 
production and storage of products.
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1. Introduction
Development of models of various discrete processes 
and control algorithms with the necessary properties 
for their application, taking into account their limited 
discrete control, are becoming increasingly import-
ant for the theory and practice of optimal control and 
modern information technologies. This is connected 
with the fact that many of the tasks of economic plan-
ning are described by difference equations.
Real information about the process often arrives 
at discrete points in time, and the process control 
should be carried out at discrete times. The tasks of 
this kind are both long-term and operational plan-
ning, programming development of various systems, 
the problems of production and storage planning, 
planning multi-process systems.
Historically, the discrete systems optimal control theo-
ry was developed after the continuous systems control 
theory. The basis for methods of continuous optimal 
control with the construction of program manage-
ment is the Pontryagin’s maximum principle [6, 13, 
16]. The solution to the same problem is feedback [15] 
optimal control synthesis based on Bellman’s method 
of dynamic programming [5]. Optimality conditions 
in the form of the maximum principle for continuous 
systems are the most versatile and practical method. 
Therefore, it is not surprising that the maximum prin-
ciple ideas also have a strong influence on the theory of 
discrete optimal control [2, 3, 11, 14].
The problem of optimal control for discrete systems 
can be formulated as the problem of finding open-
loop (programmed) control or as a task of construct-
ing closed-loop (synthesis) control. In the first case, 
the problem can be solved using the Pontryagin max-
imum principle. However, the fact that this principle 
is only a necessary condition for optimality limits the 
possibilities of its application. In addition, there aris-
es a two-point boundary value problem for ordinary 
differential equations, the solution of which is associ-
ated with some computational difficulties, especially 
when there are constraints on the control parame-
ters. In the second case, Bellman‘s dynamic program-
ming method can be used to solve the problem. In this 
method, difficulties arise associated with the choice 
of the corresponding Bellman functions satisfying 
certain boundary conditions. However, it should be 
noted that this method has not been sufficiently stud-

ied for discrete dynamical systems in the presence of 
external influences, and especially with limited val-
ues of the controls. 
The problem of studying stability and the synthesis of 
stabilizing control has been given considerable atten-
tion in the literature in connection with its relevance.
The paper [9] formulated and discussed local prob-
lems of limited controllability of discrete control sys-
tems with constant coefficients.
Applications of discrete control are associated main-
ly with economical problems, organisation and tech-
nology of production, and operational research. Such 
problems are characterised by large numbers of both 
state and control variables and constraints, this being 
the reason of a close relationship of these problems to 
mathematical programming [4, 7, 10].
In this paper we consider a discrete linear system with 
limited control and offer a new approach to modelling 
and design of discrete systems, as well as the appropri-
ate control algorithm based on the feedback principle 
with constraints on the values of the control.

2. Problem of Discrete Control
Let us consider a discrete control problem in which the 
process is described by a linear difference equation:

(1)

(2)

where nRkx ∈)(  is a state vector; mRkUku ⊆∈ )()(  is a 
vector of control; nRkf ∈)(  is a given vector; k is a dis-
crete time moment; N  is a specified number of steps.
It is assumed that for determination of control infor-
mation about the current time k and the current state 
vector )(kx  is used. Discrete control is regarded as a 
multi-step process. At each k -th step, the process is 
characterised by two variables )(kx  and .)(ku  Vector 

)(kx , which specifies the state of the process at the  
k -th step, is an element of the n -dimensional real 
Euclidean space .nR  Vector )(ku  determines the 
control action at the k -th step and belongs to a given 
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subset )(kU  of the Euclidean space mR  (the space of 
control actions).
Let a cost-functional be given which depends on both 
the control and state of the object:

(3)

Here )(kQ  is a positive semi-definite symmetric ma-
trix, and  are positive definite symmetric ma-
trices. 
The task is to find a synthesising control  
such that the corresponding pair  gives the 
minimum of functional (3) and satisfies Equation (1) 
under constraints (2) on the control. 
To solve the linear-quadratic problem (1)-(3) we use 
a method based on the special type of Lagrange mul-
tipliers [1, 12]. We add to the expression for functio-
nal (3) a system of difference Equations (1) with the 
multiplier )1()1()1(

2
1

++++ kqkxkP , as well as the fo-
llowing item:

where .0)1(,0)1( 21 ≥+≥+ kk λλ  As a result, we obtain 
the following functional:

(4)

where )(kq  is an n -vector, and )(kP  is an )( nn× -matrix.
The multiplier )1()1()1(

2
1

++++ kqkxkP  eliminates 
the constraints on the admissible pairs  in 

the form of a system of difference Equations (1), and 
multipliers  eliminate constraints on the 
control in (2); multiplier )(3 kλ  retains the properties 
of the system to satisfy the boundary conditions. Such 
design of functional (4) allows to convert the original 
conditional extremum problem to an unconditional 
extremum one.
Using the following expressions:

 
we convert the functional (4) to the form:

(5)

The following notations are used:

Now we choose control )1( +ku  such that the function 
 reaches a minimum by )1( +ku  and )(kx  

at any .Tk ∈  The necessary conditions for a minimum 
of the functional (5) are the following:

(6)
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(7)

(8)

Now we find, using (6)

(9)

To fulfill conditions (6)-(8), )(kP  is used, a positive de-
finite symmetric matrix, which satisfies the equation:

(10)

and vector )(kq  is determined from the equation:

(11)

The multiplier )(3 kλ  and matrix )(kW  are defined as 
follows:

(12)

(13)

The following notations are used in Equations (11)-(13):

(14)

Suppose that there exists a solution of Equations 
(10)-(13), then conditions (6)-(8) are fulfilled, and the 
equation that determines the law of motion of system 
(1) with control (9) is as follows:

Note that for the determination of the initial conditi-
on 0)0( qq =  for Equation (11), the following relation 
is expedient:

(15)

where the matrix )(kW  satisfies Equation (13), and 
function )(kz  is determined from the solution of the 
vector equation:

(16)

Hence, using the solutions of Equations (13) and (16), 
we find from (15) the initial condition for Equation (11):

(17)

To determine multipliers , we intro-
duce the notations:

The multipliers ,0)1(,0)1( 21 ≥+≥+ kk λλ  and control 
)1( +ku  will be defined so that the following conditions 

hold:
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(18)

To do this, we use the following expressions:

(19)

Using the results (19), we choose )1(1 +kλ , )1(2 +kλ  and 
)1( +ku  as follows:

 _ if ,0)1(0
1 =+kiλ ,0)1(0

2 =+kiλ  then take ,0)1(1 =+kiλ  
,0)1(2 =+kiλ  and determine )1( +kui from (18);

 _ if ,0)1(0
1 >+kiλ  then take ,0)1(2 =+kiλ  

 and determine )1(1 +kiλ  from (18);
 _ if ,0)1(0

2 >+kiλ  then take ,0)1(1 =+kiλ   
 and determine )1(2 +kiλ  from (18).

Thus, we get the following result for the problem in 
question:
Theorem: The pair  in problem (1)-(3) 
is optimal if and only if the state vector )(kx  satisfies 
the difference equation:

(20)

Vector )(kq  is determined from the difference equation:

Control  is determined as follows:

(21)

where matrix )1( +kP is determined from the diffe-
rence Equation (10), and function )1( +kϕ  from (14).
The algorithm for solving the problem. We offer 
here the algorithm for solving the optimal control 
problem (1)-(3), convenient to implement on a com-
puter:
1 Determine the positive definite symmetric matri-

ces )(kP  for  using a system of 
difference Equations (10).

2 Determine matrices )(kW  for ,Tk ∈  using a sys-
tem of difference Equations (13).

3 Determine function )(kz  as the solution of the vec-
tor Equation (16).

4 Define conditions ,)0( 0xx =  and calculate ini-
tial conditions )0(q  for the difference Equation (11) 
in accordance with (17).

5 Determine control  for ,Tk ∈  with 
the initial conditions 0)0( qq =  and ,)0( 0xx =  using 
the system of difference Equations (11), (20).

In the process of solving the difference equations, the 
values of optimal control  are calculated as 
well, according to Formula (21).

3. An Example: Production and 
Storage of Produce 
It is necessary to develop an output schedule of sea-
sonal ingredients. The entrepreneur should plan the 
monthly output of the product for the next year. Es-
timated demand for products during the year is pre-
sented in Table 1.
The entrepreneur is obliged to meet the monthly re-
quirements defined by this schedule. It is necessary to 
determine the output schedule, which minimises the 
deviation from the average demand and stock of goods, 
arising from the production, and storage fluctuations.
The entrepreneur, faced with fluctuations in de-
mand, can produce the additional product in a low de-
mand period, in order to store and use it in the period 
of excess demand.
The production process can then be made very stable. 
However, due to increased costs associated with the 
storage of surplus, this solution may be unacceptable 
if it leads to large monthly surpluses. Problems of this 
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kind illustrate the difficulties that arise in the presence 
of factors affecting adversely the cost function [8].
The corresponding mathematical model for the 
problem of production and storage planning is now 
represented in the following form:

by the conditions:

where

Table 1
Estimated demand for products

Month, k Demand, kr

1 30

2 60

3 40

4 70

5 90

6 110

7 90

8 90

9 60

10 80

11 90

12 120

To solve this problem, we used an algorithm for op-
timal control problems proposed in Section 2. The 
values  for }1,...,1,0{ −=∈ NTk  with 
the initial conditions  are deter-
mined using a system of difference Equations (20). 
The desirable optimal control is written in the form 
(21). Graphs of the optimal output, stock and control 
are represented in Figures 1-3.

 
 

Figure 1  

Graph of the optimal trajectory of production output. 
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Figure 2  
Graph of the optimal trajectory of production stock. 
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Figure 3  
Graph of the optimal control. 
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The proposed method and algorithm are tested for the problem of production planning. The optimal values of 
output, stocks and control with proper constraints are determined and corresponding graphs are constructed at 
discrete time points. 
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The proposed method and algorithm are tested for the problem of production planning. The optimal values of 
output, stocks and control with proper constraints are determined and corresponding graphs are constructed at 
discrete time points. 

 

Figure 3 
Graph of the optimal control 4. Conclusions

In this paper, we propose a new approach to desi-
gning control and the corresponding control algo-
rithm, based on the feedback principle, for discrete 
systems with constraints on the values of the con-
trol. The problem is solved using Lagrange mul-
tipliers of a special type, depending on the phase 
coordinates at discrete time points. 
The proposed method and algorithm are tested for the 
problem of production planning. The optimal values 
of output, stocks and control with proper constraints 
are determined and corresponding graphs are con-
structed at discrete time points.
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