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This paper considers the Risk-constrained Cash-in-Transit Vehicle Routing Problem (RCTVRP), a variant of 
the vehicle routing problem which takes into account risk factors of the routes. In this problem, the risk con-
straints are set by using a risk threshold T on each route and thus, the routes with risk larger than T are forbid-
den. The main idea of this paper is to use the possibility of being robbed along each route, instead of just allowing 
solutions with routes that satisfy the risk constraints. We develop a new fuzzy version of the RCTVRP, called 
FRCTVRP, which considers the value of the risk index of each route and the solutions with lower values of risk 
indexes on their routes are considered as better. In order to achieve that, fuzzy numbers are incorporated into 
the new formulation. Moreover, two mixed integer program formulations of the FRCTVRP are developed in the 
paper. The introduced FRCTVRP is compared with the classical RCTVRP from the literature on an adequate 
example and the advantage of the newly proposed FRCTVRP is demonstrated. Computational experiments are 
performed and the comparison given in the paper shows that our approach leads to safer routes.
KEYWORDS: Combinatorial Optimization, Vehicle Routing Problem, Security, Cash-in-Transit, Fuzzy 
Modeling.

mailto:obodovskiy58@gmail.com


Information Technology and Control 2018/2/47322

1. Introduction
The vehicle routing problems (VRPs) have a consider-
ably wide range of applications, especially in the fields 
of physical distribution and logistics, and as a result 
have been attracting many researchers. VRPs are con-
sidered as one of the major classes of combinatorial op-
timization problems and can be described as the prob-
lems of designing optimal delivery or collection routes 
from one or several depots to a number of  customers, 
subject to some additional constraints depending on 
the application. There exists a wide variety of VRPs 
and a broad literature on this class of problems, such 
as the vehicle routing problem with time windows [1, 
6] and multi-depot vehicle routing problems [5]. Clas-
sical VRP can be seen as a generalization of the travel-
ling salesman problem (TSP) which is one of the most 
widely studied combinatorial optimization problems 
[2, 16]. A literature review regarding VRPs can be found 
in [11], while more insights on the latest advances and 
challenges on VRPs are available in [9].
The Risk-constrained Cash-in-Transit Vehicle Rout-
ing Problem (RCTVRP), first introduced in [19], rep-
resents a special case of the vehicle routing problem. In 
addition to the classical aim to minimize the travel time 
or cost, this problem also takes into account the safety 
aspects of the routes. Reducing the threat of a robbery 
is an important issue for transportation companies 
that work in the cash-in-transit sector. One of the im-
portant areas to work on is creating routes thoughtfully 
in order to increase safety. In the literature, there are 
some ideas about creating routes that are not easy to 
predict, specifically the so-called m-peripatetic vehicle 
routing problem [17]. In this problem, customers are 
visited more than once, but the same road between two 
customers can not be used twice. 
However, in addition to meeting safety requirements, 
routing plans in the cash-in-transit sector should be 
efficient in the sense of travel time/cost. The RCT-
VRP, developed in [19], considers limiting the expo-
sure of the valuable goods to risk during transporta-
tion, while minimizing the overall time/cost of travel 
along all the routes. In the RCTVRP, they introduce 
the criteria that the total risk on each route cannot 
exceed a constant called the risk threshold. The same 
problem is considered in [20], where Talarico et al. 
proposed a large neighbourhood metaheuristic for 
solving the RCTVRP. 

1.1. Motivation for Fuzzy Models
It is well known that real problems often contain 
some degree of uncertainty. It is not rare that the ex-
planation of some real problems contain linguistic 
vagueness perfectly understandable to human be-
ings. Despite the comprehensiveness of the linguistic 
explanation of the problem, these problems remain 
challenging to be precisely formulated by using clas-
sical mathematical approaches. 
The following two examples are considered compre-
hensive within natural language: ‘’distance is about 
5 kilometers’’ and ‘’daily profit is between 10 and 20 
thousand’’. While creating a model where these val-
ues have to be represented as real numbers, one would 
probably write values 5 km and 15000. However, the 
optimal solution obtained on the model generated 
with these strict values might be significantly differ-
ent from the optimal solution of the original problem 
where the proper values are 5.02 km and 12359. 
Zadeh, the originator of fuzzy logic, proposed the 
idea of applying natural language terms in the realm 
of fuzzy logic [23]. Since then, many real problems 
have been formulated by using fuzzy concepts. Fuzzy 
logic has been successfully applied in various fields, 
from addressing uncertainties when reducing the 
size of a text [12] to modeling various optimization 
problems [7]. 
When creating a mathematical formulation of a prob-
lem, different constraints are often introduced. For 
example, in VRPs, each customer should be visited ex-
actly once. However, not everything can be described 
using binary sets. The classifications of customers 
into visited and not visited is easy, but it is challenging 
to classify the route as being safe or not safe. The set 
of safe routes is far more difficult to define, because 
there is no distinct cut-off point at which routes stop 
being safe. Even measuring the risks of the routes 
more precisely would not solve this issue completely. 
However, if a risk degree is added to each route, then 
the routes can be ranked based on their safety degree. 
Fuzzy sets are ideal to model this degree.
Commonly in the literature, fuzzy sets theory has been 
used in order to deal with imprecise observed data or 
parameters. There is a whole area in operation re-
search, called fuzzy linear programming (FLP) and 
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some of the most common models and procedures for 
solving FLP problems were presented and analyzed in 
[8]. In addition, integer linear programming problems 
in fuzzy environment have been studied. Three models 
based on fuzzy number ranking methods were present-
ed in [13]. However, in this paper, we construct a vari-
ation of the RCTVRP by using a fuzzy set theory and 
then provide its mixed integer programming formula-
tion enabling it to be solved by the same techniques as 
performed on the non-fuzzy version of the problem. 

1.2. A Review of the Literature Related to 
Fuzzy VRP Models
In order to model various variants of VRPs, fuzzy 
logic has been used in the literature as an interesting 
approach to deal with the challenge of constructing 
more realistic mathematical models for real world 
problems. Many papers consider the VRPs with fuzzy 
demands where the situation when the demands at 
nodes are uncertain. Teodorović and Pavković [22] 
changed classical VRP by using a triangular fuzzy 
number to represent a demand at a node, since they 
assumed that the quantities to be collected at the node 
are only approximately known. In a similar way, fuzzy 
demands are combined with a version of VRP, where a 
vehicle is not required to return to the distribution de-
pot after servicing the last customer on its route, the 
open vehicle routing problem (OVRP). The OVRP is 
considered in [4], where a fuzzy chance-constrained 
program model is designed based on fuzzy credibility 
theory. Additionally, in [15], fuzzy demands for a vari-
ant of VRP are considered and a case study on a gar-
bage collection system is performed. 
Moreover, VRPs with fuzzy time windows are con-
sidered in [21]. Since time windows are not always 
strictly obeyed, Tang et al. [21] applied fuzzy mem-
bership functions to characterize the service level 
issues associated with time window violation in a 
vehicle routing problem and proposed a problem for-
mulated as a multi-objective model with two goals: 
to minimize the travel distance and to maximize the 
service level of the supplier to customers. The other 
paper [10] considers a multi-objective dynamic vehi-
cle routing problem with fuzzy time windows (DVRP-
FTW), where a set of real time requests arrives ran-
domly over time. Since vehicles are routed according 
to customer-specific time windows, which are highly 
relevant to the customers’ satisfaction level, Ghan-

nadpour et al. [10] represented this preference infor-
mation of customers as a fuzzy number with respect 
to the satisfaction for a service time. Moreover, Brito 
et al. [3] studied the close-open vehicle routing prob-
lem, which is a variant of VRP, where there is no re-
quirement that all the vehicles have to return to the 
depot after completing their service. In that paper, the 
capacity and time windows constraints are consid-
ered flexible and modeled as fuzzy constraints, since 
customer demands and travel times in real world sit-
uations are imprecise. 
Until now, there is no published work yet that applies 
fuzzy theory to model the RCTVRP.

1.3. Contributions
The main contribution of this paper is a new fuzzy 
variant of the RCTVRP for more adequate modeling 
of safe routes. Note that, in the model from [19], the 
risk constraints are satisfied if for each route the glob-
al risk index is not larger than a predefined threshold 
T, which is an input data. However, these constraints 
do not take into account how much smaller than T the 
risk indexes are. The focus of this paper is how to use 
the imprecision (fuzziness) in order to create a mod-
el that is more accurate in terms of the risk threshold 
constraints. The idea is that each risk constraint can 
be satisfied to a certain degree, i.e. we differentiate if 
the global risk is “much smaller” than T or if it is near 
the threshold T in order to be able to prefer the safer 
routes. In the paper, this approach was shown to be 
beneficial in producing routes with a lower possibility 
of being robbed. 
In order to represent risk constraints in a more re-
alistic way, we propose fuzzy numbers based on 
the threshold constant T and the risk indexes of the 
routes and incorporate them into the objective func-
tion. Note that previously listed literature on fuzzy 
VRPs have dealt with fuzzification of some of the un-
certain input data (e.g. distances, demands and time 
windows), while we use a fuzzy number to model the 
risk factor conditions in a better way. 
Moreover, two mixed integer program formulations 
of the newly proposed fuzzy RCTVRP are developed 
in the paper. To present the advantage of our ap-
proach, the new fuzzy model is compared to the model 
from the literature [19] on an example. Furthermore, 
a comparison is performed on appropriate data sets 
and the computational results are presented. The 
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obtained solutions showed that our fuzzy version of 
the problem leads to better solutions in terms of safe-
ty and is thus better suited for real-life situations in 
cash-in-transit sector.

2. Definitions and Preliminaries
This section contains some of the main definitions 
from fuzzy set theory, mainly taken from [24]. More 
on this topic can also be found in [14]. Let X be a col-
lection of objects, with a generic element of set X de-
noted x.
Definition 1.  [Fuzzy set] A fuzzy set A ̃ is a set of or-
dered pairs Ã = {(x, μÃ(x))|x∈ X}. In the pair (x, μÃ (x)), 
the first element x belongs to the classical set X, the 
second element μÃ  is called the membership function 
or grade function of x in Ã that maps X to the member-
ship space M. 
Usually, the interval [0, 1] is used as M. Note that in 
the case when M contains only the two points 0 and 1, 
Ã  is a classical set and μÃ  is identical to the character-
istic function of a classical set. The range of the mem-
bership function is a subset of the nonnegative real 
numbers whose supremum is finite. Elements with 
a zero degree of membership are normally not listed.
The membership function fully defines the fuzzy set. 
A membership function provides a measure of the de-
gree of similarity of an element to a fuzzy set, which 
allows many applications. Membership functions can 
take any form, but there are some common examples 
that appear in real applications due to their suitability 
for representing uncertain information.
Definition 2. The support of a fuzzy set Ã, S(Ã), is the 
crisp set of all x∈ X such that μÃ (x)>0.
Definition 3. A fuzzy set Ã is normal if there is at least 
one point x ∈ ℝ  with μÃ (x)=1.  
Definition 4. A fuzzy set Ã is convex if μÃ (λx1+  
(1–λ)x2)≥ min(μÃ (x1), μÃ(x2), for every x1, x2 ∈ X and  
λ ∈ [0,1].  
Definition 5. [Fuzzy number] A fuzzy number M ~  is 
a convex normalized fuzzy set  M~  of real line ℝ  such 
that μÃ(x) is piecewise continuous. 
A fuzzy number is a generalization of a regular, real 
number in the sense that it does not refer to one single 
value but rather to a connected set of possible values, 

where each possible value has its own weight between 
0 and 1. This weight is called the membership function. 
There are various possibilities. In this paper, we use the 
left shoulder fuzzy number presented in Figure 1, and 
its membership function can be represented as
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a classical set and 𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴� is identical to the 
characteristic function of a classical set. The range 
of the membership function is a subset of the 
nonnegative real numbers whose supremum is 
finite. Elements with a zero degree of membership 
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The membership function fully defines the fuzzy 
set. A membership function provides a measure of 
the degree of similarity of an element to a fuzzy 
set, which allows many applications. Membership 
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common examples that appear in real applications 
due to their suitability for representing uncertain 
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Definition 2. The support of a fuzzy set �̃�𝐴𝐴𝐴, 𝑆𝑆𝑆𝑆(�̃�𝐴𝐴𝐴),
is the crisp set of all 𝑥𝑥𝑥𝑥 ∈  𝑋𝑋𝑋𝑋 such that 𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴�(𝑥𝑥𝑥𝑥) > 0.

Definition 3. A fuzzy set �̃�𝐴𝐴𝐴 is normal if there is at 
least one point 𝑥𝑥𝑥𝑥 ∈  ℝ with 𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴�(𝑥𝑥𝑥𝑥) = 1.

Definition 4. A fuzzy set �̃�𝐴𝐴𝐴 is convex if 𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴�(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥1 +
 (1 − 𝜆𝜆𝜆𝜆)𝑥𝑥𝑥𝑥2) ≥  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴�(𝑥𝑥𝑥𝑥1), μ𝐴𝐴𝐴𝐴�(x2) , for every 
𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2 ∈  𝑋𝑋𝑋𝑋 and 𝜆𝜆𝜆𝜆 ∈ [0,1].

Definition 5. [Fuzzy number] A fuzzy number 𝑀𝑀𝑀𝑀�  
is a convex normalized fuzzy set 𝑀𝑀𝑀𝑀� of real line ℝ
such that 𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴� (𝑥𝑥𝑥𝑥) is piecewise continuous. 
A fuzzy number is a generalization of a regular, 
real number in the sense that it does not refer to 
one single value but rather to a connected set of 
possible values, where each possible value has its 
own weight between 0 and 1. This weight is called 
the membership function. There are various 
possibilities. In this paper, we use the left shoulder 
fuzzy number presented in Figure 1, and its 
membership function can be represented as

𝜇𝜇𝜇𝜇 (𝑥𝑥𝑥𝑥) = �

 0,    𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑐𝑐𝑐𝑐,
𝑥𝑥𝑥𝑥 − 𝑐𝑐𝑐𝑐
𝑥𝑥𝑥𝑥 − 𝑑𝑑𝑑𝑑

,   𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐 ≤ 𝑥𝑥𝑥𝑥 < 𝑑𝑑𝑑𝑑,

     1,   𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
Figure 1
The left shoulder fuzzy number has an increasing 
piecewise linear membership function that 
connects the points (−∞, 0) , (𝑐𝑐𝑐𝑐, 0) , (𝑑𝑑𝑑𝑑, 1) and 
(∞, 1)

3. The Description and 
Mathematical Formulation of 
the RCTVRP
The RCTVRP is stated as follows: a depot and a set 

Figure 1
The left shoulder fuzzy number has an increasing piecewise 
linear membership function that connects the points (-∞, 0), 
(c, 0), (d, 1) and (∞,1)
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least one point 𝑥𝑥𝑥𝑥 ∈  ℝ with 𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴�(𝑥𝑥𝑥𝑥) = 1.

Definition 4. A fuzzy set �̃�𝐴𝐴𝐴 is convex if 𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴�(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥1 +
 (1 − 𝜆𝜆𝜆𝜆)𝑥𝑥𝑥𝑥2) ≥  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴�(𝑥𝑥𝑥𝑥1), μ𝐴𝐴𝐴𝐴�(x2) , for every 
𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2 ∈  𝑋𝑋𝑋𝑋 and 𝜆𝜆𝜆𝜆 ∈ [0,1].

Definition 5. [Fuzzy number] A fuzzy number 𝑀𝑀𝑀𝑀�  
is a convex normalized fuzzy set 𝑀𝑀𝑀𝑀� of real line ℝ
such that 𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴� (𝑥𝑥𝑥𝑥) is piecewise continuous. 
A fuzzy number is a generalization of a regular, 
real number in the sense that it does not refer to 
one single value but rather to a connected set of 
possible values, where each possible value has its 
own weight between 0 and 1. This weight is called 
the membership function. There are various 
possibilities. In this paper, we use the left shoulder 
fuzzy number presented in Figure 1, and its 
membership function can be represented as

𝜇𝜇𝜇𝜇 (𝑥𝑥𝑥𝑥) = �

 0,    𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑐𝑐𝑐𝑐,
𝑥𝑥𝑥𝑥 − 𝑐𝑐𝑐𝑐
𝑥𝑥𝑥𝑥 − 𝑑𝑑𝑑𝑑

,   𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐 ≤ 𝑥𝑥𝑥𝑥 < 𝑑𝑑𝑑𝑑,

     1,   𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
Figure 1
The left shoulder fuzzy number has an increasing 
piecewise linear membership function that 
connects the points (−∞, 0) , (𝑐𝑐𝑐𝑐, 0) , (𝑑𝑑𝑑𝑑, 1) and 
(∞, 1)

3. The Description and 
Mathematical Formulation of 
the RCTVRP
The RCTVRP is stated as follows: a depot and a set 

3. The Description and Mathematical  
Formulation of the RCTVRP
The RCTVRP is stated as follows: a depot and a set 
of customers (e.g. supermarkets, shopping centers, 
clothes shops, jewelry stores) with their demands are 
given. Each customer should be visited once and only 
once by exactly one vehicle and the demand of each 
customer must be completely collected by a single ve-
hicle. Each vehicle leaves the depot empty, visits the 
customers along the route, collects the goods and fi-
nally drops the collected goods off at the same depot. 
The exposure of the goods to risks (e.g. robberies) 
should be limited.

3.1. Measuring the Risk Along the Route
Safety aspects in transportation have been studied in 
the literature from different perspectives. In order to 
create a mathematical model for the desired problem, 
numerical values for the risk levels along the roads 
would be helpful. The notation is given in the follow-
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ing manner: here and subsequently, Rj
r stands for the 

risk level along the route r for the vehicle before ar-
riving at node j, while pij denotes the probability that a 
robbery happens on the arc (i, j). 
As presented in [19], since a robbery might happen 
along the arc (i, j), if the vehicle moves from node i to 
node j along the route r, the risk on the route r along 
the arc (i, j) can be calculated as Rj

r = pij ⋅ νij⋅ Di
r. In the 

previous formula, νij represents the vulnerability, i.e. 
a measure that the robbery succeeds given it occurs 
and Di

r stands for the value of goods inside of the ve-
hicle after the visit of node i along the route r. Note 
that in some applications, the adequate values for pij 
and νij are not known. Thus, pij can be replaced with 
the distance cij  between nodes i and j, while νij can be 
set to 1. For simplicity, this is assumed in the rest of 
the paper. Moreover, since the probability a robbery 
occurs more than once along the same route is small, 
it can be assumed for the sake of simplicity that the 
robbery cannot happen twice or more along the same 
route. More details on measuring the risk along the 
route can be found in [19].
Finally, since each vehicle starts empty from the de-
pot, collects cash along the route and delivers it only 
to the depot at the end of route, D0

r = 0 and the amount 
of money increases along the route. The risk index 
also increases along the route and can be calculated 
for each node j where the vehicle arrives from the 
node i along the route r by using the following recur-
sive formula

 

of customers (e.g. supermarkets, shopping centers, clothes 
shops, jewelry stores) with their demands are given. Each 
customer should be visited once and only once by exactly 
one vehicle and the demand of each customer must be 
completely collected by a single vehicle. Each vehicle 
leaves the depot empty, visits the customers along the 
route, collects the goods and finally drops the collected 
goods off at the same depot. The exposure of the goods to 
risks (e.g. robberies) should be limited.

3.1. Measuring the Risk Along the Route
Safety aspects in transportation have been studied in the 
literature from different perspectives. In order to create a 
mathematical model for the desired problem, numerical 
values for the risk levels along the roads would be 
helpful. The notation is given in the following manner: 
here and subsequently, 𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 stands for the risk level along 
the route 𝑒𝑒𝑒𝑒 for the vehicle before arriving at node 𝑗𝑗𝑗𝑗, while 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 denotes the probability that a robbery happens on the 
arc (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗).
As presented in [19], since a robbery might happen along 
the arc (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗), if the vehicle moves from node 𝑚𝑚𝑚𝑚 to node 𝑗𝑗𝑗𝑗
along the route 𝑒𝑒𝑒𝑒, the risk on the route 𝑒𝑒𝑒𝑒 along the arc 
(𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) can be calculated as 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟  =  𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 ⋅  𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 ⋅  𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 . In the 
previous formula, 𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 represents the vulnerability, i.e. a 
measure that the robbery succeeds given it occurs and 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
stands for the value of goods inside of the vehicle after 
the visit of node 𝑚𝑚𝑚𝑚 along the route 𝑒𝑒𝑒𝑒. Note that in some 
applications, the adequate values for 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 and 𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 are not 
known. Thus, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 can be replaced with the distance 
𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  between nodes 𝑚𝑚𝑚𝑚 and 𝑗𝑗𝑗𝑗, while 𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 can be set to 1. For 
simplicity, this is assumed in the rest of the paper. 
Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
for the sake of simplicity that the robbery cannot happen 
twice or more along the same route. More details on 
measuring the risk along the route can be found in [19].
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷𝐷𝐷0𝑟𝑟𝑟𝑟 =  0 and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
node 𝑗𝑗𝑗𝑗 where the vehicle arrives from the node 𝑚𝑚𝑚𝑚 along the 
route 𝑒𝑒𝑒𝑒 by using the following recursive formula

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟  =  𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟  +  𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 ⋅  𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 . 

Note that 𝑅𝑅𝑅𝑅0𝑟𝑟𝑟𝑟 =  0 i.e. starting from depot 0 the risk index 
is equal to zero.

3.2. Mathematical Formulation
In this paper, we start from a mixed-integer formulation 
of the RCTVRP introduced in [19].
Let 𝑁𝑁𝑁𝑁 = {1,2, … ,𝑚𝑚𝑚𝑚} be the set of customers that should 
be visited. The amount of cash that should be collected 
from the 𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁 is denoted by 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. In the model, the depot 
is, for simplicity's sake, represented with two nodes 𝑒𝑒𝑒𝑒
(start) and 𝑒𝑒𝑒𝑒 (end), with zero demands (𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 =  𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 =  0). 
Thus, the problem is defined on a directed graph 𝐺𝐺𝐺𝐺 =
 (𝑉𝑉𝑉𝑉,𝐴𝐴𝐴𝐴), where 𝑉𝑉𝑉𝑉 = 𝑁𝑁𝑁𝑁 ∪  {𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒} and 𝐴𝐴𝐴𝐴 = (𝑁𝑁𝑁𝑁 ×  𝑁𝑁𝑁𝑁) ∪
({𝑒𝑒𝑒𝑒} ×  𝑁𝑁𝑁𝑁) ∪  (𝑁𝑁𝑁𝑁 × {𝑒𝑒𝑒𝑒}). Each arc (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈  𝐴𝐴𝐴𝐴 has its own 
constant 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 that represents distance or travel time 

between nodes 𝑚𝑚𝑚𝑚 and 𝑗𝑗𝑗𝑗. Each vehicle starts from 𝑒𝑒𝑒𝑒
without any cash loaded and thus has a risk index 
equal to zero. Along the route, both the amount of 
cash and the risk index increase and the mixed 
integer formulation from [19] contains two adequate 
families of decision variables. In what follows, 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
stands for the amount of cash carried by the vehicle 
when it leaves node 𝑚𝑚𝑚𝑚 along the route 𝑒𝑒𝑒𝑒, while 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
represents the risk index for the vehicle when it 
arrives at node 𝑚𝑚𝑚𝑚 along the route 𝑒𝑒𝑒𝑒. In this RCTVRP 
formulation, each cumulative measure (i.e. 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 and 
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟) is a part of a constraint and is not taken into 
account in the objective function. 
The binary decision variable 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 is defined as:

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 =  �
1,    if arc (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈  𝐴𝐴𝐴𝐴 is traversed 
        by the vehicle along route 𝑒𝑒𝑒𝑒
0,    otherwise.                                 

,

In the RCTVRP formulation from [19], the 
objective function is the total travel length/costs 
along all the routes. The goal is to determine the 
routes (as well as the number of routes) so that the 
objective function is minimized. Note that the 
number of routes cannot be larger than 𝑚𝑚𝑚𝑚 (the worst 
case is when each customer is visited by a different 
vehicle). Thus, the set 𝑁𝑁𝑁𝑁 is used for the indexes of 
routes.
Using the notation mentioned above, the problem 
can be written as:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  � � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈ 𝐴𝐴𝐴𝐴

                
𝑟𝑟𝑟𝑟∈ 𝑁𝑁𝑁𝑁

 (1) 

subject to:

�𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟

𝑗𝑗𝑗𝑗∈ 𝑁𝑁𝑁𝑁

= �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟

𝑖𝑖𝑖𝑖∈ 𝑁𝑁𝑁𝑁

,∀ 𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                     (2)

�𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗1

𝑗𝑗𝑗𝑗∈ 𝑁𝑁𝑁𝑁

 =  1,                                     (3)

�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁

≥�𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟+1

𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁

,∀ 𝑒𝑒𝑒𝑒 ∈  𝑁𝑁𝑁𝑁 ∖ {𝑚𝑚𝑚𝑚},         (4)

� � 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟

𝑗𝑗𝑗𝑗∈𝑉𝑉𝑉𝑉∖{𝑠𝑠𝑠𝑠}𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

=  1,∀𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁,                   (5)

� 𝑥𝑥𝑥𝑥ℎ𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟

ℎ∈𝑉𝑉𝑉𝑉∖{𝑒𝑒𝑒𝑒}

− � 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟

𝑗𝑗𝑗𝑗∈𝑉𝑉𝑉𝑉∖{𝑠𝑠𝑠𝑠}

 =  0,∀ 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁;∀ 𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁, (6)

𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 =  0,∀ 𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                         (7)

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 ≥ 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 + 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗 − �1 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 � ⋅ 𝑀𝑀𝑀𝑀1,  

∀ (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                     (8) 
0 ≤ 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 ≤ 𝑀𝑀𝑀𝑀1,∀𝑚𝑚𝑚𝑚 ∈ 𝑉𝑉𝑉𝑉;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,            (9)

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 0,∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                        (10)

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 ≥ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 + 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 ⋅ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 − �1 −  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 � ⋅ 𝑀𝑀𝑀𝑀2,  

∀(𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                   (11)
0 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 ≤ 𝑇𝑇𝑇𝑇,∀𝑚𝑚𝑚𝑚 ∈ 𝑉𝑉𝑉𝑉;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                (12)

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 ∈ {0, 1},∀(𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,              (13) 

Note that 𝑅0
𝑟= 0 i.e. starting from depot 0 the risk index 

is equal to zero.

3.2. Mathematical Formulation
In this paper, we start from a mixed-integer formula-
tion of the RCTVRP introduced in [19].
Let N = {1, 2,… ,n} be the set of customers that should 
be visited. The amount of cash that should be collect-
ed from the i∈N is denoted by di. In the model, the 
depot is, for simplicity's sake, represented with two 
nodes s (start) and e (end), with zero demands (ds=  
de= 0). 
Thus, the problem is defined on a directed graph G = 
(V, A), where V=N ∪ {s, e} and A = (N × N) ∪ ({s}× N)∪ 

(N × {e}). Each arc (i, j)∈ A has its own constant cij that 
represents distance or travel time between nodes i 
and j. Each vehicle starts from s without any cash 
loaded and thus has a risk index equal to zero. Along 
the route, both the amount of cash and the risk index 
increase and the mixed integer formulation from [19] 
contains two adequate families of decision variables. 
In what follows, Di

r stands for the amount of cash 
carried by the vehicle when it leaves node i along the 
route r, while Ri

r represents the risk index for the ve-
hicle when it arrives at node i along the route r. In this 
RCTVRP formulation, each cumulative measure (i.e. 
Di

rand Ri
r) is a part of a constraint and is not taken into 

account in the objective function. 
The binary decision variable xij

r is defined as:

 

of customers (e.g. supermarkets, shopping centers, clothes 
shops, jewelry stores) with their demands are given. Each 
customer should be visited once and only once by exactly 
one vehicle and the demand of each customer must be 
completely collected by a single vehicle. Each vehicle 
leaves the depot empty, visits the customers along the 
route, collects the goods and finally drops the collected 
goods off at the same depot. The exposure of the goods to 
risks (e.g. robberies) should be limited.

3.1. Measuring the Risk Along the Route
Safety aspects in transportation have been studied in the 
literature from different perspectives. In order to create a 
mathematical model for the desired problem, numerical 
values for the risk levels along the roads would be 
helpful. The notation is given in the following manner: 
here and subsequently, 𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 stands for the risk level along 
the route 𝑒𝑒𝑒𝑒 for the vehicle before arriving at node 𝑗𝑗𝑗𝑗, while 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 denotes the probability that a robbery happens on the 
arc (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗).
As presented in [19], since a robbery might happen along 
the arc (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗), if the vehicle moves from node 𝑚𝑚𝑚𝑚 to node 𝑗𝑗𝑗𝑗
along the route 𝑒𝑒𝑒𝑒, the risk on the route 𝑒𝑒𝑒𝑒 along the arc 
(𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) can be calculated as 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟  =  𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 ⋅  𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 ⋅  𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 . In the 
previous formula, 𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 represents the vulnerability, i.e. a 
measure that the robbery succeeds given it occurs and 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
stands for the value of goods inside of the vehicle after 
the visit of node 𝑚𝑚𝑚𝑚 along the route 𝑒𝑒𝑒𝑒. Note that in some 
applications, the adequate values for 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 and 𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 are not 
known. Thus, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 can be replaced with the distance 
𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  between nodes 𝑚𝑚𝑚𝑚 and 𝑗𝑗𝑗𝑗, while 𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 can be set to 1. For 
simplicity, this is assumed in the rest of the paper. 
Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
for the sake of simplicity that the robbery cannot happen 
twice or more along the same route. More details on 
measuring the risk along the route can be found in [19].
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷𝐷𝐷0𝑟𝑟𝑟𝑟 =  0 and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
node 𝑗𝑗𝑗𝑗 where the vehicle arrives from the node 𝑚𝑚𝑚𝑚 along the 
route 𝑒𝑒𝑒𝑒 by using the following recursive formula

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟  =  𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟  +  𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 ⋅  𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 . 

Note that 𝑅𝑅𝑅𝑅0𝑟𝑟𝑟𝑟 =  0 i.e. starting from depot 0 the risk index 
is equal to zero.

3.2. Mathematical Formulation
In this paper, we start from a mixed-integer formulation 
of the RCTVRP introduced in [19].
Let 𝑁𝑁𝑁𝑁 = {1,2, … ,𝑚𝑚𝑚𝑚} be the set of customers that should 
be visited. The amount of cash that should be collected 
from the 𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁 is denoted by 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. In the model, the depot 
is, for simplicity's sake, represented with two nodes 𝑒𝑒𝑒𝑒
(start) and 𝑒𝑒𝑒𝑒 (end), with zero demands (𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 =  𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 =  0). 
Thus, the problem is defined on a directed graph 𝐺𝐺𝐺𝐺 =
 (𝑉𝑉𝑉𝑉,𝐴𝐴𝐴𝐴), where 𝑉𝑉𝑉𝑉 = 𝑁𝑁𝑁𝑁 ∪  {𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒} and 𝐴𝐴𝐴𝐴 = (𝑁𝑁𝑁𝑁 ×  𝑁𝑁𝑁𝑁) ∪
({𝑒𝑒𝑒𝑒} ×  𝑁𝑁𝑁𝑁) ∪  (𝑁𝑁𝑁𝑁 × {𝑒𝑒𝑒𝑒}). Each arc (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈  𝐴𝐴𝐴𝐴 has its own 
constant 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 that represents distance or travel time 

between nodes 𝑚𝑚𝑚𝑚 and 𝑗𝑗𝑗𝑗. Each vehicle starts from 𝑒𝑒𝑒𝑒
without any cash loaded and thus has a risk index 
equal to zero. Along the route, both the amount of 
cash and the risk index increase and the mixed 
integer formulation from [19] contains two adequate 
families of decision variables. In what follows, 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
stands for the amount of cash carried by the vehicle 
when it leaves node 𝑚𝑚𝑚𝑚 along the route 𝑒𝑒𝑒𝑒, while 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
represents the risk index for the vehicle when it 
arrives at node 𝑚𝑚𝑚𝑚 along the route 𝑒𝑒𝑒𝑒. In this RCTVRP 
formulation, each cumulative measure (i.e. 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 and 
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟) is a part of a constraint and is not taken into 
account in the objective function. 
The binary decision variable 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 is defined as:

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 =  �
1,    if arc (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈  𝐴𝐴𝐴𝐴 is traversed 
        by the vehicle along route 𝑒𝑒𝑒𝑒
0,    otherwise.                                 

,

In the RCTVRP formulation from [19], the 
objective function is the total travel length/costs 
along all the routes. The goal is to determine the 
routes (as well as the number of routes) so that the 
objective function is minimized. Note that the 
number of routes cannot be larger than 𝑚𝑚𝑚𝑚 (the worst 
case is when each customer is visited by a different 
vehicle). Thus, the set 𝑁𝑁𝑁𝑁 is used for the indexes of 
routes.
Using the notation mentioned above, the problem 
can be written as:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  � � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈ 𝐴𝐴𝐴𝐴

                
𝑟𝑟𝑟𝑟∈ 𝑁𝑁𝑁𝑁

 (1) 

subject to:

�𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟

𝑗𝑗𝑗𝑗∈ 𝑁𝑁𝑁𝑁

= �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟

𝑖𝑖𝑖𝑖∈ 𝑁𝑁𝑁𝑁

,∀ 𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                     (2)

�𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗1

𝑗𝑗𝑗𝑗∈ 𝑁𝑁𝑁𝑁

 =  1,                                     (3)

�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁

≥�𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟+1

𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁

,∀ 𝑒𝑒𝑒𝑒 ∈  𝑁𝑁𝑁𝑁 ∖ {𝑚𝑚𝑚𝑚},         (4)

� � 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟

𝑗𝑗𝑗𝑗∈𝑉𝑉𝑉𝑉∖{𝑠𝑠𝑠𝑠}𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

=  1,∀𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁,                   (5)

� 𝑥𝑥𝑥𝑥ℎ𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟

ℎ∈𝑉𝑉𝑉𝑉∖{𝑒𝑒𝑒𝑒}

− � 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟

𝑗𝑗𝑗𝑗∈𝑉𝑉𝑉𝑉∖{𝑠𝑠𝑠𝑠}

 =  0,∀ 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁;∀ 𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁, (6)

𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 =  0,∀ 𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                         (7)

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 ≥ 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 + 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗 − �1 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 � ⋅ 𝑀𝑀𝑀𝑀1,  

∀ (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                     (8) 
0 ≤ 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 ≤ 𝑀𝑀𝑀𝑀1,∀𝑚𝑚𝑚𝑚 ∈ 𝑉𝑉𝑉𝑉;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,            (9)

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 0,∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                        (10)

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 ≥ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 + 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 ⋅ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 − �1 −  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 � ⋅ 𝑀𝑀𝑀𝑀2,  

∀(𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                   (11)
0 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 ≤ 𝑇𝑇𝑇𝑇,∀𝑚𝑚𝑚𝑚 ∈ 𝑉𝑉𝑉𝑉;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                (12)

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 ∈ {0, 1},∀(𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴;∀𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,              (13) 

In the RCTVRP formulation from [19], the objective 
function is the total travel length/costs along all the 
routes. The goal is to determine the routes (as well as 
the number of routes) so that the objective function is 
minimized. Note that the number of routes cannot be 
larger than n (the worst case is when each customer is 
visited by a different vehicle). Thus, the set N is used 
for the indexes of routes.
Using the notation mentioned above, the problem can 
be written as:

  

Mathematical  Formulation of the 
RCTVRP 
The RCTVRP is stated as follows: a depot and a set of 
customers (e.g. supermarkets, shopping centers, clothes 
shops, jewelry stores) with their demands are given. Each 
customer should be visited once and only once by exactly 
one vehicle and the demand of each customer must be 
completely collected by a single vehicle. Each vehicle 
leaves the depot empty, visits the customers along the 
route, collects the goods and finally drops the collected 
goods off at the same depot. The exposure of the goods to 
risks (e.g. robberies) should be limited. 

 3.1. Measuring the Risk Along the Route 
Safety aspects in transportation have been studied in the 
literature from different perspectives. In order to create a 
mathematical model for the desired problem, numerical 
values for the risk levels along the roads would be 
helpful. The notation is given in the following manner: 
here and subsequently, 𝑅𝑅�� stands for the risk level along 
the route 𝑟𝑟 for the vehicle before arriving at node 𝑗𝑗, while 
𝑝𝑝�� denotes the probability that a robbery happens on the 
arc (𝑖𝑖𝑖 𝑗𝑗𝑖.  
As presented in [19], since a robbery might happen along 
the arc (𝑖𝑖𝑖 𝑗𝑗𝑖, if the vehicle moves from node 𝑖𝑖 to node 𝑗𝑗 
along the route 𝑟𝑟, the risk on the route 𝑟𝑟 along the arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 can be calculated as 𝑅𝑅���  =  𝑝𝑝�� ⋅  𝜈𝜈�� ⋅  𝐷𝐷�� . In the 
previous formula, 𝜈𝜈��  represents the vulnerability, i.e. a 
measure that the robbery succeeds given it occurs and 𝐷𝐷�� 
stands for the value of goods inside of the vehicle after 
the visit of node 𝑖𝑖 along the route 𝑟𝑟. Note that in some 
applications, the adequate values for 𝑝𝑝��  and 𝜈𝜈��  are not 
known. Thus, 𝑝𝑝��  can be replaced with the distance 
𝑐𝑐�� between nodes 𝑖𝑖 and 𝑗𝑗, while 𝜈𝜈��  can be set to 1. For 
simplicity, this is assumed in the rest of the paper. 
Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
for the sake of simplicity that the robbery cannot happen 
twice or more along the same route. More details on 
measuring the risk along the route can be found in [19]. 
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷�� =  0  and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
node 𝑗𝑗 where the vehicle arrives from the node 𝑖𝑖 along the 
route 𝑟𝑟 by using the following recursive formula 

𝑅𝑅��  =  𝑅𝑅��  + 𝐷𝐷�� ⋅  𝑐𝑐��. 
Note that 𝑅𝑅�� =  0 i.e. starting from depot 0 the risk index 
is equal to zero. 

3.2. Mathematical Formulation 
In this paper, we start from a mixed-integer formulation 
of the RCTVRP introduced in [19]. 
Let 𝑁𝑁 = 𝑁1𝑖𝑁𝑖 𝑁 𝑖 𝑁𝑁𝑁 be the set of customers that should 
be visited. The amount of cash that should be collected 
from the 𝑖𝑖 𝑖 𝑁𝑁 is denoted by 𝑑𝑑�. In the model, the depot 
is, for simplicity's sake, represented with two nodes 𝑠𝑠 
(start) and 𝑒𝑒 (end), with zero demands (𝑑𝑑� =  𝑑𝑑� =  0).  

Thus, the problem is defined on a directed graph 
𝐺𝐺 =  (𝐺𝐺𝑖 𝐺𝐺𝑖𝑖  where 𝐺𝐺 = 𝑁𝑁 𝑉 𝑁𝑠𝑠𝑖 𝑒𝑒𝑁  and 𝐺𝐺 =
(𝑁𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑠𝑠𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑁 𝑁 𝑁𝑒𝑒𝑁𝑖 . Each arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 𝑖  𝐺𝐺  has its own constant 𝑐𝑐��  that represents 
distance or travel time between nodes 𝑖𝑖 and 𝑗𝑗. Each 
vehicle starts from 𝑠𝑠 without any cash loaded and 
thus has a risk index equal to zero. Along the route, 
both the amount of cash and the risk index increase 
and the mixed integer formulation from [19] 
contains two adequate families of decision 
variables. In what follows, 𝐷𝐷�� stands for the amount 
of cash carried by the vehicle when it leaves node 𝑖𝑖 
along the route 𝑟𝑟, while 𝑅𝑅�� represents the risk index 
for the vehicle when it arrives at node 𝑖𝑖 along the 
route 𝑟𝑟 . In this RCTVRP formulation, each 
cumulative measure (i.e. 𝐷𝐷�� and 𝑅𝑅��) is a part of a 
constraint and is not taken into account in the 
objective function.  
The binary decision variable 𝑥𝑥���  is defined as: 

𝑥𝑥��� =  �
1𝑖    if arc (𝑖𝑖𝑖 𝑗𝑗𝑖 𝑖  𝐺𝐺 i𝐴 𝐴ra𝐴𝐴r𝐴𝐴𝐴 
        by 𝐴h𝐴 𝐴𝐴hicl𝐴 along rou𝐴𝐴 𝑟𝑟
0𝑖    o𝐴h𝐴rwi𝐴𝐴.                                 

𝑖 

In the RCTVRP formulation from [19], the 
objective function is the total travel length/costs 
along all the routes. The goal is to determine the 
routes (as well as the number of routes) so that the 
objective function is minimized. Note that the 
number of routes cannot be larger than 𝑁𝑁 (the worst 
case is when each customer is visited by a different 
vehicle). Thus, the set 𝑁𝑁 is used for the indexes of 
routes. 
Using the notation mentioned above, the problem 
can be written as: 
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subject to:

  

Mathematical  Formulation of the 
RCTVRP 
The RCTVRP is stated as follows: a depot and a set of 
customers (e.g. supermarkets, shopping centers, clothes 
shops, jewelry stores) with their demands are given. Each 
customer should be visited once and only once by exactly 
one vehicle and the demand of each customer must be 
completely collected by a single vehicle. Each vehicle 
leaves the depot empty, visits the customers along the 
route, collects the goods and finally drops the collected 
goods off at the same depot. The exposure of the goods to 
risks (e.g. robberies) should be limited. 

 3.1. Measuring the Risk Along the Route 
Safety aspects in transportation have been studied in the 
literature from different perspectives. In order to create a 
mathematical model for the desired problem, numerical 
values for the risk levels along the roads would be 
helpful. The notation is given in the following manner: 
here and subsequently, 𝑅𝑅�� stands for the risk level along 
the route 𝑟𝑟 for the vehicle before arriving at node 𝑗𝑗, while 
𝑝𝑝�� denotes the probability that a robbery happens on the 
arc (𝑖𝑖𝑖 𝑗𝑗𝑖.  
As presented in [19], since a robbery might happen along 
the arc (𝑖𝑖𝑖 𝑗𝑗𝑖, if the vehicle moves from node 𝑖𝑖 to node 𝑗𝑗 
along the route 𝑟𝑟, the risk on the route 𝑟𝑟 along the arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 can be calculated as 𝑅𝑅���  =  𝑝𝑝�� ⋅  𝜈𝜈�� ⋅  𝐷𝐷�� . In the 
previous formula, 𝜈𝜈��  represents the vulnerability, i.e. a 
measure that the robbery succeeds given it occurs and 𝐷𝐷�� 
stands for the value of goods inside of the vehicle after 
the visit of node 𝑖𝑖 along the route 𝑟𝑟. Note that in some 
applications, the adequate values for 𝑝𝑝��  and 𝜈𝜈��  are not 
known. Thus, 𝑝𝑝��  can be replaced with the distance 
𝑐𝑐�� between nodes 𝑖𝑖 and 𝑗𝑗, while 𝜈𝜈��  can be set to 1. For 
simplicity, this is assumed in the rest of the paper. 
Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
for the sake of simplicity that the robbery cannot happen 
twice or more along the same route. More details on 
measuring the risk along the route can be found in [19]. 
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷�� =  0  and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
node 𝑗𝑗 where the vehicle arrives from the node 𝑖𝑖 along the 
route 𝑟𝑟 by using the following recursive formula 

𝑅𝑅��  =  𝑅𝑅��  + 𝐷𝐷�� ⋅  𝑐𝑐��. 
Note that 𝑅𝑅�� =  0 i.e. starting from depot 0 the risk index 
is equal to zero. 

3.2. Mathematical Formulation 
In this paper, we start from a mixed-integer formulation 
of the RCTVRP introduced in [19]. 
Let 𝑁𝑁 = 𝑁1𝑖𝑁𝑖 𝑁 𝑖 𝑁𝑁𝑁 be the set of customers that should 
be visited. The amount of cash that should be collected 
from the 𝑖𝑖 𝑖 𝑁𝑁 is denoted by 𝑑𝑑�. In the model, the depot 
is, for simplicity's sake, represented with two nodes 𝑠𝑠 
(start) and 𝑒𝑒 (end), with zero demands (𝑑𝑑� =  𝑑𝑑� =  0).  

Thus, the problem is defined on a directed graph 
𝐺𝐺 =  (𝐺𝐺𝑖 𝐺𝐺𝑖𝑖  where 𝐺𝐺 = 𝑁𝑁 𝑉 𝑁𝑠𝑠𝑖 𝑒𝑒𝑁  and 𝐺𝐺 =
(𝑁𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑠𝑠𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑁 𝑁 𝑁𝑒𝑒𝑁𝑖 . Each arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 𝑖  𝐺𝐺  has its own constant 𝑐𝑐��  that represents 
distance or travel time between nodes 𝑖𝑖 and 𝑗𝑗. Each 
vehicle starts from 𝑠𝑠 without any cash loaded and 
thus has a risk index equal to zero. Along the route, 
both the amount of cash and the risk index increase 
and the mixed integer formulation from [19] 
contains two adequate families of decision 
variables. In what follows, 𝐷𝐷�� stands for the amount 
of cash carried by the vehicle when it leaves node 𝑖𝑖 
along the route 𝑟𝑟, while 𝑅𝑅�� represents the risk index 
for the vehicle when it arrives at node 𝑖𝑖 along the 
route 𝑟𝑟 . In this RCTVRP formulation, each 
cumulative measure (i.e. 𝐷𝐷�� and 𝑅𝑅��) is a part of a 
constraint and is not taken into account in the 
objective function.  
The binary decision variable 𝑥𝑥���  is defined as: 

𝑥𝑥��� =  �
1𝑖    if arc (𝑖𝑖𝑖 𝑗𝑗𝑖 𝑖  𝐺𝐺 i𝐴 𝐴ra𝐴𝐴r𝐴𝐴𝐴 
        by 𝐴h𝐴 𝐴𝐴hicl𝐴 along rou𝐴𝐴 𝑟𝑟
0𝑖    o𝐴h𝐴rwi𝐴𝐴.                                 

𝑖 

In the RCTVRP formulation from [19], the 
objective function is the total travel length/costs 
along all the routes. The goal is to determine the 
routes (as well as the number of routes) so that the 
objective function is minimized. Note that the 
number of routes cannot be larger than 𝑁𝑁 (the worst 
case is when each customer is visited by a different 
vehicle). Thus, the set 𝑁𝑁 is used for the indexes of 
routes. 
Using the notation mentioned above, the problem 
can be written as: 
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Mathematical  Formulation of the 
RCTVRP 
The RCTVRP is stated as follows: a depot and a set of 
customers (e.g. supermarkets, shopping centers, clothes 
shops, jewelry stores) with their demands are given. Each 
customer should be visited once and only once by exactly 
one vehicle and the demand of each customer must be 
completely collected by a single vehicle. Each vehicle 
leaves the depot empty, visits the customers along the 
route, collects the goods and finally drops the collected 
goods off at the same depot. The exposure of the goods to 
risks (e.g. robberies) should be limited. 

 3.1. Measuring the Risk Along the Route 
Safety aspects in transportation have been studied in the 
literature from different perspectives. In order to create a 
mathematical model for the desired problem, numerical 
values for the risk levels along the roads would be 
helpful. The notation is given in the following manner: 
here and subsequently, 𝑅𝑅�� stands for the risk level along 
the route 𝑟𝑟 for the vehicle before arriving at node 𝑗𝑗, while 
𝑝𝑝�� denotes the probability that a robbery happens on the 
arc (𝑖𝑖𝑖 𝑗𝑗𝑖.  
As presented in [19], since a robbery might happen along 
the arc (𝑖𝑖𝑖 𝑗𝑗𝑖, if the vehicle moves from node 𝑖𝑖 to node 𝑗𝑗 
along the route 𝑟𝑟, the risk on the route 𝑟𝑟 along the arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 can be calculated as 𝑅𝑅���  =  𝑝𝑝�� ⋅  𝜈𝜈�� ⋅  𝐷𝐷�� . In the 
previous formula, 𝜈𝜈��  represents the vulnerability, i.e. a 
measure that the robbery succeeds given it occurs and 𝐷𝐷�� 
stands for the value of goods inside of the vehicle after 
the visit of node 𝑖𝑖 along the route 𝑟𝑟. Note that in some 
applications, the adequate values for 𝑝𝑝��  and 𝜈𝜈��  are not 
known. Thus, 𝑝𝑝��  can be replaced with the distance 
𝑐𝑐�� between nodes 𝑖𝑖 and 𝑗𝑗, while 𝜈𝜈��  can be set to 1. For 
simplicity, this is assumed in the rest of the paper. 
Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
for the sake of simplicity that the robbery cannot happen 
twice or more along the same route. More details on 
measuring the risk along the route can be found in [19]. 
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷�� =  0  and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
node 𝑗𝑗 where the vehicle arrives from the node 𝑖𝑖 along the 
route 𝑟𝑟 by using the following recursive formula 

𝑅𝑅��  =  𝑅𝑅��  + 𝐷𝐷�� ⋅  𝑐𝑐��. 
Note that 𝑅𝑅�� =  0 i.e. starting from depot 0 the risk index 
is equal to zero. 

3.2. Mathematical Formulation 
In this paper, we start from a mixed-integer formulation 
of the RCTVRP introduced in [19]. 
Let 𝑁𝑁 = 𝑁1𝑖𝑁𝑖 𝑁 𝑖 𝑁𝑁𝑁 be the set of customers that should 
be visited. The amount of cash that should be collected 
from the 𝑖𝑖 𝑖 𝑁𝑁 is denoted by 𝑑𝑑�. In the model, the depot 
is, for simplicity's sake, represented with two nodes 𝑠𝑠 
(start) and 𝑒𝑒 (end), with zero demands (𝑑𝑑� =  𝑑𝑑� =  0).  

Thus, the problem is defined on a directed graph 
𝐺𝐺 =  (𝐺𝐺𝑖 𝐺𝐺𝑖𝑖  where 𝐺𝐺 = 𝑁𝑁 𝑉 𝑁𝑠𝑠𝑖 𝑒𝑒𝑁  and 𝐺𝐺 =
(𝑁𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑠𝑠𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑁 𝑁 𝑁𝑒𝑒𝑁𝑖 . Each arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 𝑖  𝐺𝐺  has its own constant 𝑐𝑐��  that represents 
distance or travel time between nodes 𝑖𝑖 and 𝑗𝑗. Each 
vehicle starts from 𝑠𝑠 without any cash loaded and 
thus has a risk index equal to zero. Along the route, 
both the amount of cash and the risk index increase 
and the mixed integer formulation from [19] 
contains two adequate families of decision 
variables. In what follows, 𝐷𝐷�� stands for the amount 
of cash carried by the vehicle when it leaves node 𝑖𝑖 
along the route 𝑟𝑟, while 𝑅𝑅�� represents the risk index 
for the vehicle when it arrives at node 𝑖𝑖 along the 
route 𝑟𝑟 . In this RCTVRP formulation, each 
cumulative measure (i.e. 𝐷𝐷�� and 𝑅𝑅��) is a part of a 
constraint and is not taken into account in the 
objective function.  
The binary decision variable 𝑥𝑥���  is defined as: 

𝑥𝑥��� =  �
1𝑖    if arc (𝑖𝑖𝑖 𝑗𝑗𝑖 𝑖  𝐺𝐺 i𝐴 𝐴ra𝐴𝐴r𝐴𝐴𝐴 
        by 𝐴h𝐴 𝐴𝐴hicl𝐴 along rou𝐴𝐴 𝑟𝑟
0𝑖    o𝐴h𝐴rwi𝐴𝐴.                                 

𝑖 

In the RCTVRP formulation from [19], the 
objective function is the total travel length/costs 
along all the routes. The goal is to determine the 
routes (as well as the number of routes) so that the 
objective function is minimized. Note that the 
number of routes cannot be larger than 𝑁𝑁 (the worst 
case is when each customer is visited by a different 
vehicle). Thus, the set 𝑁𝑁 is used for the indexes of 
routes. 
Using the notation mentioned above, the problem 
can be written as: 
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Mathematical  Formulation of the 
RCTVRP 
The RCTVRP is stated as follows: a depot and a set of 
customers (e.g. supermarkets, shopping centers, clothes 
shops, jewelry stores) with their demands are given. Each 
customer should be visited once and only once by exactly 
one vehicle and the demand of each customer must be 
completely collected by a single vehicle. Each vehicle 
leaves the depot empty, visits the customers along the 
route, collects the goods and finally drops the collected 
goods off at the same depot. The exposure of the goods to 
risks (e.g. robberies) should be limited. 

 3.1. Measuring the Risk Along the Route 
Safety aspects in transportation have been studied in the 
literature from different perspectives. In order to create a 
mathematical model for the desired problem, numerical 
values for the risk levels along the roads would be 
helpful. The notation is given in the following manner: 
here and subsequently, 𝑅𝑅�� stands for the risk level along 
the route 𝑟𝑟 for the vehicle before arriving at node 𝑗𝑗, while 
𝑝𝑝�� denotes the probability that a robbery happens on the 
arc (𝑖𝑖𝑖 𝑗𝑗𝑖.  
As presented in [19], since a robbery might happen along 
the arc (𝑖𝑖𝑖 𝑗𝑗𝑖, if the vehicle moves from node 𝑖𝑖 to node 𝑗𝑗 
along the route 𝑟𝑟, the risk on the route 𝑟𝑟 along the arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 can be calculated as 𝑅𝑅���  =  𝑝𝑝�� ⋅  𝜈𝜈�� ⋅  𝐷𝐷�� . In the 
previous formula, 𝜈𝜈��  represents the vulnerability, i.e. a 
measure that the robbery succeeds given it occurs and 𝐷𝐷�� 
stands for the value of goods inside of the vehicle after 
the visit of node 𝑖𝑖 along the route 𝑟𝑟. Note that in some 
applications, the adequate values for 𝑝𝑝��  and 𝜈𝜈��  are not 
known. Thus, 𝑝𝑝��  can be replaced with the distance 
𝑐𝑐�� between nodes 𝑖𝑖 and 𝑗𝑗, while 𝜈𝜈��  can be set to 1. For 
simplicity, this is assumed in the rest of the paper. 
Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
for the sake of simplicity that the robbery cannot happen 
twice or more along the same route. More details on 
measuring the risk along the route can be found in [19]. 
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷�� =  0  and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
node 𝑗𝑗 where the vehicle arrives from the node 𝑖𝑖 along the 
route 𝑟𝑟 by using the following recursive formula 

𝑅𝑅��  =  𝑅𝑅��  + 𝐷𝐷�� ⋅  𝑐𝑐��. 
Note that 𝑅𝑅�� =  0 i.e. starting from depot 0 the risk index 
is equal to zero. 

3.2. Mathematical Formulation 
In this paper, we start from a mixed-integer formulation 
of the RCTVRP introduced in [19]. 
Let 𝑁𝑁 = 𝑁1𝑖𝑁𝑖 𝑁 𝑖 𝑁𝑁𝑁 be the set of customers that should 
be visited. The amount of cash that should be collected 
from the 𝑖𝑖 𝑖 𝑁𝑁 is denoted by 𝑑𝑑�. In the model, the depot 
is, for simplicity's sake, represented with two nodes 𝑠𝑠 
(start) and 𝑒𝑒 (end), with zero demands (𝑑𝑑� =  𝑑𝑑� =  0).  

Thus, the problem is defined on a directed graph 
𝐺𝐺 =  (𝐺𝐺𝑖 𝐺𝐺𝑖𝑖  where 𝐺𝐺 = 𝑁𝑁 𝑉 𝑁𝑠𝑠𝑖 𝑒𝑒𝑁  and 𝐺𝐺 =
(𝑁𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑠𝑠𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑁 𝑁 𝑁𝑒𝑒𝑁𝑖 . Each arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 𝑖  𝐺𝐺  has its own constant 𝑐𝑐��  that represents 
distance or travel time between nodes 𝑖𝑖 and 𝑗𝑗. Each 
vehicle starts from 𝑠𝑠 without any cash loaded and 
thus has a risk index equal to zero. Along the route, 
both the amount of cash and the risk index increase 
and the mixed integer formulation from [19] 
contains two adequate families of decision 
variables. In what follows, 𝐷𝐷�� stands for the amount 
of cash carried by the vehicle when it leaves node 𝑖𝑖 
along the route 𝑟𝑟, while 𝑅𝑅�� represents the risk index 
for the vehicle when it arrives at node 𝑖𝑖 along the 
route 𝑟𝑟 . In this RCTVRP formulation, each 
cumulative measure (i.e. 𝐷𝐷�� and 𝑅𝑅��) is a part of a 
constraint and is not taken into account in the 
objective function.  
The binary decision variable 𝑥𝑥���  is defined as: 
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vehicle). Thus, the set 𝑁𝑁 is used for the indexes of 
routes. 
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stands for the value of goods inside of the vehicle after 
the visit of node 𝑖𝑖 along the route 𝑟𝑟. Note that in some 
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Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
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twice or more along the same route. More details on 
measuring the risk along the route can be found in [19]. 
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷�� =  0  and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
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variables. In what follows, 𝐷𝐷�� stands for the amount 
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along the route 𝑟𝑟, while 𝑅𝑅�� represents the risk index 
for the vehicle when it arrives at node 𝑖𝑖 along the 
route 𝑟𝑟 . In this RCTVRP formulation, each 
cumulative measure (i.e. 𝐷𝐷�� and 𝑅𝑅��) is a part of a 
constraint and is not taken into account in the 
objective function.  
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In the RCTVRP formulation from [19], the 
objective function is the total travel length/costs 
along all the routes. The goal is to determine the 
routes (as well as the number of routes) so that the 
objective function is minimized. Note that the 
number of routes cannot be larger than 𝑁𝑁 (the worst 
case is when each customer is visited by a different 
vehicle). Thus, the set 𝑁𝑁 is used for the indexes of 
routes. 
Using the notation mentioned above, the problem 
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Mathematical  Formulation of the 
RCTVRP 
The RCTVRP is stated as follows: a depot and a set of 
customers (e.g. supermarkets, shopping centers, clothes 
shops, jewelry stores) with their demands are given. Each 
customer should be visited once and only once by exactly 
one vehicle and the demand of each customer must be 
completely collected by a single vehicle. Each vehicle 
leaves the depot empty, visits the customers along the 
route, collects the goods and finally drops the collected 
goods off at the same depot. The exposure of the goods to 
risks (e.g. robberies) should be limited. 

 3.1. Measuring the Risk Along the Route 
Safety aspects in transportation have been studied in the 
literature from different perspectives. In order to create a 
mathematical model for the desired problem, numerical 
values for the risk levels along the roads would be 
helpful. The notation is given in the following manner: 
here and subsequently, 𝑅𝑅�� stands for the risk level along 
the route 𝑟𝑟 for the vehicle before arriving at node 𝑗𝑗, while 
𝑝𝑝�� denotes the probability that a robbery happens on the 
arc (𝑖𝑖𝑖 𝑗𝑗𝑖.  
As presented in [19], since a robbery might happen along 
the arc (𝑖𝑖𝑖 𝑗𝑗𝑖, if the vehicle moves from node 𝑖𝑖 to node 𝑗𝑗 
along the route 𝑟𝑟, the risk on the route 𝑟𝑟 along the arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 can be calculated as 𝑅𝑅���  =  𝑝𝑝�� ⋅  𝜈𝜈�� ⋅  𝐷𝐷�� . In the 
previous formula, 𝜈𝜈��  represents the vulnerability, i.e. a 
measure that the robbery succeeds given it occurs and 𝐷𝐷�� 
stands for the value of goods inside of the vehicle after 
the visit of node 𝑖𝑖 along the route 𝑟𝑟. Note that in some 
applications, the adequate values for 𝑝𝑝��  and 𝜈𝜈��  are not 
known. Thus, 𝑝𝑝��  can be replaced with the distance 
𝑐𝑐�� between nodes 𝑖𝑖 and 𝑗𝑗, while 𝜈𝜈��  can be set to 1. For 
simplicity, this is assumed in the rest of the paper. 
Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
for the sake of simplicity that the robbery cannot happen 
twice or more along the same route. More details on 
measuring the risk along the route can be found in [19]. 
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷�� =  0  and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
node 𝑗𝑗 where the vehicle arrives from the node 𝑖𝑖 along the 
route 𝑟𝑟 by using the following recursive formula 

𝑅𝑅��  =  𝑅𝑅��  + 𝐷𝐷�� ⋅  𝑐𝑐��. 
Note that 𝑅𝑅�� =  0 i.e. starting from depot 0 the risk index 
is equal to zero. 

3.2. Mathematical Formulation 
In this paper, we start from a mixed-integer formulation 
of the RCTVRP introduced in [19]. 
Let 𝑁𝑁 = 𝑁1𝑖𝑁𝑖 𝑁 𝑖 𝑁𝑁𝑁 be the set of customers that should 
be visited. The amount of cash that should be collected 
from the 𝑖𝑖 𝑖 𝑁𝑁 is denoted by 𝑑𝑑�. In the model, the depot 
is, for simplicity's sake, represented with two nodes 𝑠𝑠 
(start) and 𝑒𝑒 (end), with zero demands (𝑑𝑑� =  𝑑𝑑� =  0).  
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Mathematical  Formulation of the 
RCTVRP 
The RCTVRP is stated as follows: a depot and a set of 
customers (e.g. supermarkets, shopping centers, clothes 
shops, jewelry stores) with their demands are given. Each 
customer should be visited once and only once by exactly 
one vehicle and the demand of each customer must be 
completely collected by a single vehicle. Each vehicle 
leaves the depot empty, visits the customers along the 
route, collects the goods and finally drops the collected 
goods off at the same depot. The exposure of the goods to 
risks (e.g. robberies) should be limited. 

 3.1. Measuring the Risk Along the Route 
Safety aspects in transportation have been studied in the 
literature from different perspectives. In order to create a 
mathematical model for the desired problem, numerical 
values for the risk levels along the roads would be 
helpful. The notation is given in the following manner: 
here and subsequently, 𝑅𝑅�� stands for the risk level along 
the route 𝑟𝑟 for the vehicle before arriving at node 𝑗𝑗, while 
𝑝𝑝�� denotes the probability that a robbery happens on the 
arc (𝑖𝑖𝑖 𝑗𝑗𝑖.  
As presented in [19], since a robbery might happen along 
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(𝑖𝑖𝑖 𝑗𝑗𝑖 can be calculated as 𝑅𝑅���  =  𝑝𝑝�� ⋅  𝜈𝜈�� ⋅  𝐷𝐷�� . In the 
previous formula, 𝜈𝜈��  represents the vulnerability, i.e. a 
measure that the robbery succeeds given it occurs and 𝐷𝐷�� 
stands for the value of goods inside of the vehicle after 
the visit of node 𝑖𝑖 along the route 𝑟𝑟. Note that in some 
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known. Thus, 𝑝𝑝��  can be replaced with the distance 
𝑐𝑐�� between nodes 𝑖𝑖 and 𝑗𝑗, while 𝜈𝜈��  can be set to 1. For 
simplicity, this is assumed in the rest of the paper. 
Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
for the sake of simplicity that the robbery cannot happen 
twice or more along the same route. More details on 
measuring the risk along the route can be found in [19]. 
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷�� =  0  and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
node 𝑗𝑗 where the vehicle arrives from the node 𝑖𝑖 along the 
route 𝑟𝑟 by using the following recursive formula 
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Note that 𝑅𝑅�� =  0 i.e. starting from depot 0 the risk index 
is equal to zero. 

3.2. Mathematical Formulation 
In this paper, we start from a mixed-integer formulation 
of the RCTVRP introduced in [19]. 
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be visited. The amount of cash that should be collected 
from the 𝑖𝑖 𝑖 𝑁𝑁 is denoted by 𝑑𝑑�. In the model, the depot 
is, for simplicity's sake, represented with two nodes 𝑠𝑠 
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variables. In what follows, 𝐷𝐷�� stands for the amount 
of cash carried by the vehicle when it leaves node 𝑖𝑖 
along the route 𝑟𝑟, while 𝑅𝑅�� represents the risk index 
for the vehicle when it arrives at node 𝑖𝑖 along the 
route 𝑟𝑟 . In this RCTVRP formulation, each 
cumulative measure (i.e. 𝐷𝐷�� and 𝑅𝑅��) is a part of a 
constraint and is not taken into account in the 
objective function.  
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risks (e.g. robberies) should be limited. 

 3.1. Measuring the Risk Along the Route 
Safety aspects in transportation have been studied in the 
literature from different perspectives. In order to create a 
mathematical model for the desired problem, numerical 
values for the risk levels along the roads would be 
helpful. The notation is given in the following manner: 
here and subsequently, 𝑅𝑅�� stands for the risk level along 
the route 𝑟𝑟 for the vehicle before arriving at node 𝑗𝑗, while 
𝑝𝑝�� denotes the probability that a robbery happens on the 
arc (𝑖𝑖𝑖 𝑗𝑗𝑖.  
As presented in [19], since a robbery might happen along 
the arc (𝑖𝑖𝑖 𝑗𝑗𝑖, if the vehicle moves from node 𝑖𝑖 to node 𝑗𝑗 
along the route 𝑟𝑟, the risk on the route 𝑟𝑟 along the arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 can be calculated as 𝑅𝑅���  =  𝑝𝑝�� ⋅  𝜈𝜈�� ⋅  𝐷𝐷�� . In the 
previous formula, 𝜈𝜈��  represents the vulnerability, i.e. a 
measure that the robbery succeeds given it occurs and 𝐷𝐷�� 
stands for the value of goods inside of the vehicle after 
the visit of node 𝑖𝑖 along the route 𝑟𝑟. Note that in some 
applications, the adequate values for 𝑝𝑝��  and 𝜈𝜈��  are not 
known. Thus, 𝑝𝑝��  can be replaced with the distance 
𝑐𝑐�� between nodes 𝑖𝑖 and 𝑗𝑗, while 𝜈𝜈��  can be set to 1. For 
simplicity, this is assumed in the rest of the paper. 
Moreover, since the probability a robbery occurs more 
than once along the same route is small, it can be assumed 
for the sake of simplicity that the robbery cannot happen 
twice or more along the same route. More details on 
measuring the risk along the route can be found in [19]. 
Finally, since each vehicle starts empty from the depot, 
collects cash along the route and delivers it only to the 
depot at the end of route, 𝐷𝐷�� =  0  and the amount of 
money increases along the route. The risk index also 
increases along the route and can be calculated for each 
node 𝑗𝑗 where the vehicle arrives from the node 𝑖𝑖 along the 
route 𝑟𝑟 by using the following recursive formula 

𝑅𝑅��  =  𝑅𝑅��  + 𝐷𝐷�� ⋅  𝑐𝑐��. 
Note that 𝑅𝑅�� =  0 i.e. starting from depot 0 the risk index 
is equal to zero. 

3.2. Mathematical Formulation 
In this paper, we start from a mixed-integer formulation 
of the RCTVRP introduced in [19]. 
Let 𝑁𝑁 = 𝑁1𝑖𝑁𝑖 𝑁 𝑖 𝑁𝑁𝑁 be the set of customers that should 
be visited. The amount of cash that should be collected 
from the 𝑖𝑖 𝑖 𝑁𝑁 is denoted by 𝑑𝑑�. In the model, the depot 
is, for simplicity's sake, represented with two nodes 𝑠𝑠 
(start) and 𝑒𝑒 (end), with zero demands (𝑑𝑑� =  𝑑𝑑� =  0).  

Thus, the problem is defined on a directed graph 
𝐺𝐺 =  (𝐺𝐺𝑖 𝐺𝐺𝑖𝑖  where 𝐺𝐺 = 𝑁𝑁 𝑉 𝑁𝑠𝑠𝑖 𝑒𝑒𝑁  and 𝐺𝐺 =
(𝑁𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑠𝑠𝑁 𝑁  𝑁𝑁𝑖 𝑉 (𝑁𝑁 𝑁 𝑁𝑒𝑒𝑁𝑖 . Each arc 
(𝑖𝑖𝑖 𝑗𝑗𝑖 𝑖  𝐺𝐺  has its own constant 𝑐𝑐��  that represents 
distance or travel time between nodes 𝑖𝑖 and 𝑗𝑗. Each 
vehicle starts from 𝑠𝑠 without any cash loaded and 
thus has a risk index equal to zero. Along the route, 
both the amount of cash and the risk index increase 
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contains two adequate families of decision 
variables. In what follows, 𝐷𝐷�� stands for the amount 
of cash carried by the vehicle when it leaves node 𝑖𝑖 
along the route 𝑟𝑟, while 𝑅𝑅�� represents the risk index 
for the vehicle when it arrives at node 𝑖𝑖 along the 
route 𝑟𝑟 . In this RCTVRP formulation, each 
cumulative measure (i.e. 𝐷𝐷�� and 𝑅𝑅��) is a part of a 
constraint and is not taken into account in the 
objective function.  
The binary decision variable 𝑥𝑥���  is defined as: 

𝑥𝑥��� =  �
1𝑖    if arc (𝑖𝑖𝑖 𝑗𝑗𝑖 𝑖  𝐺𝐺 i𝐴 𝐴ra𝐴𝐴r𝐴𝐴𝐴 
        by 𝐴h𝐴 𝐴𝐴hicl𝐴 along rou𝐴𝐴 𝑟𝑟
0𝑖    o𝐴h𝐴rwi𝐴𝐴.                                 
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along all the routes. The goal is to determine the 
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objective function is minimized. Note that the 
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where 𝑥𝑥��� , 𝐷𝐷��  and 𝑅𝑅��  are variables of the optimization 
problem. 
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
function (1). Due to the conditions (2) each route starts 
and ends at the depot. Condition (3) imposes that the first 
route (indexed with 𝐴𝐴 𝑟 𝐴 ) exists and starts from the 
depot. The route 𝐴𝐴 + 𝐴 does not exist if 𝐴𝐴 does not exist, 
due to the constraints (4). Thus, the routes are numerated 
consecutively. Each customer must be visited exactly 
once, according to the constraints (5). In each route 𝐴𝐴, the 
vehicle exits the customer 𝑖𝑖 if and only if it has enter the 
customer 𝑖𝑖 along the route 𝐴𝐴, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷�� , where 𝑀𝑀�  is a sufficiently large number 
(𝑀𝑀� 𝑟 ∑ d��∈� ).  The constraints (10)-(12) define the risk 
index values 𝑅𝑅�� and impose that the global risk of each 
route 𝐴𝐴 cannot be larger than 𝑇𝑇, where 𝑀𝑀� is a sufficiently 
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 𝑇𝑇  (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12).  
Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑖𝑖, 𝑖𝑖) is 
available, in the conditions (11) 𝑐𝑐�� can be replaced with 
𝑝𝑝��. 

4. A Fuzzy Version of the RCTVRP 
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 

safe the routes are. In order to ensure that each 
calculated risk index has an adequate influence in a 
newly proposed version of the problem, the 
following objective function is introduced: 
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Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 

𝐹𝐹(𝐴𝐴)  𝑟  𝐴 +  𝐹𝐹(𝐴𝐴), 
where function 𝐹𝐹 is the membership function of the 
left shoulder fuzzy number represented in Figure 2. 
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where 𝑥𝑥��� , 𝐷𝐷��  and 𝑅𝑅��  are variables of the optimization 
problem. 
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
function (1). Due to the conditions (2) each route starts 
and ends at the depot. Condition (3) imposes that the first 
route (indexed with 𝐴𝐴 𝑟 𝐴 ) exists and starts from the 
depot. The route 𝐴𝐴 + 𝐴 does not exist if 𝐴𝐴 does not exist, 
due to the constraints (4). Thus, the routes are numerated 
consecutively. Each customer must be visited exactly 
once, according to the constraints (5). In each route 𝐴𝐴, the 
vehicle exits the customer 𝑖𝑖 if and only if it has enter the 
customer 𝑖𝑖 along the route 𝐴𝐴, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷�� , where 𝑀𝑀�  is a sufficiently large number 
(𝑀𝑀� 𝑟 ∑ d��∈� ).  The constraints (10)-(12) define the risk 
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 𝑇𝑇  (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12).  
Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑖𝑖, 𝑖𝑖) is 
available, in the conditions (11) 𝑐𝑐�� can be replaced with 
𝑝𝑝��. 

4. A Fuzzy Version of the RCTVRP 
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 

safe the routes are. In order to ensure that each 
calculated risk index has an adequate influence in a 
newly proposed version of the problem, the 
following objective function is introduced: 
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Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 

𝐹𝐹(𝐴𝐴)  𝑟  𝐴 +  𝐹𝐹(𝐴𝐴), 
where function 𝐹𝐹 is the membership function of the 
left shoulder fuzzy number represented in Figure 2. 
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available, in the conditions (11) 𝑐𝑐�� can be replaced with 
𝑝𝑝��. 

4. A Fuzzy Version of the RCTVRP 
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 

safe the routes are. In order to ensure that each 
calculated risk index has an adequate influence in a 
newly proposed version of the problem, the 
following objective function is introduced: 
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Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 

𝐹𝐹(𝐴𝐴)  𝑟  𝐴 +  𝐹𝐹(𝐴𝐴), 
where function 𝐹𝐹 is the membership function of the 
left shoulder fuzzy number represented in Figure 2. 
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𝑇𝑇) is chosen to be 𝑚𝑚 𝑟 max�∈� c��d�, since it seems fair 
to consider all routes with a single customer to be 
routes with minimal risk, i.e. the routes with the 
lowest value of the function 𝐹𝐹. Routes with the risk 
index that exceeds the risk threshold value 𝑇𝑇  are 
still forbidden. Function 𝐹𝐹 maps the risk indexes of 
routes to numbers from the interval �0,𝐴�. 
This type of membership function is chosen to 
represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes 
are prioritized.  
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
𝐹𝐹(𝑅𝑅��). The FRCTVRP formulation is as follows: 
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the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
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Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
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new promising fuzzy model. 
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appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
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still forbidden. Function 𝐹𝐹 maps the risk indexes of 
routes to numbers from the interval �0,𝐴�. 
This type of membership function is chosen to 
represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes 
are prioritized.  
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
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where 𝑥𝑥��� , 𝐷𝐷��  and 𝑅𝑅��  are variables of the optimization 
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function (1). Due to the conditions (2) each route starts 
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due to the constraints (4). Thus, the routes are numerated 
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vehicle exits the customer 𝑖𝑖 if and only if it has enter the 
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 𝑇𝑇  (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12).  
Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑖𝑖, 𝑖𝑖) is 
available, in the conditions (11) 𝑐𝑐�� can be replaced with 
𝑝𝑝��. 

4. A Fuzzy Version of the RCTVRP 
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 

safe the routes are. In order to ensure that each 
calculated risk index has an adequate influence in a 
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Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 
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where function 𝐹𝐹 is the membership function of the 
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index that exceeds the risk threshold value 𝑇𝑇  are 
still forbidden. Function 𝐹𝐹 maps the risk indexes of 
routes to numbers from the interval �0,𝐴�. 
This type of membership function is chosen to 
represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes 
are prioritized.  
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
𝐹𝐹(𝑅𝑅��). The FRCTVRP formulation is as follows: 

and 
impose that the global risk of each route r cannot be 
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problem. 
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
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value T. However, what is implied within the description 
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safer the route is. The set of safe routes can be 
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represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes 
are prioritized.  
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
𝐹𝐹(𝑅𝑅��). The FRCTVRP formulation is as follows: 
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where 𝑥𝑥��� , 𝐷𝐷��  and 𝑅𝑅��  are variables of the optimization 
problem. 
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
function (1). Due to the conditions (2) each route starts 
and ends at the depot. Condition (3) imposes that the first 
route (indexed with 𝐴𝐴 𝑟 𝐴 ) exists and starts from the 
depot. The route 𝐴𝐴 + 𝐴 does not exist if 𝐴𝐴 does not exist, 
due to the constraints (4). Thus, the routes are numerated 
consecutively. Each customer must be visited exactly 
once, according to the constraints (5). In each route 𝐴𝐴, the 
vehicle exits the customer 𝑖𝑖 if and only if it has enter the 
customer 𝑖𝑖 along the route 𝐴𝐴, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷�� , where 𝑀𝑀�  is a sufficiently large number 
(𝑀𝑀� 𝑟 ∑ d��∈� ).  The constraints (10)-(12) define the risk 
index values 𝑅𝑅�� and impose that the global risk of each 
route 𝐴𝐴 cannot be larger than 𝑇𝑇, where 𝑀𝑀� is a sufficiently 
large number (𝑀𝑀� 𝑟 M� ⋅  T ⋅  maxDistance, where 
𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑟  𝑚𝑚𝑚𝑚𝑥𝑥�,�∈�𝑐𝑐��).Note that constant 𝑀𝑀� 𝑟
 𝑇𝑇  (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12).  
Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑖𝑖, 𝑖𝑖) is 
available, in the conditions (11) 𝑐𝑐�� can be replaced with 
𝑝𝑝��. 

4. A Fuzzy Version of the RCTVRP 
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 

safe the routes are. In order to ensure that each 
calculated risk index has an adequate influence in a 
newly proposed version of the problem, the 
following objective function is introduced: 
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Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 

𝐹𝐹(𝐴𝐴)  𝑟  𝐴 +  𝐹𝐹(𝐴𝐴), 
where function 𝐹𝐹 is the membership function of the 
left shoulder fuzzy number represented in Figure 2. 
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the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12).  
Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑖𝑖, 𝑖𝑖) is 
available, in the conditions (11) 𝑐𝑐�� can be replaced with 
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RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 
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differentiate the risk indexes only among the routes 
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the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
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4. A Fuzzy Version of the RCTVRP
In this section, we introduce a new fuzzy version of 
the RCTVRP, named FRCTVRP, which allows us to 
more precisely distinguish high-quality solutions. We 
follow the same notation as above and aim to keep the 
model as similar as possible to the presented model 
from [19]. A new form of the objective function is in-
troduced and the adequate fuzzy number is included 
in order to create a new promising fuzzy model.
In the previously described RCTVRP, the calculated 
risk of each route lower than the risk threshold  is not 
taken into further consideration. That approach sim-
ply follows the problem description where the risk 
cannot exceed the value . However, what is implied 
within the description of the risk indexes is that the 
lower the risk index is the safer the route is. The set of 
safe routes can be appropriately represented by using 
fuzzy sets instead of classic crisp sets. Furthermore, 
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for the solution quality should include both distances 
and the level how safe the routes are. In order to en-
sure that each calculated risk index has an adequate 
influence in a newly proposed version of the problem, 
the following objective function is introduced:
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Function F that is added as a part of the objective 
function is defined as:
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where 𝑥𝑥��� , 𝐷𝐷��  and 𝑅𝑅��  are variables of the optimization 
problem. 
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
function (1). Due to the conditions (2) each route starts 
and ends at the depot. Condition (3) imposes that the first 
route (indexed with 𝐴𝐴 𝑟 𝐴 ) exists and starts from the 
depot. The route 𝐴𝐴 + 𝐴 does not exist if 𝐴𝐴 does not exist, 
due to the constraints (4). Thus, the routes are numerated 
consecutively. Each customer must be visited exactly 
once, according to the constraints (5). In each route 𝐴𝐴, the 
vehicle exits the customer 𝑖𝑖 if and only if it has enter the 
customer 𝑖𝑖 along the route 𝐴𝐴, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷�� , where 𝑀𝑀�  is a sufficiently large number 
(𝑀𝑀� 𝑟 ∑ d��∈� ).  The constraints (10)-(12) define the risk 
index values 𝑅𝑅�� and impose that the global risk of each 
route 𝐴𝐴 cannot be larger than 𝑇𝑇, where 𝑀𝑀� is a sufficiently 
large number (𝑀𝑀� 𝑟 M� ⋅  T ⋅  maxDistance, where 
𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑟  𝑚𝑚𝑚𝑚𝑥𝑥�,�∈�𝑐𝑐��).Note that constant 𝑀𝑀� 𝑟
 𝑇𝑇  (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12).  
Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑖𝑖, 𝑖𝑖) is 
available, in the conditions (11) 𝑐𝑐�� can be replaced with 
𝑝𝑝��. 

4. A Fuzzy Version of the RCTVRP 
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 

safe the routes are. In order to ensure that each 
calculated risk index has an adequate influence in a 
newly proposed version of the problem, the 
following objective function is introduced: 

𝑚𝑚𝑖𝑖𝑚𝑚 � � 𝑐𝑐��𝑥𝑥���  𝐹𝐹(𝑅𝑅��)
(�,�)∈ ��∈�

.               (𝐴4) 

Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 

𝐹𝐹(𝐴𝐴)  𝑟  𝐴 +  𝐹𝐹(𝐴𝐴), 
where function 𝐹𝐹 is the membership function of the 
left shoulder fuzzy number represented in Figure 2. 

Figure 2 
Left shoulder fuzzy number 

 
For the purpose of this paper, the parameter 𝑚𝑚 (𝑚𝑚 �
𝑇𝑇) is chosen to be 𝑚𝑚 𝑟 max�∈� c��d�, since it seems fair 
to consider all routes with a single customer to be 
routes with minimal risk, i.e. the routes with the 
lowest value of the function 𝐹𝐹. Routes with the risk 
index that exceeds the risk threshold value 𝑇𝑇  are 
still forbidden. Function 𝐹𝐹 maps the risk indexes of 
routes to numbers from the interval �0,𝐴�. 
This type of membership function is chosen to 
represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes 
are prioritized.  
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
𝐹𝐹(𝑅𝑅��). The FRCTVRP formulation is as follows: 

where function  is the membership function of the left 
shoulder fuzzy number represented in Figure 2.
For the purpose of this paper, the parameter t (t <T) 
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is chosen to be t = 

5 

where 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 , 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 and 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 are variables of the optimization 
problem.
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
function (1). Due to the conditions (2) each route starts 
and ends at the depot. Condition (3) imposes that the first 
route (indexed with 𝑒𝑒𝑒𝑒 = 1 ) exists and starts from the 
depot. The route 𝑒𝑒𝑒𝑒 + 1 does not exist if 𝑒𝑒𝑒𝑒 does not exist, 
due to the constraints (4). Thus, the routes are numerated 
consecutively. Each customer must be visited exactly 
once, according to the constraints (5). In each route 𝑒𝑒𝑒𝑒, the 
vehicle exits the customer 𝑗𝑗𝑗𝑗 if and only if it has enter the 
customer 𝑗𝑗𝑗𝑗 along the route 𝑒𝑒𝑒𝑒, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , where 𝑀𝑀𝑀𝑀1 is a sufficiently large number 
(𝑀𝑀𝑀𝑀1 = ∑ dii∈V ).  The constraints (10)-(12) define the risk 
index values 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 and impose that the global risk of each 
route 𝑒𝑒𝑒𝑒 cannot be larger than 𝑇𝑇𝑇𝑇, where 𝑀𝑀𝑀𝑀2 is a sufficiently 
large number (𝑀𝑀𝑀𝑀2 = M1 ⋅  T ⋅  maxDistance, where 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗).Note that constant 𝑀𝑀𝑀𝑀2 =
 𝑇𝑇𝑇𝑇 (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
the case of 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 = 0, the right hand side of equation (11)
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12). 
Note that subroutes are avoided, since 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 and 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 are 
increasing along each route 𝑒𝑒𝑒𝑒. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑚𝑚𝑚𝑚, 𝑗𝑗𝑗𝑗) is
available, in the conditions (11) 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 can be replaced with 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 .

4. A Fuzzy Version of the RCTVRP
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model.
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 
safe the routes are. In order to ensure that each calculated 
risk index has an adequate influence in a newly proposed 
version of the problem, the following objective function 
is introduced:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 � � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟  𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈ 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

.               (14) 

Function 𝐹𝐹𝐹𝐹 that is added as a part of the objective 
function is defined as:

𝐹𝐹𝐹𝐹(𝑒𝑒𝑒𝑒)  =  1 +  𝜇𝜇𝜇𝜇(𝑒𝑒𝑒𝑒), 
where function 𝜇𝜇𝜇𝜇 is the membership function of the 
left shoulder fuzzy number represented in Figure 2.

Figure 2
Left shoulder fuzzy number

For the purpose of this paper, the parameter 𝑒𝑒𝑒𝑒 (𝑒𝑒𝑒𝑒 <
𝑇𝑇𝑇𝑇) is chosen to be 𝑒𝑒𝑒𝑒 = max

i∈N
ciedi, since it seems fair 

to consider all routes with a single customer to be 
routes with minimal risk, i.e. the routes with the 
lowest value of the function 𝐹𝐹𝐹𝐹. Routes with the risk 
index that exceeds the risk threshold value 𝑇𝑇𝑇𝑇 are 
still forbidden. Function 𝜇𝜇𝜇𝜇 maps the risk indexes of 
routes to numbers from the interval [0,1].
This type of membership function is chosen to 
represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes
are prioritized.
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper. 
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 are 
introduced into the model. Note that each variable
𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 corresponds to the previously introduced value 
𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟). The FRCTVRP formulation is as follows:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  � � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈ 𝐴𝐴𝐴𝐴

               
𝑟𝑟𝑟𝑟∈ 𝑁𝑁𝑁𝑁

 (15) 

subject to:

�𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟

𝑗𝑗𝑗𝑗∈ 𝑁𝑁𝑁𝑁

= �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟

𝑖𝑖𝑖𝑖∈ 𝑁𝑁𝑁𝑁

,∀ 𝑒𝑒𝑒𝑒 ∈ 𝑁𝑁𝑁𝑁,                     (16)

, since it seems fair to con-
sider all routes with a single customer to be routes 
with minimal risk, i.e. the routes with the lowest val-
ue of the function F. Routes with the risk index that 
exceeds the risk threshold value T are still forbidden. 
Function μ maps the risk indexes of routes to num-
bers from the interval [0, 1].
This type of membership function is chosen to rep-
resent the property ‘’the smaller is better’’ that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that the 
lengths of arcs within ‘’risky’’ routes are increased by 
multiplying by a factor between 1 and 2. Thus, by min-
imizing the objective function among the routes with 
the same lengths safer routes are prioritized. 
Note that other increasing functions could be tested 
as well and thus the presented model can be changed 
depending on the application. For example, it is possi-
ble to make a version where we differentiate the risk 
indexes only among the routes with the same travel 
distances. However, in this paper, we use the present-
ed objective function since the aim is the compromise 
between overall travel distance and risk indexes, in 
the sense that it is acceptable to make a route a bit 
longer if it is a lot safer. Moreover, the choice of this 
increasing function is proved to be convenient for for-
mulating the MIP models provided in this paper. 
In order to formulate the FRCTVRP as a mixed inte-
ger program (MIP), new variables FRj

r are introduced 
into the model. Note that each variable FRj

r corre-
sponds to the previously introduced value F(Rj

r). The 
FRCTVRP formulation is as follows:  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(15)

Figure 2
Left shoulder fuzzy number
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𝑅𝑅�� ≥ 𝑅𝑅�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� � �𝐴 �  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴𝐴 ∀𝐴𝐴 ∈ 𝐴𝐴,                   (𝐴𝐴) 

0 ≤ 𝑅𝑅�� ≤ 𝑇𝑇, ∀𝑖𝑖 ∈ 𝑇𝑇𝐴 ∀𝐴𝐴 ∈ 𝐴𝐴,                (𝐴𝑇) 
𝑥𝑥��� ∈ {0, 𝐴}, ∀(𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴𝐴 ∀𝐴𝐴 ∈ 𝐴𝐴,              (𝐴𝐴) 

where 𝑥𝑥��� , 𝐷𝐷��  and 𝑅𝑅��  are variables of the optimization 
problem. 
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
function (1). Due to the conditions (2) each route starts 
and ends at the depot. Condition (3) imposes that the first 
route (indexed with 𝐴𝐴 𝑟 𝐴 ) exists and starts from the 
depot. The route 𝐴𝐴 + 𝐴 does not exist if 𝐴𝐴 does not exist, 
due to the constraints (4). Thus, the routes are numerated 
consecutively. Each customer must be visited exactly 
once, according to the constraints (5). In each route 𝐴𝐴, the 
vehicle exits the customer 𝑖𝑖 if and only if it has enter the 
customer 𝑖𝑖 along the route 𝐴𝐴, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷�� , where 𝑀𝑀�  is a sufficiently large number 
(𝑀𝑀� 𝑟 ∑ d��∈� ).  The constraints (10)-(12) define the risk 
index values 𝑅𝑅�� and impose that the global risk of each 
route 𝐴𝐴 cannot be larger than 𝑇𝑇, where 𝑀𝑀� is a sufficiently 
large number (𝑀𝑀� 𝑟 M� ⋅  T ⋅  maxDistance, where 
𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑟  𝑚𝑚𝑚𝑚𝑥𝑥�,�∈�𝑐𝑐��).Note that constant 𝑀𝑀� 𝑟
 𝑇𝑇  (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12).  
Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑖𝑖, 𝑖𝑖) is 
available, in the conditions (11) 𝑐𝑐�� can be replaced with 
𝑝𝑝��. 

4. A Fuzzy Version of the RCTVRP 
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 

safe the routes are. In order to ensure that each 
calculated risk index has an adequate influence in a 
newly proposed version of the problem, the 
following objective function is introduced: 

𝑚𝑚𝑖𝑖𝑚𝑚 � � 𝑐𝑐��𝑥𝑥���  𝐹𝐹(𝑅𝑅��)
(�,�)∈ ��∈�

.               (𝐴4) 

Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 

𝐹𝐹(𝐴𝐴)  𝑟  𝐴 +  𝐹𝐹(𝐴𝐴), 
where function 𝐹𝐹 is the membership function of the 
left shoulder fuzzy number represented in Figure 2. 

Figure 2 
Left shoulder fuzzy number 

 
For the purpose of this paper, the parameter 𝑚𝑚 (𝑚𝑚 �
𝑇𝑇) is chosen to be 𝑚𝑚 𝑟 max�∈� c��d�, since it seems fair 
to consider all routes with a single customer to be 
routes with minimal risk, i.e. the routes with the 
lowest value of the function 𝐹𝐹. Routes with the risk 
index that exceeds the risk threshold value 𝑇𝑇  are 
still forbidden. Function 𝐹𝐹 maps the risk indexes of 
routes to numbers from the interval �0,𝐴�. 
This type of membership function is chosen to 
represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes 
are prioritized.  
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
𝐹𝐹(𝑅𝑅��). The FRCTVRP formulation is as follows: 

subject to:

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(16)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(17)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(18)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(19)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(20)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(21)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(22)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(23)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(24)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(25)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(26)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(27)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(28)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
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where 𝑥𝑥��� , 𝐷𝐷��  and 𝑅𝑅��  are variables of the optimization 
problem. 
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
function (1). Due to the conditions (2) each route starts 
and ends at the depot. Condition (3) imposes that the first 
route (indexed with 𝐴𝐴 𝑟 𝐴 ) exists and starts from the 
depot. The route 𝐴𝐴 + 𝐴 does not exist if 𝐴𝐴 does not exist, 
due to the constraints (4). Thus, the routes are numerated 
consecutively. Each customer must be visited exactly 
once, according to the constraints (5). In each route 𝐴𝐴, the 
vehicle exits the customer 𝑖𝑖 if and only if it has enter the 
customer 𝑖𝑖 along the route 𝐴𝐴, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷�� , where 𝑀𝑀�  is a sufficiently large number 
(𝑀𝑀� 𝑟 ∑ d��∈� ).  The constraints (10)-(12) define the risk 
index values 𝑅𝑅�� and impose that the global risk of each 
route 𝐴𝐴 cannot be larger than 𝑇𝑇, where 𝑀𝑀� is a sufficiently 
large number (𝑀𝑀� 𝑟 M� ⋅  T ⋅  maxDistance, where 
𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑟  𝑚𝑚𝑚𝑚𝑥𝑥�,�∈�𝑐𝑐��).Note that constant 𝑀𝑀� 𝑟
 𝑇𝑇  (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12).  
Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑖𝑖, 𝑖𝑖) is 
available, in the conditions (11) 𝑐𝑐�� can be replaced with 
𝑝𝑝��. 

4. A Fuzzy Version of the RCTVRP 
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 

safe the routes are. In order to ensure that each 
calculated risk index has an adequate influence in a 
newly proposed version of the problem, the 
following objective function is introduced: 

𝑚𝑚𝑖𝑖𝑚𝑚 � � 𝑐𝑐��𝑥𝑥���  𝐹𝐹(𝑅𝑅��)
(�,�)∈ ��∈�

.               (𝐴4) 

Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 

𝐹𝐹(𝐴𝐴)  𝑟  𝐴 +  𝐹𝐹(𝐴𝐴), 
where function 𝐹𝐹 is the membership function of the 
left shoulder fuzzy number represented in Figure 2. 
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𝑇𝑇) is chosen to be 𝑚𝑚 𝑟 max�∈� c��d�, since it seems fair 
to consider all routes with a single customer to be 
routes with minimal risk, i.e. the routes with the 
lowest value of the function 𝐹𝐹. Routes with the risk 
index that exceeds the risk threshold value 𝑇𝑇  are 
still forbidden. Function 𝐹𝐹 maps the risk indexes of 
routes to numbers from the interval �0,𝐴�. 
This type of membership function is chosen to 
represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes 
are prioritized.  
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
𝐹𝐹(𝑅𝑅��). The FRCTVRP formulation is as follows: 

,  
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 and FRi
r are variables of the optimi-

zation problem.
The constraints (27) and (28) define the values of  
FRj

r to represent the values of F(Rj
r ), where F is previ-
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ously described function F(r) = 1 + μ(r).
However, in this formulation, the number of variables 
and constraints increased, which is among main fac-
tors that increase the computational complexity of 
the problem. Thus, we present an improved version of 
the FRCTVRP model, where variables Rj

r are omitted 
and the constraints (24)-(27) are replaced with the 
constraints (39)-(40) obtained by using the formula 
FRi

r = 1 + 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟− 𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇−𝑡𝑡𝑡𝑡

  (i.e. Rj
r = t + (FRi

r -1) ⋅ (T-t)). Note that 
this equality holds only when Ri

r is from the interval 
[t, T], which is true for the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows:

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(30)

subject to:  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(31)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��
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subject to: 

� 𝑥𝑥���
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= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(32)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(33)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(34)

� �ℎ��

ℎ𝑗��{�}
� � ����

�𝑗��{�}
 =  0,  

∀ 𝑗𝑗 𝑗 𝑗𝑗𝑗 ∀ 𝑗𝑗 𝑗 𝑗𝑗,     
𝐷𝐷�� =  0, ∀ 𝑗𝑗 𝑗 𝑗𝑗,                     𝑟𝑟𝑟𝑟

(35)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(36)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(37)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(38)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(39)

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� 𝑇 �� 𝑇 ���� � ⋅ ��
𝑇𝑇 𝑇 𝑇𝑇 , 

∀(𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴; ∀𝑟𝑟 ∈ 𝑁𝑁,                (40)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
 

�𝑟 �
                  (𝑖0) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,              (𝑖1) 

� 𝑥𝑥���

�𝑟 �
 =  1,                         (𝑖2) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},      (𝑖𝑖) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,               (𝑖𝑟) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0,   

∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟,     (𝑖5) 
𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (𝑖𝑟) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , ∀𝑟𝑟 𝑟 𝑟𝑟,             (𝑖𝑖) 

𝐹𝐹𝐹𝐹�� ≥  𝐹𝐹𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�
𝑇𝑇 − 𝑡𝑡 , 

∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (𝑟0) 
1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,         (𝑟1) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟2) 

with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(41)

  

�𝑖𝑖𝑛𝑛  � � 𝑐𝑐��𝑥𝑥��� 𝐹𝐹𝐹𝐹��

(�,�)𝑟 �
               

�𝑟 �
 (15) 

subject to: 

� 𝑥𝑥���

�𝑟 �
= � 𝑥𝑥���

�𝑟 �
, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                     (1𝑟) 

� 𝑥𝑥���

�𝑟 �
 =  1,                               (17) 

� 𝑥𝑥���

�𝑟�
≥ � 𝑥𝑥��

���

�𝑟�
, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 

� 𝑥𝑥ℎ��

ℎ𝑟�𝑟{�}
− � 𝑥𝑥���

�𝑟�𝑟{�}
 =  0, ∀ 𝑗𝑗 𝑟 𝑟𝑟𝑗 ∀ 𝑟𝑟 𝑟 𝑟𝑟, (20) 

𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 
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𝑅𝑅�� ≥ 𝑅𝑅�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� � �𝐴 �  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴𝐴 ∀𝐴𝐴 ∈ 𝐴𝐴,                   (𝐴𝐴) 

0 ≤ 𝑅𝑅�� ≤ 𝑇𝑇, ∀𝑖𝑖 ∈ 𝑇𝑇𝐴 ∀𝐴𝐴 ∈ 𝐴𝐴,                (𝐴𝑇) 
𝑥𝑥��� ∈ {0, 𝐴}, ∀(𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴𝐴 ∀𝐴𝐴 ∈ 𝐴𝐴,              (𝐴𝐴) 

where 𝑥𝑥��� , 𝐷𝐷��  and 𝑅𝑅��  are variables of the optimization 
problem. 
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
function (1). Due to the conditions (2) each route starts 
and ends at the depot. Condition (3) imposes that the first 
route (indexed with 𝐴𝐴 𝑟 𝐴 ) exists and starts from the 
depot. The route 𝐴𝐴 + 𝐴 does not exist if 𝐴𝐴 does not exist, 
due to the constraints (4). Thus, the routes are numerated 
consecutively. Each customer must be visited exactly 
once, according to the constraints (5). In each route 𝐴𝐴, the 
vehicle exits the customer 𝑖𝑖 if and only if it has enter the 
customer 𝑖𝑖 along the route 𝐴𝐴, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷�� , where 𝑀𝑀�  is a sufficiently large number 
(𝑀𝑀� 𝑟 ∑ d��∈� ).  The constraints (10)-(12) define the risk 
index values 𝑅𝑅�� and impose that the global risk of each 
route 𝐴𝐴 cannot be larger than 𝑇𝑇, where 𝑀𝑀� is a sufficiently 
large number (𝑀𝑀� 𝑟 M� ⋅  T ⋅  maxDistance, where 
𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑟  𝑚𝑚𝑚𝑚𝑥𝑥�,�∈�𝑐𝑐��).Note that constant 𝑀𝑀� 𝑟
 𝑇𝑇  (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
the case of 𝑥𝑥��� 𝑟 0, the right hand side of equation (11) 
can be nonnegative and lead to falsely not satisfying one 
of the threshold conditions (12).  
Note that subroutes are avoided, since 𝐷𝐷��  and 𝑅𝑅��  are 
increasing along each route 𝐴𝐴. Moreover, if the real data 
regarding the probability of a robbery on the arc (𝑖𝑖, 𝑖𝑖) is 
available, in the conditions (11) 𝑐𝑐�� can be replaced with 
𝑝𝑝��. 

4. A Fuzzy Version of the RCTVRP 
In this section, we introduce a new fuzzy version of the 
RCTVRP, named FRCTVRP, which allows us to more 
precisely distinguish high-quality solutions. We follow 
the same notation as above and aim to keep the model as 
similar as possible to the presented model from [19]. A 
new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
safer the route is. The set of safe routes can be 
appropriately represented by using fuzzy sets instead of 
classic crisp sets. Furthermore, one approach to 
incorporating this fact into the model is to include it into 
the objective function. Since the RCTVRP is a 
minimization problem, instead of just minimizing the 
overall travel distance, a new measure for the solution 
quality should include both distances and the level how 

safe the routes are. In order to ensure that each 
calculated risk index has an adequate influence in a 
newly proposed version of the problem, the 
following objective function is introduced: 

𝑚𝑚𝑖𝑖𝑚𝑚 � � 𝑐𝑐��𝑥𝑥���  𝐹𝐹(𝑅𝑅��)
(�,�)∈ ��∈�

.               (𝐴4) 

Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 

𝐹𝐹(𝐴𝐴)  𝑟  𝐴 +  𝐹𝐹(𝐴𝐴), 
where function 𝐹𝐹 is the membership function of the 
left shoulder fuzzy number represented in Figure 2. 

Figure 2 
Left shoulder fuzzy number 

 
For the purpose of this paper, the parameter 𝑚𝑚 (𝑚𝑚 �
𝑇𝑇) is chosen to be 𝑚𝑚 𝑟 max�∈� c��d�, since it seems fair 
to consider all routes with a single customer to be 
routes with minimal risk, i.e. the routes with the 
lowest value of the function 𝐹𝐹. Routes with the risk 
index that exceeds the risk threshold value 𝑇𝑇  are 
still forbidden. Function 𝐹𝐹 maps the risk indexes of 
routes to numbers from the interval �0,𝐴�. 
This type of membership function is chosen to 
represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes 
are prioritized.  
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
𝐹𝐹(𝑅𝑅��). The FRCTVRP formulation is as follows: 

,  

5  

𝑅𝑅�� ≥ 𝑅𝑅�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� � �𝐴 �  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴𝐴 ∀𝐴𝐴 ∈ 𝐴𝐴,                   (𝐴𝐴) 

0 ≤ 𝑅𝑅�� ≤ 𝑇𝑇, ∀𝑖𝑖 ∈ 𝑇𝑇𝐴 ∀𝐴𝐴 ∈ 𝐴𝐴,                (𝐴𝑇) 
𝑥𝑥��� ∈ {0, 𝐴}, ∀(𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴𝐴 ∀𝐴𝐴 ∈ 𝐴𝐴,              (𝐴𝐴) 

where 𝑥𝑥��� , 𝐷𝐷��  and 𝑅𝑅��  are variables of the optimization 
problem. 
The summarized length of all arcs traversed along any of 
the routes should be minimized (see the objective 
function (1). Due to the conditions (2) each route starts 
and ends at the depot. Condition (3) imposes that the first 
route (indexed with 𝐴𝐴 𝑟 𝐴 ) exists and starts from the 
depot. The route 𝐴𝐴 + 𝐴 does not exist if 𝐴𝐴 does not exist, 
due to the constraints (4). Thus, the routes are numerated 
consecutively. Each customer must be visited exactly 
once, according to the constraints (5). In each route 𝐴𝐴, the 
vehicle exits the customer 𝑖𝑖 if and only if it has enter the 
customer 𝑖𝑖 along the route 𝐴𝐴, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷�� , where 𝑀𝑀�  is a sufficiently large number 
(𝑀𝑀� 𝑟 ∑ d��∈� ).  The constraints (10)-(12) define the risk 
index values 𝑅𝑅�� and impose that the global risk of each 
route 𝐴𝐴 cannot be larger than 𝑇𝑇, where 𝑀𝑀� is a sufficiently 
large number (𝑀𝑀� 𝑟 M� ⋅  T ⋅  maxDistance, where 
𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑟  𝑚𝑚𝑚𝑚𝑥𝑥�,�∈�𝑐𝑐��).Note that constant 𝑀𝑀� 𝑟
 𝑇𝑇  (used in [19]) is not enough, since it leads to 
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new form of the objective function is introduced and the 
adequate fuzzy number is included in order to create a 
new promising fuzzy model. 
In the previously described RCTVRP, the calculated risk 
of each route lower than the risk threshold T is not taken 
into further consideration. That approach simply follows 
the problem description where the risk cannot exceed the 
value T. However, what is implied within the description 
of the risk indexes is that the lower the risk index is the 
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appropriately represented by using fuzzy sets instead of 
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customer 𝑖𝑖 along the route 𝐴𝐴, due to the constraints (6). 
The constraints (7)-(9) set the adequate values for the 
variables 𝐷𝐷�� , where 𝑀𝑀�  is a sufficiently large number 
(𝑀𝑀� 𝑟 ∑ d��∈� ).  The constraints (10)-(12) define the risk 
index values 𝑅𝑅�� and impose that the global risk of each 
route 𝐴𝐴 cannot be larger than 𝑇𝑇, where 𝑀𝑀� is a sufficiently 
large number (𝑀𝑀� 𝑟 M� ⋅  T ⋅  maxDistance, where 
𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑟  𝑚𝑚𝑚𝑚𝑥𝑥�,�∈�𝑐𝑐��).Note that constant 𝑀𝑀� 𝑟
 𝑇𝑇  (used in [19]) is not enough, since it leads to 
disallowance of some of the feasible solutions. In fact, in 
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newly proposed version of the problem, the 
following objective function is introduced: 

𝑚𝑚𝑖𝑖𝑚𝑚 � � 𝑐𝑐��𝑥𝑥���  𝐹𝐹(𝑅𝑅��)
(�,�)∈ ��∈�

.               (𝐴4) 

Function 𝐹𝐹 that is added as a part of the objective 
function is defined as: 

𝐹𝐹(𝐴𝐴)  𝑟  𝐴 +  𝐹𝐹(𝐴𝐴), 
where function 𝐹𝐹 is the membership function of the 
left shoulder fuzzy number represented in Figure 2. 

Figure 2 
Left shoulder fuzzy number 

 
For the purpose of this paper, the parameter 𝑚𝑚 (𝑚𝑚 �
𝑇𝑇) is chosen to be 𝑚𝑚 𝑟 max�∈� c��d�, since it seems fair 
to consider all routes with a single customer to be 
routes with minimal risk, i.e. the routes with the 
lowest value of the function 𝐹𝐹. Routes with the risk 
index that exceeds the risk threshold value 𝑇𝑇  are 
still forbidden. Function 𝐹𝐹 maps the risk indexes of 
routes to numbers from the interval �0,𝐴�. 
This type of membership function is chosen to 
represent the property ''the smaller is better'' that we 
aimed to incorporate into the objective function. In 
essence, the objective function is changed so that 
the lengths of arcs within ''risky'' routes are 
increased by multiplying by a factor between 1 and 
2. Thus, by minimizing the objective function 
among the routes with the same lengths safer routes 
are prioritized.  
Note that other increasing functions could be tested 
as well and thus the presented model can be 
changed depending on the application. For example, 
it is possible to make a version where we 
differentiate the risk indexes only among the routes 
with the same travel distances. However, in this 
paper, we use the presented objective function since 
the aim is the compromise between overall travel 
distance and risk indexes, in the sense that it is 
acceptable to make a route a bit longer if it is a lot 
safer. Moreover, the choice of this increasing 
function is proved to be convenient for formulating 
the MIP models provided in this paper.  
In order to formulate the FRCTVRP as a mixed 
integer program (MIP), new variables 𝐹𝐹𝑅𝑅��  are 
introduced into the model. Note that each variable 
𝐹𝐹𝑅𝑅�� corresponds to the previously introduced value 
𝐹𝐹(𝑅𝑅��). The FRCTVRP formulation is as follows: 

 and FRi
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Note that the previous two formulations (15)-(29) and 
(30)-(42) have equivalent solutions. In the rest of the 
paper, when comparing the solutions of the classical 
RCTVRP from [19] with the proposed fuzzy version, 
the formulation (15)-(29) is used and denoted with 
the FRCTVRP.
Another option for lowering the number of con-
straints in the first formulation for the FRCTVRP 
(15)-(29) is explained here. It is easy to see that con-
straints (26), (27) and (28) are equivalent with the 
following constraints:
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���
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, ∀ 𝑟𝑟 𝑟  𝑟𝑟 𝑟 {𝑛𝑛},                (18) 

� � 𝑥𝑥���

�𝑟�𝑟{�}�𝑟�
=  1, ∀𝑖𝑖 𝑟 𝑟𝑟,                         (1𝑖) 
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𝐷𝐷�� =  0, ∀ 𝑟𝑟 𝑟 𝑟𝑟,                       (21) 

𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                           (22) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

𝐹𝐹�� = 0, ∀𝑟𝑟 𝑟 𝑟𝑟,                                  (2𝑟) 

𝐹𝐹�� ≥ 𝐹𝐹�� + 𝐷𝐷�� ⋅ 𝑐𝑐�� − �1 −  𝑥𝑥��� � ⋅ 𝑀𝑀�,   
∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                            (25) 

0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (2𝑟) 

𝐹𝐹𝐹𝐹�� ≥  1 + 𝐹𝐹��  −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 , 𝑖𝑖 𝑟 𝑖𝑖 𝑟 {𝑠𝑠}𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,             (27) 

1 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                    (28) 
𝑥𝑥��� 𝑟 {0, 1}, ∀(𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                 (2𝑖) 

where 𝑥𝑥��� , 𝐷𝐷�� , 𝐹𝐹�� and 𝐹𝐹𝐹𝐹��  are variables of the 
optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �

���   (i.e. 𝐹𝐹�� =
𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 
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𝐷𝐷�� ≥ 𝐷𝐷�� + 𝑑𝑑� − �1 − 𝑥𝑥��� � ⋅ 𝑀𝑀�,   

∀ (𝑖𝑖, 𝑗𝑗) 𝑟 𝐴𝐴𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,                  (𝑖7) 
0 ≤ 𝐷𝐷�� ≤ 𝑀𝑀�, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,        (𝑖8) 

𝐹𝐹𝐹𝐹�� = 𝑇𝑇 − 2𝑡𝑡
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with variables: 𝑥𝑥��� , 𝐷𝐷��and 𝐹𝐹𝐹𝐹��. 

Note that the previous two formulations (15)-(29) 
and (30)-(42) have equivalent solutions. In the rest 
of the paper, when comparing the solutions of the 
classical RCTVRP from [19] with the proposed 
fuzzy version, the formulation (15)-(29) is used and 
denoted with the FRCTVRP. 
Another option for lowering the number of 
constraints in the first formulation for the 
FRCTVRP (15)-(29) is explained here. It is easy to 
see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 
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Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 
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This transformation is inspired by a similar 
suggestion given in [18]. 

(43)
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optimization problem. 
The constraints (27) and (28) define the values of 𝐹𝐹𝐹𝐹�� to 
represent the values of 𝐹𝐹(𝐹𝐹��) , where 𝐹𝐹  is previously 
described function 𝐹𝐹(𝑟𝑟)  =  1 + 𝐹𝐹(𝑟𝑟). 
However, in this formulation, the number of variables and 
constraints increased, which is among main factors that 
increase the computational complexity of the problem. 
Thus, we present an improved version of the FRCTVRP 
model, where variables 𝐹𝐹�� are omitted and the constraints 
(24)-(27) are replaced with the constraints (39)-(40) 
obtained by using the formula 𝐹𝐹𝐹𝐹�� = 1 + ���� �
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𝑡𝑡 + (𝐹𝐹𝐹𝐹�� − 1) ⋅ (𝑇𝑇 − 𝑡𝑡 )). Note that this equality holds 
only when 𝐹𝐹�� is from the interval �𝑡𝑡, 𝑇𝑇�, which is true for 
the valid routes.  
Finally, the improved FRCTVRP formulation is as 
follows: 
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Another option for lowering the number of 
constraints in the first formulation for the 
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see that constraints (26), (27) and (28) are 
equivalent with the following constraints: 

1 +  𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 ≤ 𝐹𝐹𝐹𝐹�� ≤ 2, ∀𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟,      (𝑟𝑖) 

𝐹𝐹�� ≥ 𝑡𝑡, 𝑖𝑖 𝑟 𝑖𝑖𝑗 ∀𝑟𝑟 𝑟 𝑟𝑟𝑡                            (𝑟𝑟) 
Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of 
constraints (43) and (44) or equivalently (26)-(27) 
and (28) the following constraints can be used: 

𝐹𝐹𝐹𝐹�� ≥ 1 + ��� �0, 𝐹𝐹�� −  𝑡𝑡
𝑇𝑇 − 𝑡𝑡 � , 0 ≤ 𝐹𝐹�� ≤ 𝑇𝑇𝑡    (𝑟5) 

This transformation is inspired by a similar 
suggestion given in [18]. 

(44)

Since the number of these constraints is lower than 
the number of constraints (26), (27) and (28), it is 
better to replace constraints (26), (27) and (28) with 
constraints (43) and (44). Moreover, instead of con-
straints (43) and (44) or equivalently (26)-(27) and 
(28) the following constraints can be used:
This transformation is inspired by a similar sugges-
tion given in [18].

5. A Demonstrative Example
The difference between the model from the literature 
RCTVRP and the proposed model FRCTVRP can 
be illustrated by the following simple setting. Let us 
consider the following situation. We are given a graph 
with four nodes (depot and three customers) as de-
picted in Figure 3 and the risk threshold T=160. In the 
following, this example is considered in both models, 
RCTVRP and FRCTVRP.
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Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three cus-
tomers within one route, due to risk constraint. The 
solution with three routes (each customer is visited 
by its own vehicle) is feasible, but the objective func-
tion reaches its maximal possible value. Thus, we 
present more detailed calculations for the other three 
feasible solutions (all three with two routes each).
Solution 1:
Route (r = 1):  0→2→1→0

7  

example is considered in both models, RCTVRP and 
FRCTVRP. 

Figure 3 
An example with an undirected graph with weighted 
edges representing the distance between nodes. Three 
customers denoted by numbers 1, 2 and 3 depicted as blue 
nodes, with their demands written in green. Depot is the 
node 0. 

 
Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three customers 
within one route, due to risk constraint. The solution with 
three routes (each customer is visited by its own vehicle) 
is feasible, but the objective function reaches its maximal 
possible value. Thus, we present more detailed 
calculations for the other three feasible solutions (all three 
with two routes each). 
Solution 1: 

• Route (r = 1): 0 → 2 → 1 → 0 
𝐷𝐷𝐷𝐷01  = 0, 𝐷𝐷𝐷𝐷21 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷11 = 𝐷𝐷𝐷𝐷21 + 𝑑𝑑𝑑𝑑1 =  35, 
𝑅𝑅𝑅𝑅01 =  0 , 𝑅𝑅𝑅𝑅21 =  𝑅𝑅𝑅𝑅01 +  𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐02 =  0, 𝑅𝑅𝑅𝑅11 =  𝑅𝑅𝑅𝑅21 + 𝐷𝐷𝐷𝐷11 ⋅
𝑐𝑐𝑐𝑐21 = 20,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 125 <  𝑇𝑇𝑇𝑇 =  160.  

• Route (𝑒𝑒𝑒𝑒 =  2): 0 → 3 → 0 
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160. 
Solution 2: 

• Route (r = 1): 0 → 1 → 0 
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25, 
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.     

• Route (r = 2): 0 → 2 → 3 → 0 
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷22 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷32 = 𝐷𝐷𝐷𝐷22 + 𝑑𝑑𝑑𝑑3 = 30, 
𝑅𝑅𝑅𝑅02 = 0,𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷22 ⋅
𝑐𝑐𝑐𝑐23 = 20,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2  = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷31 ⋅ 𝑐𝑐𝑐𝑐30  =  110 <  𝑇𝑇𝑇𝑇 =  160  
Solution 3: 

• Route (r = 1): 0 → 1 → 0 
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11  =  𝑑𝑑𝑑𝑑1 = 25, 
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160. 

• Route (r = 2): 0 → 3 → 2 → 0 
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 𝐷𝐷𝐷𝐷22 = 𝐷𝐷𝐷𝐷32 + 𝑑𝑑𝑑𝑑2 = 30, 
𝑅𝑅𝑅𝑅02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0 , 𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅
𝑐𝑐𝑐𝑐32 = 40,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷21 ⋅ 𝑐𝑐𝑐𝑐20 = 160 ≤ 𝑇𝑇𝑇𝑇 = 160. 
Let us note that all three previous solutions are 
feasible and have the same value of the objective 
function: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  15. 

Therefore, according to the model from [19], all 
three noted above solutions have the same quality. 
However, from the safety point of view, Solution 3 
is the worst since the global risks on the two routes 
are 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 75 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 160. Preferably, a good 
model should differentiate the values of the 
objective function of solutions with the same total 
travel distance and different risk values. 
Let us demonstrate the same example in 
combination to the newly presented model 
FRCTVRP. All the constraints remain the same, so 
we will discuss the same feasible solutions. The 
objective function stays the same in the case of the 
''star'' solution, due to the definition of the function 
𝐹𝐹𝐹𝐹  and the parameter 𝑜𝑜𝑜𝑜 . Moreover, let us calculate 
the values of the objective function for the three 
solutions. Again, all three solutions have two routes 
each. 
Solution 1: Two routes 0 → 2 → 1 → 0  and 0 →
3 → 0 lead to the following value of the objective 
function: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  16.765. 

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235. 

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19. 

Route (r = 2): 0→3→0 
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160. 
Solution 2: 

• Route (r = 1): 0 → 1 → 0 
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25, 
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.     

(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235. 

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19. 

Solution 2:
Route (r = 1): ): 0→1→0

𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160. 
Solution 2: 

• Route (r = 1): 0 → 1 → 0 
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25, 
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.     

(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235. 

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19. 

Figure 3
An example with an undirected graph with weighted edges 
representing the distance between nodes. Three customers 
denoted by numbers 1, 2 and 3 depicted as blue nodes, with 
their demands written in green. Depot is the node 0
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example is considered in both models, RCTVRP and 
FRCTVRP.

Figure 3
An example with an undirected graph with weighted 
edges representing the distance between nodes. Three 
customers denoted by numbers 1, 2 and 3 depicted as blue 
nodes, with their demands written in green. Depot is the 
node 0.

Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three customers 
within one route, due to risk constraint. The solution with 
three routes (each customer is visited by its own vehicle) 
is feasible, but the objective function reaches its maximal 
possible value. Thus, we present more detailed 
calculations for the other three feasible solutions (all three 
with two routes each).
Solution 1:

• Route (r = 1): 0 → 2 → 1 → 0
𝐷𝐷𝐷𝐷01  = 0, 𝐷𝐷𝐷𝐷21 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷11 = 𝐷𝐷𝐷𝐷21 + 𝑑𝑑𝑑𝑑1 =  35,
𝑅𝑅𝑅𝑅01 =  0 , 𝑅𝑅𝑅𝑅21 =  𝑅𝑅𝑅𝑅01 +  𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐02 =  0 , 𝑅𝑅𝑅𝑅11 =  𝑅𝑅𝑅𝑅21 + 𝐷𝐷𝐷𝐷11 ⋅
𝑐𝑐𝑐𝑐21 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 125 <  𝑇𝑇𝑇𝑇 =  160.

• Route (𝑒𝑒𝑒𝑒 =  2): 0 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20,
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160.
Solution 2:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 2 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷22 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷32 = 𝐷𝐷𝐷𝐷22 + 𝑑𝑑𝑑𝑑3 = 30,
𝑅𝑅𝑅𝑅02 = 0,𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷22 ⋅
𝑐𝑐𝑐𝑐23 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2  = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷31 ⋅ 𝑐𝑐𝑐𝑐30  =  110 <  𝑇𝑇𝑇𝑇 =  160
Solution 3:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11  =  𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 3 → 2 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 𝐷𝐷𝐷𝐷22 = 𝐷𝐷𝐷𝐷32 + 𝑑𝑑𝑑𝑑2 = 30,
𝑅𝑅𝑅𝑅02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0 , 𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅
𝑐𝑐𝑐𝑐32 = 40,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷21 ⋅ 𝑐𝑐𝑐𝑐20 = 160 ≤ 𝑇𝑇𝑇𝑇 = 160.
Let us note that all three previous solutions are 
feasible and have the same value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  15. 

Therefore, according to the model from [19], all 
three noted above solutions have the same quality. 
However, from the safety point of view, Solution 3
is the worst since the global risks on the two routes 
are 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 75 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 160. Preferably, a good 
model should differentiate the values of the 
objective function of solutions with the same total 
travel distance and different risk values.
Let us demonstrate the same example in 
combination to the newly presented model 
FRCTVRP. All the constraints remain the same, so 
we will discuss the same feasible solutions. The 
objective function stays the same in the case of the 
''star'' solution, due to the definition of the function 
𝐹𝐹𝐹𝐹 and the parameter 𝑜𝑜𝑜𝑜 . Moreover, let us calculate 
the values of the objective function for the three 
solutions. Again, all three solutions have two routes 
each.
Solution 1: Two routes 0 → 2 → 1 → 0 and 0 →
3 → 0 lead to the following value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  16.765. 

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235.

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19.

𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160. 
Solution 2: 

• Route (r = 1): 0 → 1 → 0 
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25, 
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.     

(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235. 

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19. 

Route (r = 2): ): 0→2→3→0

7  

example is considered in both models, RCTVRP and 
FRCTVRP. 

Figure 3 
An example with an undirected graph with weighted 
edges representing the distance between nodes. Three 
customers denoted by numbers 1, 2 and 3 depicted as blue 
nodes, with their demands written in green. Depot is the 
node 0. 

 
Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three customers 
within one route, due to risk constraint. The solution with 
three routes (each customer is visited by its own vehicle) 
is feasible, but the objective function reaches its maximal 
possible value. Thus, we present more detailed 
calculations for the other three feasible solutions (all three 
with two routes each). 
Solution 1: 

• Route (r = 1): 0 → 2 → 1 → 0 
𝐷𝐷𝐷𝐷01  = 0, 𝐷𝐷𝐷𝐷21 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷11 = 𝐷𝐷𝐷𝐷21 + 𝑑𝑑𝑑𝑑1 =  35, 
𝑅𝑅𝑅𝑅01 =  0 , 𝑅𝑅𝑅𝑅21 =  𝑅𝑅𝑅𝑅01 +  𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐02 =  0 , 𝑅𝑅𝑅𝑅11 =  𝑅𝑅𝑅𝑅21 + 𝐷𝐷𝐷𝐷11 ⋅
𝑐𝑐𝑐𝑐21 = 20,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 125 <  𝑇𝑇𝑇𝑇 =  160.  

• Route (𝑒𝑒𝑒𝑒 =  2): 0 → 3 → 0 
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160. 
Solution 2: 

• Route (r = 1): 0 → 1 → 0 
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25, 
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.     

• Route (r = 2): 0 → 2 → 3 → 0 
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷22 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷32 = 𝐷𝐷𝐷𝐷22 + 𝑑𝑑𝑑𝑑3 = 30, 
𝑅𝑅𝑅𝑅02 = 0,𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷22 ⋅
𝑐𝑐𝑐𝑐23 = 20,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2  = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷31 ⋅ 𝑐𝑐𝑐𝑐30  =  110 <  𝑇𝑇𝑇𝑇 =  160  
Solution 3: 

• Route (r = 1): 0 → 1 → 0 
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11  =  𝑑𝑑𝑑𝑑1 = 25, 
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160. 

• Route (r = 2): 0 → 3 → 2 → 0 
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 𝐷𝐷𝐷𝐷22 = 𝐷𝐷𝐷𝐷32 + 𝑑𝑑𝑑𝑑2 = 30, 
𝑅𝑅𝑅𝑅02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0 , 𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅
𝑐𝑐𝑐𝑐32 = 40,  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷21 ⋅ 𝑐𝑐𝑐𝑐20 = 160 ≤ 𝑇𝑇𝑇𝑇 = 160. 
Let us note that all three previous solutions are 
feasible and have the same value of the objective 
function: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  15. 

Therefore, according to the model from [19], all 
three noted above solutions have the same quality. 
However, from the safety point of view, Solution 3 
is the worst since the global risks on the two routes 
are 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 75 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 160. Preferably, a good 
model should differentiate the values of the 
objective function of solutions with the same total 
travel distance and different risk values. 
Let us demonstrate the same example in 
combination to the newly presented model 
FRCTVRP. All the constraints remain the same, so 
we will discuss the same feasible solutions. The 
objective function stays the same in the case of the 
''star'' solution, due to the definition of the function 
𝐹𝐹𝐹𝐹  and the parameter 𝑜𝑜𝑜𝑜 . Moreover, let us calculate 
the values of the objective function for the three 
solutions. Again, all three solutions have two routes 
each. 
Solution 1: Two routes 0 → 2 → 1 → 0  and 0 →
3 → 0 lead to the following value of the objective 
function: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  16.765. 

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235. 

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows: 

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19. 

Solution 3:
Route (r = 1): 0→1→0

7 

example is considered in both models, RCTVRP and 
FRCTVRP.

Figure 3
An example with an undirected graph with weighted 
edges representing the distance between nodes. Three 
customers denoted by numbers 1, 2 and 3 depicted as blue 
nodes, with their demands written in green. Depot is the 
node 0.

Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three customers 
within one route, due to risk constraint. The solution with 
three routes (each customer is visited by its own vehicle) 
is feasible, but the objective function reaches its maximal 
possible value. Thus, we present more detailed 
calculations for the other three feasible solutions (all three 
with two routes each).
Solution 1:

• Route (r = 1): 0 → 2 → 1 → 0
𝐷𝐷𝐷𝐷01  = 0, 𝐷𝐷𝐷𝐷21 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷11 = 𝐷𝐷𝐷𝐷21 + 𝑑𝑑𝑑𝑑1 =  35,
𝑅𝑅𝑅𝑅01 =  0 , 𝑅𝑅𝑅𝑅21 =  𝑅𝑅𝑅𝑅01 +  𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐02 =  0 , 𝑅𝑅𝑅𝑅11 =  𝑅𝑅𝑅𝑅21 + 𝐷𝐷𝐷𝐷11 ⋅
𝑐𝑐𝑐𝑐21 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 125 <  𝑇𝑇𝑇𝑇 =  160.

• Route (𝑒𝑒𝑒𝑒 =  2): 0 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20,
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160.
Solution 2:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 2 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷22 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷32 = 𝐷𝐷𝐷𝐷22 + 𝑑𝑑𝑑𝑑3 = 30,
𝑅𝑅𝑅𝑅02 = 0,𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷22 ⋅
𝑐𝑐𝑐𝑐23 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2  = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷31 ⋅ 𝑐𝑐𝑐𝑐30  =  110 <  𝑇𝑇𝑇𝑇 =  160
Solution 3:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11  =  𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 3 → 2 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 𝐷𝐷𝐷𝐷22 = 𝐷𝐷𝐷𝐷32 + 𝑑𝑑𝑑𝑑2 = 30,
𝑅𝑅𝑅𝑅02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0 , 𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅
𝑐𝑐𝑐𝑐32 = 40,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷21 ⋅ 𝑐𝑐𝑐𝑐20 = 160 ≤ 𝑇𝑇𝑇𝑇 = 160.
Let us note that all three previous solutions are 
feasible and have the same value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  15. 

Therefore, according to the model from [19], all 
three noted above solutions have the same quality. 
However, from the safety point of view, Solution 3
is the worst since the global risks on the two routes 
are 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 75 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 160. Preferably, a good 
model should differentiate the values of the 
objective function of solutions with the same total 
travel distance and different risk values.
Let us demonstrate the same example in 
combination to the newly presented model 
FRCTVRP. All the constraints remain the same, so 
we will discuss the same feasible solutions. The 
objective function stays the same in the case of the 
''star'' solution, due to the definition of the function 
𝐹𝐹𝐹𝐹 and the parameter 𝑜𝑜𝑜𝑜 . Moreover, let us calculate 
the values of the objective function for the three 
solutions. Again, all three solutions have two routes 
each.
Solution 1: Two routes 0 → 2 → 1 → 0 and 0 →
3 → 0 lead to the following value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  16.765. 

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235.

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19.

Route (r = 2): 0→3→2→0

7 

example is considered in both models, RCTVRP and 
FRCTVRP.

Figure 3
An example with an undirected graph with weighted 
edges representing the distance between nodes. Three 
customers denoted by numbers 1, 2 and 3 depicted as blue 
nodes, with their demands written in green. Depot is the 
node 0.

Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three customers 
within one route, due to risk constraint. The solution with 
three routes (each customer is visited by its own vehicle) 
is feasible, but the objective function reaches its maximal 
possible value. Thus, we present more detailed 
calculations for the other three feasible solutions (all three 
with two routes each).
Solution 1:

• Route (r = 1): 0 → 2 → 1 → 0
𝐷𝐷𝐷𝐷01  = 0, 𝐷𝐷𝐷𝐷21 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷11 = 𝐷𝐷𝐷𝐷21 + 𝑑𝑑𝑑𝑑1 =  35,
𝑅𝑅𝑅𝑅01 =  0 , 𝑅𝑅𝑅𝑅21 =  𝑅𝑅𝑅𝑅01 +  𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐02 =  0 , 𝑅𝑅𝑅𝑅11 =  𝑅𝑅𝑅𝑅21 + 𝐷𝐷𝐷𝐷11 ⋅
𝑐𝑐𝑐𝑐21 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 125 <  𝑇𝑇𝑇𝑇 =  160.

• Route (𝑒𝑒𝑒𝑒 =  2): 0 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20,
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160.
Solution 2:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 2 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷22 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷32 = 𝐷𝐷𝐷𝐷22 + 𝑑𝑑𝑑𝑑3 = 30,
𝑅𝑅𝑅𝑅02 = 0,𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷22 ⋅
𝑐𝑐𝑐𝑐23 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2  = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷31 ⋅ 𝑐𝑐𝑐𝑐30  =  110 <  𝑇𝑇𝑇𝑇 =  160
Solution 3:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11  =  𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 3 → 2 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 𝐷𝐷𝐷𝐷22 = 𝐷𝐷𝐷𝐷32 + 𝑑𝑑𝑑𝑑2 = 30,
𝑅𝑅𝑅𝑅02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0 , 𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅
𝑐𝑐𝑐𝑐32 = 40,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷21 ⋅ 𝑐𝑐𝑐𝑐20 = 160 ≤ 𝑇𝑇𝑇𝑇 = 160.
Let us note that all three previous solutions are 
feasible and have the same value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  15. 

Therefore, according to the model from [19], all 
three noted above solutions have the same quality. 
However, from the safety point of view, Solution 3
is the worst since the global risks on the two routes 
are 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 75 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 160. Preferably, a good 
model should differentiate the values of the 
objective function of solutions with the same total 
travel distance and different risk values.
Let us demonstrate the same example in 
combination to the newly presented model 
FRCTVRP. All the constraints remain the same, so 
we will discuss the same feasible solutions. The 
objective function stays the same in the case of the 
''star'' solution, due to the definition of the function 
𝐹𝐹𝐹𝐹 and the parameter 𝑜𝑜𝑜𝑜 . Moreover, let us calculate 
the values of the objective function for the three 
solutions. Again, all three solutions have two routes 
each.
Solution 1: Two routes 0 → 2 → 1 → 0 and 0 →
3 → 0 lead to the following value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  16.765. 

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235.

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19.

Let us note that all three previous solutions are feasi-
ble and have the same value of the objective function:

7 

example is considered in both models, RCTVRP and 
FRCTVRP.

Figure 3
An example with an undirected graph with weighted 
edges representing the distance between nodes. Three 
customers denoted by numbers 1, 2 and 3 depicted as blue 
nodes, with their demands written in green. Depot is the 
node 0.

Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three customers 
within one route, due to risk constraint. The solution with 
three routes (each customer is visited by its own vehicle) 
is feasible, but the objective function reaches its maximal 
possible value. Thus, we present more detailed 
calculations for the other three feasible solutions (all three 
with two routes each).
Solution 1:

• Route (r = 1): 0 → 2 → 1 → 0
𝐷𝐷𝐷𝐷01  = 0, 𝐷𝐷𝐷𝐷21 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷11 = 𝐷𝐷𝐷𝐷21 + 𝑑𝑑𝑑𝑑1 =  35,
𝑅𝑅𝑅𝑅01 =  0 , 𝑅𝑅𝑅𝑅21 =  𝑅𝑅𝑅𝑅01 +  𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐02 =  0 , 𝑅𝑅𝑅𝑅11 =  𝑅𝑅𝑅𝑅21 + 𝐷𝐷𝐷𝐷11 ⋅
𝑐𝑐𝑐𝑐21 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 125 <  𝑇𝑇𝑇𝑇 =  160.

• Route (𝑒𝑒𝑒𝑒 =  2): 0 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20,
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160.
Solution 2:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 2 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷22 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷32 = 𝐷𝐷𝐷𝐷22 + 𝑑𝑑𝑑𝑑3 = 30,
𝑅𝑅𝑅𝑅02 = 0,𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷22 ⋅
𝑐𝑐𝑐𝑐23 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2  = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷31 ⋅ 𝑐𝑐𝑐𝑐30  =  110 <  𝑇𝑇𝑇𝑇 =  160
Solution 3:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11  =  𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 3 → 2 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 𝐷𝐷𝐷𝐷22 = 𝐷𝐷𝐷𝐷32 + 𝑑𝑑𝑑𝑑2 = 30,
𝑅𝑅𝑅𝑅02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0 , 𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅
𝑐𝑐𝑐𝑐32 = 40,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷21 ⋅ 𝑐𝑐𝑐𝑐20 = 160 ≤ 𝑇𝑇𝑇𝑇 = 160.
Let us note that all three previous solutions are 
feasible and have the same value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  15. 

Therefore, according to the model from [19], all 
three noted above solutions have the same quality. 
However, from the safety point of view, Solution 3
is the worst since the global risks on the two routes 
are 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 75 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 160. Preferably, a good 
model should differentiate the values of the 
objective function of solutions with the same total 
travel distance and different risk values.
Let us demonstrate the same example in 
combination to the newly presented model 
FRCTVRP. All the constraints remain the same, so 
we will discuss the same feasible solutions. The 
objective function stays the same in the case of the 
''star'' solution, due to the definition of the function 
𝐹𝐹𝐹𝐹 and the parameter 𝑜𝑜𝑜𝑜 . Moreover, let us calculate 
the values of the objective function for the three 
solutions. Again, all three solutions have two routes 
each.
Solution 1: Two routes 0 → 2 → 1 → 0 and 0 →
3 → 0 lead to the following value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  16.765. 

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235.

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19.

Therefore, according to the model from [19], all three 
noted above solutions have the same quality. How-
ever, from the safety point of view, Solution 3 is the 
worst since the global risks on the two routes are  
𝐺𝑅1= 75 and 𝐺𝑅2=160. Preferably, a good model should 
differentiate the values of the objective function of 
solutions with the same total travel distance and dif-
ferent risk values.
Let us demonstrate the same example in combination 
to the newly presented model FRCTVRP. All the con-
straints remain the same, so we will discuss the same 
feasible solutions. The objective function stays the 
same in the case of the ''star'' solution, due to the defi-
nition of the function F and the parameter t. More-
over, let us calculate the values of the objective func-
tion for the three solutions. Again, all three solutions 
have two routes each.
Solution 1: Two routes 0→2→1→0 and 0→3→0 lead 
to the following value of the objective function:
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7 

example is considered in both models, RCTVRP and 
FRCTVRP.

Figure 3
An example with an undirected graph with weighted 
edges representing the distance between nodes. Three 
customers denoted by numbers 1, 2 and 3 depicted as blue 
nodes, with their demands written in green. Depot is the 
node 0.

Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three customers 
within one route, due to risk constraint. The solution with 
three routes (each customer is visited by its own vehicle) 
is feasible, but the objective function reaches its maximal 
possible value. Thus, we present more detailed 
calculations for the other three feasible solutions (all three 
with two routes each).
Solution 1:

• Route (r = 1): 0 → 2 → 1 → 0
𝐷𝐷𝐷𝐷01  = 0, 𝐷𝐷𝐷𝐷21 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷11 = 𝐷𝐷𝐷𝐷21 + 𝑑𝑑𝑑𝑑1 =  35,
𝑅𝑅𝑅𝑅01 =  0 , 𝑅𝑅𝑅𝑅21 =  𝑅𝑅𝑅𝑅01 +  𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐02 =  0 , 𝑅𝑅𝑅𝑅11 =  𝑅𝑅𝑅𝑅21 + 𝐷𝐷𝐷𝐷11 ⋅
𝑐𝑐𝑐𝑐21 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 125 <  𝑇𝑇𝑇𝑇 =  160.

• Route (𝑒𝑒𝑒𝑒 =  2): 0 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20,
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160.
Solution 2:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 2 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷22 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷32 = 𝐷𝐷𝐷𝐷22 + 𝑑𝑑𝑑𝑑3 = 30,
𝑅𝑅𝑅𝑅02 = 0,𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷22 ⋅
𝑐𝑐𝑐𝑐23 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2  = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷31 ⋅ 𝑐𝑐𝑐𝑐30  =  110 <  𝑇𝑇𝑇𝑇 =  160
Solution 3:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11  =  𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 3 → 2 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 𝐷𝐷𝐷𝐷22 = 𝐷𝐷𝐷𝐷32 + 𝑑𝑑𝑑𝑑2 = 30,
𝑅𝑅𝑅𝑅02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0 , 𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅
𝑐𝑐𝑐𝑐32 = 40,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷21 ⋅ 𝑐𝑐𝑐𝑐20 = 160 ≤ 𝑇𝑇𝑇𝑇 = 160.
Let us note that all three previous solutions are 
feasible and have the same value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  15. 

Therefore, according to the model from [19], all 
three noted above solutions have the same quality. 
However, from the safety point of view, Solution 3
is the worst since the global risks on the two routes 
are 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 75 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 160. Preferably, a good 
model should differentiate the values of the 
objective function of solutions with the same total 
travel distance and different risk values.
Let us demonstrate the same example in 
combination to the newly presented model 
FRCTVRP. All the constraints remain the same, so 
we will discuss the same feasible solutions. The 
objective function stays the same in the case of the 
''star'' solution, due to the definition of the function 
𝐹𝐹𝐹𝐹 and the parameter 𝑜𝑜𝑜𝑜 . Moreover, let us calculate 
the values of the objective function for the three 
solutions. Again, all three solutions have two routes 
each.
Solution 1: Two routes 0 → 2 → 1 → 0 and 0 →
3 → 0 lead to the following value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  16.765. 

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235.

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19.

Solution 2: For two routes 0→1→0 and 0→2→3→0, 
we obtain:
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FRCTVRP.

Figure 3
An example with an undirected graph with weighted 
edges representing the distance between nodes. Three 
customers denoted by numbers 1, 2 and 3 depicted as blue 
nodes, with their demands written in green. Depot is the 
node 0.

Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three customers 
within one route, due to risk constraint. The solution with 
three routes (each customer is visited by its own vehicle) 
is feasible, but the objective function reaches its maximal 
possible value. Thus, we present more detailed 
calculations for the other three feasible solutions (all three 
with two routes each).
Solution 1:

• Route (r = 1): 0 → 2 → 1 → 0
𝐷𝐷𝐷𝐷01  = 0, 𝐷𝐷𝐷𝐷21 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷11 = 𝐷𝐷𝐷𝐷21 + 𝑑𝑑𝑑𝑑1 =  35,
𝑅𝑅𝑅𝑅01 =  0 , 𝑅𝑅𝑅𝑅21 =  𝑅𝑅𝑅𝑅01 +  𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐02 =  0 , 𝑅𝑅𝑅𝑅11 =  𝑅𝑅𝑅𝑅21 + 𝐷𝐷𝐷𝐷11 ⋅
𝑐𝑐𝑐𝑐21 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 125 <  𝑇𝑇𝑇𝑇 =  160.

• Route (𝑒𝑒𝑒𝑒 =  2): 0 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20,
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160.
Solution 2:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 2 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷22 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷32 = 𝐷𝐷𝐷𝐷22 + 𝑑𝑑𝑑𝑑3 = 30,
𝑅𝑅𝑅𝑅02 = 0,𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷22 ⋅
𝑐𝑐𝑐𝑐23 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2  = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷31 ⋅ 𝑐𝑐𝑐𝑐30  =  110 <  𝑇𝑇𝑇𝑇 =  160
Solution 3:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11  =  𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 3 → 2 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 𝐷𝐷𝐷𝐷22 = 𝐷𝐷𝐷𝐷32 + 𝑑𝑑𝑑𝑑2 = 30,
𝑅𝑅𝑅𝑅02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0 , 𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅
𝑐𝑐𝑐𝑐32 = 40,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷21 ⋅ 𝑐𝑐𝑐𝑐20 = 160 ≤ 𝑇𝑇𝑇𝑇 = 160.
Let us note that all three previous solutions are 
feasible and have the same value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  15. 

Therefore, according to the model from [19], all 
three noted above solutions have the same quality. 
However, from the safety point of view, Solution 3
is the worst since the global risks on the two routes 
are 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 75 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 160. Preferably, a good 
model should differentiate the values of the 
objective function of solutions with the same total 
travel distance and different risk values.
Let us demonstrate the same example in 
combination to the newly presented model 
FRCTVRP. All the constraints remain the same, so 
we will discuss the same feasible solutions. The 
objective function stays the same in the case of the 
''star'' solution, due to the definition of the function 
𝐹𝐹𝐹𝐹 and the parameter 𝑜𝑜𝑜𝑜 . Moreover, let us calculate 
the values of the objective function for the three 
solutions. Again, all three solutions have two routes 
each.
Solution 1: Two routes 0 → 2 → 1 → 0 and 0 →
3 → 0 lead to the following value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  16.765. 

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235.

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19.

Solution 3: The calculation for the two routes 
0→1→0 and 0→3→2→0 is as follows
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example is considered in both models, RCTVRP and 
FRCTVRP.

Figure 3
An example with an undirected graph with weighted 
edges representing the distance between nodes. Three 
customers denoted by numbers 1, 2 and 3 depicted as blue 
nodes, with their demands written in green. Depot is the 
node 0.

Firstly, the RCTVRP model is considered. It is easy to 
calculate that it is not possible to visit all three customers 
within one route, due to risk constraint. The solution with 
three routes (each customer is visited by its own vehicle) 
is feasible, but the objective function reaches its maximal 
possible value. Thus, we present more detailed 
calculations for the other three feasible solutions (all three 
with two routes each).
Solution 1:

• Route (r = 1): 0 → 2 → 1 → 0
𝐷𝐷𝐷𝐷01  = 0, 𝐷𝐷𝐷𝐷21 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷11 = 𝐷𝐷𝐷𝐷21 + 𝑑𝑑𝑑𝑑1 =  35,
𝑅𝑅𝑅𝑅01 =  0 , 𝑅𝑅𝑅𝑅21 =  𝑅𝑅𝑅𝑅01 +  𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐02 =  0 , 𝑅𝑅𝑅𝑅11 =  𝑅𝑅𝑅𝑅21 + 𝐷𝐷𝐷𝐷11 ⋅
𝑐𝑐𝑐𝑐21 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 125 <  𝑇𝑇𝑇𝑇 =  160.

• Route (𝑒𝑒𝑒𝑒 =  2): 0 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20,
𝑅𝑅𝑅𝑅02 = 0, 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅ 𝑐𝑐𝑐𝑐30 = 60 < 𝑇𝑇𝑇𝑇 = 160.
Solution 2:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11 = 𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 2 → 3 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷22 = 𝑑𝑑𝑑𝑑2 = 10, 𝐷𝐷𝐷𝐷32 = 𝐷𝐷𝐷𝐷22 + 𝑑𝑑𝑑𝑑3 = 30,
𝑅𝑅𝑅𝑅02 = 0,𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷22 ⋅
𝑐𝑐𝑐𝑐23 = 20,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2  = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷31 ⋅ 𝑐𝑐𝑐𝑐30  =  110 <  𝑇𝑇𝑇𝑇 =  160
Solution 3:

• Route (r = 1): 0 → 1 → 0
𝐷𝐷𝐷𝐷01 = 0, 𝐷𝐷𝐷𝐷11  =  𝑑𝑑𝑑𝑑1 = 25,
𝑅𝑅𝑅𝑅01 = 0,𝑅𝑅𝑅𝑅11 = 𝑅𝑅𝑅𝑅01 + 𝐷𝐷𝐷𝐷01 ⋅ 𝑐𝑐𝑐𝑐01 = 0,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅11 + 𝐷𝐷𝐷𝐷11 ⋅ 𝑐𝑐𝑐𝑐10 = 75 < 𝑇𝑇𝑇𝑇 = 160.

• Route (r = 2): 0 → 3 → 2 → 0
𝐷𝐷𝐷𝐷02 = 0, 𝐷𝐷𝐷𝐷32 = 𝑑𝑑𝑑𝑑3 = 20, 𝐷𝐷𝐷𝐷22 = 𝐷𝐷𝐷𝐷32 + 𝑑𝑑𝑑𝑑2 = 30,
𝑅𝑅𝑅𝑅02 = 0 , 𝑅𝑅𝑅𝑅32 = 𝑅𝑅𝑅𝑅02 + 𝐷𝐷𝐷𝐷02 ⋅ 𝑐𝑐𝑐𝑐03 = 0 , 𝑅𝑅𝑅𝑅22 = 𝑅𝑅𝑅𝑅32 + 𝐷𝐷𝐷𝐷32 ⋅
𝑐𝑐𝑐𝑐32 = 40,
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅22 + 𝐷𝐷𝐷𝐷21 ⋅ 𝑐𝑐𝑐𝑐20 = 160 ≤ 𝑇𝑇𝑇𝑇 = 160.
Let us note that all three previous solutions are 
feasible and have the same value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  15. 

Therefore, according to the model from [19], all 
three noted above solutions have the same quality. 
However, from the safety point of view, Solution 3
is the worst since the global risks on the two routes 
are 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅1 = 75 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅2 = 160. Preferably, a good 
model should differentiate the values of the 
objective function of solutions with the same total 
travel distance and different risk values.
Let us demonstrate the same example in 
combination to the newly presented model 
FRCTVRP. All the constraints remain the same, so 
we will discuss the same feasible solutions. The 
objective function stays the same in the case of the 
''star'' solution, due to the definition of the function 
𝐹𝐹𝐹𝐹 and the parameter 𝑜𝑜𝑜𝑜 . Moreover, let us calculate 
the values of the objective function for the three 
solutions. Again, all three solutions have two routes 
each.
Solution 1: Two routes 0 → 2 → 1 → 0 and 0 →
3 → 0 lead to the following value of the objective 
function:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

   =  16.765. 

Solution 2: For two routes 0 → 1 → 0 and 0 → 2 →
3 → 0, we obtain:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 16.235.

Solution 3: The calculation for the two routes 0 →
1 → 0 and 0 → 3 → 2 → 0 is as follows:

� � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟 𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑟𝑟𝑟𝑟)
(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟∈𝑁𝑁𝑁𝑁

= 19.

Our example demonstrates that the presented FRCT-
VRP model leads to preferring solutions with less 
risky routes. When using the RCTVRP model, there 
are three solutions presented that have the same 
value of the objective function. Now, when using the 
FRCTVRP model, the same three solutions have three 
different values of the objective function. The second 
solution is the best, since it is slightly better than the 
first one. The solution number three has the largest 
value of the objective function among the three inter-
esting solutions, which is expected due riskier routes 
used in the solution. 
Note that the newly presented model FRCTVRP in-
corporates the possibility of a vehicle being robbed 
along each route, as well as keeping the good charac-
teristic of the previous model to limit the risk on each 
route in a solution.

6. Computational Results 
The example in the previous section showed how 
the proposed fuzzy model prefers solutions with less 
risky routes among the solutions with the same over-
all travel cost. Larger instances bring more possibil-
ities and comparison between fuzzy and non-fuzzy 
version of the problem becomes more interesting. 
Thus, comparison tests are performed by using op-
timization package CPLEX 12.6. The classical RCT-
VRP model from [19] is compared with the proposed 
FRCTVRP model (15)-(29). Both models were imple-
mented in C# language, .NET framework, and run on 

an IntelCore i7-860 2.8 GHz with 8GB RAM memory 
under the Windows 7 Professional operating system.
Computational experiments were firstly performed 
on smaller instances from a data set R specially con-
structed for the RCTVRP and described in [19]. The 
data set R contains randomly generated instances for 
the RCTVRP. Basic instances with a different number 
of nodes (4, 6, and 8) are generated in such a way that 
coordinates are randomly selected from the interval 
[-20,20]. Each basic instance is combined with five 
different risk levels and four different values for the 
standard deviation of a demand vector (σd). The first 
value for the risk level is defined as RL1= max{i∈N}  
{di  ⋅cie}, while the others (RL1.5, RL2, RL2.5 and RL3) 
are generated, starting from RL1 by using an increas-
ing multiplicative factor in steps of 0.5, up to 3. The 
demand associated with each node is generated in 
such a way that the standard deviation of the demand 
σd is equal to 1, 4, 16 or 64. 
CPLEX has been used to solve considered instances to 
optimality for both models and results are presented 
in Table 1. In the first column, the instance name is giv-
en, the second column presents the objective function 
value of the optimal solutions for the RCTVRP model, 
followed by the routes of the solution (ordered list of 
nodes to be visited in each route are separated by ‘’|’’), 
while the fourth column shows the execution time in 
seconds. Moreover, the last three columns contain the 
same values for the FRCTVRP model. For example, 
the fifth row shows that, for the instance ‘’4_1_3.0’’, 
the optimal solution for the RCTVRP has the value of 
objective function equal to 286.1275 and there are two 
routes in that solution: the first route contains nodes 
3 and 1, while the second route contains only one 
node: 2. The same row shows that CPLEX achieved 
that results within 0.2 seconds, while for the solution 
for the FRCTVRP it was performed in 0.09 seconds. 
Moreover, it can be seen in the same row that for the 
FRCTVRP the optimal solution has the objective 
function value equal to 335.2504, and although the 
order of routes is not the same, these two solutions 
are, in fact, the same. It is important to note that the 
objective function is not the same and thus the two 
models cannot be compared by using these objective 
values. Therefore, we compare the results according 
to the nodes in routes, i.e. if the lists of nodes are the 
same, the results obtained for the RCRVRP and the 
FRCRVRP are considered the same. Note that these 
results have the same overall travel distance.
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Instance 
name

RCTVRP FRCTVRP

 Obj Value Nodes in routes Time[s] Obj Value Nodes in routes Time[s]

4_1_1.0 343.0474 3|1|2| 0.06 343.0474 3|2|1| 0.04

4_1_1.5 343.0474 3|1|2| 0.06 343.0474 3|2|1| 0.06

4_1_2.0 343.0474 3|1|2| 0.29 343.0474 2|3|1| 0.18

4_1_2.5 343.0474 3|1|2| 0.07 343.0474 2|3|1| 0.06

4_1_3.0 286.1275 3 -> 1|2| 0.20 331.0777 2|3 -> 1| 0.09

4_3_1.0 343.0474 3|1|2| 0.05 343.0474 3|2|1| 0.05

4_3_1.5 343.0474 3|1|2| 0.05 343.0474 3|2|1| 0.04

4_3_2.0 343.0474 3|1|2| 0.23 343.0474 2|1|3| 0.17

4_3_2.5 343.0474 3|1|2| 0.07 343.0474 2|1|3| 0.06

4_3_3.0 286.1275 3 -> 1|2| 0.30 333.2687 3 -> 1|2| 0.05

4_5_1.0 343.0474 3|1|2| 0.05 343.0474 2|1|3| 0.04

4_5_1.5 343.0474 3|1|2| 0.19 343.0474 1|3|2| 0.16

4_5_2.0 343.0474 3|1|2| 0.07 343.0474 1|3|2| 0.07

4_5_2.5 343.0474 3|1|2| 0.11 343.0474 1|3|2| 0.06

4_5_3.0 286.1275 3 -> 1|2| 0.18 327.1712 2|3 -> 1| 0.22

4_7_1.0 343.0474 3|1|2| 0.07 343.0474 3|2|1| 0.07

4_7_1.5 332.933 3|1 -> 2| 0.12 343.0474 2|1|3| 0.12

4_7_2.0 286.1275 2|1 -> 3| 0.23 331.5104 2|1 -> 3| 0.16

4_7_2.5 286.1275 2|3 -> 1| 0.06 316.4339 2|1 -> 3| 0.05

4_7_3.0 286.1275 2|3 -> 1| 0.06 308.8765 1 -> 3|2| 0.20

6_1_1.0 594.6428 1|4 -> 2|5|3| 0.74 594.6428 3|4 -> 2|1|5| 0.29

6_1_1.5 594.3352 5|4|3 -> 2|1| 0.32 594.6428 3|1|5|4 -> 2| 0.42

6_1_2.0 438.5142 2|3 -> 1|5 -> 4| 0.30 494.5922 5|3 -> 4 -> 2|1| 0.49

6_1_2.5 387.9904 3 -> 1|5 -> 4 -> 2| 0.29 459.2829 5 -> 4 -> 2|3 -> 1| 0.51

6_1_3.0 387.6828 5 -> 4|1 -> 3 -> 2| 0.22 441.4709 5 -> 4 -> 2|3 -> 1| 0.50

6_3_1.0 645.1667 3|2|4|5|1| 0.33 645.1667 3|4|5|1|2| 0.39

6_3_1.5 594.3352 4|3 -> 2|5|1| 0.39 596.3519 5|4 -> 2|3|1| 0.28

6_3_2.0 445.4363 3 -> 5|2|4 -> 1| 0.36 515.8627 1 -> 2|3 -> 4|5| 0.46

6_3_2.5 387.9904 5 -> 4 -> 2|3 -> 1| 0.17 462.7753 5 -> 4 -> 2|3 -> 1| 0.44

 Table 1 
A comparison of the RCTVRP and FRCTVRP on instances from the set R
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Instance 
name

RCTVRP FRCTVRP

 Obj Value Nodes in routes Time[s] Obj Value Nodes in routes Time[s]

6_3_3.0 387.6828 1 -> 3 -> 2|5 -> 4| 0.31 444.0907 3 -> 1|5 -> 4 -> 2| 0.45

6_5_1.0 594.6428 1|5|4 -> 2|3| 0.20 594.6428 1|3|4 -> 2|5| 0.43

6_5_1.5 594.3352 4|5|3 -> 2|1| 0.28 594.6428 4 -> 2|1|3|5| 0.47

6_5_2.0 387.9904 5 -> 4 -> 2|3 -> 1| 0.18 486.8541 5 -> 4 -> 2|3 -> 1| 0.51

6_5_2.5 387.9904 3 -> 1|5 -> 4 -> 2| 0.23 453.9269 3 -> 1|5 -> 4 -> 2| 0.51

6_5_3.0 387.6828 4 -> 5|1 -> 3 -> 2| 0.18 437.4531 5 -> 4 -> 2|3 -> 1| 0.52

6_7_1.0 534.9608 4 -> 2|5 -> 1|3| 0.27 534.9608 5 -> 1|4 -> 2|3| 0.50

6_7_1.5 445.4363 5 -> 3|2|1 -> 4| 0.20 505.5844 1 -> 2|3|5 -> 4| 0.53

6_7_2.0 362.8849 1 -> 2|5 -> 3 -> 4| 0.31 417.5379 5 -> 3 -> 4|1 -> 2| 0.47

6_7_2.5 360.6816 1|5 -> 3 -> 4 -> 2| 0.36 389.7075 1|5 -> 3 -> 4 -> 2| 0.43

6_7_3.0 358.6308 5 -> 2|1 -> 3 -> 4| 0.29 382.4555 1|5 -> 3 -> 4 -> 2| 0.31

8_1_1.0 541.5618 7|5|6 -> 1|4|3 -> 2| 4.18 584.5117 7|4|3|2 -> 5|1 -> 6| 10.15

8_1_1.5 487.5307 5|7|3 -> 2|1 -> 6 -> 4| 1.05 536.7901 5|7|1 -> 6 -> 4|3 -> 2| 3.22

8_1_2.0 431.0115 3 -> 2 -> 5|7|1 -> 6 -> 4| 0.93 472.3581 7|1 -> 6 -> 4|3 -> 2 -> 5| 1.93

8_1_2.5 416.9024 2 -> 5|4 -> 6 -> 1|7 -> 3| 1.35 458.5821 3 -> 2 -> 5|7|1 -> 6 -> 4| 2.84

8_1_3.0 379.6434 5 -> 1 -> 6 -> 4|7 -> 3 -> 2| 2.58 427.3815 1 -> 6 -> 4|5|7 -> 3 -> 2| 2.21

8_3_1.0 658.3218 5|3|2|6 -> 4|1|7| 2.72 658.3218 7|3|6 -> 4|5|1|2| 2.87

8_3_1.5 487.5307 1 -> 6 -> 4|7|5|3 -> 2| 1.04 540.3774 5|1 -> 6 -> 4|7|3 -> 2| 8.28

8_3_2.0 431.0115 7|1 -> 6 -> 4|3 -> 2 -> 5| 0.79 474.4815 1 -> 6 -> 4|3 -> 2 -> 5|7| 2.83

8_3_2.5 416.9024 2 -> 5|4 -> 6 -> 1|7 -> 3| 3.52 459.9981 1 -> 6 -> 4|7|3 -> 2 -> 5| 2.93

8_3_3.0 384.2311 5|4 -> 6 -> 1|7 -> 3 -> 2| 0.75 428.2584 5|1 -> 6 -> 4|7 -> 3 -> 2| 2.63

8_5_1.0 574.233 4|7|2 -> 5|1 -> 6|3| 1.12 574.233 7|3|4|1 -> 6|2 -> 5| 2.47

8_5_1.5 487.5307 1 -> 6 -> 4|7|5|3 -> 2| 0.89 531.5638 1 -> 6 -> 4|5|7|3 -> 2| 9.03

8_5_2.0 431.0115 4 -> 6 -> 1|7|3 -> 2 -> 5| 1.21 469.6237 3 -> 2 -> 5|7|1 -> 6 -> 4| 2.68

8_5_2.5 416.9024 7 -> 3|5 -> 2|1 -> 6 -> 4| 1.23 456.7588 7|3 -> 2 -> 5|1 -> 6 -> 4| 2.78

8_5_3.0 379.6434 5 -> 1 -> 6 -> 4|7 -> 3 -> 2| 1.04 426.5219 5|7 -> 3 -> 2|1 -> 6 -> 4| 2.71

8_7_1.0 485.0425 3 -> 2 -> 5|4|7|1 -> 6| 1.07 485.0425 6 -> 1|4|7|3 -> 2 -> 5| 1.90

8_7_1.5 416.9024 2 -> 5|1 -> 6 -> 4|7 -> 3| 0.82 442.2885 7|3 -> 2 -> 5|1 -> 6 -> 4| 2.24

8_7_2.0 384.2311 7 -> 3 -> 2|5|4 -> 6 -> 1| 0.64 433.0913 7 -> 3 -> 2|5|1 -> 6 -> 4| 2.50

8_7_2.5 327.7119 1 -> 6 -> 4|7 -> 3 -> 2 -> 5| 0.36 368.4427 7 -> 3 -> 2 -> 5|1 -> 6 -> 4| 1.23

8_7_3.0 327.7119 7 -> 3 -> 2 -> 5|4 -> 6 -> 1| 0.47 358.2634 1 -> 6 -> 4|7 -> 3 -> 2 -> 5| 1.87

Table 1 (conntinued)
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4_7_1.5 19995 332.93 13262.20 19561.70       343.05 6785.72 4408.22 13262.20    

4_7_2.5 33325 286.13 28548.90 6785.72       286.13 23119.30 6785.72      

4_7_3.0 39990 286.13 28548.90 6785.72       286.13 23119.30 6785.72      

6_1_1.5 18720 594.34 8513.76 8483.65 15870.80 9148.45   594.64 12464.40 9148.45 8513.76 11929.30  

6_1_2.0 24960 438.51 3355.24 24817.40 22184.10     463.23 9148.45 8513.76 24500.10    

6_1_3.0 37440 387.68 35123.70 22184.10       387.99 24817.40 25720.90      

6_3_1.5 17856 594.34 8812.47 15318.80 8186.31 8938.95   594.64 8186.31 12287.30 11889.10 8938.95  

6_3_2.0 23808 445.44 23601.00 3380.85 23445.00     465.43 8186.31 20716.10 12691.60    

6_3_3.0 35712 387.68 34130.80 21986.00       387.99 23884.80 25548.40      

6_5_1.5 19584 594.34 8417.89 17268.10 7727.87 9707.14   594.64 13039.70 12682.50 7727.87 9707.14  

6_5_3.0 39168 387.68 20853.70 37696.70       387.99 25201.00 26099.30      

6_7_1.5 22752 445.44 19944.80 5148.11 22241.70     445.44 21671.50 5148.11 22241.70    

6_7_3.0 45504 358.63 7523.10 43318.00       360.68 9707.14 33090.50      

8_1_1.0 14738 541.56 11782.00 4321.40 14565.30 3837.09 14615.70 574.23 11782.00 3837.09 8694.49 11455.10 12498.10

8_1_2.5 29475 416.90 11455.10 24957.50 24333.20     431.01 21537.60 11782.00 17407.10    

8_1_3.0 35370 379.64 35145.80 30337.10       384.23 17407.10 4321.40 30337.10    

8_3_2.5 29250 416.90 12136.80 24811.10 24081.10     431.01 17337.90 11692.10 22065.40    

8_3_3.0 35100 384.23 4454.37 24811.10 30532.20     384.23 4454.37 17337.90 30532.20    

8_5_2.5 29925 416.90 26164.90 14035.20 15774.00     431.01 11961.90 22541.60 15774.00    

8_5_3.0 35910 379.64 34331.50 31331.90       384.23 4520.85 31331.90 15774.00    

8_7_1.0 17550 485.04 16907.50 5813.78 17538.10 13897.00   485.04 17314.10 5813.78 17538.10 16907.50  

8_7_1.5 26325 416.90 14290.70 20946.90 25535.60     431.01 17538.10 16907.50 20946.90    

8_7_2.0 35100 384.23 34437.90 3590.09 33059.90     384.23 34437.90 3590.09 20946.90    

8_7_3.0 52650 327.71 33059.9 42252.6       327.71 20946.9 42252.6      

Table 2 
A comparison of the risk indexes obtained on instances from the set R for the RCTVRP and FRCTVRP
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Data
set

RISK
LEVEL size

RCTVRP

 Obj Value Nodes in routes Time[s]

V 1 22 874.70 20->14|1->6|2->7|17->21|19|4|11->13|16|15->18|9|5|3->8->12|10| 4128.71

V 1.5 22 722.83 18|8->2->1->6|12|19->16|9->7|13|11|17|21->20->14|4->3|10->5|15| 449.17

V 2 22 654.53 21->19|16|15|4->3|8|2->1->6|17->20->18|12|13->11|14|10|9->7->5| 3429.91

V 2.5 22 655.24 15|5->7->16|21->19|12|13|8->14->17->20->18|1->2->6|9|4->3->11->10| 3086.47

V 3 22 559.77 9->8|20->21->19|12|14->16->17->18|11->13|6->3->4|15|1->2->5->7->10| 3135.43

O   10 26.83 5->4->6|8->7->9|2->1->3| 15.22

O   13 35.78 11->10->12|8->7->9|5->4->6|2->1->3| 10534.86

O   16 47.55 13->11->14->15|10|12|2->3->1->4->5|7->8->6->9| 3277.63

O   19 57.97 1->16|4->6->2|10->13|12->8|3->17->18->14|11->15|7->9->5| 3062.91

O   21 70.71 15|1->4->3->2|19->16->18->5|17|12|7->6->8->9->10|14->11->13->20| 2844.82

S   10 19.98 6->5->4|3->2->1|9->8->7| 34.54

S   13 26.65 3->2->1|12->11->10|6->5->4|9->8->7| 12829.08

S   16 39.84 12->13->14->15|11|9->10->8->7->6|5->4->3->2->1| 2545.69

S   19 44.63 17->18->13|11->12->10|7|16|15->14|2->3|8->9->4|6->5->1| 2751.47

S   21 73.25 3->4->5|10->9->6->8->7|18->19->20->11->12|16|13|17|2->1|14->15| 2923.67

Data
set

RISK
LEVEL size

FRCTVRP

 Obj Value Nodes in routes Time[s]

V 1 22 940.62 11|3|5|13|19|21|18->15|12|20|9->7|4|14|8->2->6->10|1|16|17| 744.64

V 1.5 22 761.37 20->16|14|11|7->9->10|3->4->8|13|12|21->17|19|18->15|5|1->2->6| 1960.54

V 2 22 701.71 15|5->7->9|11->13|12|8->6->1->2->10|17|21|19|16|3->4|18->20->14| 2042.16

V 2.5 22 710.80 19->17|21->20->18|13|14|16|5->7|4->3->8|12|11|15->10->9|1->2->6| 3574.96

V 3 22 602.92 21->19->14|15|16|11->3->4->8|10->7->5->9|12|2->1->6|13|17->20->18| 7434.60

O   10 31.50 2->1->3|8->7->9|5->4->6| 43.91

O   13 44.77 8->7->9|10->11|5->4->6|12|2->1->3| 4920.04

O   16 51.62 7->8->6->9->10|12->13->11->14->15|5|1->4->3->2| 4729.92

O   19 68.23 4|13|3->17|10->11->15|5->9|6->2|1|16->18->14|7->8->12| 8780.10

O   21 98.77 2|15|17|10|19|18->16|20|13->11->14|12|5|6->9->8->7|3->1->4| 7836.38

S   10 22.34 3->2->1|9->8->7|6->5->4| 53.91

S   13 31.87 6->5->4|7|9->8|3->2->1|12->11->10| 5358.31

S   16 61.10 13->12|5->4->3|11|6|2|1|10->9->8->7|15->14| 5167.44

S   19 55.10 18->17|1|13|3->2|12->11|15->14|6->5->4|9->8|16|7|10| 5890.35

S   21 78.31 7->6|15->14|11|12|5->4->3|8->10->9|13|20->19->18->17->16|2->1| 9723.64

Table 3 
A comparison of the RCTVRP and FRCTVRP models on instances from the sets V, O and S
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Thus, for some of the instances the routes of the op-
timal solutions are the same for the RCTVRP and 
FRCTVRP and those nodes in routes for the FRCT-
VRP are marked in bold. Firstly, let us note that re-
sults for the instances with the risk threshold index 
RL1 (instances whose name ends with “1.0”) are the 
same. However, it is noticeable that the larger the risk 
threshold value is, the difference between two models 
is more significant. This is not surprising since larg-
er values of the risk threshold lead to more variations 
in routes that satisfy the threshold conditions. These 
computational results show that the considered two 
versions of the problem lead to different optimal 
solutions for many tested instances. Sometimes the 
number of routes is different (e.g. “4_7_1.5”). Note 
that the number of routes in the optimal solution for 
the FRCTVRP can be larger or equal to the number of 
routes in the case of the classical RCTVRP. Commonly 
in the case of different solutions, the number of routes 
remains the same, but the nodes are not grouped in 
the same way or the order of nodes is not the same. 
For example, instance “4_7_2.5” has different results 
for the RCTVRP and FRCTVRP. Even though both 
solutions have the same value of the total travel dis-
tance (286.1275), the difference is in the risk indexes 
of the routes. For the RCTVRP the risk indexes are: 
28548.9 and 6785.72, while for the newly presented 
FRCTVRP model optimal solution has the following 
risk indexes of the routes: 23119.3 and 6785.72, since 
the difference is the permutation of nodes within one 
of the routes. 
A more detailed comparison for the instances that 
had different optimal routes in the two versions of the 
problem is given in Table 2. The first column contains 
the instance name, while the risk threshold constant 
T is given in the second column. Then, firstly for the 
RCTVRP, and then for the FRCTVRP, the following 
values are provided: overall travel distance and global 
risk indexes of all the routes in the optimal solution.
The strength of the newly introduced model is that 
it makes it possible to differentiate less risky routes 
among all the possible routes. The aim stays to find 
short overall travel distances, but this model rep-
resents a compromise between travel distance and 
risk as explained in Section 4. Taking into account 
seven instances (shown in bold) with the same travel 
distance values for optimal solutions in both models, 
the summarized risk indexes are 378358.29 in the 

case of the RCTVRP, while they are 340943.69 in the 
case of the FRCTVRP. Thus, it can be seen on these 
test instances that the risk can be reduced by using 
the FRCTVRP instead of the RCTVRP, even for the 
same travel distances. Thus, the FRCTVRP provides 
less risky routes and is more suitable for the cash-in-
transit sector.
Moreover, the difference between the two models is 
more notable for larger instances. Therefore, it makes 
it even more important to use the FRCTVRP model 
when dealing with larger, realistic instances. Addi-
tional computational experiments were performed 
on instances with size 22 from a data set V (also de-
scribed in [19]), as well as the smaller instances with 
sizes 10, 13, 16, 19 and 21 from two data sets S and O, 
specially designed for the RCTVRP in [20]. These re-
sults are presented in Table 3. The first column con-
tains the name of data set, followed by the risk level 
(rl) applicable for the instances in the set V. The third 
column shows the size of each instance, and the rest 
of the table is as described for Table 1. It can be seen 
from Table 3 that only two instances with size 10 have 
the same routes for the both models. 
Note that the execution time difference is very depen-
dent on the test instances when these two models are 
compared. However, these differences are not signif-
icant and these two models are similarly challenging 
for CPLEX solver.

7. Conclusion 
In this paper we developed a fuzzy version of the 
Risk-constrained Cash-in-Transit Vehicle Routing 
Problem (RCTVRP). The proposed fuzzy version of 
the RCTVRP, namely the FRCTVRP, represents an 
improvement of the classical RCTVRP in such a way 
that performs adequate comparison among feasible 
solutions by using a fuzzy number instead of fixed risk 
threshold limit. The FRCTVRP model takes into ac-
count the value of the risk index of each route and the 
solutions with lower values of risk indexes on their 
routes are considered as better.
Moreover, two mixed integer program formulations 
of the newly proposed FRCTVRP are developed in 
the paper. In order to compare the classical RCTVRP 
and the newly proposed FRCTVRP a small example 
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is presented in details. The given example demon-
strates the advantage of the newly presented fuzzy 
model. Computational analysis performed by using 
CPLEX solver showed that the difference between 
the two models is significant especially for larger test 
instances. Presented results on used data sets indi-
cate that the proposed FRCTVRP is more suitable for 
the applications where transport of valuable goods is 
performed compared to the classical RCTVRP from 
the literature, since obtained optimal solutions have 

better quality in terms of safer routes. The newly 
proposed model incorporates more precise evalua-
tion of each route’s safety risk into the model, making 
more realistic distinction among routes that are safe 
enough to be considered in the cash-in-transit sector
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