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Chaos is often observed in forced nonlinear electrical circuits with saturable reactors. Simplest of such a cir-
cuit is presented and investigated in both integer order and non-integer (fractional) order form. For numerical 
analysis of fractional order system, the Adam-Bashforth-Moulton method is used. Some dynamic properties 
of the novel system are investigated. For implementing the system in field programmable gate arrays (FPGA), 
the Adomian decomposition method is used. Power and resource utilization of the fractional order system for 
implementing in FPGA are presented. Also, in this work, a novel fractional based sound encryption application 
is implemented as a unique application.
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1. Introduction
A saturable reactor is a special form of inductor 
where the ferrite core can be forcefully saturated by 
a direct electric current. Once saturated, the induc-
tance of the saturable reactor decreases and thus 
increases the flow of the AC current in the circuit. 
A simple periodically excited electrical circuit with 
only one saturated inductor can produce chaotic os-
cillations. However most of the dynamical analysis of 
this system are done with a 1-D approximated linear 
non autonomous equation which seems to be not very 
accurate today [8]. In addition, the saturated induc-
tors reduce the size of the overall circuit compared to 
the non-saturated inductors [41]. A resonant circuit 
with two saturated inductors [40] and the existence 
of quasi-periodic invariable tori has been discussed in 
[44]. Bifurcation analysis of the two saturated induc-
tor resonant circuit has been discussed with a three 
dimensional Duffing type equation in [54] consider-
ing the system as a non-autonomous type. Some oth-
er well-known simplest chaotic oscillators are also 
discussed in the literatures like the Chuas oscillator 
[21], modified Wien bridge oscillator [27], simple 3D 
chaotic oscillator [31], Hartley oscillator [45], Vilnius 
oscillator [43], etc.
Fractional calculus has a history dating back to 17th 
century but it found its applications in science and 
engineering research only in the recent years [14, 16, 
18, 39]. Many physical systems exhibit fractional or-
der dynamics and thus fractional order control algo-
rithms are achieving the attention of researchers [19, 
31, 38, 47].
There are many engineering applications in the lit-
erature where chaotic systems have been used. In 
particular, Random Number Generators (RNGs) and 
encryption applications are the most common cha-
os-based studies. In such studies, widely, integer or-
der chaotic systems are used. In addition, the use of 
fractional order chaotic systems increases the safety 
of such applications because it creates an extra pa-
rameter for each state variable. Because of this rea-
son, fractional order systems are being used in recent 
years. In this study, a new RNG and sound encryption 
application based on a fractional order system has 
been implemented as a unique application.
Although more have been discussed about the two 
saturable reactor circuit, the dynamic properties of 

such systems have not been investigated in detail. In 
addition, the fractional order analysis of these sys-
tems reveals some interesting features and hence the 
dynamical analysis of integer and fractional order 
two saturable reactor circuit is derived.

2. Saturable Reactor Circuit (SRC)
Most of the chaotic circuits discussed in the litera-
ture have used nonlinear resistors but less have been 
reported about the use of nonlinear inductors or the 
saturable inductors. There have been chaotic auton-
omous circuits with Josephson element. The nonlin-
ear inductors don’t have a negative resistance center 
region like the saturable inductors.
In this section, the nonlinear behavior of the two 
saturable inductor resonant circuit is investigated. 
Those systems have been discussed in [40, 54].Vari-
ous dynamical properties of them are derived in this 
part. Figure 1 shows the two saturable reactor circuit 
with two resistors, a capacitor, a periodic exciter, a DC 
potential and two saturable inductors.

Figure 1 
Two saturable reactor resonant circuit
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where 1 2,φ φ  are the flux across the saturable inductors 
1 2,L L  , cV  is the voltage across the capacitor, N  is the 

number of turns of the inductor coil, 2i  is the current 

through the resistor 2R  and ci  is the current through 
the capacitor. Using the method of simplification 
adopted in [54], the non-autonomous dimensionless 
model of the system (1) is derived as 
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where a1=0.043, a2=0.125, a3=0.375, a4=0.22, 
a5=0.01875, a6=0.00625, a7=0.03 and the system 
shows chaotic behavior with initial conditions 
[1,1,1,1]  . Assuming  w t=  and introducing a fourth 
state, the equation (1) can be made autonomous as, 
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Even though the system shown in equation (3) is 
autonomous, some cannot ensure that the fast 
changing variable (t) and slow varying variables (x(t), 
y(t), z(t)) are fully decoupled and hence we adopt the 
methods of averaging as shown by [44, 54] to simplify 
the equation (3). By methods of averaging let us take 
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Using (4) in (3) and after some mathematical 
simplifications with equating sinusoidal and non-
sinusoidal terms separately to zero, it can be solved as 
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where 1 2,φ φ  are the flux across the saturable inductors 
L1, L2, Vc is the voltage across the capacitor, N is the 
number of turns of the inductor coil, i2 is the current 
through the resistor R2 and ic is the current through 
the capacitor. Using the method of simplification 
adopted in [54], the non-autonomous dimensionless 
model of the system (1) is derived as
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Using (4) in (3) and after some mathematical 
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where a1=0.043, a2=0.125, a3=0.375, a4=0.22, 
a5=0.01875, a6=0.00625, a7=0.03 and the system shows 
chaotic behavior with initial conditions [1, 1, 1, 1]. As-
suming w= t and introducing a fourth state, the equa-
tion (1) can be made autonomous as,
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Figure 2 2D phase portraits of the system (5) 
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To investigate the performance of the system with 
parameters, the bifurcation diagrams are plotted. 
Fixing all other parameters and varying b1 = [0.015, 
0.009], the bifurcation of the system (5) is studied. 
The initial condition for the first iteration is kept as 
[1, 1, 1, 1] and is changed at the end of every iteration 
to the last value of the state trajectories. As seen 
from Figure 3, the system takes a routine period 
doubling route to chaos and period halving exit from 
chaos. The chaotic region is seen for b1 values in the 
range [0.034; 0.049].

Figure 3 
Bifurcation of the system (5) with b1  
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There are three main approaches, namely, frequency-
domain method [7], Adomian Decomposition Method 
(ADM) [36] and Adams-Bashforth-Moulton (ABM) 
algorithm [1, 10, 12, 17]. The method of Adams-
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where 2 2 2
71 4a a aF b x y z = − + +   and b1 = 0.045, 
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There are three main approaches, namely, frequen-
cy-domain method [7], Adomian Decomposition 
Method (ADM) [36] and Adams-Bashforth-Moulton 
(ABM) algorithm [1, 10, 12, 17]. The method of Ad-
ams-Bashforth-Moulton (ABM) studied in this part 
[17] is used whose convergence and accuracy is more 
as discussed in [23]. 
Let us show a fractional system with order q as
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For the initial conditions [1,1,1,1]  and commensurate 
fractional order 0.99q = , the 2D state portraits of the 
FOSRC system (12) are given in Figure 4. 
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FOSRC system (12) are given in Figure 4.

Figure 4 
2D phase portraits of the FOSRC system

 

 

 

 

To find the finite time Lyapunov exponents for the 
FOSRC system, the method of Wolf ’s algorithm [55] 
is used as discussed in [26]. The LEs of the FOSRC 
system for fractional order q = 0.99 are calculated as 
L1 = 0.00607, L2 = 0, L3 = -0.0875 and the fourth LE is 
zero as the state depends on a constant.
Figure 5 shows the bifurcation of the FOSRC sys-
tem with fractional order q and as can be seen from 
the Figure, the FOSRC system shows two regions 
of chaotic oscillations for q ∈ [0.945, 0.95] and for   
q ∈ [0.985, 1] and takes period doubling route to cha-
os. To see the impact of parameter b1 on the FOSRC 
system, we derive the bifurcation plots as shown in 
Figure 6. The fractional order of the system is fixed at 
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q = 0.99. The FOSRC system shows chaotic region for 
0.026 ≤ b1 ≤ 0.044 and takes routing period doubling 
limit cycle route to chaos and period halving exit from 
chaos. For both the bifurcations shown in Figures 
5 and 6, the initial conditions for the first iteration 
are kept at [1, 1, 1, 1] and, for every iteration, the ini-
tial conditions are reinitialized to the end values of 
the state variables. By comparing Figures 3 and 6, we 
could say that the bifurcation range of the parameter 
b1 is more in fractional order than the integer order 
SRC system. This also proves that the fractional or-
der dynamics show more complex behaviors than the 
integer order counter parts.

Figure 5 
Bifurcation of the FOSRC system with fractional order q 
and initial conditions [1,1,1,1] with reinitializing the initial 
conditions in every iteration to the end values of the state 
variables

Figure 6 
Bifurcation of the FOSRC system with fractional order b1 
and initial conditions [1,1,1,1] with reinitializing the initial 
conditions in every iteration to the end values of the state 
variables

4. Field Programmable Gate Array 
(FPGA) Implementation of FOSRC
Many literatures have discussed about the imple-
mentation of integer order systems using FPGA’s [3, 
9, 15, 35, 37, 42, 51, 53]. Even though there are many 
literatures on the integer order FPGA implemen-
tations, less have been investigated on fractional 
order FPGA implementations. A FPGA implemen-
tation of fractional order chaotic systems with hid-
den oscillations have been implemented and the 
power efficiency analysis for various fractional 
orders were investigated in [32, 47]. FPGA imple-
mentation of a genetically optimized sliding mode 
control algorithm is investigated for synchroniza-
tion of uncertain hyperchaotic systems [38]. Novel 
hyperchaotic systems, which show both self-excit-
ed and hidden attractors for choice of parameters 
are investigated with their fractional order form 
and a FPGA implementation is also presented [19]. 
A CFE Tustin approximation based FPGA imple-
mentation of various fractional order chaotic sys-
tems has been proposed in [48]. Grünwald-Letnikov 
(GL) differ-integral based fractional order analysis 
of chaotic system with its FPGA implementation is 
discussed in [49].
Although for numerical analysis of the proposed 
FOSRC system Adams-Bashforth-Moulton (ABM) 
[1, 10, 17] is used, for implementing the proposed 
FOSRC system in FPGA, the Adomian Decomposi-
tion Method (ADM) [5, 14, 36, 56] is used. As because 
the ADM algorithm converges fast [5, 14, 25, 56], the 
first 6 terms are used to get the solution of FONMCO 
system as in real cases. A time discretization method 
should be designed. That is to say, for a time interval 
of ti (initial time) to tf (final time), the interval is di-
vided into (tn, tn+1) and the value of x(n+1) at time tn+1 
is taken by applying x(n) at time tn using the relation  
x(n +1) = F(x(n)) [11, 25]. 
As the FOSRC system mainly depends on the first 
three states and the fourth state (wa) is already de-
coupled from the three states (xa, ya, za),the 3D mod-
el of the FOSRC system is used and the fractional 
order discrete form of the dimensionless state equa-
tions can be given as
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are calculated before executing an iteration. The step 
size 0.001h =  and the commensurate fractional order 
for implementing the FOSRC in FPGA is taken  

as 0.99q = .  Figure 7 shows the RTL schematics of 
the FOSRC system and Figure 8 shows the power 
consumption chart of the FPGA implemented on 
FPSRC system and the resources utilized are given in 
Table 2. Figure 9 shows the 2D phase portraits of the 
FOSRC system plotted in Simulink and processed in 
Kintex 7 development board (Device=7k160t and 
Package=fbg484 S) with hardware software 
cosimulations. 
 

 
Figure 7 RTL schematics of the FOSRC system implemented in FPGA 

Figure 8 Power utilization of the FOSRC system implemented in FPGA 

Table 2 Resource utilization of the FOSRC system implemented in FPGA
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FF 192 202800 0.09 
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BUFG 1 32 3.13 
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Figure 7 
RTL schematics of the FOSRC system implemented in FPGA

Figure 8 
Power utilization of the FOSRC system implemented in FPGA

Table 2 
Resource utilization of the FOSRC system implemented in 
FPGA

Resource Utilization Available Utilization %

LUT 1549 101400 1.53

FF 192 202800 0.09

DSP 60 600 10.00

IO 97 285 34.04

BUFG 1 32 3.13

Figure 9 
2D phase portraits of the FPGA implemented FOSRC 
system plotted in Simulink and processed in Kintex -7 FPGA 
development module with hardware software co-simulation
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Figure 9 shows the 2D phase portraits of the FOSRC 
system plotted in Simulink and processed in Kintex 7 
development board (Device=7k160t and Package=f-
bg484 S) with hardware software cosimulations.

5.  Sound Encryption Based on 
FOSRC System
There are many chaos-based engineering applica-
tions in the literature [4, 30, 33]. In previous studies, 
integer order chaotic systems are used in general 
[2, 34, 50]. In this section, sound encryption appli-
cation is implemented as an application of FOSRC 
system. One of the most common techniques used in 
chaos-based encryption applications is to use a cha-
os-based Random Number Generator (RNG). For this 
reason, a RNG design based on the FOSRC system 
was first implemented.

5.1. FOSRC System Based RNG

One of the most basic methods used when perform-
ing chaos-based encryption applications is the use of 

RNGs designed using chaotic systems. These RNGs 
are implemented by number or bit arrays of numbers 
derived from the state variables of chaotic systems. 
The advantage of using chaotic systems here is that 
they can be computed depending on the system as 
well as the randomness of the generated sequences. 
This allows the correct decryption to be performed 
after encryption.
In this work, random sequences are obtained by using 
the x and y state variables of the FOSRC system given 
in Eq. (8). The FOSRC system was solved for the frac-
tional order q = 0.99 and 0.05 step value using the Grun-
wald-Letnikov [24, 29] method. At each iteration, state 
variables are converted from float to binary and 16 bits 
are taken and random sequences are generated.
One of the most important criteria to show that a 
RNG really produces random numbers is that it suc-
cessfully passes NIST-800-22 tests. For this, values 
of 1 to 0.01 (P-value) should be obtained from 15 dif-
ferent tests performed within the scope of NIST-800-
22. Table 3 shows the test results of two different se-
quences of 1000000 bits obtained from the FOSRC 
system. One of these sequences is obtained directly 
from the variable x. The second random sequence is 

Table 3 
NIST-800-22 test results of FOSRC system based RNG 

Statistical Tests P-value (X) P-value (XÅY) Result
Frequency (Monobit) Test 0,151572262850217 0,128510975637872 Successful

Block-Frequency Test 0,534351624443865 0,856056627487147 Successful
Cumulative-Sums Test 0,21479298193147 0,19747568823365 Successful
Runs Test 0,741356867016703 0,958281270363264 Successful
Longest-Run Test 0,327480986493886 0,415220465679507 Successful
Binary Matrix Rank Test 0,445738524821132 0,517421814495113 Successful
Discrete Fourier Transform Test 0,0967194894593149 0,125399812124251 Successful
Non-Overlapping Templates Test 0,315843707760675 0,105017005915441 Successful
Overlapping Templates Test 0,331553361051771 0,851302161188892 Successful
Maurer’s Universal Statistical Test 0,310552424542791 0,122236299085832 Successful
Approximate Entropy Test 0,286215734065522 0,260486225611139 Successful
Random-Excursions Test (x = -4) 0,046042297408132 0,799000245040072 Successful
Random-Excursions Variant Test (x = -9) 0,256078714085018 0,647208548194962 Successful
Serial Test-1 0,152884792081078 0,745304036764701 Successful
Serial Test-2 0,0493793622168328 0,482434651927462 Successful
Linear-Complexity Test 0,0877588569761234 0,551944470056125 Successful
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Figure 10 
Encryption and decryption process

Figure 11 
Original sound

 

 

 

 

 

 

 

 

generated by subjecting x and y state variables to xor 
process. As a result, it is seen that both of the sequenc-
es successfully passed from all tests (Table 3). This 
means that the RNG can be used for encryption.

5.2. Sound Encryption Based on Designed RNG
The block diagram of the sound encryption and de-
cryption processes using the obtained FOSRC system 
based RNG is shown in Fig. 10. First, the values in the 
original sound file are converted from  float to binary 
format. All the bits in the obtained binary numbers 
are XORed with a random sequence obtained from 
the RNG and encryption is performed. Finally, the en-
crypted bit sequences are converted back to the float 
values to obtain the encrypted sound. In the decoding 
process, the original sound can be obtained by giving 
the encrypted sound instead of the original sound and 
repeating the same operations. The original sound 
is shown in Fig. 11, the encrypted sound is shown in 
Fig. 12 and the decrypted sound is shown in Fig. 13. 
When the figures are examined, there is no similarity 
between the original and the encrypted sound. In ad-
dition, the original sound can be obtained as a result 
of the decryption process (Fig. 13).
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Although the original and encrypted sound are not 
visually similar (Figures 11 and 12), the encryption 
must be resistant for any filtering process. For this, 
the original sound spectrum is shown in Fig. 14, the 
encrypted sound spectrum is shown in Fig. 15, and the 
decrypted sound spectrum is shown in Fig. 16. Orig-
inal and decrypted sound spectra appear the same. 
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Figure 12 
Encrypted sound

Figure 13 
Decrypted sound

Figure 14 
Original sound spectrum

Figure 15 
Encrypted sound spectrum

Figure 16 
Decrypted sound spectrum
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This indicates that there is no data loss during en-
cryption and decryption. Encrypted sound spectrum 
shows a fairly homogeneous distribution. This shows 
that the encryption process is resistant to the filtering 
process and that a very good encryption is done.

6. Conclusions
A simple electrical circuit with two saturable reactors 
which gives chaotic oscillations has been proposed in 
this paper. Dynamical analysis of the proposed sys-
tem like Lyapunov exponents and bifurcation analy-
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sis have been investigated. A fractional order model 
of the SRC system has been derived and analyzed us-
ing Adam-Bashforth-Moulton method. Bifurcation of 
the FOSRC system with fractional order was derived 
and presented to show the existence of chaotic oscil-
lations in FOSRC system with fractional order. For 
implementing the FOSRC system in FPGA, Adomian 
decomposition method was used and the RTL sche-
matic of the FOSC systems was presented. Moreover, 
a new fractional-based sound encryption application 
has been successfully implemented with its some se-

curity analysis. In further research, the use of such 
saturable inductors in complex chaotic oscillators 
can be investigated. In addition, chaotic oscillators 
which use nonlinear resistors and memristors as the 
nonlinear element can be tested with such saturable 
inductors.
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