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1. Introduction

Bivariate Pareto distributions are popular mod-
els in many applied areas. They are very versatile and
a variety of uncertainties can be usefully modeled by
them. We mention: modeling of radiation carcinogen-
esis (Rachev et al. [1]), performance measures for
general systems (Nadarajah and Kotz [2]), reliability
(Hanagal [3]; Navarro et al. [4]), modeling of drought
(Nadarajah [5]), modeling of dependent heavy tailed
risks with a non-zero probability of simultaneous loss
(Asimit et al. [6]), and modeling of daily exchange
rate data (Papadakis and Tsionas [7]).

Let (X,Y ) be a bivariate Pareto random vec-
tor. In the mentioned applications, X and Y could
be the lifetimes of two components, the magnitudes
of stress and strength components, drought intensi-
ties for two regions, risks for two insurance events,
exchange rates in two time periods, and so on. So, it
is important to know which of the two variables, X
and Y , is larger or smaller.

Let S = min(X,Y ) and T = max(X,Y ).
The aim of this note is to study the distributions of
S and T when (X,Y ) has a bivariate Pareto dis-
tribution. Studies of this kind have been considered
by several authors. Ker [8] studies the distribution
T when (X,Y ) has a bivariate normal distribution.

Lien [9] studies the distributions of S and T when
(X,Y ) has a bivariate lognormal distribution. Akso-
maitis and Burauskaite-Harju [10] study the distribu-
tion of max(X1, X2, . . . , Xn) and its moments when
(X1, X2, . . . , Xn) has a multivariate normal distribu-
tion.

It seems, however, that the distributions of S and
T have not been studied when (X,Y ) has a bivariate
Pareto distribution. This note provides the first such
study. We take (X,Y ) to have the simplest bivariate
Pareto distribution due to Muliere and Scarsini [11]:
the one given by the following joint survival function:

FX,Y (x, y) =
(
x

β

)−λ1
(
y

β

)−λ2

×
{

max
(
x

β
,
y

β

)}−λ0

(1.1)

for λi > 0, i = 0, 1, 2, where 0 < β ≤ min (x, y) <
∞. The corresponding joint cumulative distribution
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function is

FX,Y (x, y) = 1−
(
x

β

)−λ0−λ1

−
(
y

β

)−λ0−λ2

+
(
x

β

)−λ1
(
y

β

)−λ2

×
{

max
(
x

β
,
y

β

)}−λ0

.

The cumulative distribution functions of S and T are

FS(s) = 1−
(
s

β

)−(λ0+λ1+λ2)

and

FT (t) = 1−
(
t

β

)−λ0−λ1

+
(
t

β

)−λ0−λ1−λ2

−
(
t

β

)−λ0−λ2

.

The corresponding probability density functions are:

fS(s) = (λ0 + λ1 + λ2)βλ0+λ1+λ2s−λ0−λ1−λ2−1,

and

fT (t) = (λ0 + λ1)βλ0+λ1t−λ0−λ1−1

− (λ0 + λ1 + λ2)βλ0+λ1+λ2

×t−λ0−λ1−λ2−1

+ (λ0 − λ2)βλ0+λ2t−λ0−λ2−1, (1.2)

where 0 < β < t < s <∞ and λi > 0, i = 0, 1, 2.
In Section 2, we provide expressions for E(S),

V ar(S), E(T ), V ar(T ), and examine the effects of
λi on them. Section 3 provides an extension to a mul-
tivariate case.

2. Main result

Theorem 1 is our main result.

Theorem 1. Let (X,Y ) be distributed according to
(1.1). Let S = min(X,Y ), T = max(X,Y ) and λ =
λ0 + λ1 + λ2. Then

E(S) =
λβ

λ− 1
, λ > 1,

E
(
S2
)

=
λβ2

λ− 2
, λ > 2,

V ar(S) =
β2λ

(λ− 2) (λ− 1)2
, λ > 2,

E(T ) =
β (λ0 + λ1)
λ0 + λ1 − 1

+
βλ

1− λ

+
β (λ0 + λ2)
λ0 + λ2 − 1

,

λ0 > max {0, 1− λ1, 1− λ2} ,

E
(
T 2
)

=
β2 (λ0 + λ1)
λ0 + λ1 − 2

+
β2λ

2− λ

+
β2 (λ0 + λ2)
λ0 + λ2 − 2

,

λ0 > max {0, 2− λ1, 2− λ2} ,

and

V ar(T ) = β2

[
λ0 + λ1

λ0 + λ1 − 2
+

λ0 + λ2

λ0 + λ2 − 2

+
λ

2− λ

−

(
λ0 + λ1

λ0 + λ1 − 1
+

λ0 + λ2

λ0 + λ2 − 1

+
λ

1− λ

)2]
,

λ0 > max {0, 2− λ1, 2− λ2} .

Furthermore, we have the following statements hold-
ing:

(I)E(S) is monotonically increasing with re-
spect to β for λ > 1,

(II) E(S) is monotonically decreasing with
respect to λ and λi, i = 0, 1, 2 for λ > 1,

(III) V ar(S) is monotonically increasing
with respect to β for λ > 2,

(IV ) V ar(S) is monotonically decreasing
with respect to λ and λi for i = 0, 1, 2 for λ > 2,

(V ) E(T ) is monotonically increasing with
respect to β for λ0 > max{1− λ1, 1− λ2, 0},

(V I) E(T ) is monotonically decreasing with
respect to λi for i = 0, 1, 2 for λ0 > max{1−λ1, 1−
λ2, 0},

(V II) V ar(T ) is monotonically increasing
with respect to β,

(V III) V ar(T ) is monotonically decreasing
with respect to λi for i = 0, 1, 2.
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Proof: The given expressions for E(S), E(S2) and
V ar(S) follow by using:

E(S) =
∫ ∞
β

λβλs−λds,

E
(
S2
)

=
∫ ∞
β

λβλs1−λds

and V ar(S) = E(S2)− [E(S)]2. Since, using (1.2),

E(T ) =
∫ ∞
β

tfT (t)dt = I1 + I2 + I3,

where

I1 =
∫ ∞
β

(λ0 + λ1)βλ0+λ1t−λ0−λ1dt

=
β (λ0 + λ1)
λ0 + λ1 − 1

, λ0 + λ1 > 1,

I2 =
∫ ∞
β

−λβλt−λdt

=
βλ

1− λ
, λ > 1,

I3 =
∫ ∞
β

(λ0 + λ2)βλ0+λ2t−λ0−λ2dt

=
β (λ0 + λ2)
λ0 + λ2 − 1

, λ0 + λ2 > 1,

we obtain the given expression for E(T ). Similarly,
using

E
(
T 2
)

=
∫ ∞
β

t2fT (t)dt = I1 + I2 + I3,

where

I1 =
∫ ∞
β

(λ0 + λ1)βλ0+λ1t−λ0−λ1+1dt

=
β2 (λ0 + λ1)
λ0 + λ1 − 2

, λ0 + λ1 > 2,

I2 =
∫ ∞
β

−λβλt−λ+1dt

=
β2λ

2− λ
, λ > 2,

I3 =
∫ ∞
β

(λ0 + λ2)βλ0+λ2t−λ0−λ2+1dt

=
β2 (λ0 + λ2)
λ0 + λ2 − 2

, λ0 + λ2 > 2,

and V ar(T ) = E(T 2)−[E(T )]2, we obtain the given
expression for V ar(T ).

The remainder of the theorem is proved as fol-
lows:

(I) We have

∂E(S)
∂β

=
λ

λ− 1
> 0, λ > 1,

so statement (I) follows.
(II) We have

∂E(S)
∂λi

=
−β

(λ− 1)2
< 0, λ > 1,

and

∂E(S)
∂λ

=
−β

(λ− 1)2
< 0, λ > 1,

so statement (II) follows.
(III) We have

∂V ar(S)
∂β

=
2βλ

(λ− 2) (λ− 1)2
.

Since β > 0 and λ > 2, ∂V ar(S)/∂β > 0, so state-
ment (III) follows.

(IV ) We have

∂V ar(S)
∂λi

= −2β2

(
λ2 − 1− λ

)
(λ− 1)3 (λ− 2)2

, i = 0, 1, 2,

V ar(S) =
λβ2

(λ− 2)(λ− 1)2
, λ > 2

and

∂V ar(S)
∂λ

= −2β2

(
λ2 − λ− 1

(λ− 1)3(λ− 2)2

)
.

Since λ > 2 and (λ2 − λ− 1) > 0, we have

∂V ar(S)
∂λi

< 0,

and

∂V ar(S)
∂λ

< 0,

so statement (IV ) follows.
(V ) We have

∂E(T )
∂β

=
λ0 + λ1

λ0 + λ1 − 1
+

λ0 + λ2

λ0 + λ2 − 1
− λ

λ− 1
,

λ0 > max {1− λ1, 1− λ2, 0} .
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Since (λ0 + λ1)/(λ0 + λ1 − 1) > λ/(λ − 1),
∂E(T )/∂β > 0, so statement (V ) follows.

(V I) We have

∂E(T )
∂λ0

= β

[
1

λ0 + λ1 − 1
+

1
λ0 + λ2 − 1

− 1
λ− 1

−

(
λ0 + λ1

(λ0 + λ1 − 1)2
+

λ0 + λ2

(λ0 + λ2 − 1)2

− λ

(λ− 1)2

)]
,

∂E(T )
∂λ1

=
−βλ2 (−2 + 2λ0 + 2λ1 + λ2)

(λ0 + λ1 − 1)2 (λ− 1)2

and

∂E(T )
∂λ2

=
−βλ1(−2 + 2λ0 + λ1 + 2λ2)

(λ0 + λ2 − 1)2 (λ− 1)2
.

Since 1/(λ0+λ2−1) < (λ0+λ2)/(λ0+λ2−1)2 and
1/(λ0+λ1−1)−1/(λ−1) < (λ0+λ1)/((λ0+λ1−
1)2)−λ/(λ−1)2, ∂E(T )/∂λ0 < 0. Since λ0+λ1 >
1 and λ2 > 0, we have (−2 + 2λ0 + 2λ1 + λ2) > 0,
so ∂E(T )/∂λ1 < 0. Since λ0 + λ2 > 1 and λ1 > 0,
so ∂E(T )/∂λ2 < 0.
The calculations required for (V II) and (V III) are
as routine as those for (V ) and (V I), but they are lot
more lengthy. The proof is complete. �

3. Multivariate extension

Consider the following multivariate generaliza-
tion of (1.1):

FX1,X2,...,Xn (x1, x2, . . . , xn)

=
(
x1

β

)−λ1
(
x2

β

)−λ2

· · ·
(
xn
β

)−λn
{

max
(
x1

β
,
x2

β
, . . . ,

xn
β

)}−λ0

,

where 0 < β ≤ min (x1, x2, . . . , xn) < ∞, and
λi > 0, i = 0, 1, . . . , n (Kotz et al. [12, page 595]).
Theorem 2 provides the multivariate analogue of The-
orem 1 for min(X1, X2, . . . , Xn).

Theorem 2. Let S = min(X1, X2, . . . , Xn) and λ =∑n
i=0 λi. Then

FS(s) = 1−
(
s

β

)−λ
,

fS(s) = λs−λ−1βλ,

E(S) =
λβ

λ− 1
, λ > 1,

and

V ar(S) =
β2λ

(λ− 2)(λ− 1)2
, λ > 2.

Furthermore, we have the following statements hold-
ing:

(I) E(S) is a monotonically increasing function
of β for λ > 1,

(II) E(S) is a monotonically decreasing function
of λi,

(III) V ar(S) is a monotonically increasing func-
tion of β for λ > 2,

(IV) V ar(S) is a monotonically decreasing func-
tion of λ for λ > 2,

(V) V ar(S) is a monotonically decreasing func-
tion of λi.

Proof: The given expressions for FS(s), fS(s),E(S)
and V ar(S) are obvious. Since

∂E(S)
∂β

=
λ

λ− 1
> 0, λ > 1,

statement (I) follows. Since

∂E(S)
∂λi

=
−β

(λ− 1)2
< 0, i = 0, 1, . . . , n,

statement (II) follows. Since

∂V ar(S)
∂β

=
2λβ

(λ− 2)(λ− 1)2
> 0, λ > 2,

statement (III) follows. Since

∂V ar(S)
∂λ

= −2β2

(
λ2 − λ− 1

(λ− 2)2(λ− 1)3

)
< 0,

λ > 2,

statement (IV ) follows. A similar analysis shows
statement (V ). �
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