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Now many location data applications have facilitated people’s daily life. However, publishing location data may 
divulge individual sensitive information. Currently many existing privacy protection schemes cannot provide 
the balance of utility and protection. Furthermore, as the records about location data may be discrete in data-
base, some existing privacy protection schemes are difficult to protect location data information in data min-
ing. In this paper, our works mainly focus on providing a framework for the privacy protection of location data 
mining. We propose a location data record privacy protection scheme based on differential privacy mechanism, 
which employs the structure of multi-level query tree to query and publish location data on database. Our pro-
posed location data privacy protection scheme may discover the relationship of location data from database 
and protect location data mined. As accessing location preference of user may be related to private (sensitive) 
location, it is very important to protect highly frequent accessing location data when location data are mined. 
So, our proposed scheme provides a mechanism to protect highly frequent accessing location data (or accessing 
location preference of user) by distorting accessing frequencies. In the proposed scheme, we first construct the 
structure of multi-level query tree from database, then we make double processes of selecting data according to 
accessing frequencies by the exponential mechanism and one process of adding noises to accessing frequencies 
by the Laplace’s mechanism on the multi-level query tree. Compared with the other schemes, the experiments 
show the data availability of the proposed scheme is higher and the privacy protection of the scheme is effective. 
KEYWORDS:  location data record, accessing frequency, differential privacy protection, multi-level query tree, 
Laplace’s mechanism.
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1. Introduction

1.1. Background
With the rapid development of computer and network, 
data mining and data analysis play the increasingly 
important roles in our social life. The huge amounts 
of data (such as big data) can bring many application 
services to our society, such as location data, health 
data, food data and traffic safety data. Location data 
is a kind of position information with large scale and 
rapid change, which mainly comes from vehicle net-
works, mobile devices and social networks. Now many 
applications of location data have facilitated people’s 
daily life, thus location data service is called as a kind 
of new mobile computing service. Currently, it is the 
key of developing location data services that we must 
be able to learn and understand position information 
[32]. However, location data are mainly collected and 
disseminated by mobile equipment, where many mo-
bile devices and mobile communication technolo-
gies must integrate geographical data and individual 
information into location data. Thus, location data 
may contain individual privacy information, personal 
health status, social status and behavior habits. Then 
mining location data may divulge individual sensitive 
information so as to influence people’s normal life. 
The works [26, 40] summarized five kinds of com-
monly used moving object positioning method [1, 13, 
16, 20, 33, 34, 37, 41] and three kinds of accessing indi-
vidual location information approach [12, 17, 29].
Presently, it is the key of location data privacy protec-
tion that how to protect sensitive information while 
providing location service on data mining. Namely, 
we must find a compromising approach between ser-
vice and protection. However, many existing privacy 
protection schemes cannot provide the balance of uti-
lity and protection. Furthermore, as the records about 
location data may be discrete in database1, some exis-
ting privacy protection schemes are difficult to pro-
tect location data in data mining. Therefore, we focus 
on finding an efficient privacy protection scheme for 
location data mining in this paper.

1 In real world, location data may not be discrete. In this 
paper, our focus is the combination of location data and ac-
cessing frequency. Because the combination of location data 
and accessing frequency is not continuous in database, we 
consider that the records about location data are discrete.

1.2. Our Contributions
In this paper, we propose a location data record pri-
vacy protection scheme, which employs the structure 
of multi-level query tree to query and publish location 
data. Our proposed location data privacy protection 
scheme may discover the relationship of location data 
from database and protect location data mined. As 
accessing location preference of user may be related 
to private (sensitive) location, it is very important to 
protect highly frequent accessing location data when 
location data are mined. Our proposed scheme pro-
vides a mechanism to protect highly frequent access-
ing location data (related to accessing location prefer-
ence of user) by distorting accessing frequencies. In 
the proposed scheme, we first construct the structure 
of multi-level query tree from database, and then we 
make double processes of selecting data on accessing 
frequencies by the exponential mechanism and one 
process of adding noises to accessing frequencies by 
the Laplace’s mechanism on the multi-level query 
tree. Additionally, compared with the other related 
schemes, the experiments show the data availability 
of the proposed scheme is higher and the privacy pro-
tection of the scheme is effective. Our contributions 
are as follows:
1 In our proposed scheme, we construct the struc-

ture of multi-level query tree from database. We 
first use the query tree to represent the result of 
queried location data, and then we add the nois-
es into the query tree and publish the new query 
tree as the final result. Our proposed scheme em-
ploys the multi-level query tree to show the com-
bination of location data and accessing frequency. 
Such a method has the following advantages: (a) it 
can maintain the relationship of location data (as 
Figure 2) where there is no damage to the original 
structure of data; (b) it can improve the protection 
effectiveness of location data: when we add the 
noises to the corresponding tree nodes, it may pro-
tect the relationship of location data and the com-
bination of location data  and accessing frequency.

2 We make double processes of selecting data ac-
cording to accessing frequencies by the exponen-
tial mechanism and one process of adding noises to 
accessing frequencies by the Laplace’s mechanism 
on the multi-level query tree. In the double pro-
cesses of selecting data, the first selection is based 
on accessing frequency (or support count), where n 
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location data records whose accessing frequencies 
are greater than a specified value are selected from 
the multi-level query tree; the second selection is 
based on the exponential mechanism, where k lo-
cation data records are selected from the n loca-
tion data records. In the process of adding noises, 
noises are added into the accessing frequencies of 
the k location data records by the Laplace’s mech-
anism. Such a method minimally distorts the true 
accessing frequencies of location data records so 
as to  protect some sensitive location data records, 
where the attackers are difficult to judge the ac-
cessing location preference of user.

3 The experiments show the running time of the pro-
posed algorithms is less and the privacy protection 
of the proposed scheme is effective. In addition, by 
computing true positive rate, false positive rate, 
accurate rate and false reject rate, the experiments 
show the data availability of the proposed scheme 
is higher.

1.3. Outline
The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the related works about privacy pro-
tection. In Section 3, we review the related definitions 
and theorems. In Section 4, we propose an efficient lo-
cation data record privacy protection scheme, which 
is based on differential privacy mechanism. In Sec-
tion 5, we analyze the correctness and security of the 
proposed scheme. In Section 6, we analyze and show 
the efficiency of the proposed scheme by the experi-
ments. Finally, we draw our conclusions in Section 7. 

2. Related Work
Currently many privacy protection schemes are being 
widely used in many fields, such as secure communi-
cation, social network, data mining and so on. The 
works [35, 36] first proposed the k-anonymity model 
to protect social network, whose anonymity protec-
tion methods mainly include generalization [14, 38], 
compression, decomposition [47], replacement [50] 
and interference. Based on the works of [35, 36], many 
other k-anonymity protection methods [2, 22, 23, 30, 
39, 45, 46, 48] were also proposed. However, the works 
[2, 21, 49, 52] proved that some anonymous protec-
tion methods cannot protect sensitive data very well. 

De Cristofaro et al. [8] proposed a privacy-encrypted 
protection scheme. Although their scheme can en-
sure data security, data utility is decreased. The exist-
ing location data privacy protection methods [4, 32] 
are mainly classified to three categories: the heuristic 
privacy-measure methods, the probability-based pri-
vacy inference methods and the privacy information 
retrieval methods. The heuristic privacy-measure 
methods are mainly to provide the privacy protec-
tion measure for some no-high required users, such 
as k-anonymity [19], t-closing [3], m-invariability 
[27] and l-diversity [25]. The information retrieval 
privacy protection methods may result in no data can 
be released, and these methods have high overhead. 
Additionally, the probability-based privacy inference 
methods can achieve better data utility under certain 
conditions, but the effectiveness of the methods de-
pends on original data availability. Further, the three 
kinds of method are based on a unified attack model 
[32], which depends on certain background knowl-
edge to protect location data. However, with the in-
crease  of background knowledge got by the attackers, 
these methods could not always effectively protect 
location data. The works [22, 23, 30, 35, 38, 39, 45, 46] 
showed the shortages of the relationship-privacy pro-
tection methods. Wang and Liu [44] analyzed a vari-
ety of privacy threat models and tried to optimize the 
effectiveness of the obtained data while preventing 
different types of reasoning attack. Gedik and Liu [15] 
proposed the first effective location-privacy preserv-
ing mechanism (LPPM) that enables a designer to 
find the optimal LPPM for a location-based service. 
Such a LPPM can maximize the expected distortion 
(error) when the adversary incurs in reconstructing 
the actual location of a user. Presently, it is the key 
of protecting location data to provide a privacy pro-
tection method that is not sensitive to background 
knowledge. Based on the requirement, differential 
privacy protection technology can exactly satisfy it.
Differential privacy is a kind of strong privacy pro-
tection method, which is not sensitive  to background 
knowledge. Li et al. [24] proposed an approach with 
differential privacy called PrivBasis, which leverages 
a novel notion of basis set. They introduced the algo-
rithm for privately constructing a basis set and then 
using it to find the most frequent item-sets. Wang et 
al. [42] proposed a novel scheme with differential pri-
vacy, which directly searches for maximal frequent 
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item-sets and subsequently adds their sub-item-
sets to the results without additional privacy budget 
consumption. Li et al. [28] proposed a compressive 
mechanism for differential privacy, which is based 
on compressed sensing theory. Their mechanism is 
to consider every data as a single individual, but it 
undermines the relationship of data so as to be not 
suitable to protect location data. Ouyang et al. [32] 
proposed a differential privacy-based transaction 
data publishing scheme. Their method establishes 
the relationship of transaction data items by a query 
tree and adds noises to the query tree based on the 
compressive mechanism and the Laplace’s mecha-
nism. However, it is difficult to measure the effective-
ness of their method on privacy protection. Zhang 
et al. [51] proposed an accurate method for mining 
top-k frequent data records under differential pri-
vacy. In their scheme, the exponential mechanism is 
used to sample top-k frequent data records, and then 
the Laplace’s mechanism is used to generate noises 
to distort original data. Although the effectiveness of 
their method may accurately be measured on privacy 
protection, their method neglects the relationship of 
transaction data items.
Based on differential privacy mechanism, many relat-
ed technologies are used to protect location data. He 
et al. [18] proposed a synthetic system based on GPS 
path, which can provide strong differential privacy 
protection mechanism. The proposed system gets and 
protects different speed trajectory by using a hierar-
chical reference method to isolate the original trajec-
tory. Chatzikokolakis et al. [6] proposed a predictive 
differential-private mechanism for location privacy, 
which can offer substantial improvements over the 
independently applied noise. Their work showed that 
the correlations in the trace can be exploited in terms 
of a prediction function that tries to guess the new lo-
cation based on the previously reported locations.  In 
addition, their work tested the quality of the predict-
ed location. Chatzikokolakis et al. [7] also showed a  
formal notion of privacy that protects the user’s exact 
location–“geo-indistinguishability”. In [7], they pro-
posed two mechanisms to protect the privacy of user 
when dealing with location-based services. They ex-
tended their mechanisms to limit the degradation of 
the privacy guarantees due to the correlation between 
the points. Bindschaedler and Shokri [5] presented a 

synthesizing plausible privacy-preserving location 
tracing scheme. Wang et al. [43] proposed a real-time 
spatio-temporal crowd-sourced data publishing 
scheme with differential privacy.

3. Preliminaries

3.1. Differential Privacy
Differential privacy protection achieves privacy pro-
tection target by making data distortion, where the 
common approach is to add noises into querying re-
sult. The purpose of differential privacy protection 
is to minimize privacy leakage and to maximize data 
utility [9, 11]. Currently differential privacy protec-
tion has two main methods [10, 31]—the Laplace’s 
mechanism and the exponential mechanism.
Laplace’s mechanism: Dwork et al. [10] proposed a 
protection method for the sensitivity of private data, 
which is based on the Laplace’s mechanism. Their 
method distorts the sensitive data by adding the La-
place’s distribution noises to the original data. Their 
method may be described as follows: the algorithm M 
is the privacy protection algorithm based on the La-
place’s mechanism, the set S is the noise set of the al-
gorithm M, and the input parameters are the data set 
D, the function Q, the function sensitivity ΔQ and the 
privacy parameter ε, where the set S approximately 
subjects to the Laplace’s distribution ( Q

ε
∆ ) and the 
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adjacent data sets D and D' where at most a data 
record is different between D and D' (|D≠D'|=1), 
for any algorithm M whose output range is 
Range(M), if the result S outputted by the algorithm 
M satisfies the following formula (4) on the two 
adjacent data sets D and D' (S∈Range(M)), then the 
algorithm M satisfies ε−differential privacy: 

   Pr PrM D S e M D S           ,     (4) 

where Pr represents the randomicity of the 
algorithm M on D and D', namely Pr denotes the 
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where D and D' represent the adjacent data sets, 
Q(D) represents the output of the function Q on the 
data set D, ∆Q is the sensitivity which represents 
the maximum of the outputs’ difference.  
Additionally, because the ε-differential privacy 
protection scheme may be used many times in the 
different stages of processing data, the ε-differential 
privacy protection scheme also needs to satisfy the 
following theorems: 
Theorem 3.1 For the same data set, if the whole 
privacy protection process is divided to the different 
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Theorem 3.2 For the disjoint data set, if the whole 
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publish the data result. In the proposed scheme, we 
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place’s distribution into the output result so as to dis-
tort the sensitive data. For example, let Q(D) be the 
querying function of top-k accessing count, then the 
output of the algorithm M can be represented by the 
following formula (3):
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Exponential mechanism: Mcsherry and Talwar [31] 
described another privacy protection method, which 
is based on the exponential mechanism. In the meth-
od, the input of the algorithm M is the data set D, the 
output of the algorithm M is the result r which is se-
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Q(D) represents the output of the function Q on the 
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protection scheme may be used many times in the 
different stages of processing data, the ε-differential 
privacy protection scheme also needs to satisfy the 
following theorems: 
Theorem 3.1 For the same data set, if the whole 
privacy protection process is divided to the different 
privacy protection algorithms (M1, M2,..., Mn) whose 
privacy protection levels are ε1,ε2,...,εn, then the 

privacy protection level 
=1

n
εi

i
 of the whole process 

needs to satisfy differential privacy protection. 
Theorem 3.2 For the disjoint data set, if the whole 
privacy protection process is divided to the different 
privacy protection algorithms (M1, M2,..., Mn) whose 
privacy protection levels are ε1, ε2,...,εn, then the 
privacy protection level max{εi} of the whole 
process needs to satisfy differential privacy 
protection. 
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from data-base, and then we make double processes 
of selecting data according to access frequencies by 
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from the data set and are only related to the 
function sensitivity and the privacy parameter. The 
main idea of their method adds the noises 
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In this section, we propose a location data record pri-
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of multi-level query tree to query and publish the data 
result. In the proposed scheme, we first construct the 
structure of multi-level query tree from data-base, 
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If data sensitivity is small, then it can effectively protect data 
while a small quantity of noises are added into original data. On 
the contrary, if data sensitivity is big, then a lot of noises need to 
be added into original data.
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according to access frequencies by the exponential 
mechanism and one process of adding noises to ac-
cess frequencies by the Laplace’s mechanism on the 
multi-level query tree. In the double processes of se-
lecting data, the first selection is based on accessing 
frequency (or support count), where n location data 
records whose support counts are greater than a spec-
ified value are selected from the multi-level query tree; 
the second selection is based on the exponential mech-
anism where k location data records are selected from 
the n location data records. In the process of adding 
noises, noises are added into the access frequencies 
of the k location data records by the Laplace’s mech-
anism. Because the multi-level query tree can satisfy 
the relationship of transaction data, it can meet data 
privacy protection requirement and data availability 
requirement. The procedure of the proposed scheme is 
described as follows (and as Table 1):
1 Input the data set D and the differential privacy  

protection parameters ε1, ε2, k, min_count, where  
ε = ε1 + ε2

3;
2 Based on the data set D and the item set I, construct 

the multi-level query tree I
DF (see Section 4.1 for 

more details);
3 Get the accessing frequency item set A from I

DF , 
which satisfies that the accessing frequency of ev-
ery data record is not less than min_count in A4;

4 Use the exponential mechanism to select the ac-
cessing frequency item set B from the set A, where 
every selected data record satisfies the following 
condition:
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where the size of B is k, ai∈A is the accessing 
frequency item record, εi is the corresponding 
privacy protection level, Rank(A, ai) is the scoring 
value for ai and ∆Rank is the scoring function 
sensitivity (see Section 4.2 for more details); 

5) Use the Laplace’s mechanism to add the noises 
Lap(

2

Δk Q
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 ) into the set B, generate the set C, and 

then construct and publish the new multi-level 
query tree according to C and I

DF (see Section 4.3 
for more details). 

             
 
 

                                                 
3ε represents the privacy protection level of the whole scheme. ε1 and ε2 
are independent, they are respectively used in the proposed scheme. 
4Our proposed scheme focuses on protecting highly frequent accessing 
location data by distorting accessing frequencies. Thus, the setting of 
min_count is to improve the efficiency of the proposed scheme. 
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4.1 Multi-level Query Tree 
This section describes how to construct a complete 
multi-level query tree from transaction database. As 
the multi-level query tree can optimize data 
representation, it is used to represent location data 
items and their accessing frequencies (counts) in 
this paper. Figure 1 shows that a part of the New 
York city is selected as the location data source.                

 
Figure 1 Location data source 

According to Figure 1, we set I={1, 2, 3, 4...m}, 
where I is a set of location data items (the 
representation of location data items is shown in 
Table 2), and set that the transaction database D is a 
set of location data records which include an 
identifier called T_ID, the item content index T and 
the corresponding support (accessing) count5, where 
the item index T of every record is a subset of I 
(T⊆I). The transaction database D is described in 

                                                 
5The support count denotes the count that a person accessed one or 
several positions in a certain period.  

Input: data set D,differential privacy 
protection parameters ε1,ε2,k,min_count 
Output: multi-level query tree containing noises 
Begin 

Compute ε = ε1 + ε2; 
I

DF =Construct_Query_Tree(root,D,I);  
/*root is the root of the query tree and I is the item set*/ 

A=Select_Item_Set( I
DF ,min_count);    

/*accessing frequency ≥ min_count*/ 
B=Select_top-k_Item_Set(A, ε1);           

/*selection according to Rank()*/ 
C=Add_Laplace_Noise(B, ε2);     
Publish_Query_Tree(C, I

DF );    
End 

where the size of B is k, ai∈A is the accessing fre-
quency item record, εi is the corresponding priva-
cy protection level, Rank(A, ai) is the scoring value 
for ai and ∆Rank is the scoring function sensitivity 
(see Section 4.2 for more details);

3 ε represents the privacy protection level of the whole scheme. 
ε1 and ε2 are independent, they are respectively used in the pro-
posed scheme.

4 Our proposed scheme focuses on protecting highly frequent 
accessing location data by distorting accessing frequencies. 
Thus, the setting of min_count is to improve the efficiency of the 
proposed scheme.
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4.1. Multi-level Query Tree
This section describes how to construct a complete 
multi-level query tree from transaction database. As 
the multi-level query tree can optimize data repre-
sentation, it is used to represent location data items 
and their accessing frequencies (counts) in this pa-
per. Figure 1 shows that a part of the New York city is 
selected as the location data source.                   
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According to Figure 1, we set I={1, 2, 3, 4...m}, where 
I is a set of location data items (the representation of 
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location data items is shown in Table 2), and set that 
the transaction database D is a set of location data 
records which include an identifier called T_ID, the 
item content index T and the corresponding support 
(accessing) count5, where the item index T of every 
record is a subset of I (T⊆I). The transaction database 
D is described in Table 36.

Table 2
Representation of location data item

Item Index Item Content

1 New York Sports Clubs

2 United States Postal Service 

3 Club Quarters Hotels

4 Grand Central Market

5 Simpson Thacher and Bartlett LLP

... ...

Table 3
Transaction database

T_ID Item Content 
Index Supprt Count

T_1-T_30 1 30

T_31-T_50 2 20

T_51-T_75 3 25

T_76-T_115 4 40

T_116-T_135 1,2 20

T_136-T_160 1,3 25

T_161-T_190 1,4 30

T_191-T_120 2,3 20

... ... ...

Based on the transaction database D, we construct the 
multi-level query tree I

DF  as shown in Figure 2. Fig-
ure 2 shows the structure of the multi-level query tree 

I
DF 5covering6all records of the transaction database 

5 The support count denotes the count that a person accessed 
one or several positions in a certain period.  

6 Table 3 shows the related data records that a person accessed 
one or several positions in a certain period. For example, the data 
record T 1-T 30 denotes a person accessed the “1” position in a 
certain period, whose accessing count is 30. The certain period 
may be seen as a fixedly long duration.  

D, where I = {1, 2, 3, 4} is a set of location data items. 
In I

DF , the root node only contains the set {0}, and 
other every node contains a label (a subset of I) and 
a support (accessing) count7. For example, a label is  
{1, 2}∈I, whose accessing count is 20. The example de-
notes that a person accessed the zones of {1} and {2} 
(New York Sports Clubs and United States Postal Ser-
vice) in a certain period, where the accessing count of 
the person is 20. From Figure 2, we may also know the 
relationship of the node number of I

DF  and the size of 
I. We can compute that the total number of the nodes is 
2I−1 (does not include the root node). For example, the 
total number of the nodes is 24−1=15, when I = {1, 2, 3, 4}.

Figure 2 
Multi-level query Tree

Construct_Query_Tree(root, D, I) denotes7the al-
gorithm of constructing multi-level query tree. The 
main steps of the algorithm are described as follows8:
Step1: Input the current node cur_node, the location 
data item set I and the transaction database D, then 
finish the following steps:
 _ the label of cur_node becomes the union of the label 

of cur_nod’s father node9 and the corresponding 
item index from I.

 _ according to the label of cur_node, the count of cur_
node equals to the corresponding support count 
from D.

7 The symbol # represents “support (accessing) count”.

8 The procedure of the algorithm is similar to breadth-first tra-
versal. 

9 For the first input, root is the cur node’s father node and the 
label of root is ∅. 
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 _ if the label of cur_node is equal to I, then abort all the 
steps; else if the max value in the label of cur_node is 
less than the max value in I, then a new node as the 
brother node of cur_node is created and used as the 
new current node cur_node, and repeat Step 1.

 _ otherwise, proceed to Step 2.

Step2: From the first brother node of cur_node to  
the last brother node of cur_node (or cur_node), if 
the brother node of cur_node does not have any sons, 
then a new node as the son node of the brother node of 
cur_node is created and used as the new current node 
cur_node; repeat Step 1.

4.2. Selecting Accessing Frequency Item 
Record Set 
Firstly, we get the accessing frequency item record set 
A from I

DF  which satisfies that the accessing frequen-
cy of every data record is not less than min_count. 
Secondly, we use the exponential mechanism to select 
the accessing frequency item record set B from the set 
A, where every selected data record satisfies the fol-
lowing condition:
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Select_top-k_Item_Set(A,ε1) denotes the algorithm of 
selecting accessing frequency item record set based on 
the exponential mechanism. The main steps of the 
algorithm are described as follows: 
Step1: Input the accessing frequency item record set A 

where the size of A is N. Then use the scoring 
function Rank(A, ai) to mark every accessing 
frequency item record ai where ai∈A; 

Step2: Compute the weight of every accessing frequency 
item record ai according the following formula:  
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Then rank all accessing frequency item records in 
descending order according to the corresponding 
weights, where we set εi = 1

k
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Step3: From large probability to small probability, select 
the accessing frequency item record set B from A, 
where the probability may be computed as 
follows: 
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and the size of B is k (k ≤ N). 
The key of selecting accessing frequency item record set 
is how to set the scoring function Rank(A, ai). In this 
paper, we set that Rank(A,ai) is the support count of the 
corresponding node of ai in I

DF . Rank(A, ai) is described 
as follows: 

Rank(A, ai) = ai.Node.SC, 
where ai.Node.SC is the support count of the 
corresponding node of ai in I

DF . Then we may set the 
scoring function sensitivity ∆Rank by the following 
method: 
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where εi is the corresponding privacy protection level. 
Because the size of B is k, we need to finish the selection 
of B at k times and set the value of εi in every round of 
selection. According to Theorem 3.1, we may know the 
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detailed proof is given in Section 5). 
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where εi is the corresponding privacy protection level. 
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The main steps of the algorithm are described as fol-
lows:
Step1: Input the privacy protection level ε2 and the 
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where εi is the corresponding privacy protection level. 
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6. Experiment Analysis of the 
Proposed Scheme 

In this section, our experiments are mainly from two 
aspects to evaluate the efficiency of the proposed 
scheme. The first one is the running time of the 
proposed algorithms, which includes the time of 
constructing and updating the multi-level query tree 
and the time of extracting and protecting the 
available data from the multi-level query tree. The 
second one is protection effectiveness, which 
includes data utility and data privacy protection 
degree, where we evaluate the availability of the 
extracted and protected data mainly through the 
comparisons of true positive rate, false positive rate, 
accurate rate and false reject rate before and after 
extracting and protection. 
6.1 Running Time Analysis 
In this section, we test the running time of the 
proposed algorithms mainly through the time of 
constructing and updating the multi-level query tree 
and the time of extracting and protecting the 
available data from the multi-level query tree. All 
the proposed algorithms are coded by the C++13 
programming language. The test original data set 
comes from the simulation on the Baidu map14 , 
which is similar to the Gowalla data set15. The test 
original data set contains user id, accessing time, 
longitude and latitude and so on. The period of the 
test original data set is about one month. Then we 
make some processes to the test original data set: 1) 
in the whole selected map, we select 9 zones as our 
tested accessing item contents (as the example of 
Table 2); 2) we build a table in database, whose 
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count (accessing frequency) of bi and spt(B, bj) is the 
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Proposed Scheme 

In this section, our experiments are mainly from two 
aspects to evaluate the efficiency of the proposed 
scheme. The first one is the running time of the 
proposed algorithms, which includes the time of 
constructing and updating the multi-level query tree 
and the time of extracting and protecting the 
available data from the multi-level query tree. The 
second one is protection effectiveness, which 
includes data utility and data privacy protection 
degree, where we evaluate the availability of the 
extracted and protected data mainly through the 
comparisons of true positive rate, false positive rate, 
accurate rate and false reject rate before and after 
extracting and protection. 
6.1 Running Time Analysis 
In this section, we test the running time of the 
proposed algorithms mainly through the time of 
constructing and updating the multi-level query tree 
and the time of extracting and protecting the 
available data from the multi-level query tree. All 
the proposed algorithms are coded by the C++13 
programming language. The test original data set 
comes from the simulation on the Baidu map14 , 
which is similar to the Gowalla data set15. The test 
original data set contains user id, accessing time, 
longitude and latitude and so on. The period of the 
test original data set is about one month. Then we 
make some processes to the test original data set: 1) 
in the whole selected map, we select 9 zones as our 
tested accessing item contents (as the example of 
Table 2); 2) we build a table in database, whose 

                                                 
13The test environment is under Win10 OS, Intel i5 CPU 2.3Ghz 
and 8G RAM.  
14Baidu is a network company in China. The baidu map is one of 
the network services provided by the company, which provides a 
lot of APIs for programmers to develop their applications on map.  
15Gowalla is a location-based social networking website where 
users share their locations by checking-in.  
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of the whole algorithm can satisfy differential privacy 
protection. 

6. Experiment Analysis of the 
Proposed Scheme
In this section, our experiments are mainly from two 
aspects to evaluate the efficiency of the proposed 
scheme. The first one is the running time of the pro-
posed algorithms, which includes the time of con-
structing and updating the multi-level query tree and 
the time of extracting and protecting the available 
data from the multi-level query tree. The second one 
is protection effectiveness, which includes data utili-
ty and data privacy protection degree, where we eval-
uate the availability of the extracted and protected 
data mainly through the comparisons of true positive 
rate, false positive rate, accurate rate and false reject 
rate before and after extracting and protection.

6.1. Running Time Analysis
In this section, we test the running time of the pro-
posed algorithms mainly through the time of con-
structing and updating the multi-level query tree and 
the time of extracting and protecting the available 
data from the multi-level query tree. All the proposed 
algorithms are coded by the C++13 programming lan-
guage. The test original data set comes from the sim-
ulation on the Baidu map14, which is similar to the 

13 The test environment is under Win10 OS, Intel i5 CPU 2.3Ghz 
and 8G RAM. 

14 Baidu is a network company in China. The baidu map is one of 
the network services provided by the company, which provides a 
lot of APIs for programmers to develop their applications on map. 

Gowalla data set15. The test original data set contains 
user id, accessing time, longitude and latitude and 
so on. The period of the test original data set is about 
one month. Then we make some processes to the test 
original data set: 1) in the whole selected map, we se-
lect 9 zones as our tested accessing item contents (as 
the example of Table 2); 2) we build a table in data-
base, whose attributes contain id, user id, accessing 
time and accessing item content; 3) if the longitude 
and latitude of the record from the test original data 
set is within the scope of one of the 9 zones, then the 
database builds one new record according to the cor-
responding user id in the table. Based on our experi-
ments, the time of constructing the multi-level query 
tree is about 0.0014 second per 500 records, the effi-
ciency of updating the multi-level query tree is about 
10219 records per second. Table 4 shows the efficien-
cy of extracting and protecting the available data. Ta-
ble 4 shows the different numbers of extracting and 
protecting the available data from the multi-level 
query tree in a second by setting the privacy parame-
ter ε = 0.01, 0.05, 0.1, 0.5, 1.1 ,1.5, respectively.

Table 4
The efficiency of extracting and protecting available data

ε 0.01 0.05 0.1 0.5 1.1 1.5

k 3012 4182 40124 9131 51320 81301

From the experiments, we find that the time of con-
structing and updating the multi-level query tree is 
very fast, and the efficiency of extracting and protect-
ing the available data from the multi-level query tree 
is always increasing with the increasing of ε in a cer-
tain range.

6.2. Protection Effectiveness Analysis
In this section, we firstly show data utility and priva-
cy protection degree by Figures 3-5. The figures show 
the number change of the extracted and protected 
data points before and after extracting and protec-
tion. From the figures, we see that more selected data 
points are added around the sensitive data points af-
ter employing our  proposed scheme to protect the 
sensitive data points, where the sensitive data can be 
effectively hidden and protected. Secondly, we also 
evaluate the availability of the extracted and protect-

15 Gowalla is a location-based social networking website where 
users share their locations by checking-in. 
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ed data mainly through the comparisons of true pos-
itive rate, false positive rate, accurate rate and false 
reject rate before and after extracting and protection. 
Tables 5 and 6 show the comparisons.
Firstly, in our experiments, we set the selected record 
number k=50, 100 and 200 for the extracted and pro-
tected data in Figures 3-5, respectively. In the figures, 
the point data are the combinations of location data 
and accessing frequency (the point data are mapped 
into the figures), where the blue points represent the 
non-sensitive data points and the red points repre-
sent the sensitive data points. Additionally, we set 
the access frequency h of the extracted and protected 
data as the boundary of non-sensitive data and sen-
sitive data16. The following figures show the number 
change of the sensitive data before and after extract-
ing and protection.
Figure 3 shows the number change of the sensitive 
data before and after extracting and protection when 
k=50. Figure 3(a) shows that there are 8 red points 
representing the sensitive data before protection. 
Figure 3(b) shows that there are 15 red points repre-
senting the sensitive data after employing our pro-
posed scheme, which can be seen to make the num-
ber of sensitive data points increase. Hence, the true 
sensitive data can be effectively hidden and protected 
so that the attackers cannot easily find the true sensi-
tive data. Additionally, such a number change can also 
guarantee data utility, otherwise the large number 
change of the sensitive data points may result in data 
mining (or data analysis) becomes insignificance.
Figure 4 shows the number change of the sensitive 
data before and after extracting and protection when 
k=100. Figure 4(a) shows that there are 12 red points 
representing the sensitive data before protection. 
Figure 4(b) shows that there are 26 red points rep-
resenting the sensitive data after employing our pro-
posed scheme, which also makes the number of the 
sensitive data points increase.
Figure 5 shows the number change of the sensitive 
data before and after extracting and protection when 
k=200. Figure 5(a) shows that there are 15 red points 
representing the sensitive data before protection. 
Figure 5(b) shows that there are 39 red points rep-
resenting the sensitive data after employing our pro-

16 If the access frequency of data is more than h, then data are 
sensitive, otherwise they are non-sensitive. 

Figure 3 
The number change of the sensitive data when k=50

Figure 4 
The number change of the sensitive data when k=100

(b) After protection(a) Before protection

(a) Before protection (b) After protection

Figure 5 
The number change of the sensitive data when k=200

(a) Before protection (b) After protection

posed scheme. It denotes that the number of the red 
points is increased.
Secondly, we define true positive rate, false positive 
rate, accurate rate and false reject rate for the availa-
bility of the extracted and protected data before and 
after extracting and protection. Given a positive inte-
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ger k, we define QSk(D) to be the top-k data set from 
the original multi-level query tree I

DF , which satisfies 
that the accessing frequency of every data record is 
not less than min_count. We also define QSk′(D) to be 
the top-k data set from the new multi-level query tree 
added by the Laplace’s noises. Then we may analyze 
the availability of our proposed algorithms by false re-
ject rate, where false reject rate stands for the rate of 
k data records being in QSk(D) and not in QSk′(D). The 
definitions of true positive rate, false positive rate, ac-
curate rate and false reject rate are as follows:
1 True positive rate: the rate of the records being in 

QSk(D) and QSk′(D),

  

points representing the sensitive data before protection. 
Figure 5(b) shows that there are 39 red points 
representing the sensitive data after employing our 
proposed scheme. It denotes that the number of the red 
points is increased. 
Secondly, we define true positive rate, false positive rate, 
accurate rate and false reject rate for the availability of 
the extracted and protected data before and after 
extracting and protection. Given a positive integer k, we 
define QSk(D) to be the top-k data set from the original 
multi-level query tree I

DF , which satisfies that the 
accessing frequency of every data record is not less than 
min_count. We also define QSk'(D) to be the top-k data 
set from the new multi-level query tree added by the 
Laplace’s noises. Then we may analyze the availability of 
our proposed algorithms by false reject rate, where false 
reject rate stands for the rate of k data records being in 
QSk(D) and not in QSkʼ(D). The definitions of true 
positive rate, false positive rate, accurate rate and false 
reject rate are as follows: 

1) True positive rate: the rate of the records being in 
QSk(D) and QSk'(D), 

TPR = ǀQSk(D)∩QSk'(D)ǀ. 

2) False positive rate: the rate of the records being in 
QSk' (D) and not in QSk(D), 

FPR = ǀQSk'(D)－QSk(D)∩QSk'(D)ǀ. 

3) Accurate rate: 
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4) False reject rate: 
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Therefore, we may compute error value from true 
positive rate, false positive rate, accurate rate and false 
reject rate so as to evaluate the difference of the protected 
data and the original data. To show the efficiency of our 
proposed method, we compare the TDPS_LP_Result 
method [32],    the TDPS_LP_Signal method [32], the 
TDPS_EP method [32] and the CM method [44] with 
our proposed method. 

    
Figure 6 The error comparison of the five schemes 

Figure 6 shows the error value comparison of the five 
methods on the noise-added data and the original data. In 
Figure 6, with the increase of the privacy parameter ε, the 
error values of the methods are becoming smaller, where 

the error value of our proposed method tends to be 
stable and very small 17  when ε>0.015. Figure 6 
shows that our proposed method is superior to the 
other four methods. Although the error values of the 
TDPS_LP_Result method, the TDPS_LP_Signal 
method and the TDPS_EP method also tend to be 
stable, the error values of these methods are larger 
than that of our proposed method. Furthermore, the 
error value of the CM method is unstable and 
obviously more than those of the other four 
methods. 

In the following experiments, we compare our 
proposed method with the TDPS_LP_Result 
method, the TDPS_LP_Signal method and the 
TDPS_EP_method 18  on true positive rate, false 
positive rate and accurate rate; and we compare our 
proposed method with the DP-top-k method [15] on 
false reject rate. 

Table 5 

The data efficiency comparison of the four schemes 

k 
TPR FPR ACY 

R S E O R S E O R S E O 

20 19 20 17 20 1 0 3 0 0.95 1 0.85 1 

40 38 38 22 39 2 2 18 1 0.95 0.95 0.55 0.98 

60 54 57 30 58 6 3 30 2 0.9 0.95 0.5 0.97 

80 67 66 34 73 13 14 46 7 0.84 0.83 0.425 0.91 

100 80 78 39 90 20 22 61 10 0.8 0.78 0.39 0.9 

120 90 92 46 105 30 38 74 15 0.75 0.77 0.38 0.88 

140 94 101 52 119 46 39 88 21 0.67 0.72 0.371 0.83 

160 108 109 60 128 52 51 100 32 0.68 0.68 0.375 0.8 

180 117 117 65 144 63 63 115 32 0.65 0.65 0.36 0.8 

200 126 125 70 160 74 75 130 40 0.63 0.63 0.35 0.8 

 

When we set the privacy parameter to ε=1.1, Table 
5 shows the comparisons of our proposed method, 
the TDPS_LP_Result method, the 
TDPS_LP_Signal method and the TDPS_EP 
method on true positive rate, false positive rate and 
accurate rate, where k=20, 40, 60, 80, 100 and 200. 
In Table 5, with the increase of k, the accurate rates 
of the four methods decrease. When k=200, the 
accurate rates tend to be stable, where the accurate 
rates of the TDPS_LP_Result method and the 
TDPS_LP_Signal method are about 63%, the 
accurate rate of the TDPS_EP method is below 
35% and the accurate rate of our proposed method 
is stably about 80%. Therefore, even if the value of 
k becomes big, our proposed method can also 

                                                 
17ε is smaller, privacy protection level is higher.  
18In Tables 5 and 6, the symbol R denotes the TDPS_LP_Result 
method, the symbol S denotes the TDPS_LP_Signal method, the 
symbol E denotes the TDPS_EP method, the symbol O denotes our 
proposed method.  

2 False positive rate: the rate of the records being in 
QSk′(D) and not in QSk(D),

  

points representing the sensitive data before protection. 
Figure 5(b) shows that there are 39 red points 
representing the sensitive data after employing our 
proposed scheme. It denotes that the number of the red 
points is increased. 
Secondly, we define true positive rate, false positive rate, 
accurate rate and false reject rate for the availability of 
the extracted and protected data before and after 
extracting and protection. Given a positive integer k, we 
define QSk(D) to be the top-k data set from the original 
multi-level query tree I

DF , which satisfies that the 
accessing frequency of every data record is not less than 
min_count. We also define QSk'(D) to be the top-k data 
set from the new multi-level query tree added by the 
Laplace’s noises. Then we may analyze the availability of 
our proposed algorithms by false reject rate, where false 
reject rate stands for the rate of k data records being in 
QSk(D) and not in QSkʼ(D). The definitions of true 
positive rate, false positive rate, accurate rate and false 
reject rate are as follows: 

1) True positive rate: the rate of the records being in 
QSk(D) and QSk'(D), 

TPR = ǀQSk(D)∩QSk'(D)ǀ. 

2) False positive rate: the rate of the records being in 
QSk' (D) and not in QSk(D), 

FPR = ǀQSk'(D)－QSk(D)∩QSk'(D)ǀ. 
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Therefore, we may compute error value from true 
positive rate, false positive rate, accurate rate and false 
reject rate so as to evaluate the difference of the protected 
data and the original data. To show the efficiency of our 
proposed method, we compare the TDPS_LP_Result 
method [32],    the TDPS_LP_Signal method [32], the 
TDPS_EP method [32] and the CM method [44] with 
our proposed method. 

    
Figure 6 The error comparison of the five schemes 

Figure 6 shows the error value comparison of the five 
methods on the noise-added data and the original data. In 
Figure 6, with the increase of the privacy parameter ε, the 
error values of the methods are becoming smaller, where 

the error value of our proposed method tends to be 
stable and very small 17  when ε>0.015. Figure 6 
shows that our proposed method is superior to the 
other four methods. Although the error values of the 
TDPS_LP_Result method, the TDPS_LP_Signal 
method and the TDPS_EP method also tend to be 
stable, the error values of these methods are larger 
than that of our proposed method. Furthermore, the 
error value of the CM method is unstable and 
obviously more than those of the other four 
methods. 

In the following experiments, we compare our 
proposed method with the TDPS_LP_Result 
method, the TDPS_LP_Signal method and the 
TDPS_EP_method 18  on true positive rate, false 
positive rate and accurate rate; and we compare our 
proposed method with the DP-top-k method [15] on 
false reject rate. 

Table 5 

The data efficiency comparison of the four schemes 

k 
TPR FPR ACY 

R S E O R S E O R S E O 

20 19 20 17 20 1 0 3 0 0.95 1 0.85 1 

40 38 38 22 39 2 2 18 1 0.95 0.95 0.55 0.98 

60 54 57 30 58 6 3 30 2 0.9 0.95 0.5 0.97 

80 67 66 34 73 13 14 46 7 0.84 0.83 0.425 0.91 

100 80 78 39 90 20 22 61 10 0.8 0.78 0.39 0.9 

120 90 92 46 105 30 38 74 15 0.75 0.77 0.38 0.88 

140 94 101 52 119 46 39 88 21 0.67 0.72 0.371 0.83 

160 108 109 60 128 52 51 100 32 0.68 0.68 0.375 0.8 

180 117 117 65 144 63 63 115 32 0.65 0.65 0.36 0.8 

200 126 125 70 160 74 75 130 40 0.63 0.63 0.35 0.8 

 

When we set the privacy parameter to ε=1.1, Table 
5 shows the comparisons of our proposed method, 
the TDPS_LP_Result method, the 
TDPS_LP_Signal method and the TDPS_EP 
method on true positive rate, false positive rate and 
accurate rate, where k=20, 40, 60, 80, 100 and 200. 
In Table 5, with the increase of k, the accurate rates 
of the four methods decrease. When k=200, the 
accurate rates tend to be stable, where the accurate 
rates of the TDPS_LP_Result method and the 
TDPS_LP_Signal method are about 63%, the 
accurate rate of the TDPS_EP method is below 
35% and the accurate rate of our proposed method 
is stably about 80%. Therefore, even if the value of 
k becomes big, our proposed method can also 

                                                 
17ε is smaller, privacy protection level is higher.  
18In Tables 5 and 6, the symbol R denotes the TDPS_LP_Result 
method, the symbol S denotes the TDPS_LP_Signal method, the 
symbol E denotes the TDPS_EP method, the symbol O denotes our 
proposed method.  

3 Accurate rate:

  

points representing the sensitive data before protection. 
Figure 5(b) shows that there are 39 red points 
representing the sensitive data after employing our 
proposed scheme. It denotes that the number of the red 
points is increased. 
Secondly, we define true positive rate, false positive rate, 
accurate rate and false reject rate for the availability of 
the extracted and protected data before and after 
extracting and protection. Given a positive integer k, we 
define QSk(D) to be the top-k data set from the original 
multi-level query tree I

DF , which satisfies that the 
accessing frequency of every data record is not less than 
min_count. We also define QSk'(D) to be the top-k data 
set from the new multi-level query tree added by the 
Laplace’s noises. Then we may analyze the availability of 
our proposed algorithms by false reject rate, where false 
reject rate stands for the rate of k data records being in 
QSk(D) and not in QSkʼ(D). The definitions of true 
positive rate, false positive rate, accurate rate and false 
reject rate are as follows: 

1) True positive rate: the rate of the records being in 
QSk(D) and QSk'(D), 

TPR = ǀQSk(D)∩QSk'(D)ǀ. 

2) False positive rate: the rate of the records being in 
QSk' (D) and not in QSk(D), 

FPR = ǀQSk'(D)－QSk(D)∩QSk'(D)ǀ. 

3) Accurate rate: 
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Therefore, we may compute error value from true 
positive rate, false positive rate, accurate rate and false 
reject rate so as to evaluate the difference of the protected 
data and the original data. To show the efficiency of our 
proposed method, we compare the TDPS_LP_Result 
method [32],    the TDPS_LP_Signal method [32], the 
TDPS_EP method [32] and the CM method [44] with 
our proposed method. 

    
Figure 6 The error comparison of the five schemes 

Figure 6 shows the error value comparison of the five 
methods on the noise-added data and the original data. In 
Figure 6, with the increase of the privacy parameter ε, the 
error values of the methods are becoming smaller, where 

the error value of our proposed method tends to be 
stable and very small 17  when ε>0.015. Figure 6 
shows that our proposed method is superior to the 
other four methods. Although the error values of the 
TDPS_LP_Result method, the TDPS_LP_Signal 
method and the TDPS_EP method also tend to be 
stable, the error values of these methods are larger 
than that of our proposed method. Furthermore, the 
error value of the CM method is unstable and 
obviously more than those of the other four 
methods. 

In the following experiments, we compare our 
proposed method with the TDPS_LP_Result 
method, the TDPS_LP_Signal method and the 
TDPS_EP_method 18  on true positive rate, false 
positive rate and accurate rate; and we compare our 
proposed method with the DP-top-k method [15] on 
false reject rate. 

Table 5 

The data efficiency comparison of the four schemes 

k 
TPR FPR ACY 

R S E O R S E O R S E O 

20 19 20 17 20 1 0 3 0 0.95 1 0.85 1 

40 38 38 22 39 2 2 18 1 0.95 0.95 0.55 0.98 

60 54 57 30 58 6 3 30 2 0.9 0.95 0.5 0.97 

80 67 66 34 73 13 14 46 7 0.84 0.83 0.425 0.91 

100 80 78 39 90 20 22 61 10 0.8 0.78 0.39 0.9 

120 90 92 46 105 30 38 74 15 0.75 0.77 0.38 0.88 

140 94 101 52 119 46 39 88 21 0.67 0.72 0.371 0.83 

160 108 109 60 128 52 51 100 32 0.68 0.68 0.375 0.8 

180 117 117 65 144 63 63 115 32 0.65 0.65 0.36 0.8 

200 126 125 70 160 74 75 130 40 0.63 0.63 0.35 0.8 

 

When we set the privacy parameter to ε=1.1, Table 
5 shows the comparisons of our proposed method, 
the TDPS_LP_Result method, the 
TDPS_LP_Signal method and the TDPS_EP 
method on true positive rate, false positive rate and 
accurate rate, where k=20, 40, 60, 80, 100 and 200. 
In Table 5, with the increase of k, the accurate rates 
of the four methods decrease. When k=200, the 
accurate rates tend to be stable, where the accurate 
rates of the TDPS_LP_Result method and the 
TDPS_LP_Signal method are about 63%, the 
accurate rate of the TDPS_EP method is below 
35% and the accurate rate of our proposed method 
is stably about 80%. Therefore, even if the value of 
k becomes big, our proposed method can also 

                                                 
17ε is smaller, privacy protection level is higher.  
18In Tables 5 and 6, the symbol R denotes the TDPS_LP_Result 
method, the symbol S denotes the TDPS_LP_Signal method, the 
symbol E denotes the TDPS_EP method, the symbol O denotes our 
proposed method.  

4 False reject rate:

  

points representing the sensitive data before protection. 
Figure 5(b) shows that there are 39 red points 
representing the sensitive data after employing our 
proposed scheme. It denotes that the number of the red 
points is increased. 
Secondly, we define true positive rate, false positive rate, 
accurate rate and false reject rate for the availability of 
the extracted and protected data before and after 
extracting and protection. Given a positive integer k, we 
define QSk(D) to be the top-k data set from the original 
multi-level query tree I

DF , which satisfies that the 
accessing frequency of every data record is not less than 
min_count. We also define QSk'(D) to be the top-k data 
set from the new multi-level query tree added by the 
Laplace’s noises. Then we may analyze the availability of 
our proposed algorithms by false reject rate, where false 
reject rate stands for the rate of k data records being in 
QSk(D) and not in QSkʼ(D). The definitions of true 
positive rate, false positive rate, accurate rate and false 
reject rate are as follows: 

1) True positive rate: the rate of the records being in 
QSk(D) and QSk'(D), 

TPR = ǀQSk(D)∩QSk'(D)ǀ. 

2) False positive rate: the rate of the records being in 
QSk' (D) and not in QSk(D), 

FPR = ǀQSk'(D)－QSk(D)∩QSk'(D)ǀ. 
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Therefore, we may compute error value from true 
positive rate, false positive rate, accurate rate and false 
reject rate so as to evaluate the difference of the protected 
data and the original data. To show the efficiency of our 
proposed method, we compare the TDPS_LP_Result 
method [32],    the TDPS_LP_Signal method [32], the 
TDPS_EP method [32] and the CM method [44] with 
our proposed method. 

    
Figure 6 The error comparison of the five schemes 

Figure 6 shows the error value comparison of the five 
methods on the noise-added data and the original data. In 
Figure 6, with the increase of the privacy parameter ε, the 
error values of the methods are becoming smaller, where 

the error value of our proposed method tends to be 
stable and very small 17  when ε>0.015. Figure 6 
shows that our proposed method is superior to the 
other four methods. Although the error values of the 
TDPS_LP_Result method, the TDPS_LP_Signal 
method and the TDPS_EP method also tend to be 
stable, the error values of these methods are larger 
than that of our proposed method. Furthermore, the 
error value of the CM method is unstable and 
obviously more than those of the other four 
methods. 

In the following experiments, we compare our 
proposed method with the TDPS_LP_Result 
method, the TDPS_LP_Signal method and the 
TDPS_EP_method 18  on true positive rate, false 
positive rate and accurate rate; and we compare our 
proposed method with the DP-top-k method [15] on 
false reject rate. 
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The data efficiency comparison of the four schemes 
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TPR FPR ACY 

R S E O R S E O R S E O 

20 19 20 17 20 1 0 3 0 0.95 1 0.85 1 

40 38 38 22 39 2 2 18 1 0.95 0.95 0.55 0.98 

60 54 57 30 58 6 3 30 2 0.9 0.95 0.5 0.97 

80 67 66 34 73 13 14 46 7 0.84 0.83 0.425 0.91 

100 80 78 39 90 20 22 61 10 0.8 0.78 0.39 0.9 

120 90 92 46 105 30 38 74 15 0.75 0.77 0.38 0.88 

140 94 101 52 119 46 39 88 21 0.67 0.72 0.371 0.83 

160 108 109 60 128 52 51 100 32 0.68 0.68 0.375 0.8 

180 117 117 65 144 63 63 115 32 0.65 0.65 0.36 0.8 

200 126 125 70 160 74 75 130 40 0.63 0.63 0.35 0.8 

 

When we set the privacy parameter to ε=1.1, Table 
5 shows the comparisons of our proposed method, 
the TDPS_LP_Result method, the 
TDPS_LP_Signal method and the TDPS_EP 
method on true positive rate, false positive rate and 
accurate rate, where k=20, 40, 60, 80, 100 and 200. 
In Table 5, with the increase of k, the accurate rates 
of the four methods decrease. When k=200, the 
accurate rates tend to be stable, where the accurate 
rates of the TDPS_LP_Result method and the 
TDPS_LP_Signal method are about 63%, the 
accurate rate of the TDPS_EP method is below 
35% and the accurate rate of our proposed method 
is stably about 80%. Therefore, even if the value of 
k becomes big, our proposed method can also 

                                                 
17ε is smaller, privacy protection level is higher.  
18In Tables 5 and 6, the symbol R denotes the TDPS_LP_Result 
method, the symbol S denotes the TDPS_LP_Signal method, the 
symbol E denotes the TDPS_EP method, the symbol O denotes our 
proposed method.  

Therefore, we may compute error value from true 
positive rate, false positive rate, accurate rate and 
false reject rate so as to evaluate the difference of 
the protected data and the original data. To show the 
efficiency of our proposed method, we compare the 
TDPS_LP_Result method [32], the TDPS_LP_Signal 
method [32], the TDPS_EP method [32] and the CM 
method [44] with our proposed method.
Figure 6 shows the error value comparison of the five 
methods on the noise-added data and the original 
data. In Figure 6, with the increase of the privacy para-
meter ε, the error values of the methods are becoming 
smaller, where the error value of our proposed me-
thod tends to be stable and very small17 when ε>0.015. 
Figure 6 shows that our proposed method is superior 

17 ε is smaller, privacy protection level is higher. 

to the other four methods. Although the error values 
of the TDPS_LP_Result method, the TDPS_LP_Si-
gnal method and the TDPS_EP method also tend to 
be stable, the error values of these methods are larger 
than that of our proposed method. Furthermore, the 
error value of the CM method is unstable and obvio-
usly more than those of the other four methods.
In the following experiments, we compare our propo-
sed method with the TDPS_LP_Result method, the 
TDPS_LP_Signal method and the TDPS_EP_me-
thod18 on true positive rate, false positive rate and 
accurate rate; and we compare our proposed method 
with the DP-top-k method [15] on false reject rate.
When we set the privacy parameter to ε=1.1, Table 5 
shows the comparisons of our proposed method, the 
TDPS_LP_Result method, the TDPS_LP_Signal me-
thod and the TDPS_EP method on true positive rate, 
false positive rate and accurate rate, where k=20, 40, 
60, 80, 100 and 200. In Table 5, with the increase of 
k, the accurate rates of the four methods decrease. 
When k=200, the accurate rates tend to be stable, 
where the accurate rates of the TDPS_LP_Result 
method and the TDPS_LP_Signal method are about 
63%, the accurate rate of the TDPS_EP method is 
below 35% and the accurate rate of our proposed me-
thod is stably about 80%. Therefore, even if the value 
of k becomes big, our proposed method can also main-
tain high accurate rate.

18 In Tables 5 and 6, the symbol R denotes the TDPS_LP_Result 
method, the symbol S denotes the TDPS_LP_Signal method, the 
symbol E denotes the TDPS_EP method, the symbol O denotes 
our proposed method. 

Figure 6 
The error comparison of the five schemes
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Table 5
The data efficiency comparison of the four schemes

k
TPR FPR ACY

R S E O R S E O R S E O

20 19 20 17 20 1 0 3 0 0.95 1 0.85 1
40 38 38 22 39 2 2 18 1 0.95 0.95 0.55 0.98
60 54 57 30 58 6 3 30 2 0.9 0.95 0.5 0.97
80 67 66 34 73 13 14 46 7 0.84 0.83 0.425 0.91

100 80 78 39 90 20 22 61 10 0.8 0.78 0.39 0.9
120 90 92 46 105 30 38 74 15 0.75 0.77 0.38 0.88
140 94 101 52 119 46 39 88 21 0.67 0.72 0.371 0.83
160 108 109 60 128 52 51 100 32 0.68 0.68 0.375 0.8
180 117 117 65 144 63 63 115 32 0.65 0.65 0.36 0.8
200 126 125 70 160 74 75 130 40 0.63 0.63 0.35 0.8

Additionally, when we fixedly set k=60, we analyzed 
the comparisons of our proposed method, the TDPS_
LP_Result method and the TDPS_LP_Signal method 
by changing the value of ε where ε=0.01, 0.05, 0.1, 0.5, 
1.1 and 1.5. Table 6 shows the comparisons. In  Table 6, 
with the increase of ε, the accurate rates of the three 
methods increase. When ε>1.1, the accurate rates of 
the TDPS_LP_Result method and the TDPS_LP_Si-
gnal method tend to be stable above 92%, the accurate 
rate of our proposed method is about 97%.
In Figure 7, we also compare our proposed method 
with the DP-top-k method on false reject rate. When 
we fixedly set k=100, we analyzed the comparisons of 
our proposed method and the DP-top-k method by 
changing the value of ε from 0.5 to 1.5. In Figure 7, the 
false reject rates of our proposed method and the DP-
top-k method can both maintain low values with the 
change of ε. Further, because the false reject rate of 

Table 6
The data efficiency comparison of the three schemes when k=60

ε
TPR FPR ACY

R S O R S O R S O

0.01 40 56 54 20 4 6 0.67 0.93 0.90
0.05 54 57 54 6 3 6 0.90 0.95 0.90
0.1 52 56 54 8 4 6 0.87 0.93 0.90
0.5 54 55 55 6 5 5 0.90 0.97 0.92
1.1 55 57 58 5 3 4 0.92 0.95 0.97
1.5 55 57 58 5 3 2 0.92 0.95 0.97

our proposed method can maintain lower value than 
that of the DP-top-k method, our proposed method is 
more effective.

Figure 7 
The FRR comparison of the two schemes when k=100

7. Conclusions
As the records about location data may be discrete in 
database, some existing privacy protection schemes 
are difficult to protect location data in data mining. 
In this paper, we propose a location data record pri-
vacy protection scheme based on differential pri-
vacy mechanism, which employs the structure of 
multi-level query tree to query and publish location 
data on database. In the proposed scheme, we first 
construct the structure of multi-level query tree 
from database, then we make double processes of 
selecting data according to accessing frequencies by 
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the exponential mechanism and one process of add-
ing noises to accessing frequencies by the Laplace’s 
mechanism on the multi-level query tree. The ex-

periments show that the data availability of the pro-
posed scheme is higher and the privacy protection of 
the scheme is effective.
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