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Abstract. Due to the inherent nonlinear nature of real world systems, one of the most popular ways to deal with 
nonlinear systems is to find a feedback linearizing input and then deal with the system by using the rich literature on 
linear control methods. As an alternative, the nonlinear terms in the system model can be piecewise linearized and then 
the system can be controlled by using various linear control approaches. The purpose of this paper is to show that 
under certain conditions, piecewise linearization (PWL) outperforms feedback linearization. In this note, a systematic 
procedure is outlined for approximating convex separable nonlinear systems with a continuous piecewise linear func-
tion and, to emphasize upon the basic idea of this paper, a widely employed nonlinear vehicle following model is used 
as an example. For this particular model, it is shown that the approximation scheme is optimal with respect to the num-
ber of local linear models and the inherent problem of increased dimensionality of PWL systems is not significant. As 
an extension of our previous work, it is also shown that parametric uncertainties can be deeply investigated, which is 
not possible in the case of feedback linearization. A simulation study is carried out to show that the proposed system 
not only guarantees asymptotic tracking of the desired trajectories, but also ensures safety and ride comfort under the 
constraints of physical limitations inherent in the system. Various issues of vehicle following, e.g. convergence of error 
in the inter-vehicle spacing, velocity following, control saturation and parametric uncertainties are addressed in this 
paper. The performance analysis reveals that this new strategy yields promising results. 

Keywords: nonlinear system approximation, piecewise linear function, automatic cruise control. 

 
 

1. Introduction 

Approximation and control of nonlinear functions 
by Piecewise linear (PWL) functions has undergone a 
wealth of theoretical development as evidenced by 
growing list of research articles dedicated to the sub-
ject e.g. [1-20], etc. The reasons suggesting it worth-
while to investigate PWL systems are that PWL 
systems are simple to implement and offer ease of 
theoretical analysis and calculation. Despite a signi-
ficant surge of interest in representation of PWL 
systems, the recent research has seen limited practical 
implementations. Some detailed applications are 
found in the field of nonlinear circuits analysis e.g. [3, 
7, 11] whereas many researches contain brief ap-
plications and the main focus of such researches was 
to validate their proposed PWL algorithms as in [2, 8, 
13, 18, 19]. Nevertheless there exist research articles 
e.g. [15, 16, 17] which deal with specific systems for 
their respective control issues. The reason, why PWL 
models are not widely applied, lies in that the conven-
tional representations of PWL functions are concerned 
with too many parameters which occur in the 

functions expression and the domain partitions. The 
complexity of PWL modeling and control depends 
upon the number of nonlinearities, type of nonlineari-
ties, domain of the variables representing the nonli-
near function and the required precision of approxima-
tion to the original nonlinear model. 

As performance demands on modern control sys-
tems increase, controllers are required to work over 
large operating ranges where assumptions on linear 
dynamics are no longer valid. To control a nonlinear 
system around a specific operating point, a set of 
linear models in a local region has been widely used. 
For such a system, the controller parameters are chan-
ged to the appropriate values corresponding to the 
equilibrium points. But this approach generally 
requires a large number of controllers, otherwise the 
operating range is too limited. More number of cont-
rollers entails frequent switching of controllers which 
may lead to instability.  On the other hand, by using 
piecewise linear local models the state space region 
can be investigated incrementally. 

Feedback linearization is another commonly adop-
ted approach to deal with the nonlinear systems [21, 
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22, 24-28, 30]. It may be noted that feedback linea-
rization of the system requires exact measurement of 
system parameters, which is sometimes hard to deter-
mine precisely, especially in case of parametric varia-
tions. Though useful sometimes, however in many 
cases an unwanted result of feedback linearization is 
the modification of the system, thus loosing details by 
neglecting important dynamics and simplification of 
the original model to an undesired extent. So there 
exists a need to deal with the system model in its (as 
far as possible) original form. 

In this paper we adopt a continuous PWL model to 
approximate the nonlinear vehicle following model 
(VFM) and hence present a stable piecewise linear 
control approach. The contributions and novelty of 
this work can be mainly attributed to the PWL appro-
ximation and control of a widely employed nonlinear 
vehicle following model. The resulting PWL model is 
simple, represents the entire domain of interest, valid 
over a wider region, and hence we show that a fewer 
number of linear models are enough to approximate 
the complete system.  

The research on VFM sees a number of articles 
where the authors have used the same nonlinear model 
(as in this paper) and then applied their linear control 
approaches to demonstrate the effectiveness of their 
vehicle following algorithms. In fact, there exist two 
basic trends in using the specific VFM: one is to use 
its most simple linearized form at the first instance 
[31-36] and then use different linear controls for 
vehicle tracking; the other trend is to use the model in 
original nonlinear form at the first instance, then per-
form feedback linearization and then use some pre-
ferred linear control method e.g. PID, state feedback, 
Linear Quadratic Control (LQR) or H-infinity.  

Both of these approaches have been successful in 
offering useful results, nevertheless each of these 
bears some fundamental problems. The model used 
according to the first trend is too simple and just re-
presents the movement of two masses and doesn’t 
account for many important factors which affect the 
dynamics of vehicles, while the second trend actually 
follows the first one in spirit, as it is based on finding 
a feedback linearizing control which cancels the 
nonlinear terms and transforms the model in the same 
form as is used under the first trend. With either of 
these trends, the resulting model and the consequent 
control results suffer from major disadvantages such 
as: if the feedback linearization is successful, the cont-
rol disregards the effects of nonlinear term and certain 
factors (will be covered in detail in Sections 3 and 5); 
any disturbance in the parameters would render the 
linearization process inexact and hence the control 
would not be effective. Our adopted approach differs 
from both of these trends and is able to account for 
these fundamental disadvantages. 

The approach adopted in this work splits the sys-
tem into the constituent linear continuous subsystems, 
and the boundaries of subsystems are determined in a 
methodical way. As an extension of our previous work 

[20], we show that the modeling scheme is optimal 
with respect to the number of local models and is the 
best approximation for the original model. We apply 
this modeling approach on the nonlinear VFM (used 
in [21-30]) and then design linear control valid for 
each local linear model. The switching logic of cont-
rollers is based on the current value of the measured 
state, hence a self-organizing scheme is developed 
where the controllers switch according to present 
value of the measured signal. We perform the control 
of a follower vehicle which keeps a fixed or variable-
over-speed distance with a leader vehicle. Then we 
address various aspects of regulation and tracking of 
the desired distance and velocity under the constraints 
and limitations inherent in the actual plant. The ap-
plicability of the proposed method is demonstrated by 
simulations, where the robustness properties of the 
control system are also evaluated against parametric 
uncertainties.  

The remainder of the paper is organized as fol-
lows: In Section 2, the PWL modeling scheme is 
described. In Section 3, the scheme is applied to 
approximate a third order nonlinear vehicle following 
model. Section 4 discusses controller design and im-
plementation. In Section 5, the performance of the 
system is evaluated by simulations. The simulations 
include possible real state scenarios and different 
maneuvers. Finally conclusions are drawn in Section 
6.  

2. System Representation by PWL Functions  
 

The first PWL absolute value model was proposed 
by Kang and Chua [14] which can represent all one-
dimensional (1-D) continuous PWL functions, and 
also a part of the 2-D continuous PWL functions that 
possess the consistent variation property. Thereafter, 
Kahlert and Chua improved the model to represent all 
2-D continuous PWL functions [4]. A more general 
model proposed by Lin can theoretically represent all 
continuous PWL functions [5]. On the whole, the 
existing global representation of PWL functions is 
limited to the continuous PWL functions, the forms of 
which include the absolute value form, minimum-
maximum form and state equation form. The cano-
nical PWL representation, which was first introduced 
in [14] for analyzing nonlinear circuits, has been a 
successful example. It is a linear combination of a 
linear (affine) function and a number of absolute-value 
functions of linear functions. Its scalar form can be 
written as: 

1

( | (0)) ( | ( ))
m

i
i

l x c l x iθ θ
=

+∑ , (1) 

where ( | ( ))l iθ⋅ : nR R→  denotes a linear function 

determined by a parameter vector 1( ) ni Rθ +∈  , i.e., 

( | ( )) 1 ( )Tl x i x iθ θ⎡ ⎤= ⎣ ⎦ , nx R∀ ∈ . On the other 
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hand, there exists a totally different way to represent a 
continuous PWL function. It is called a lattice PWL 
function [9]. The general form of this representation 
for PWL functions that consist of m local linear 
functions is: 

1
min max ( | ( ))

ii M j s
l x jθ

≤ ≤ ∈
. (2) 

Each is is a nonempty subset of the index set 
Zm={1,2,…m}, M is a positive integer [11] denoting 
the total number of subsets s (M>m) and m is the total 
number of local linear functions which are used to 
approximate the nonlinear function. As equation (2) 
must equal one of ( | (1))l x θ , ( | (2))l x θ , …., 

( | ( ))l x mθ for any nx R∈ , it is indeed a continuous 
PWL function whose local linear functions are just 
( | ( ))l x jθ . In order to find a general representation 

that consists of at most n-level nestings of absolute-
value functions for all continuous PWL functions in n 
dimensions, it is sufficient to find such a represen-
tation for the convex function: 

max ( | ( ))
mj Z

l x jθ
∈

. (3) 

Now consider a nonlinear dynamic system: 

 x( ) G(x( ),u( ))
y( ) C(x( ))

t t t
t t

•
=
=

, (4) 

where G is the nonlinear function, x is the state vector 
(x )nR∈ , y pR∈ is the measured output, and u qR∈  
is the input. More explicitly, 1 2 3{ , , ,.... }nG G G G are the 
nonlinear functions for the respective 1st order state 
equations as given below:  

{ }
{ }

{ }

1 1 1 2 1 2

2 2 1 2 1 2

1 2 1 2

( ) ( ), ( ),.... ( ), , ,....

( ) ( ), ( ),.... ( ), , ,....
                         
                         

( ) ( ), ( ),.... ( ), , ,....

n q

n q

n n n q

x t G x t x t x t u u u

x t G x t x t x t u u u

x t G x t x t x t u u u

•

•

•

=

=

=

i i
i i

 

Let each component of G i.e. 1 2 3{ , , ,.... }nG G G G  be 
a separable function which is a sum of (n+q) 

univariate functions i.e. ,1
( ) ( )

n
k k j jj

G x G x
=

= +∑  

,1
( )

q
k j jj

G u
=∑  for any 1, 2, ...k n= where ,k jG is a uni-

variate nonlinear function. Since every kG is the sum 

of n q+  univariate functions ,k jG (1 )j n q≤ ≤ + , so ap-

proximating each ,k jG by a univariate CPWL function 
will result in the CPWL approximation of G. This can 
be accomplished by partitioning the region of interest 
of each univariate function into many non-overlapping 
small intervals. Let for a pair of indices ,k j  , ,k jG  be 
an arbitrary nonlinear convex univariate function 
whose region of interest is [ , ]a b R⊂ . To approximate 

,k jG  to a satisfactory precision by the linear functions 
( | )i i il x xθ β γ= + , where 0 ,  ma bς ς= = , the domain 

[ , ]a b has to be divided into ( 1)m −  breakpoints 

1 2 1( ...... )ma bς ς ς −< < < < < . The parameters of each 
linear segment, i.e. ( , )i iβ γ  , can be determined by 
using the scheme outlined in Section 3. Suppose the 
nonlinear function ,k jG is approximated by a finite 
number of linear segments. A CPWL approximation 
function ( )P x of ,k jG on [a, b] can be obtained by 
connecting these linear segments as follows: 

{ }, 1 2 3( ) ( ) max ( ), ( ), ( ),..... ( )k j mG x P x l x l x l x l x= ,(5) 

where 1 2( ), ( ),... ( )ml x l x l x are local linear functions 
approximating the nonlinear function. Our goal is to 
use the least number of linear segments out of 

1 2( ), ( ),... ( )ml x l x l x such that the following function is 
minimized over a finite interval ( a b→ ): 

[ ]
,

,
min max ( ) ( )k j

x a b
G x P x

∈

⎧ ⎫
−⎨ ⎬

⎩ ⎭
. (6) 

The scheme so far explained can be generally ap-
plied to the systems containing many convex univa-
riate nonlinearities, however from here onwards we 
restrict our discussion to the VFM, which contains 
only one quadratic nonlinearity. 

3. Vehicle following model  

A configuration of leader-follower is given by the 
choice of the following variables as listed below: 

Distance of the leader from a reference point 

Distance of the follower from a reference point

Length of the vehicle
Velocity of the follower

Propulsion force

Mass of the vehicle
f

f

xl
x f
L
v f
f

m

−

−

−
−

−

−

Error in the desired distance to be maintained

Intervehicle spacing between two vehicles
Velocity of the leader 

Engine time constant of the vehicle

Aerodynamic drag coefficient of the vehi
f

ad

xe

vl
T

K

δ

−

−
−

−

−

1

cle
A constant mechanical drag on the vehicle

( )  Disturbance input
md

f

K
d t

−
−

 

From Newton’s Second Law, the relationship 
between the acceleration of the follower vehicle, its 
propulsion force and the drag forces acting on it can 
be derived as: 

2

1 ( )f ff f ad md fm x f K x K d t
•• •

= − − + . (7) 
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The propulsion system which represents the engine 
dynamics of the vehicle can be modeled as a first 
order system: 

1 ( )ff
f

f f u
T

•
= − + . (8) 

This model requires the following simplifying 
assumptions. (i) The motion of the vehicles is const-
rained to translations only (ii) The movement of 
vehicles is smooth. (iii) The follower is equipped with 
sensors to measure the relative distance between the 
two vehicles, its velocity and acceleration. Let 

f lx x Lδ = − − , then with the choice of state vector 
T

f fx v fδ⎡ ⎤= ⎣ ⎦ , where ffv x
•

=  , we can trans-

form equations (7) and (8) as below:  

2
1

1 ( ( )

1 ( )

l f

f f d f mdf f
f

f f
f

v v

v f K v K d t
m

f f u
T

δ
•

•

•

= −

⎡ ⎤= − − +⎣ ⎦

= − +

. (9) 

3.1. PWL Modeling for VFM 

The state equations given by (9) form a convex 
separable nonlinear function which contains one 
  

nonlinearity, i.e. 2
,k j fG v= . The domain of interest for 

follower velocity is chosen as [0, 20], i.e. [0 km/hr, 72 
km/hr]. The goal is to find a piecewise linear func-
tion ( )P x , which can approximate the nonlinear func-
tion. According to equation (3), the following proce-
dure can be adopted and a number of linear functions 
can be computed to achieve an arbitrary precision to 
the original function ,k jG  as shown in Figure 1.  

(i)  Find the linear approximation 
1( )L x over the en-

tire domain/interval of interest.   

(ii)  Find  { },1 1arg max ( ) k j
x

L x Gς ⎡ ⎤= −
⎣ ⎦ . 

(iii)  Find the linear function 1( )l x for the first parti-

tion which originates from , (0)k jG and intersects 

, ( )k jG x at 1ς .  

(iv) From this point on , 1( )k jG ς , draw another linear 
approximation 2 ( )L x for the remaining interval.  

(v)  Find { },2 2arg max ( ) ( )k j
x

L x G xς ⎡ ⎤= −⎣ ⎦ . 

(vi) Find the second linear function 2 ( )l x passing 

through , 1( )k jG ς  and intersecting , ( )k jG x  at 

2ς ...and so on. 

 

Figure 1. A convex function , ( )k jG x approximated by a PWL function containing 3 linear functions 

The procedure stated above can be continued and a 
number of linear functions can be computed until an 
arbitrary precision to the original nonlinear function is 
achieved. The scheme mentioned in (i) through (vi) 
will sequentially partition the whole state space into 
constituent non-overlapping linear regions. For the 
case shown in Figure 1, , ( )k jG x is approximated by 

( )P x  as follows: 

{ }, 1 2 3( ) ( ) max ( ), ( ), ( )k jG x P x l x l x l x=  (10) 

In the state space form, the system can be expres-
sed as: 

( ) ( ) ( )
( ) ( ( ))

i i i i
i

x t A x B u t
y t C x t

θ
•

= +
=

, (11) 

where Ai and Ci are real matrices of compatible di-
mensions and ( )y t δ=  i.e. error in the desired spacing 
between two vehicles. We refer to θi as the mode in 
force at time i, thus every operating region will induce 
a corresponding mode, which means that for every ap-
proximating linear function, there will be a corres-
ponding matrix A. This is different from the switched 
linear systems [15] [38], in which the mode θi is an 
exogenous variable that is completely independent of 
the state history. 
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3.2. Optimality of PWL Approximation for VFM 

The choice of a suitable number of linear functions 
can be based on the physical performance of the 
system and can be set according to the following 
algorithm. 
(a) Choose an arbitrary m and partition the region of 

interest according to the method explained in sub-
section 3.1. 

(b) Apply the control scheme and obtain the error 
defined as ( ) dx y yε = − , where yd is the desired 
output. 

(c) If the error measure is sufficiently large such that 
the performance of the system is not acceptable, 
increase the number of partitions to m+1, apply the 
control, observe ( )xε and related performance. 

(d) Repeat (c) unless a suitable performance is 
achieved. 

(e) For an arbitrarily chosen m, if the error implies a 
suitable performance, reduce the partitions to m-1, 
observe ( )xε and related performance. 

(f) Repeat (e) unless a suitable performance is 
continued to be achieved. The least number of 
partitions, or equivalently, number of local linear 
functions thus obtained would be the optimal one. 

Since in the case of approximating nonlinear term 
of VFM (i.e. 2

fv  of equation (9)), the domain of inte-
rest of the nonlinear term can be reasonably taken as 
[0,20] m/sec. Then by using the method of subsection 
3.1, it is seen that the first linear segment will coincide 
with the nonlinear function at half way i.e. 1 10ς = as 
illustrated in Figure 1. Hence it is not difficult to see 
graphically that if only two segments are used for 
approximating this nonlinear convex function, then 
the partition at , 1( )k jG ς , will allow having the best fit 

for , ( )k jG x . This fact can be explained with the fol-
lowing derivation as given next. It is required that:   

1

1

20 20

,1 2
0 0

( ) ( ) ( )k jD l x dx L x dx G x dx
ς

ς

⎡ ⎤⎧ ⎫
⎪ ⎪⎢ ⎥= + −⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦
∫ ∫ ∫   

is minimum. (12) 

In the following, we prove the statement of equa-
tion (12) by computing the value of an arbitrary 1ς  
and hence show that the modeling scheme is optimal. 
The area between the curve ,k jG and its linear 
approximation, as shown in Figure 1, is given 

by
220

,

0 0

x

k jdG dx C=∫ ∫ . Now for the case when the non-

linear function ,k jG  is approximated by two linear 
segments partitioned at point 1ς , the area will be given 
by: 

,1 1

,

, 1 1

,1

,1
0 0

(20 ) 2020

,

0

( )
k j

k j

k j

k j

x G x

k j

x G
G xx

k j

x G

D dG dx

dG dx C

ς ς

ς ς

ς

ς
= =

= =
= + −=

= =

= +

+ −

∫ ∫

∫ ∫
, 

{ }
1

1

20

1 1 1 1
0

( ) (20 ) 20
x x

x x

D xdx x dx C
ς

ς

ς ς ς ς
= =

= =

= + + − −∫ ∫ , 

3 3
21 1

1 1 1( ) 4000 200 10
2 2

D Cς ς
ς ς ς= + − + − − , 

2
1 1 1( ) 10 200 4000D Cς ς ς= − + − . (13) 

Equation (13) depicts the area between ,k jG  and 
the two linear segments meeting at 1ς . To optimize 
(13), we find the minimum value of 1( )D ς  by let-

ting 1

1

( )
0

D ς
ς

∂
=

∂
, ⇒ 120 200 0ς − = , ⇒ 1ς =10 which 

is the mid value, therefore the requirement in (12) is 

satisfied. Similarly the fact that 
1

20

, ( )k jG x dx
ς

⎡
⎢ −⎢
⎢⎣
∫  

2

1 2

20

2 3( ) ( )l x dx l x dx
ς

ς ς

⎤⎧ ⎫
⎪ ⎪⎥+⎨ ⎬⎥⎪ ⎪⎥⎩ ⎭⎦
∫ ∫  is minimum and the point 

2ς can be derived as in the former case.  
It can be observed that when the method of 

subsection 3.1 is adopted and as we move away from 
the origin, the approximation gets finer and closer to 
the original function. This feature facilitates the consi-
dered VFM in a natural way. As in the original model, 
the nonlinearity exists on the velocity variable. There-
fore as the velocity increases, the approximation accu-
racy also improves. This is fortunate, because in case 
of higher velocity the safety factor requires that the 
control action be implemented with higher precision. 
However this situation is only suitable where a cons-
tant headway is maintained between the vehicles. For 
a speed-dependent spacing policy, however, slow 
moving vehicles will require lesser spacing, which in 
turn requires more precision from the safety view-
point. In such a case, the first partition could be per-
formed as: 

{ },1 1
1 arg max ( ) ( )
2

k j
x

L x G xς ⎡ ⎤= −⎢ ⎥⎣ ⎦
. (14) 

It is worth noting that in the abundant literature 
(referenced in Section 2), using the same VFM and 
employing feedback linearization, the resulting model 
is simplified to an extent such that the control dis-
regards the effects of forces such as aerodynamic drag, 
mechanical drag and any other disturbances, hence 
instead of designing a controller to take such factors 
into account, the system dynamics are simplified to 
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suit the controller, whereas our work becomes more 
promising in the sense that that the PWL model retains 
all such omitted factors. 

4. Control Design 

   The control objective is to design u(t) in such a 
way that inter-vehicle spacing tracks a desired refe-
rence, where u(t) can be viewed as the throttle/brake 
input causing acceleration/decelerations in the control-
led vehicle. Since the adopted approach involves de-
composition of the original system to many non-over-
lapping linear systems, it is desired to have the same 
number of linear controllers where each is valid for 
the corresponding linear system, i.e.  

1 1 1
2 2 2

( ) ( ( ))
( ) ( ( ))

               
               

( ) ( ( ))m m m

u t A t
u t A t

u t A t

θ
θ

θ

→
→

⋅ ⋅
⋅ ⋅

→

. 

Using the computed parameters ( , )i iβ γ of local li-
near models, the matrices iA  ( 1, 2,.. )i m= are determi-
ned. The controllability matrices for each local model 
are tested for full rank condition and once a positive 
result for each matrix is obtained, it is concluded that 
each   , ( 1, 2,.. )i iA B i m=⎡ ⎤⎣ ⎦ pair is controllable. There-
fore a state feedback control can be designed to 
achieve stability by placing the eigen-values of each 
system in the negative half of the imaginary axis. The 
theoretical proofs for controllability analysis and 
stability of PWL systems using a state feedback cont-
rol are stated in detail in [6]. In this work the compu-
tation of state feedback control vector is based on the 
linear quadratic control method where: 

1 1
2 2

( ) ( )
( ) ( )

                
                

( ) ( )m m

u t k x t
u t k x t

u t k x t

= −
= −

⋅ ⋅
⋅ ⋅

= −

. (15) 

Each ik is an n-dimensional real row vector which 
is obtained for the closed loop system such that the 

performance index 2

0

{x ( ) x( ) ( )}iJ t Q t u t dt
∞

∗= +∫  is mi-

nimized, where Q is a positive semidefinite  Hermitian 
or real symmetric matrix. The control vector ik is ob-
tained as follows: first, the reduced matrix Riccati 
equation is solved for matrix iF , and then ik is com-
puted as below: 

{ }i

0

,  1, 2,...

T T
i i i i i i i i

T
i i

A F F A F B B F Q

k B F i m

+ − + =

= =
. (16) 

The algorithm given in Section 3.2 is applied to 
the VFM and it is observed that 3 linear functions are 
enough to approximate the nonlinear function for a 

satisfactory control performance. The control perfor-
mance is demonstrated by simulations in Section 5. 

4.1. Stability 

It can be intuitively seen from the order of VFM 
given by equation (9) that after designing control for 
each local linear model, the control vector ik will have 
3 elements in which the second element will differ due 
to the respective linear model, whereas 1st and 3rd 
elements will remain unchanged. Substitution of (15) 
into the dynamic equation (11) will result in formation 
of closed loop affine continuous PWL system mat-
rices i i iA B k− , and the state feedback control iu will 
force the eigenvalues of each local ( )i i iA B k− matrix 
to lie in the negative half of the complex plane, there-
fore according to Theorem 2.4 of [6], the stability of 
the entire PWL system in the finite domain will be 
assured. 

4.2. Control Implementation 

The control scheme is implemented in the 
SIMULINK environment as shown in Figure 2, where 
the value of the measured velocity is set as the swit-
ching function for scheduling of controllers. In Figure 
2 the block named Nonlinear Plant is constructed 
according to equation (9). The instantaneous value of 
velocity obtained from the Plant model is fed to a 
Logic Block, where the switching logic is set on the 
basis of breakpoints 1 2, ,..... mς ς ς , the value of measu-
red velocity activates only one Action Block, through 
which the already computed control based on LQR 
synthesis is relayed to the feedback path. 

5. Simulations and Performance Analysis 

In the simulation analysis, the parameters as listed 
in the vehicle modeling section, are assumed 
as 1300fm = , 0.2fT = , 0.3adK = , 0.35mdK = . The 

disturbance profile 1 ( )
f

d t  (as shown in Figure 3) is a 
smooth function of time. This disturbance profile is 
chosen exactly the same as used in [37].  

5.1. Regulation of Error in the Desired Spacing  

The scenario assumed here is such that the initial 
error in the desired spacing is 5m, 10m, 15m, 20m, 
25m, and 30m, respectively (Figure 4). As the auto-
nomous operation begins, the controllers cause the 
follower to accelerate/decelerate in order to bring the 
spacing error to zero, as shown in Figure 4. In doing 
so, the controllers are supposed to cause acceleration 
realizable by the physical system, as shown in Figure 
5. Physically the response of the controller amounts to 
acceleration/deceleration (throttle or braking action) of 
the vehicle, however only in simulations it can be set 
as high as desired, but practically it has to be set as 
such to cause realizable acceleration/deceleration. The 
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maximum applied acceleration/deceleration limits are 
different for different operating conditions. It has been 
reported in [26] that ordinary cars can achieve a ma-
ximum braking deceleration of 5m/s2 and acceleration 
of 2m/s2. Most of the research works in automated 
driving deal with this constraint by placing a rate 
limiter in the model. However this approach causes 

delay in controlled response. In our work, the cont-
roller is tuned in such a way that when the leader car 
accelerates and hence creates a spacing error, the 
controlled acceleration response of the follower never 
exceeds the value of applied acceleration of the leader, 
hence no limiter is needed. 

 
Figure 2. SIMULINK implementation of the PWL modeling and control algorithm 
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Figure 3. Disturbance input to the vehicle following model 
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Figure 4. The controlled response of the follower for regulation of errors in the desired distance 
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Figure 5. Acceleration response of the follower for regulation of errors in the desired distance 

5.2. Velocity Following Case 

Resorting to the worst case, the assumed scenario 
is the leader’s hard acceleration/braking maneuver 
with full throttle (2 m/s2) and hard brakes (-5 m/s2). 
Referring to Figure 6, the initial velocity of both ve-
hicles is the same, however later; leader accelerates 
for 5 seconds and gets steady at 10 m/sec. Later at 30th 
instant, the leader again accelerates for 5 seconds with 
full throttle and then the velocity gets steady at 20 
m/sec ( 72 / )Km hr≅ . At 55th second, it decelerates by 
applying hard brakes for 5 seconds and finally gets 

steady at the speed of 5 m/s. The complete maneuver 
of the leader and controlled follow up of the follower 
is illustrated in Figure 6. The follower tracks the velo-
city of leader which is changing rapidly as a result of 
leader’s hard maneuvers. In doing so, the acceleration 
profile of follower (also given in Figure 6), shows that 
it catches up with the leader velocity without crossing 
the available acceleration limits, hence rules out the 
requirement of any rate limiter. Each of the hard 
maneuvers is handled by the controlled car in 12 se-
conds which seems a reasonable settling time from 
practical point of view. 
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Figure 6. Velocities’ profiles of the two vehicles and acceleration response of the follower 

5.3. Robustness to Parametric Uncertainties 

Realistic vehicle following designs must also ad-
dress parametric uncertainties such as variations in 
mass of the vehicle, aerodynamic drag, mechanical 
drag and engine time constant. The mass of the 
vehicle varies with the number of passengers and it 
also varies with the type of vehicle. At small inter-
vehicular separations, aerodynamic drag force changes 
significantly with the distance to be maintained. 
Because of different types of transmissions, engines 
and due to usual wear in the machinery, the mecha-
nical drag coefficient and engine time constant vary. 

With the modeling and control setup mentioned in 
Sections 3 and 4, the designed system is tested for 
robustness property against these factors. The nominal 
mass of vehicle is assumed as 1400 Kg and is then 
varied to cater for the presence or absence of 4 
passengers. The tracking results are shown in Figure 
7. From [23], it is learnt that the variations in the 
mechanical drag coefficient are from 5 to 20 N, the 
value of Kmd is varied in simulations for the same 
controllers’ settings. It is observed that the effect of 
variations of Kmd is negligibly small as compared to 
other disturbance terms. For such a case, the response 
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of the control system is shown in Figure 8. Also from 
[23] [29], it is known that the aerodynamic drag 
coefficient varies between 0.05 to 0.5 Kg m-1. The 
simulation results for varying coefficient are shown in 
Figure 9. From [28] [29] and [33], the value of Tf lies 

in the range of 0.25 and 0.8. The control results for 
such settings are shown in Figure 10. In each of these 
figures, a zoomed section of the plot is also given 
which shows that responses for different values of 
parameters are quite close and thus acceptable. 
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Figure 7. Tracking response for vehicles of different masses, 1200Kg (red) 1400 Kg (blue), 1600 Kg (brown), 1800 Kg (black) 
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Figure 8. Tracking response for mechanical drag coefficient of 5 N (red), 10 N (brown), 15N (blue) and 20 N (black) 

5.4. Safety and Ride Comfort 

The issues of safety and ride comfort are the 
essential elements of an effective vehicle following 
system, as these factors amount to the nature of 
controlled response during a follow-up maneuver. 
Simply safety can be defined in terms of the over-
shoot and damping of the response, i.e. if the follower 
vehicle overshoots larger, then it can potentially 
result in a collision scenario, or if the damping is not 

suitable, the response will be either having a large 
overshoot or it will be too delayed. An initiation of 
another maneuver by leader in the duration of an 
early follow up would lead to a safety hazard. Ride 
comfort requires that the frequency and amplitude of 
controlled response oscillations have to be brought to 
the minimum. Hence in this work the controller para-
meters have been carefully tuned to meet these two 
conditions, as can be seen from the simulation study. 
However for safety reasons, it is advisable that with 
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such controller settings, the leader’s maneuvers have 
to be separated by 15 seconds. The small ripples, as 

seen in the steady state response in Figure 5, are the 
due to inclusion of the disturbance input. 
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Figure 9. Response for aerodynamic drag coefficient of 0.05 Kgm-1(red), 0.1 Kgm-1(blue), 0.3 Kgm-1(brown)  
and 0.5 Kg m-1(black) 
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Figure 10. Tracking response for engine time constants of 0.2s (red), 0.4s (blue), 0.6s (brown) and 0.8s (black) 

5.5. Comparison to other car following approaches 

As already discussed in Section 2, our method 
relies on approximating rather than nullifying the non-
linearity and disturbance factors (aerodynamic drag, 
mechanical drag etc.), so our method can justifiably 
outperform other approaches. Also, since according to 
PWL approximation method, the disturbance terms are 
not cancelled out, we are able to evaluate the effects of 
these elements and ascertain the robustness of the 
control system. Our results, although based on an ap-
proximated system, offer the tracking performance 
evaluated for a number of situations, which is equally 
good as given by the state of the art work in this area. 
In Table 1, the control of the PWL model is compared 
to referenced work in terms of certain factors of 
performance, e.g. tracking delay, percentage over-

shoot, settling time etc, however it  may be noted that 
our simulation work contains hard maneuvers, 
whereas in many of the referenced work, the perfor-
mance is only evaluated over relaxed maneuvers i.e. 
accelerations of ≤  1 m/s2  To justify the betterment of 
our approach, the following is worth to mention: the 
works in [33-36] use a very simplified model which 
doesn’t take account of drag forces etc; the works in 
[22, 24-28, 30-32] use feedback linearization whose 
success depends on exact measurement of parameters; 
the works in [21, 23, 24, 27-30, 32] did not employ 
hard maneuvers in simulations, so it is not clear 
whether their control can result in effective tracking 
under the constraint of available acceleration limits; 
most of the control strategies in [22-37] either use rate 
limiters for dealing with acceleration constraint or do 
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not address it at all; the work in [23, 29] addressed 
parametric uncertainties while the other mentioned 

references do not take account of deviation of model 
parameters. 

Table 1 

 Velocity 
following delay 

Settling 
time 

Steady state 
error % Overshoot Acceleration 

constraint Remarks 

PWL 
Model 

≈  2.5 s ≈ 12 s Negligibly 
small 

≈ 4% considered Parametric uncertainties addressed Hard 
maneuvers used. 

[21] Not given ≈ 8 s Negligibly 
small 

≈ 5% considered Parametric uncertainties not addressed 
Hard maneuvers not used 

[22] <1 s ≈ 17 s Negligibly 
small 

<1% Not 
considered 

Parametric uncertainties not addressed 
Hard maneuvers used 

[24] Not given ≈ 22 s Negligibly 
small 

≈  20% considered Parametric uncertainties not addressed 
Hard maneuvers not used 

[25] >8 s ≈ 35 s Negligibly 
small 

≈ 15% considered Parametric uncertainties not addressed 
Hard maneuvers not used 

[28] <1s ≈ 15 s Negligibly 
small 

≈ 2.9% Not 
considered 

Only decel. maneuver addressed 
Parametric uncertainties not addressed 
Hard maneuvers not used 

[30] 0.4 s ≈ 5 s Negligibly 
small 

≈ 5% considered Variations of only Engine Time Constant 
considered. 
Hard maneuvers not used 

[31] Not given ≈ 5 s Negligibly 
small 

≈ 5% considered Variations of Engine Time Constant 
considered. 
Hard maneuvers not used 

[37] ≈ 3 s ≈ 10 s Negligibly 
small 

≈ 15% considered Robustifying disturbances considered. 
Parametric uncertainties not addressed 
Hard maneuvers used 

[39] ≈ 5 s Not 
given 

Negligibly 
small 

≈ 18% considered Parametric uncertainties not addressed. 
Hard maneuvers not used 

[40] ≈ 2 s >40 sec Negligibly 
small 

≈ 25% Not given Parametric uncertainties not addressed 
Hard maneuvers not used 

 
6. Conclusion 

In this paper we have adopted a nonlinear function 
approximation scheme based on the lattice PWL mo-
del. We have outlined its simple and step-by-step mo-
deling procedure, and integrated the modeling scheme 
with the nonlinear convex VFM. The approximation 
of the system is achieved by using only three local 
linear functions covering the entire domain of interest. 
With this study we concluded that the number of local 
linear parameters and hence the complexity of mo-
deling and control will depend upon the number of 
nonlinearities, type of nonlinearities, and the required 
precision of approximation. Since the number and 
type of nonlinearity of VFM is favorable, PWL mo-
deling stands as a more promising alternative to the 
traditional feedback linearization of VFM. Using opti-
mal control by LQR method and gain scheduling logic 
based on the measurement of velocity, three local li-
near controllers are designed, which are capable to 
drive the system to any desired trajectory. The perfor-
mance analysis is accomplished in simulations, which 
has shown that the approximation is valid and allows 
the system to be controlled by linear methods. The 
effects of parametric uncertainties (being an inescap-
able element) are also evaluated to determine the 
robustness of the control system. Our future aim is to 
apply this modeling technique on a nonlinear system 
with two or more nonlinearities and address the re-
lated control issues. 
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