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As a generic inference mechanism, the belief rule-based (BRB) system can effectively integrate quantitative in-
formation with qualitative knowledge to model causal relationships of complex application systems. Based on 
the BRB, this paper develops a novel self-tuning strategy of PID parameters such that the output of closed-loop 
control system generated by PID controller can accurately follow control input. Firstly, the initial belief rule base 
is abstracted from expert’s control experiences to depict the highly nonlinear relationship between the variables 
of control system and each PID parameter. Secondly, the objective function is established to minimize the error 
between the given control input and the closed loop output, and then the online optimization method via sequen-
tial linear programming is presented to optimize the parameters of BRB system so as to adaptively adjust PID 
parameters by the optimized BRB system in real time. Typical control simulation experiments of DC motor are 
implemented to illustrate the advantages of the proposed BRB-PID over widely used neural network-based PID.
KEYWORDS: Belief Rule Base (BRB), PID controller, Sequential linear programming (SLP) algorithm, Evi-
dence Reasoning(ER).

1. Introduction
PID is one of the earliest control strategies proposed 
in classical control theory, which has been widely 
used in industrial control systems and achieved good 

control effect because of its simple form, available 
robustness and reliability [14]. To a great extent, the 
performance of PID controller depends on the appro-
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priate selection of PID parameters. Hence, in order 
to obtain the satisfactory control effect, one has to 
study on available methods for determining the val-
ue of PID parameters, which are the key link in the 
design of PID controller, and what’s more, with the 
increasing complexities of the structures, functions 
and operating conditions of controlled objects, this 
issue becomes more and more important for appli-
cations of PID strategy [17]. So experts and scholars 
have been concentrating on the self-tuning methods 
for PID parameters, so that the adaptive PID control 
could be chosen to adapt to the complex and change-
able controlled objects, and meet the control require-
ments with high performance and high precision [16]. 
In essence, these methods all attempt to explore ap-
propriate models to establish a nonlinear mapping re-
lationship between the variables of a control system 
(including the given input, actual output, deviation 
and the deviation change rate, etc) and PID param-
eters (the proportional, integral, differential coeffi-
cients KP, KI, KD, respectively), also there exists var-
ious uncertainties in this mapping relationship due 
to the complexity of controlled objects and various 
disturbances [8].
Nowadays, artificial intelligence methods have been 
widely used to turn or set PID parameters adaptive-
ly, which greatly enhance tuning effect and efficiency 
[2], mainly including Expert system-based PID (ES-
PID), Fuzzy inference-based PID (FI-PID) and Arti-
ficial neural network-based PID (ANN-PID) etc. ES-
PID abstracts heuristic rules from expert’s knowledge 
about controlled object and control experience to de-
pict the nonlinear relationship between the control 
variables and PID parameters, and then, the designed 
inference engine can infer the corresponding values 
of PID parameters from the rules activated by the on-
line values of control variables [9]. However, there are 
some difficult issues one has to face, such as, how to 
distinguish good knowledge from bad knowledge be-
cause the latter will lead to useless, conflicting, even 
counter-intuitive rules; how to enhance the online 
learning and updating abilities of expert system and 
improve completeness and adaptability of the con-
structed rule base [13]. In order to deal with fuzzy 
uncertainty of human knowledge, FI-PID introduces 
the fuzzy rules to model the imprecise relationship 
between the control variables and PID parameters, 
and then uses the fuzzy inference engine to adjust the 

values of PID parameters [7]. Comparing with tradi-
tional ES-PID, FI-PID can capture more useful infor-
mation with uncertainty in expert’s knowledge and 
has better generalization capability. However, simi-
lar with ES-PID, it also suffers from some difficulties 
including poor online learning and updating abilities 
and incompleteness of fuzzy rule base and so on [10].
ANN-PID uses the hidden layer network structure 
to construct the connection between the input layer 
(control variables) and the output layer (PID parame-
ters), and online optimizes network weights to obtain 
desired values of PID parameters which is a kind of 
typical adaptive PID control [20]. However, the neural 
network is a black box system, in which, the physical 
meanings of network nodes are obscure and even hard 
to understand for control engineers. Although, when 
objective functions are given, so many optimization 
strategies can be used to online adjust the networks 
weights, the optimized results are easy to fall into local 
minimum in training process because of the improper 
initial values of weights or other reasons [15].
It can be concluded that fuzzy methods and ANN 
methods all have their specific advantages and dis-
advantages when they are used for self-tuning of PID 
parameters. We tend to search for such a method 
which can integrate and magnify advantages of these 
methods, and avoid their disadvantages. The belief 
rule base (BRB) system can provide such an inference 
mechanism to satisfy our desire since it can synthe-
size available methodologies including fuzzy set the-
ory, expert system, evidential reasoning, multi-attri-
bute decision making and utility theory [1]. The BRB 
system consists of two main parts: knowledge base 
(belief rule base) and fusion reasoning model (eviden-
tial reasoning). Its superiorities are reflected in the 
following three aspects [4]: (1) based on utility equiv-
alent principle, it can uniformly describe subjective/
objective multi-source uncertainty information with 
randomness, fuzziness and incompleteness under the 
framework of belief rules. Compared with the tradi-
tional fuzzy rule, the consequent of belief rule is no 
longer a single hypothesis, but is a belief distribution 
about all hypotheses. Therefore, it can describe the 
uncertain relationship between rule antecedent (at-
tributes) and consequent (hypotheses) more flexibly 
and precisely; (2) it uses Evidence Reasoning (ER) 
rule to fuse the belief distributions of the activated 
rules. Some details (rules and attributes weights and 
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so on) are considered in ER fusion process [3]; (3) 
compared with neural network, the physical mean-
ings of the parameters in BRB (value and weight of 
attribute, belief distribution, rule weight, etc.) are not 
obscure, but very clear and easy to be understood by 
control engineers. Therefore, they can adjust BRB 
system according to themselves intentions. These 
parameters can also be trained and optimized using 
available methods. Therefore, the BRB methodology 
has attracted wide attentions in various industrial 
applications including alarm monitoring, fault diag-
nosis, risk and decision analysis and so on [21, 24].
This paper aims to design a novel adaptive BRB-PID 
controller to deal with self-tuning of PID parameters. 
Firstly, the initial belief rule base is abstracted from 
expert’s control experiences to describe the high-
ly nonlinear relationships between the variables of 
control system and PID parameters. Secondly, in or-
der to reflect the real-time changes of this nonlinear 
relationship with sampling time, the online optimi-
zation method via sequential linear programming is 
presented to optimize the parameters of BRB system, 
and then the optimized BRB can adaptively reason out 
the values of PID parameters such that the output of 
closed-loop control system generated by the proposed 
adaptive BRB-PID controller can accurately follow the 
given input. The typical control experiments of DC mo-
tor are implemented to illustrate the advantages of the 
proposed adaptive BRB-PID control over the widely 
used adaptive neural network-based PID control.

2. Self-Tuning of PID Parameters via 
BRB Inference

2.1. Incremental PID Control
The well-known discrete-time incremental PID con-
troller can be expressed as [18]:
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where e(k)= r(k)-y(k) is the deviation that the closed-
loop output y(k) tracks the given input (the desired 

closed-loop output) r(k). u(k) is the control effort at 
time step k. KP, KI and KD are proportional, integral 
and derivative gains, respectively. T is the sampling 
period. From (1), the increment can be given as 

( ) ( ) ( 1) ( ) ( ) ( ),P P I I D Du k u k u k K e k K e k K e kΔ = - - = + + (2)

where ( ) ( 1),Pe e k e k= - - ( ( ) ( 1)) / 2,Ie T e k e k= + -

( ( ) 2 ( 1) ( 2)) /De e k e k e k T= - - + - .

2.2. The Design of BRB-PID Controller
Fig. 1 shows the structure of BRB-PID controller, in 
which, PID has the incremental form as given in (1). 
The values of the parameters KP, KI and KD can be 
online estimated by, respectively, constructed three 
BRBs with the same inputs (rin, e, yout) and the differ-
ent outputs (KP, KI, KD). The whole modeling and in-
ference procedure can be described as follows. First-
ly, based on the expert’s control experiences, we can 
construct BRB models which consist of rules and 
their parameters including the reference valued of 
the input variables rin, e, yout (antecedent attributes), 
the output variables KP, KI and KD (consequent hy-
pothesis) and the values of rule weights and attribute 
weights; secondly, when the input data are online ob-
tained, they are inputted into the BRB models, and 
then the activated rules and the corresponding acti-
vation weights can be acquired. The ER algorithm is 
used to fuse the consequent belief distributions of the 
activated rules. The values of PID parameters can be 
estimated from the fused belief distribution via utili-
ty principle [1]. In this inference process, it should be 
noted that we must online optimize the parameters 
of BRB such that the error between the closed loop 
output deduced from BRB-PID and the control input 
is minimized because the initial BRB model coming 

Figure 1 
The structure of BRB-PID controller
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where xi (j=1,2,…,N) denotes the ith antecedent attribute 
with the referential value Ai

r. βn,r∈[0,1] (j=1,2,…,N) 
represents the belief degree to which Dn is believed to be 
true given the precondition “x1 is A1

r ˄ x2 is A2
r ˄… xM is 

AM
r”.The belief distribution {(D1,β1,r), (D2,β2,r),…, (DN,βN,r)} 

reflects uncertainties caused by the imprecise mapping 
relationship since it never requires to assign complete belief 
(β=1) to a certain D. When belief rule base is used to 
establish the relationship model between rin,e,yout and 
KP,KI,KD, respectively, the physical meanings of BRB 
parameters are listed in Table 1. 

Table 1 The parameters of the BRBs for tuning KP,KI,KD 

BRB system The variables and parameters of PID controller 
Antecedent attribute Input variables X=(x1,x2,x3), where x1=rin, x2=yout, x3=e  
Reference value set of antecedent attribute 
Ai ={Ai,j| i=1,2,3; j=1,2,…,Ji} Reference value of input variable xi 

Antecedent of the rth rule, i=1,2,3, r=1,2,…,L Reference vector of X in the rth rule, Ar=(A1r,A2r,A3r), 
Air∈Ai  

Consequent of the rth rule, 
{(D1,β1,r), (D2,β2,r),…, (DN,βN,r)}, ,1

1N
n rn
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
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Dn is the reference value of output KP or KI or KD , 
when X= Ar, βn,r is the belief degree of Dn 

Rule weight θr∈[0,1] Relative importance of the rth rule 
Attribute weight δi∈[0,1] Relative importance of antecedent attributes 

Table Note: for KP,KI,KD, one needs to establish tree different BRBs respectively with different values of BRB parameters, 

respectively denoted as BRBP,BRBI,BRBD. 

2.2.2 Estimation of PID Parameters Based on Evidential 
Reasoning 
When the input variable is online obtained at time k, 
denoted as xi(k), it can be inputted into BRB to estimate the 

values of PID parameters by the following step. 
Step 1: Input transformation 

xi(k) can be transformed to the belief distribution [12] 
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from the expert’s knowledge may be imprecise. Here, 
the sequential linear programming algorithm is pre-
sented to realize the optimization.

2.2.1. Construction of BRB for the Estimation of 
PID Parameters
The rth rule Rr in BRB can be modeled as [12]:
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Step 3: Estimation of PID parameters using ER algorithm
If Rr is activated, then ωr>0 which can be used to discount 
the belief distribution {(D1,β1,r), (D2,β2,r),…, (DN,βN,r)}.
Using the analytical ER algorithm to fuse these [22], we can 
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so, the inference output can be represented as the fused belief 
structure

ˆ( ( )) {( , ), 1, 2, , },n nO X k D n Nβ= =         (9)

here X(k)=(x1(k),x2(k),x3(k)). As a result, if we know the 
utility u(Dn) for the consequent hypothesis Dn, the estimated 
output can be calculated by the expected utility theorem [1].
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It is noted that the above inference procedure is fit for the 
three BRBs systems about KP,KI,KD, respectively, so 
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3. Parameter Optimization of BRB Model Based on 

SLP
After KP(k), KI(k) and KD(k) are obtained by BRB inference 
given in Section 2.2.2, PID controller will generate the 
control value ˆ( )u k , and then ˆ( )u k is applied to the controlled 
object to get the closed loop output ˆ( )y k . Although it is 
possible to respectively establish three fixed belief bases 
BRBP,BRBI,BRBD by extracting knowledge from experts for 
getting KP(k), KI(k) and KD(k) at each time step, the 
performance of the control system can be improved if the 
rules are fine tuned in real time through the following 
control objective function

2ˆ( ( )) ( ( ) ( )) ,inP k r k y kξ = −      (11)

where, P(k)={ ,
T
i jA , ,

T
n rβ |i=1,2,3; j=1,2,…,Ji

a; n=1,2,…,N;
r=1,2,…,La; T=1,2,3} is an adjustable parameter set about 
all the activated rules in BRBP,BRBI,BRBD, the superscript a
in Ji

a and La denotes the number of the activated rules at 
time step k. “1,2,3” in the superscript T denote 
BRBP,BRBI,BRBD, respectively. As a result, the optimization 
objective is to minimize ξ(P(k)) by adjusting P(k).
Notice that in most of researches on BRB system, all the 
parameters of BRB are off-line optimized by training 
sample set and such a global optimization needs high 
computational burden [19]. However, in our context, only 
the parameters of the rules activated by x(k) need to be 
optimized so what we acquire is partial and dynamic 
optimization strategy. Hence, we choose the sequential 
linear programming (SLP) algorithm to realize such 
strategy because of its fast processing speed, low 
computational complexity [19]. The specific process is 
settled as follows:
Step 1: Linearization of the objective function.
According to the above optimization model of the 
BRB-PID control system, the first-order derivation of the 
objective function ξ(P(k)) about P(k) needs to be calculated 
and then the first-order Taylor expansion of ξ(P(k)) can be 
obtained as follows

0 0 0( ( )) ( ( )) ( ( ))( ( ) - ( )),ξ P k ξ P k ξ P k P k P k′= +      (12)

where P0(k) represents a given initial point. Thus, the 
nonlinear optimization problem minPξ(P(k)) is converted 
into such a linear programming problem 
minPξ'(P0(k))(P(k)-P0(k)).
Step 2: Determination of move limits.
The proper move limits are critical for the successful 
implementation of SLP. Here, the upper bounds UB(P(k)) of 
adjustable parameters can be acquired as follows:
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i,p=0, p=1,2,j-1,j+2,Ji.
Step 2: Calculation of activation weights of belief 
rules
The activation weight of the rth rule Rr is given as 
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Step 3: Estimation of PID parameters using ER algo-
rithm
If Rr is activated, then wr>0 which can be used to dis-
count the belief distribution {(D1, β1,r), (D2, β2,r),…, (DN, 
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βN,r)}. Using the analytical ER algorithm to fuse these 
[22], we can obtain the fused belief degree ˆ

nβ of the 
consequent hypothesis Dn.

 4 / 11 
 

Ai,j in Rr with αr
i,j(k)≥0. In detail, if Ai,j≤ xi(k) ≤ Ai,j+1, then

, 1
, , 1 ,

, 1 ,

( ( ))
 , 1

( )
i j ir r r

i j i j i j
i j i j

A x k
A A

α α α+
+

+

−
= = −

−
. (5)

If xi(k)≤ Ai,1 or xi(k)≥ Ai,Ji, then αr
i,1=1 or αr

i,Ji=1. Otherwise, 
αr

i,p=0, p=1,2,j-1,j+2,Ji.
Step 2: Calculation of activation weights of belief rules
The activation weight of the rth rule Rr is given as 

,
1

,
1 1

( )

( )

i

i

M
r

r i j
i

r ML
l

l i j
l i

=

= =

=
∏

∑ ∏

δ

δ

θ α
ω

θ α
         (6)

where the relative attribute weight
1,2,3

/ max{ }i i ii
δ δ δ

=
= ,

( ) [0,1]r k ∈ω .

Step 3: Estimation of PID parameters using ER algorithm
If Rr is activated, then ωr>0 which can be used to discount 
the belief distribution {(D1,β1,r), (D2,β2,r),…, (DN,βN,r)}.
Using the analytical ER algorithm to fuse these [22], we can 

obtain the fused belief degree ˆ
nβ of the consequent 

hypothesis Dn.

, , ,
1 11 1

1

( 1 ) ( )
ˆ

1 (1 )

L LN N

r n r r i r r i r
i ir r

n L

r
r

= == =

=

 
×  + − − 
  =

 
− ×  − 

  

∑ ∑∏ ∏

∏

µ ω β ω β ω β

β

µ ω

(7)
1

, , ,
1 1 11 1

( 1 ) ( 1) (1 ) ,
L LN N N

r n r r i r r i r
n i ir r

Nµ ω β ω β ω β
−

= = == =

 
=  + − − − − 
  
∑ ∑ ∑∏ ∏ (8)

so, the inference output can be represented as the fused belief 
structure

ˆ( ( )) {( , ), 1, 2, , },n nO X k D n Nβ= =         (9)
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output can be calculated by the expected utility theorem [1].
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given in Section 2.2.2, PID controller will generate the 
control value ˆ( )u k , and then ˆ( )u k is applied to the controlled 
object to get the closed loop output ˆ( )y k . Although it is 
possible to respectively establish three fixed belief bases 
BRBP,BRBI,BRBD by extracting knowledge from experts for 
getting KP(k), KI(k) and KD(k) at each time step, the 
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a and La denotes the number of the activated rules at 
time step k. “1,2,3” in the superscript T denote 
BRBP,BRBI,BRBD, respectively. As a result, the optimization 
objective is to minimize ξ(P(k)) by adjusting P(k).
Notice that in most of researches on BRB system, all the 
parameters of BRB are off-line optimized by training 
sample set and such a global optimization needs high 
computational burden [19]. However, in our context, only 
the parameters of the rules activated by x(k) need to be 
optimized so what we acquire is partial and dynamic 
optimization strategy. Hence, we choose the sequential 
linear programming (SLP) algorithm to realize such 
strategy because of its fast processing speed, low 
computational complexity [19]. The specific process is 
settled as follows:
Step 1: Linearization of the objective function.
According to the above optimization model of the 
BRB-PID control system, the first-order derivation of the 
objective function ξ(P(k)) about P(k) needs to be calculated 
and then the first-order Taylor expansion of ξ(P(k)) can be 
obtained as follows
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where P0(k) represents a given initial point. Thus, the 
nonlinear optimization problem minPξ(P(k)) is converted 
into such a linear programming problem 
minPξ'(P0(k))(P(k)-P0(k)).
Step 2: Determination of move limits.
The proper move limits are critical for the successful 
implementation of SLP. Here, the upper bounds UB(P(k)) of 
adjustable parameters can be acquired as follows:
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where P0(k) represents a given initial point. Thus, the 
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into such a linear programming problem 
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so, the inference output can be represented as the 
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here X(k)=(x1(k),x2(k),x3(k)). As a result, if we know the 
utility u(Dn) for the consequent hypothesis Dn, the estimated 
output can be calculated by the expected utility theorem [1].
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3. Parameter Optimization of BRB Model Based on 

SLP
After KP(k), KI(k) and KD(k) are obtained by BRB inference 
given in Section 2.2.2, PID controller will generate the 
control value ˆ( )u k , and then ˆ( )u k is applied to the controlled 
object to get the closed loop output ˆ( )y k . Although it is 
possible to respectively establish three fixed belief bases 
BRBP,BRBI,BRBD by extracting knowledge from experts for 
getting KP(k), KI(k) and KD(k) at each time step, the 
performance of the control system can be improved if the 
rules are fine tuned in real time through the following 
control objective function

2ˆ( ( )) ( ( ) ( )) ,inP k r k y kξ = −      (11)

where, P(k)={ ,
T
i jA , ,

T
n rβ |i=1,2,3; j=1,2,…,Ji

a; n=1,2,…,N;
r=1,2,…,La; T=1,2,3} is an adjustable parameter set about 
all the activated rules in BRBP,BRBI,BRBD, the superscript a
in Ji

a and La denotes the number of the activated rules at 
time step k. “1,2,3” in the superscript T denote 
BRBP,BRBI,BRBD, respectively. As a result, the optimization 
objective is to minimize ξ(P(k)) by adjusting P(k).
Notice that in most of researches on BRB system, all the 
parameters of BRB are off-line optimized by training 
sample set and such a global optimization needs high 
computational burden [19]. However, in our context, only 
the parameters of the rules activated by x(k) need to be 
optimized so what we acquire is partial and dynamic 
optimization strategy. Hence, we choose the sequential 
linear programming (SLP) algorithm to realize such 
strategy because of its fast processing speed, low 
computational complexity [19]. The specific process is 
settled as follows:
Step 1: Linearization of the objective function.
According to the above optimization model of the 
BRB-PID control system, the first-order derivation of the 
objective function ξ(P(k)) about P(k) needs to be calculated 
and then the first-order Taylor expansion of ξ(P(k)) can be 
obtained as follows
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where P0(k) represents a given initial point. Thus, the 
nonlinear optimization problem minPξ(P(k)) is converted 
into such a linear programming problem 
minPξ'(P0(k))(P(k)-P0(k)).
Step 2: Determination of move limits.
The proper move limits are critical for the successful 
implementation of SLP. Here, the upper bounds UB(P(k)) of 
adjustable parameters can be acquired as follows:
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where P0(k) represents a given initial point. Thus, the 
nonlinear optimization problem minPξ(P(k)) is converted 
into such a linear programming problem 
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the control system can be improved if the rules are 
fine tuned in real time through the following control 
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Notice that in most of researches on BRB system, all the 
parameters of BRB are off-line optimized by training 
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the parameters of the rules activated by x(k) need to be 
optimized so what we acquire is partial and dynamic 
optimization strategy. Hence, we choose the sequential 
linear programming (SLP) algorithm to realize such 
strategy because of its fast processing speed, low 
computational complexity [19]. The specific process is 
settled as follows:
Step 1: Linearization of the objective function.
According to the above optimization model of the 
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objective function ξ(P(k)) about P(k) needs to be calculated 
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where P0(k) represents a given initial point. Thus, the 
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The proper move limits are critical for the successful 
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adjustable parameters can be acquired as follows:
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T denote BRBP,BRBI,BRBD, respectively. As a result, 
the optimization objective is to minimize ξ(P(k)) by 
adjusting P(k).
Notice that in most of researches on BRB system, all 
the parameters of BRB are off-line optimized by train-
ing sample set and such a global optimization needs 
high computational burden [19]. However, in our con-
text, only the parameters of the rules activated by x(k) 
need to be optimized so what we acquire is partial and 
dynamic optimization strategy. Hence, we choose the 
sequential linear programming (SLP) algorithm to 
realize such strategy because of its fast processing 
speed, low computational complexity [19]. The spe-
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Step 1: Linearization of the objective function.
According to the above optimization model of the 
BRB-PID control system, the first-order derivation of 
the objective function ξ(P(k)) about P(k) needs to be 
calculated and then the first-order Taylor expansion 
of ξ(P(k)) can be obtained as follows
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Notice that in most of researches on BRB system, all the 
parameters of BRB are off-line optimized by training 
sample set and such a global optimization needs high 
computational burden [19]. However, in our context, only 
the parameters of the rules activated by x(k) need to be 
optimized so what we acquire is partial and dynamic 
optimization strategy. Hence, we choose the sequential 
linear programming (SLP) algorithm to realize such 
strategy because of its fast processing speed, low 
computational complexity [19]. The specific process is 
settled as follows:
Step 1: Linearization of the objective function.
According to the above optimization model of the 
BRB-PID control system, the first-order derivation of the 
objective function ξ(P(k)) about P(k) needs to be calculated 
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obtained as follows
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where P0(k) represents a given initial point. Thus, the 
nonlinear optimization problem minPξ(P(k)) is converted 
into such a linear programming problem 
minPξ'(P0(k))(P(k)-P0(k)).
Step 2: Determination of move limits.
The proper move limits are critical for the successful 
implementation of SLP. Here, the upper bounds UB(P(k)) of 
adjustable parameters can be acquired as follows:
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where P0(k) represents a given initial point. Thus, the 
nonlinear optimization problem minPξ(P(k)) is con-
verted into such a linear programming problem min-
Pξ’(P0(k))(P(k)-P0(k)).
Step 2: Determination of move limits.
The proper move limits are critical for the success-
ful implementation of SLP. Here, the upper bounds 
UB(P(k)) of adjustable parameters can be acquired as 
follows:
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Then, the initial move limits are set to be 10% of the above 
upper bounds.
Step 3: Acquisition of the optimal solution using linear 
programming.
After above two steps, the nonlinear objective function 
ξ(P(k)) can be linearized at a given initial point P0(k), a 
search space can be established around P0(k) using its initial 
move limits. Therefore, linear programming technology 
(such as Interior-point method) can be adopted for this 
search process. If the intersection between the established 
search space and the linearized feasible space is not empty, 
then the optimal solution of the linearized programming 
problem will be searched [11]. Otherwise, the move limits 

need to be increased for expanding the search space until 
the intersection is not empty. The obtained optimal solution 
is subsequently used as a new basic point to re-linearize 
ξ(P(k)). This process is repeated recursively until some 
stopping criterion is satisfied.
Step 4: Stopping criteria.
The SLP iteration process will be stopped if a) the move 
limits of all adjustable parameters have been reduced to be 
significantly small, or b) the values of both parameters and 
objective function in two successive iterations do not 
markedly change [23]. The pseudo-code of the SLP 
algorithm is described in Table 2. After the SLP algorithm, 
one can obtain optimal ˆ ( )oy k , namely the actual system 

output yout(k), which can be used to recursively predict next 
yout(k+1) and e(k+1). The detail of the iterative procedure is 
shown in the following experiments.

Table 2 Pseudo-code of the SLP algorithm

• For k=1:H; %% H denotes Sampling number of control system

- Determine P(k) about all activated rules in BRBP,BRBI,BRBD;

- Calculate the first order derivation of ξ(P(k)) with respect to P(k) and linearize ξ(P(k)) by Taylor expansion;

- Set up the move limits of P(k) for linear search;

- While any stopping criterion is satisfied, the SLP iteration process will be stopped;

- Obtain the optimal solution ˆ ( )oP k using linear programming;

- k=k+1;

• End For;

4. Experiments
In this section, we conduct two experiments on the excited 
DC motor system with the proposed adaptive BRB-PID 
controller. The first experiment mainly shows the precision 
of the BRB-PID controller. The second one emphasizes the 
robustness of the BRB-PID controller when the system 
inputs are disturbed. In both experiments, BRB-PID 
controller is compared with ANN-PID controller to 
demonstrate its superiority in adaptivity by experimental 
data analysis.
4.1 Excited DC Motor System Model
The input and output of controlled object are armature 
voltage (u) and the speed (yout) of motor, respectively. In the 
case of no load, the transfer function of the controlled 
object is [6]

2

( )
( ) ,

( ) 1
out u

a m m

y s K
G s

u s T T s T s
= =

+ +
(14)

where the gain factor of G(s) is Ku=1/Ce, electromagnetic 
time constant Ta=La/Ra, La and Ra denote the armature 
inductance and resistance, respectively. The motor time 
constant Tm=JRa/CeCm, J is the total moment of inertia in 
the motor shaft corresponding to rotational part, Ce and 
Cm denote the potential and torque constants, respectively. 
It is known that the initial rated armature voltage of the 
motor CH=220V, the rated armature current IH=55mA, 
Ra=9.2Ω, J=2.4N·m·s2, Ta=0.0017s and Ce=0.192V·s/rad. 
The specific transfer function is
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As a result, the transfer function G(s) is discretized as

(13a)
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Then, the initial move limits are set to be 10% of the above 
upper bounds.
Step 3: Acquisition of the optimal solution using linear 
programming.
After above two steps, the nonlinear objective function 
ξ(P(k)) can be linearized at a given initial point P0(k), a 
search space can be established around P0(k) using its initial 
move limits. Therefore, linear programming technology 
(such as Interior-point method) can be adopted for this 
search process. If the intersection between the established 
search space and the linearized feasible space is not empty, 
then the optimal solution of the linearized programming 
problem will be searched [11]. Otherwise, the move limits 

need to be increased for expanding the search space until 
the intersection is not empty. The obtained optimal solution 
is subsequently used as a new basic point to re-linearize 
ξ(P(k)). This process is repeated recursively until some 
stopping criterion is satisfied.
Step 4: Stopping criteria.
The SLP iteration process will be stopped if a) the move 
limits of all adjustable parameters have been reduced to be 
significantly small, or b) the values of both parameters and 
objective function in two successive iterations do not 
markedly change [23]. The pseudo-code of the SLP 
algorithm is described in Table 2. After the SLP algorithm, 
one can obtain optimal ˆ ( )oy k , namely the actual system 

output yout(k), which can be used to recursively predict next 
yout(k+1) and e(k+1). The detail of the iterative procedure is 
shown in the following experiments.

Table 2 Pseudo-code of the SLP algorithm

• For k=1:H; %% H denotes Sampling number of control system

- Determine P(k) about all activated rules in BRBP,BRBI,BRBD;

- Calculate the first order derivation of ξ(P(k)) with respect to P(k) and linearize ξ(P(k)) by Taylor expansion;

- Set up the move limits of P(k) for linear search;

- While any stopping criterion is satisfied, the SLP iteration process will be stopped;

- Obtain the optimal solution ˆ ( )oP k using linear programming;

- k=k+1;

• End For;

4. Experiments
In this section, we conduct two experiments on the excited 
DC motor system with the proposed adaptive BRB-PID 
controller. The first experiment mainly shows the precision 
of the BRB-PID controller. The second one emphasizes the 
robustness of the BRB-PID controller when the system 
inputs are disturbed. In both experiments, BRB-PID 
controller is compared with ANN-PID controller to 
demonstrate its superiority in adaptivity by experimental 
data analysis.
4.1 Excited DC Motor System Model
The input and output of controlled object are armature 
voltage (u) and the speed (yout) of motor, respectively. In the 
case of no load, the transfer function of the controlled 
object is [6]
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where the gain factor of G(s) is Ku=1/Ce, electromagnetic 
time constant Ta=La/Ra, La and Ra denote the armature 
inductance and resistance, respectively. The motor time 
constant Tm=JRa/CeCm, J is the total moment of inertia in 
the motor shaft corresponding to rotational part, Ce and 
Cm denote the potential and torque constants, respectively. 
It is known that the initial rated armature voltage of the 
motor CH=220V, the rated armature current IH=55mA, 
Ra=9.2Ω, J=2.4N·m·s2, Ta=0.0017s and Ce=0.192V·s/rad. 
The specific transfer function is

2

5.2083( )
0.000804 1.0473 1

G s
s s

=
+ +

. (15)

As a result, the transfer function G(s) is discretized as

(13b)

Then, the initial move limits are set to be 10% of the 
above upper bounds.
Step 3: Acquisition of the optimal solution using lin-
ear programming.
After above two steps, the nonlinear objective func-
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tion ξ(P(k)) can be linearized at a given initial point 
P0(k), a search space can be established around P0(k) 
using its initial move limits. Therefore, linear pro-
gramming technology (such as Interior-point meth-
od) can be adopted for this search process. If the in-
tersection between the established search space and 
the linearized feasible space is not empty, then the 
optimal solution of the linearized programming prob-
lem will be searched [11]. Otherwise, the move limits 
need to be increased for expanding the search space 
until the intersection is not empty. The obtained opti-
mal solution is subsequently used as a new basic point 
to re-linearize ξ(P(k)). This process is repeated recur-
sively until some stopping criterion is satisfied.
Step 4: Stopping criteria.
The SLP iteration process will be stopped if a) the 
move limits of all adjustable parameters have been 
reduced to be significantly small, or b) the values of 
both parameters and objective function in two suc-
cessive iterations do not markedly change [23]. The 
pseudo-code of the SLP algorithm is described in Ta-
ble 2. After the SLP algorithm, one can obtain optimal
ˆ ( )oy k , namely the actual system output yout(k), which 

can be used to recursively predict next yout(k+1) and 
e(k+1). The detail of the iterative procedure is shown 
in the following experiments.

4. Experiments
In this section, we conduct two experiments on the 
excited DC motor system with the proposed adap-
tive BRB-PID controller. The first experiment mainly 
shows the precision of the BRB-PID controller. The 

Table 2 
Pseudo-code of the SLP algorithm

• For k=1:H;  %% H denotes Sampling number of control system
 _ Determine P(k) about all activated rules in BRBP,BRBI,BRBD;

 _ Calculate the first order derivation of ξ(P(k)) with respect to P(k) and linearize ξ(P(k)) by Taylor expansion;

 _ Set up the move limits of P(k) for linear search;

 _ While any stopping criterion is satisfied, the SLP iteration process will be stopped;

 _ Obtain the optimal solution ˆ ( )oP k using linear programming;

 _ k=k+1;
• End For;

second one emphasizes the robustness of the BRB-
PID controller when the system inputs are disturbed. 
In both experiments, BRB-PID controller is compared 
with ANN-PID controller to demonstrate its superi-
ority in adaptivity by experimental data analysis.

4.1. Excited DC Motor System Model
The input and output of controlled object are arma-
ture voltage (u) and the speed (yout) of motor, respec-
tively. In the case of no load, the transfer function of 
the controlled object is [6] 
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Then, the initial move limits are set to be 10% of the above 
upper bounds.
Step 3: Acquisition of the optimal solution using linear 
programming.
After above two steps, the nonlinear objective function 
ξ(P(k)) can be linearized at a given initial point P0(k), a 
search space can be established around P0(k) using its initial 
move limits. Therefore, linear programming technology 
(such as Interior-point method) can be adopted for this 
search process. If the intersection between the established 
search space and the linearized feasible space is not empty, 
then the optimal solution of the linearized programming 
problem will be searched [11]. Otherwise, the move limits 

need to be increased for expanding the search space until 
the intersection is not empty. The obtained optimal solution 
is subsequently used as a new basic point to re-linearize 
ξ(P(k)). This process is repeated recursively until some 
stopping criterion is satisfied.
Step 4: Stopping criteria.
The SLP iteration process will be stopped if a) the move 
limits of all adjustable parameters have been reduced to be 
significantly small, or b) the values of both parameters and 
objective function in two successive iterations do not 
markedly change [23]. The pseudo-code of the SLP 
algorithm is described in Table 2. After the SLP algorithm, 
one can obtain optimal ˆ ( )oy k , namely the actual system 

output yout(k), which can be used to recursively predict next 
yout(k+1) and e(k+1). The detail of the iterative procedure is 
shown in the following experiments.

Table 2 Pseudo-code of the SLP algorithm

• For k=1:H; %% H denotes Sampling number of control system

- Determine P(k) about all activated rules in BRBP,BRBI,BRBD;

- Calculate the first order derivation of ξ(P(k)) with respect to P(k) and linearize ξ(P(k)) by Taylor expansion;

- Set up the move limits of P(k) for linear search;

- While any stopping criterion is satisfied, the SLP iteration process will be stopped;

- Obtain the optimal solution ˆ ( )oP k using linear programming;

- k=k+1;

• End For;

4. Experiments
In this section, we conduct two experiments on the excited 
DC motor system with the proposed adaptive BRB-PID 
controller. The first experiment mainly shows the precision 
of the BRB-PID controller. The second one emphasizes the 
robustness of the BRB-PID controller when the system 
inputs are disturbed. In both experiments, BRB-PID 
controller is compared with ANN-PID controller to 
demonstrate its superiority in adaptivity by experimental 
data analysis.
4.1 Excited DC Motor System Model
The input and output of controlled object are armature 
voltage (u) and the speed (yout) of motor, respectively. In the 
case of no load, the transfer function of the controlled 
object is [6]
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where the gain factor of G(s) is Ku=1/Ce, electromagnetic 
time constant Ta=La/Ra, La and Ra denote the armature 
inductance and resistance, respectively. The motor time 
constant Tm=JRa/CeCm, J is the total moment of inertia in 
the motor shaft corresponding to rotational part, Ce and 
Cm denote the potential and torque constants, respectively. 
It is known that the initial rated armature voltage of the 
motor CH=220V, the rated armature current IH=55mA, 
Ra=9.2Ω, J=2.4N·m·s2, Ta=0.0017s and Ce=0.192V·s/rad. 
The specific transfer function is
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As a result, the transfer function G(s) is discretized as

(14)

where the gain factor of G(s) is Ku=1/Ce, electromag-
netic time constant Ta=La/Ra, La and Ra denote the 
armature inductance and resistance, respectively. 
The motor time constant Tm=JRa/CeCm, J is the total 
moment of inertia in the motor shaft corresponding 
to rotational part, Ce and Cm denote the potential and 
torque constants, respectively. It is known that the 
initial rated armature voltage of the motor CH=220V, 
the rated armature current IH=55mA, Ra=9.2Ω, 
J=2.4N·m·s2, Ta=0.0017s and Ce=0.192V·s/rad. The 
specific transfer function is
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Then, the initial move limits are set to be 10% of the above 
upper bounds.
Step 3: Acquisition of the optimal solution using linear 
programming.
After above two steps, the nonlinear objective function 
ξ(P(k)) can be linearized at a given initial point P0(k), a 
search space can be established around P0(k) using its initial 
move limits. Therefore, linear programming technology 
(such as Interior-point method) can be adopted for this 
search process. If the intersection between the established 
search space and the linearized feasible space is not empty, 
then the optimal solution of the linearized programming 
problem will be searched [11]. Otherwise, the move limits 

need to be increased for expanding the search space until 
the intersection is not empty. The obtained optimal solution 
is subsequently used as a new basic point to re-linearize 
ξ(P(k)). This process is repeated recursively until some 
stopping criterion is satisfied.
Step 4: Stopping criteria.
The SLP iteration process will be stopped if a) the move 
limits of all adjustable parameters have been reduced to be 
significantly small, or b) the values of both parameters and 
objective function in two successive iterations do not 
markedly change [23]. The pseudo-code of the SLP 
algorithm is described in Table 2. After the SLP algorithm, 
one can obtain optimal ˆ ( )oy k , namely the actual system 

output yout(k), which can be used to recursively predict next 
yout(k+1) and e(k+1). The detail of the iterative procedure is 
shown in the following experiments.

Table 2 Pseudo-code of the SLP algorithm

• For k=1:H; %% H denotes Sampling number of control system

- Determine P(k) about all activated rules in BRBP,BRBI,BRBD;

- Calculate the first order derivation of ξ(P(k)) with respect to P(k) and linearize ξ(P(k)) by Taylor expansion;

- Set up the move limits of P(k) for linear search;

- While any stopping criterion is satisfied, the SLP iteration process will be stopped;

- Obtain the optimal solution ˆ ( )oP k using linear programming;

- k=k+1;

• End For;

4. Experiments
In this section, we conduct two experiments on the excited 
DC motor system with the proposed adaptive BRB-PID 
controller. The first experiment mainly shows the precision 
of the BRB-PID controller. The second one emphasizes the 
robustness of the BRB-PID controller when the system 
inputs are disturbed. In both experiments, BRB-PID 
controller is compared with ANN-PID controller to 
demonstrate its superiority in adaptivity by experimental 
data analysis.
4.1 Excited DC Motor System Model
The input and output of controlled object are armature 
voltage (u) and the speed (yout) of motor, respectively. In the 
case of no load, the transfer function of the controlled 
object is [6]
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where the gain factor of G(s) is Ku=1/Ce, electromagnetic 
time constant Ta=La/Ra, La and Ra denote the armature 
inductance and resistance, respectively. The motor time 
constant Tm=JRa/CeCm, J is the total moment of inertia in 
the motor shaft corresponding to rotational part, Ce and 
Cm denote the potential and torque constants, respectively. 
It is known that the initial rated armature voltage of the 
motor CH=220V, the rated armature current IH=55mA, 
Ra=9.2Ω, J=2.4N·m·s2, Ta=0.0017s and Ce=0.192V·s/rad. 
The specific transfer function is
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As a result, the transfer function G(s) is discretized as

(15)

As a result, the transfer function G(s) is discretized as

 6 / 11 
 

( ) ( )

12( ) 0.9811* ( 1) 4.8490 * ( 2)
          0.0948* 1 0.0038* 2

out out outy k y k e y k
u k u k

−= − − −

+ − + −
. (16)

4.2 Simulation Experiment and Comparative Analyses
Experiment 1: For the closed-loop system shown in Fig.1, 
the transfer function of controlled object is given in (15). 
Here, the excitation signal of the BRB-PID controller is set 
as rin(k)=sin(πkts) to generate yout(k).
Here, the classical sine function (rin(k)=sin(πkts), k=1,2,…H,
sampling period ts=0.02s, H=400) is adopted as system input. 
According to the control experiences, the initial forms of 
BRBP, BRBI, BRBD are constructed respectively with model 
parameters as shown in Table 1. In this experiment, the 
three BRBs have the same inputs X=[rin,yout,e], but different 
outputs KP, KI and KD, respectively. The initial values of the 
reference values of rin, yout, e are shown in Tables 3-8,
respectively. After Tables 3-8, Table 9 gives the initial rules 
in BRBP as an example. In the same way, BRBI and BRBD

can be constructed. At step k, X(k)=[rin(k),yout(k),e(k)] is 
substituted into BRBP,BRBI,BRBD to calculate the outputs
KP(k), KI(k) and KD(k), respectively according to the 
reasoning procedure in Section 2.2.2. At the same time, the 
SLP in Section 3 is performed to optimize the adjustable 

parameters P(k)={ ,
T
n rβ |n=1,2,…,N; r=1,2,…,La; T=1,2,3} 

such that the optimal values of KP(k), KI(k) and KD(k) and 
the corresponding ˆ ( )oy k , namely yout(k) can be obtained. 

Note that, in this experiment, only partial parameters are 
selected to be optimized because it is enough for acquiring 
ideal control performances. Here, the BRB-PID controller is 

compared with the ANN-PID controller using general BP 
network proposed in [25]. Here, the inputs and outputs of 
BP network are, respectively, X=[rin,yout,e] and KP, KI , KD.
Fig.2 gives the comparative results of the two methods to 
show that yout(k) tracks rin(k) in one experiment and Fig.3 
gives the corresponding tracking errors.
Here, we give an iterative optimization procedure (k=4, 5) 
of the motor control and the related parameter optimization 
analysis for example.
When k=4, X(4)=[0.2478,0.0678,0.1803] is substituted into 
BRBP, X(4) activates 8 rules “R23, R24, R27, R28, R39, R40, R43,
R44” as listed in Table 10. It means that only local 
parameters (P(k=4)={βir| i=1,2,3; r=23,24,27,28,39,40,43, 
44}) need to be optimized using SLP algorithm as listed in 
Table 11. When k=5, X(5)=[0.3090,0.1151,0.1939] is 
substituted into BRBP, X(5) activates 8 rules “R39, R40, R43,
R44, R55, R56, R59, R60”as listed in Table 12. It can be seen 
that R39, R40, R43, R44 are re-activated, in this case, the initial 
values of βir|r=39, 40, 43,44 at step k=5 are the optimized values 
obtained at step k=4 as shown in Table 11. Certainly, such 
an iterative optimization process also is suitable for BRBI

and BRBD, respectively. As a result, the different parameters 
in BRBP will be optimized at each step using the SLP 
algorithm according to different activated rules. Table 14
shows the corresponding pseudo-code of BRB-PID iteration 
for motor control. Finally, Table 10 (Table 12) shows the 
initial (optimized) activated rules in BRBP at k=4. Table 11
(Table 13) shows the initial (optimized) activated rules in 
BRBP at k=5.

Table 3 The semantic values and reference values of rin for BRBP,BRBI,BRBD

Input1(rin)
Semantic Value S( 1,1A ) NS( 1,2A ) PL( 1,3A ) L( 1,4A )

Reference Value -1.01 -0.25 0.25 1.01

Table 4 The semantic values and reference values of yout for BRBP,BRBI,BRBD

Input2(yout)
Semantic Value S( 2,1A ) NS( 2,2A ) PL( 2,3A ) L( 2,4A )

Reference Value -1.20 -0.25 0.5 1.15

Table 5 The semantic values and reference values of e for BRBP,BRBI,BRBD

Input3(e)
Semantic Value S( 3,1A ) NS( 3,2A ) PL( 3,3A ) L( 3,4A )

Reference Value -0.16 -0.07 0.06 0.20

Table 6 The semantic values and reference values of KP for BRBP

Output1(KP)
Semantic Value S( 1,1D ) NS( 1,2D ) PL( 1,3D ) L( 1,4D )

Reference Value 0.60 0.62 0.64 0.68

Table 7 The semantic values and reference values of KI for BRBI

(16)
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4.2. Simulation Experiment and Comparative 
Analyses
Experiment 1: For the closed-loop system shown in 
Fig.1, the transfer function of controlled object is giv-
en in (15). Here, the excitation signal of the BRB-PID 
controller is set as rin(k)=sin(πkts) to generate yout(k).
Here, the classical sine function (rin(k)=sin(πkts), 
k=1,2,…H, sampling period ts=0.02s, H=400) is ad-
opted as system input. According to the control ex-
periences, the initial forms of BRBP, BRBI, BRBD are 
constructed respectively with model parameters 
as shown in Table 1. In this experiment, the three 
BRBs have the same inputs X=[rin,yout,e], but differ-
ent outputs KP, KI and KD, respectively. The initial 
values of the reference values of rin, yout, e are shown 
in Tables 3-8, respectively. After Tables 3-8, Table 9 
gives the initial rules in BRBP as an example. In the 
same way, BRBI and BRBD can be constructed. At step 
k, X(k)=[rin(k),yout(k),e(k)] is substituted into BRB-
P,BRBI,BRBD to calculate the outputs KP(k), KI(k) and 
KD(k), respectively according to the reasoning pro-
cedure in Section 2.2.2. At the same time, the SLP 
in Section 3 is performed to optimize the adjustable 
parameters P(k)={ ,

T
n rβ |n=1,2,…,N; r=1,2,…,La; T=1,2,3} 

such that the optimal values of KP(k), KI(k) and KD(k) 
and the corresponding ˆ ( )oy k , namely yout(k) can be 
obtained. Note that, in this experiment, only partial 
parameters are selected to be optimized because it 
is enough for acquiring ideal control performanc-
es. Here, the BRB-PID controller is compared with 

the ANN-PID controller using general BP network 
proposed in [25]. Here, the inputs and outputs of BP 
network are, respectively, X=[rin,yout,e] and KP, KI , KD. 
Fig.2 gives the comparative results of the two meth-
ods to show that yout(k) tracks rin(k) in one experiment 
and Fig.3 gives the corresponding tracking errors.
Here, we give an iterative optimization procedure 
(k=4, 5) of the motor control and the related parame-
ter optimization analysis for example.
When k=4, X(4)=[0.2478,0.0678,0.1803] is substi-
tuted into BRBP, X(4) activates 8 rules “R23, R24, R27, 
R28, R39, R40, R43, R44” as listed in Table 10. It means 
that only local parameters (P(k=4)={βir| i=1,2,3; 
r=23,24,27,28,39,40,43, 44}) need to be optimized 
using SLP algorithm as listed in Table 11. When k=5, 
X(5)=[0.3090,0.1151,0.1939] is substituted into BRBP, 
X(5) activates 8 rules “R39, R40, R43, R44, R55, R56, R59, 
R60”as listed in Table 12. It can be seen that R39, R40, 
R43, R44

 are re-activated, in this case, the initial values 
of βir|r=39, 40, 43,44 at step k=5 are the optimized values ob-
tained at step k=4 as shown in Table 11. Certainly, such 
an iterative optimization process also is suitable for 
BRBI and BRBD, respectively. As a result, the different 
parameters in BRBP will be optimized at each step us-
ing the SLP algorithm according to different activated 
rules. Table 14 shows the corresponding pseudo-code 
of BRB-PID iteration for motor control. Finally, Table 
10 (Table 12) shows the initial (optimized) activated 
rules in BRBP at k=4. Table 11 (Table 13) shows the ini-
tial (optimized) activated rules in BRBP at k=5.

Input2(yout)
Semantic Value S(A2,1) NS(A2,2) PL(A2,3) L(A2,4)

Reference Value -1.20 -0.25 0.5 1.15

Table 3 
The semantic values and reference values of rin for BRBP, BRBI, BRBD

Input1(rin)
Semantic Value S(A1,1) NS(A1,2) PL(A1,3) L(A1,4)

Reference Value -1.01 -0.25 0.25 1.01

Table 4 
The semantic values and reference values of yout for BRBP, BRBI, BRBD

Table 5 
The semantic values and reference values of e for BRBP, BRBI, BRBD

Input3(e)
Semantic Value S(A3,1) NS(A3,2) PL((A3,3) L((A3,4)

Reference Value -0.16 -0.07 0.06 0.20
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Table 6 
The semantic values and reference values of KP for BRBP

Output1(KP)
Semantic Value S(D1,1) NS(D1,2) PL(D1,3) L(D1,4)

Reference Value 0.60 0.62 0.64 0.68

Table 7 
The semantic values and reference values of KI for BRBI

Output1(KI)
Semantic Value S(D2,1) NS(D2,2) PL(D2,3) L(D2,4)

Reference Value 0.62 0.63 0.66 0.70

Table 8 
The semantic values and reference values of KD for BRBD

Output1(KD)
Semantic Value S(D3,1) NS(D3,2) PL(D3,3) L(D3,4)

Reference Value 0.56 0.62 0.68 0.78

Table Note: The emantic values (S, NS, PM and M) in tables 3-8 denote “small”, “negative small”, “positive large” and 
“large”, respectively.

Table 9 
The initial rules in BRBP

No. rin AND yout AND e
Belief structure of KP

β1
1,1 β1

1,2 β1
1,3 β1

1,4

1 S AND S AND S 0 0.5130 0.4870 0

2 S AND S AND NS 0 0.3983 0.6017 0

3 S AND S AND PL 0 0.3856 0.6144 0

4 S AND S AND L 0 0.3856 0.6144 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

31 NS AND L AND PL 0 0 0.3715 0.6285

32 NS AND L AND L 0 0 0.3662 0.6338

33 PL AND S AND S 0 0 0.8896 0.1104

34 PL AND S AND NS 0 0 0.8896 0.1104

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

61 L AND L AND S 0 0 0.0699 0.9301

62 L AND L AND NS 0 0 0.0755 0.9245

63 L AND L AND PL 0 0 0.0755 0.9245

64 L AND L AND L 0 0 0.0755 0.9245

Table Note: BRBI and BRBD have the same structure as BRBP.
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Table 10 
The initial activated rules in BRBP at k=4

No. rin AND yout AND e
Belief structure of activated rules in BRBP

β1
1,1 β1

1,2 β1
1,3 β1

1,4

23 NS AND NS AND PL 0.0081 0.0189 0.7528 0.2202

24 NS AND NS AND L 0.0089 0.0102 0.7623 0.2186

27 NS AND PL AND PL 0.0015 0.0018 0.4743 0.5224

28 NS AND PL AND L 0.0097 0.0101 0.4598 0.5204

39 PL AND NS AND PL 0.0096 0.0102 0.4625 0.5177

40 PL AND NS AND L 0.0096 0.0102 0.4625 0.5177

43 PL AND PL AND PL 0.0105 0.0114 0.4456 0.5325

44 PL AND PL AND PL 0.0075 0.0105 0.4397 0.5423

Table 11 
The optimized activated rules in BRBP at k=4

No. rin AND yout AND e
Belief structure of activated rules in BRBP

β1
1,1 β1

1,2 β1
1,3 β1

1,4

23 NS AND NS AND PL 0.0076 0.0185 0.7025 0.2714

24 NS AND NS AND L 0.0083 0.0106 0.7223 0.2588

27 NS AND PL AND PL 0.0101 0.0104 0.3751 0.6044

28 NS AND PL AND L 0.0093 0.0091 0.3688 0.6128

39 PL AND NS AND PL 0.0087 0.0098 0.3601 0.6214

40 PL AND NS AND L 0.0087 0.0098 0.3601 0.6214

43 PL AND PL AND PL 0.0095 0.0113 0.3653 0.6139

44 PL AND PL AND PL 0.0104 0.0119 0.3596 0.6181

Table 12 
The initial activated rules in BRBP at k=5

No. rin AND yout AND e
Belief structure of activated rules in BRBP

β1
1,1 β1

1,2 β1
1,3 β1

1,4

39 PL AND NS AND PL 0.0087 0.0098 0.3601 0.6214

40 PL AND NS AND L 0.0087 0.0098 0.3601 0.6214

43 PL AND PL AND PL 0.0095 0.0113 0.3653 0.6139

44 PL AND PL AND PL 0.0104 0.0119 0.3596 0.6181

55 L AND NS AND PL 0 0 0.3662 0.6338

56 L AND NS AND L 0 0 0.3662 0.6338

59 L AND PL AND PL 0 0 0.2146 0.7854

60 L AND PL AND PL 0 0 0.2146 0.7854
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Table 13 
The optimized activated rules in BRBP at k=5

No. rin AND yout AND e
Belief structure of activated rules in BRBP

β1
1,1 β1

1,2 β1
1,3 β1

1,4

39 PL AND NS AND PL 0.0089 0.0093 0.3517 0.6301

40 PL AND NS AND L 0.0089 0.0093 0.3517 0.6301

43 PL AND PL AND PL 0.0087 0.0096 0.3512 0.6305

44 PL AND PL AND PL 0.0102 0.0103 0.3428 0.6367

55 L AND NS AND PL 0.0105 0.0103 0.3796 0.5996

56 L AND NS AND L 0.0105 0.0103 0.3796 0.5996

59 L AND PL AND PL 0.0088 0.0096 0.2322 0.7494

60 L AND PL AND PL 0.0088 0.0096 0.2322 0.7494

Table 14 
Pseudo-code of BRB-PID-based motor control

initial value : u(0)= u(-1)=0;  y(0)= y(-1)=0;
• when k=1; 

 _ rin(1)=x, yout(1)=0, e(1)= rin(1)- yout(1)=x;  %% x is the value of rin at k=1;

 _ X(1)=[rin(1),yout(1),e(1)] is substituted into BRBP,BRBI,BRBD to calculate the outputs KP(1), KI(1) and KD(1), 
respectivley;

 _ KP(1), KI(1) and KD(1) are substituted into the incremental PID in (1) to calculate u(1);

 _ use SLP algorithm in Table 2 to minimize ξ(P(1)) by adjusting parameter set P(1), then obtain the optimal ˆ (1)oP  
and the corresponding optimal ˆ̂̂ (1), (1), (1)p I DK K K  and ˆ (1)ou ;

 _ obtain yout(2) and ˆ (1)oy by using (16);

( ) ( )12( ) 0.9811* ( 1) 4.8490 * ( 2) 0.0948* 1 0.0038* 2out out outy k y k e y k u k u k-= - - - + - + -

• For k=2 to H;  %% H denotes sampling number of control system;
 _ X(k)=[rin(k),yout(k),e(k)] is substituted into BRBP,BRBI,BRBD to calculate the outputs KP(k), KI(k) and KD(k);

 _ KP(k), KI(k) and KD(k) are substituted into the incremental PID in (1) to calculate u(k);

 _ use SLP algorithm to minimize ξ(P(k)) by adjusting P(k), then obtain the optimal ˆ ( )oP k  and the corresponding 
optimal ˆ̂̂ ( ), ( ), ( )p I DK k K k K k  and ˆ ( )ou k ;

 _ obtain yout(k+1) and ˆ ( 1)oy k +  by using (16);

( ) ( )12ˆ̂̂̂̂ ( ) 0.9811* ( 1) 4.8490 * ( 2) 0.0948* 1 0.0038* 2o o o o oy k y k e y k u k u k-= - - - + - + -

 _  k=k+1;
• End For;
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Furthermore, such an experiment is done 100 times, 
in which, the initial values of BP-PID parameters are 
given randomly. Finally, the mean values of tracking 
mean square error (MSE) for BRB-PID and BP-PID 
are 0.0031 and 0.0057, respectively. From these re-
sults in single experiment as shown in Figs. 2-3 and 
statistical experiments, it can be seen that the former 
are superior to the latter in control accuracy. This is 
because the BRB models as a nonlinear approximator, 
have more optimizable parameters (total 96 parame-
ters in the activated rules of BRBP,BRBI,BRBD ) than 
the BP model has (35 parameters in BP network) for 
modeling the complex relationship between rin ,yout, e 
and KP, KI , KD. It has been proved that the BRB can 

approximate any nonlinear function on a compact 
set when the number of parameters increase [5], but 
this conclusion is hardly suitable for BP. Besides, the 
physical meanings of the parameters in BRB are eas-
ier to understand and the users can adjust the num-
bers and values of these parameters to obtain a de-
sirable approximator. However, for BP network, it is 
relatively difficult to distinctly interpret importance 
and physical meaning of each parameter.
In this experiment, at each step, the BRB model needs 
to optimize 96 parameters, the BP model needs to op-
timize 35 parameters, although the BRB model is more 
complex than the BP model, because of the usage of 
SLP algorithm, the average single step optimization 
time of BRB is 0.015s (0.008s for BP). Obviously, BRB-
PID controller is applicable for general time-varying 
models. Certainly, with the rapid development of data 
processing and storage capabilities, computer hard-
ware will make the optimization time less of an issue.
On the other hand, although the parameters in BP 
network can be optimized at step k whose initial val-
ues are set as the optimal values at k-1, how to deter-
mine the initial values of these parameters at initial 
step k=1 is a challenge because there is no good expe-
rience for reference. Hence, when the initial values 
are generated randomly, in some cases, the results of 
BP-PID controller are hardly satisfactory. For exam-
ple, Figs.4-5 show a typical case in which yout cannot 
approximate to rin. On the contrary, yout of BRB-PID 
always maintains desirable performance.

Figure 2 
Control results for BRB-PID and BP-PID models

Figure 3 
Closed-loop system error based on  BRB-PID/BP-PID model

Figure 4
Closed-loop output tracking system input based on BP-PID 
model
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Figure 5 
Closed-loop system error based  on BP-PID model 
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5. Conclusion 
In this paper, the idea of knowledge-based belief rule 
reasoning is introduced into PID controller design. Based 
on BRB system, a novel self-tuning strategy of PID 
parameters is presented which is a new kind of adaptive 
PID control strategy. The main contributions of the paper 
are as follows:(1) The initial belief rule bases are abstracted 
from expert’s control experiences to model the highly 
nonlinear relationships between control variables rin, yout, e 
and PID parameters KP, KI, KD, respectively; (2) In order to 
reduce the imprecision of expert’s knowledge, the online 
optimization method via SLP is presented to optimize the 
parameters of BRB system so as to adaptively adjust PID 
parameters by the optimized BRB system in real time;(3) 
The typical control simulation experiments of DC motor are 
implemented to illustrate the advantages of BRB-PID 
controller over the widely used adaptive ANN-PID 
controller. 
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5. Conclusion 
In this paper, the idea of knowledge-based belief rule 
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on BRB system, a novel self-tuning strategy of PID 
parameters is presented which is a new kind of adaptive 
PID control strategy. The main contributions of the paper 
are as follows:(1) The initial belief rule bases are abstracted 
from expert’s control experiences to model the highly 
nonlinear relationships between control variables rin, yout, e 
and PID parameters KP, KI, KD, respectively; (2) In order to 
reduce the imprecision of expert’s knowledge, the online 
optimization method via SLP is presented to optimize the 
parameters of BRB system so as to adaptively adjust PID 
parameters by the optimized BRB system in real time;(3) 
The typical control simulation experiments of DC motor are 
implemented to illustrate the advantages of BRB-PID 
controller over the widely used adaptive ANN-PID 
controller. 
Acknowledgements 
This work was supported by the NSFC-Zhejiang Joint Fund 
for the Integration of Industrialization and Informatization 
(U1709215), the NSFC (No.61433001, 

61733009,61573076,61573275), the Zhejiang Province 
"One Belt and One Road" technology cooperation project 
(No.2018C04020), the University Students' Scientific and 
Technological Innovation Activity Plan of Zhejiang 
Province (Xin-Miao Talent Plan.No.2017R407064), the 
Zhejiang Province Key R&D project (No. 2018C01031) of 
Hangzhou Yan Shi Technology Co., Ltd. 
References 
[1] Abudahab, K., Xu, D. L., Chen, Y. W. A New 
Belief Rule Base Knowledge Representation 
Scheme and Inference Methodology Using the 
evidential Reasoning Rule for Evidence 
Combination. Expert Systems with Applications, 
2016, 51, 218-230. 
https://doi.org/10.1016/j.eswa.2015.12.013 
https://doi.org/10.1016/j.eswa.2015.12.013 
  
[2] Alexandrov, A., Palenov, M. Self-Tuning PID-I 
Controller with a New Algorithm of Tuning of Test 
Signal. IFAC Proceedings Volumes, 2013, 46(9), 
1798-1803. 
https://doi.org/10.3182/20130619-3-RU-3018.00344 

 

  
[3] Chang, L., Zhou, Y., Jiang, J., Li, M., Zhang, X. 
Structure Learning for Belief Rule Base Expert 
System: A Comparative Study. Knowledge-Based 
Systems, 2013, 39(2), 159-172. 
https://doi.org/10.1016/ j.knosys.2012.10.016 

 

  
[4] Chang, L., Zhou, Z. J., You, Y., Yang, L., Zhou, Z. 
Belief Rule Based Expert System for Classification 
Problems with New Rule Activation and Weight 
Calculation Procedures. Information Sciences, 
2016, 336, 75-91. https://doi.org/10.1016/ 
j.ins.2015.12.009 

 

  
[5] Chen, Y. W., Yang, J. B., Xu, D. L., Yang, S. L. 
On the Inference and Approximation Properties of 
Belief Rule Based Systems. Information Sciences, 
2013, 234, 121-135. 
https://doi.org/10.1016/j.ins.2013.01.022 
https://doi.org/10.1016/j.ins.2013.01.022 

 

Experiment 2: In order to illustrate the robustness 
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times experiments. From these data, we can get that the 
mean values of tracking MSE for BRB-PID and BP-PID 
are 0.0191 and 1.0072, respectively. From the above sta-
tistical results, it can be concluded that BRB-PID has 
better adaptability for input interference than BP-PID. 
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es are abstracted from expert’s control experiences to 
model the highly nonlinear relationships between con-
trol variables rin, yout, e and PID parameters KP, KI, KD, 
respectively; (2) In order to reduce the imprecision of 
expert’s knowledge, the online optimization method via 
SLP is presented to optimize the parameters of BRB sys-
tem so as to adaptively adjust PID parameters by the op-
timized BRB system in real time;(3) The typical control 
simulation experiments of DC motor are implemented 
to illustrate the advantages of BRB-PID controller over 
the widely used adaptive ANN-PID controller.
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