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Abstract. The aim of the given paper is the development of a recursive approach for parametric identification of Wi

ener

s

ystems with non-invertible piecewise linear function inrthe nonlinear block. It is shown here that the problem of param

etric

identification of a Wiener system could be reduced to a linear parametric estimation problem by a simple input-output data

reordering and by a following data partition. An approach based on sequential reconstruction of the values of intermediate

signal by following use of the ordinary recursive least squares (RLS) is proposed here for the estimation of parameters of linear

and nonlinear parts of the Wiener system. The unknown threshold of piecewise nonlinearity has been estimated by processing

recursively respective particles of current input-output data, too. The results of numerical simulation and parametric estimation

of Wiener systems with different piecewise nonlinearities by computer are given.
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1. Introduction

It is known [1, 4 – 6, 8 – 10, 12, 13, 15, 16, 20
– 22] that Wiener systems have been used as natu-
ral models of many physical plants with respective
output nonlinearities. A special class of such systems
is piecewise non-invertible Wiener affine (PWA) sys-
tems, i.e., when the linear dynamical system is fol-
lowed by a static nonlinearity, consisting of some sub-
systems, between which occasional switchings hap-
pen at different time moments [6, 7, 13 – 21]. In
such a case, one could let the nonlinear part of the
Wiener system be represented by some regression
functions with unknown parameters. Therefore obser-
vations of an output of the Wiener system could be
partitioned into distinct data sets according to differ-
ent descriptions where the boundaries of sets of obser-
vations depend on the value of the unknown thresh-
old a—observations are divided into regimes subject
to whether the some observed threshold variable is
smaller or larger thana. How to partition the avail-
able data in order to calculate the estimates of pa-
rameters of regression functions, also to get the un-
known parameters of slopes, as well as a threshold
of nonlinearities using off-line approach is shown in
[13, 15]. However, it is emphasized in [21] that recur-
sive identification methods are important, especially,
in on-line monitoring and analysis of generally time-
varying processes [18, 19]. They can be also com-
bined with on-line control strategies to produce adap-
tive control algorithms. To this end, we propose in this
paper an recursive approach for parametric identifica-

tion of Wiener systems with non-invertible piecewise-
linear nonlinearity. The next section introduces the
statement of the problem to be solved. In Section 3,
we describe the rearrangement of the data to be used
for Wiener systems parametric identification. The ap-
proach for reconstruction of intermediate signal by
processing reordered observations is given in Section
4. In Section 5 the recursive parametric estimation of
linear block of Wiener system is presented. In Section
6, we describe the estimation of parameters of piece-
wise linear function in nonlinear block of Wiener sys-
tem’s. In Section 7, simulation results are presented.
Section 8 contains conclusions.

2. Statement of the Problem

The Wiener system consists of a linear partG(q�1;�) followed by a static non-invertible non-
linearity f(�; �) with the vector of parameters�. The
linear part of the PWA system is dynamic, time in-
variant, causal, and stable. It can be represented by
a linear time invariant system (LTI) with the rational
functionG(q;�) of the formG(q�1;�) = b1q�1+; : : : ;+bmq�m1 + a1q�1+; : : : ;+amq�m = (1)B(q�1;b)1 +A(q�1; a)
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2 R.Pupeikis

with a finite number of parameters�T=(b1; : : : ; bm; a1; : : : ; am); (2)bT = (b1; : : : ; bm); aT = (a1; : : : ; am);
that are determined from the set
 of permissible pa-
rameter values�. Hereq�1 is a time-shift operator
[10], the set
 is restricted by conditions on the sta-
bility of the respective difference equation. The un-
known intermediate signalx(k) � x(k;�) = B(q�1;b)1 +A(q�1; a)u(k) + v(k); (3)

generated by the linear part of the PWA system (1)
as a response to the inputu(k) and corrupted by the
additive noisev(k), is acting on the static nonlinear
partf(�; �) (Fig. 1), i.e.,y(k) = f(x(k;�); �) + e(k): (4)

Here the nonlinear partf(�; �) of the PWA system is
a saturation-like function of the form [6, 7, 13 – 15]f(x(k); �) =8<: c0 � c1x(k) if x(k) � �ax(k) if �a < x(k) � a,d0 � d1x(k) if x(k) > a

(5)
that could be partitioned into three functions. These
functions are:ffx(k;�); c; ag = c0 � c1x(k),ffx(k;�); ag = x(k), ffx(k;�);d; ag = d0 �d1x(k;�).

The functionffx(k;�); c; ag has only negative
values, whenx(k) � �a, ffx(k;�); ag has arbi-
trary positive, as well as negative values, when�a <x(k) � a, andffx(k;�);d; ag has only positive val-
ues, whenx(k) > a. Herex(k;�) � x(k), cT =(c0; c1), c0 = �a(1 + c1), 0 < c1 << a, dT =(d0; d1), d0 = a(1 + d1), 0 < d1 << a.

G(q�1;�) f(�; �)u(k) x(k) y(k)v(k) e(k)
Fig. 1. ThePWA system.

(The linear dynamic partG(q�1;�) of the PWA sys-
tem is parameterized by�, while the static nonlinear partf(�; �)—by �. Signals:u(k), y(k), x(k) are an input, an
output, and an unmeasurable intermediate signal, respec-
tively)

The process noisev(k) � �(k) and the measure-
ment noisee(k) � �(k) are added to an interme-
diate signalx(k) and the outputy(k), respectively,

�(k), �(k) are mutually non-correlated sequences of
independent Gaussian variables withEf�(k)g =0; Ef�(k)g = 0, Ef�(k)�(k + �)g = �2�Æ(�),Ef�(k)�(k + �)g = �2�Æ(�); Ef�g is a mean value,�2� ; �2� are variances of� and�, respectively,Æ(�) is
the Kronecker delta function.

The aim of the given paper is to estimate recursively
the parameters (2) of the linear part (1) of thePWA
system, parameters� = (c0; c1; d0; d1)T , and the
thresholda of non-invertible nonlinearity (5) by pro-
cessing current pairs of observationsu(k) andy(k),
as well as current reconstructed valuesx̂(k) of inter-
mediate signalx(k).
3. The data rearrangement

At first, let us assume that in the memory of
computer one hasN pairs of observationsu(k) andy(k) stored in advance. At second, let us rearrange the
datay(k) 8 k 2 1;N in an ascending order of their
values assuming that noisesv(k) � �(k), e(k) ��(k) are absent, parameters� = (c0; c1; d0; d1)T , and
the thresholda of non-invertible nonlinearity (5) are
known [15]. Thus, the observations of the reordered
output~y(k) of the PWA system should be partitioned
into three data sets: left-hand side data set (N1 sam-
ples) with values lower than or equal to negativea,
middle data set (N2 samples) with values higher than
negativea but lower than or equal toa, and right-
hand side data set (N3 samples) with values higher
thana. HereN = N1 + N2 + N3 . Hence, the ob-
servations with the highest and positive values will
be concentrated on the right-hand side set, while the
observations with the lowest and negative values on
the left-hand side one [15]. It could be noted that on
boundaries the small portions of observations of the
middle data set of~y(k) (approximately by 5 percent-
age) are mixed together with some portions of ob-
servations of the left-hand side and right-hand data
sets, respectively, due to negative slopes of the non-
linearity (5). In general case (an noisy environment,
unknown parameters and the threshold) it is impera-
tive for the efficient parametric identification of the
PWA system that such ambiguities are resolved. On
the other hand, one can avoid this problem assum-
ing here that slightly less than 50% unmixed observa-
tions are concentrated on the middle-set and approx-
imately by 15% on any side set. Note that the obser-
vations of the middle data set of~y(k) are coincident
with the respective observations of the intermediate
signalx(k) in the absence of the measurement noisee(k). Therefore, one could get unmixed observations
of ~y(k) simply by choosing the upper interval bound
lower than the 75 percentage and the lower interval
bound higher than the 25 percentage of the sampled
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reordered observations of~y(k). Each current obser-
vation ~y(k) ought to be assigned to respective data
set. In such a case, the whole number of observations
N and numbers of observationsN1 ;N2 ;N3 will be
varying in time. In order to process current observa-
tions one can use the corresponding recursive tech-
nique that will be given later in this paper.

4. Reconstruction of intermediate signal

Next, let us reconstruct an unmeasurable in-
termediate signalx(k), using the middle data set~y(k) 8 k 2 L1 ;L2 that is, really, reordered in an
ascending order of their valuesx(k) with small por-
tions of missing observations within it that belong to
the left-hand and right-hand side sets of the data. HereL1 = N1 + l1 ;L2 = N2 � l2 , where arbitrary inte-
gersl1 ; l2 > 0 . To calculate an auxiliary signal̂x(k)
(the reconstructedx(k)) 8 k 2 1;N , one could ap-
proximate the model of the linear part of the PWA
system (1) by the finite impulse response (FIR) sys-
tem of the form [2, 14 – 16]~y(k) = �0 + �1~u(k) + �2~u(k � 1) + : : : (6)+�� ~u(k � � + 1) + ~e(k)8 k 2 L1 ;L2 , or the expression in a matrix form~Y = ��; (7)

where ~Y = (~y(L1 );~y(L1 + 1 ); : : : ;~y(L2 ))T is the(L2 � l1 ) – vector of the middle data set of~y(k) with-
out the small portions of observations from left-hand
and right-hand side sets of the data,� =266641 ~u(L1) : : : ~u(L1 � � + 2) ~u(L1 � � + 1)1 ~u(L1 + 1) : : : ~u(L1 � � + 3) ~u(L1 � � + 2)

...
...

...
...

...1 ~u(L2) : : : ~u(L2 � � + 2) ~u(L2 � � + 1)37775
(8)

is the full rank(L2 � l1 )� (�+1 ) regression matrix,
consisting only of observations of the non-noisy input~u(k); �T = (�0; �1 : : : ; ��) (9)

is a(�+1)�1 vector of unknown parameters,� is the
order of the FIR filter that can be arbitrarily large but
fixed, ~u(k) are observations ofu(k) associated with
their own~y(k), ~e(k) = v(k) + e(k).

It could be emphasized here that by applying the
FIR model one avoids the influence of some missing
regressors appearing in the regression matrix�, if the
infinite impulse response (IIR) system is used. In this
case, the dependence of some regressors on the pro-
cess output will be facilitated, and the assumption of

the ordinary LS that the regressors depend only on the
non-noisy input signal, will be satisfied [3], too. This
is the main consequence of replacing the initial trans-
fer functionG(q�1;�) of the linear part of the PWA
system by the FIR filter (6). Note that all proofs based
on the deterministic regression matrix are valid here
as well.

The parametric estimation technique, based on or-
dinaryLS, could be applied in the estimation of pa-
rameters (9) of the given FIR system (6), using the
reordered observations of the middle data-set~y(k),
because the rearrangement of observations does not
influence the accuracy of LS estimates to be calcu-
lated. For the recursive estimation of unknown param-
eters (9), the ordinary prediction error method, based
on the RLS of the form�̂(k) = �̂(k � 1) + �(k � 1)z(k)1 + zT (k)�(k � 1)z(k) "̂(k);

(10)�(k) = �(k � 1)� �(k � 1)z(k)zT (k)�(k � 1)1 + zT (k)�(k � 1)z(k) ;
(11)8 k = N4+1,N4+2,: : : could be used with the vector

of observationszT (k) = [1; ~u(k � 1); :::; ~u(k � � + 1)];
and some initial values, i.e.̂�(N4 ) , and matrix�(N4 ) = ��T���1 .
Here �̂T (k) = ��̂0(k); �̂1(k) : : : ; �̂�(k)� (12)

is a current estimate of the parameter vector (9) on the
currentk-th iteration,"̂(k) = ~y(k)� [�̂0(k) + �̂1(k)~u(k � 1)+ (13)�̂2(k)~u(k � 2) + : : :+ �̂�(k)~u(k � � + 1)]
is the prediction error on the samek-th iteration,�̂(N4 ) = ��T���1 �T ~Y; (14)

with�̂T (N4 ) = ��̂0 (N4 ); �̂1 (N4 ) : : : ; �̂�(N4 )� (15)

is a (� + 1) � 1 vector of the estimates of parame-
ters (9) calculated using onlyN4 = L2 � l1 observa-
tions of the middle data set.

The next step is to reconstruct the current

On Recursive Parametric Identification of Wiener Systems 

 

 

23 



4 R.Pupeikisk-th value of the intermediate signalx(k),8 k =N+1,N+2,: : : byx̂(k) = �̂0(k) + �̂1(k)~u(k � 1)+ (16)�̂2(k)~u(k � 2) + : : :+ �̂�(k)~u(k � � + 1)
that with the previous values of̂x(k) will be used to
calculate the estimates of parameters (2) of the trans-
fer functionG(q�1;�) at the next followed step.

5. Recursive parametric estimation

Now, let us calculate the current estimates of the
parameters (2) of the transfer functionG(q�1;�) us-
ing m � 1 values of observationsu(k), andm � 1
values of reconstructed intermediate signalx̂(k). The
current estimate of the parameter vector (2) could be
determined by the next RLS of the form�̂(k) = �̂(k � 1) + �(k � 1)~z(k)1 + ~zT (k)�(k � 1)~z(k) ~"(k);

(17)�(k) = �(k � 1)� �(k � 1)~z(k)~zT (k)�(k � 1)1 + ~zT (k)�(k � 1)~z(k) ;
(18)8 k = N+1,N+2,: : : with the vector of observations~zT (k) = (u(k � 1); :::; u(k �m); (19)�x̂(k � 1); :::;�x̂(k �m))

and some initial values of the vector̂�(N) and ma-

trix �(N) = �XTX��1. Here�̂T (k) = (b̂T (k); âT (k)) (20)= (b̂1(k); :::; b̂m(k); â1(k); :::; âm(k))
is the current estimate of the parameter vector (2),~"(k) = A(q�1; â(k�1))x̂(k)�B(q�1; b̂(k�1))u(k)
is the prediction error on the currentk-th iteration.�̂(N) = �XTX��1XTU; (21)�̂T (N) = �b̂(N); â(N)�T ; (22)b̂T (N) = �b̂1(N); : : : ; b̂m(N)� ;âT (N) = (â1(N); : : : ; âm(N))
are2m� 1;m� 1;m� 1 vectors of the estimates of
parameters, respectively,

X = [X1;X2] (23)

is the(N �m � � � 1) � 2m matrix, consisting of
observations of the inputu(k) and the auxiliary signalx̂(k),X1 = 26664 u(m) : : : u(1)u(m+ 1) : : : u(2)

...
...u(N � 1) : : : u(N �m)37775 ; (24)

and X2 = 26664 x̂(m) : : : x̂(1)x̂(m+ 1) : : : x̂(2)
...

...x̂(N � 1) : : : x̂(N �m)37775 ; (25)U = (x̂(m+ 1); x̂(m+ 2); :::; x̂(N))T (26)

is the(N �m� 1) – vector, consisting of the obser-
vations ofx̂(k).
6. Calculation of nonlinear function parameters

Estimates of the parametersc0; d0 andc1; d1 are
calculated by the ordinaryLS, too. In such a case, the
sums of the formI(c0; c1) = N1�l3Xi=1 h~y(i)� c0 � c1 ~̂x(i)i2 = min!;

(27)I(d0; d1) = Xj=fN 2+lN4 h~y(j)� d0 � d1 ~̂x(j)i2 = min!;
(28)

are to be minimized in respect of the parametersc0; c1
andd0; d1, respectively, using side-set data particles
of ~y(k) and associated observations of the auxiliary
signal x̂(k). Here ~̂x(k) are the observations of the
signal x̂(k) that are rearranged in accordance with~y(k). Note that in respective sums arbitrary integersl3; l4 > 0.

The estimates of parametersc1; d1 andc0; d0 are
calculated according toĉ1 = N1�l3Xi=1 ~y(i)~̂x(i)N1�l3Xi=1 ~̂x2(i) ; d̂1 = N3�l4Xj=1 ~y(j)~̂x(j)N3�l4Xj=1 ~̂x2(j) ;

(29)
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On recursive parametric identification of Wiener systems 5ĉ0 = N1�l3Xi=1 [~y(i)� ĉ1 ~̂x(i)]N1 � l3 ; (30)d̂0 = N3�l4Xj=1 [~y(j)� d̂1 ~̂x(j)]N3 � l4 ;
respectively [11], but using side-set data particles
of ~y(k) and associated observations of the auxiliary
signal x̂(k), that are reordered in accordance with~y(k)[13, 15].

It is obvious that one can use expressions (29)
and (30) for recursive estimation. In such a case, re-
spective sums in numerators and denominators should
be calculated by processing fixed number of obser-
vations. Then, in each current iterationk correspond-
ing products ought to be determined. Afterwards, they
should be added to previously obtained respective
sum values. At last, the ratios of the respective sums
are obtained giving us current values ofĉ1; d̂1; ĉ0; d̂0.
The estimates of the thresholda on the right-hand
side and left-hand side sets are found according toâ = d̂0=(1 + d̂1); â = �ĉ0=(1 + ĉ1); (31)

respectively. It could be mentioned that an approach
presented in [1] could be applied here ifN1 andN3
are unknown beforehand.

7. Numerical simulations

The true intermediate signalx(k) k = 1;N; of
the PWA system (Figures 2b, 3b) is given by (3). The
true output signal (Figures 2c, 3c) is described byy(k) = 8<:�7:6� 0:1x(k) if x(k) � �7:5;x(k) if �7:5 < x(k) � 7:5,7:6� 0:1x(k) if x(k) > 7:5

(32)
and byy(k) =8<:�1:1� 0:1x(k) if x(k) � �1;x(k) if �1 < x(k) � 1,1:1� 0:1x(k) if x(k) > 1

(33)
with the sum of sinusoids (Fig. 2a)u(k) = 120 20Xi=1 sin(i�k=10 + �i) (34)

and white Gaussian noise with variance 1 (Fig. 3a) as
inputs to the linear blockG(q�1;�) = b1q�11 + a1q�1 ; (35)

respectively. Hereb1 = 1; a1 = �0:7. In (34), the
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(Inputu(k) is white Gaussian noise (a), intermediate signalx(k) (b), outputy(k) (c), intermediate and output signals
(d))

stochastic values�i i = 1; 20 randomly and uni-
formly drawn from the interval[0; 2�] [6]. First of
all, N = 100 data points have been generated with-
out additive process and measurement noises (Fig-
ures 4, 5). Afterwards, theLS problem (14) was
solved, using 38 and 36 rearranged observations of
the output, respectively (Figures 6c, 7c), excluding
zeros. In (6) the number of the FIR filter parame-
ters� = 14 has been chosen based on the estimation
results, obtained for different� in the absence of pro-
cess and measurement noises [15]. The estimatex̂(k)
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of the intermediate signalx(k) was reconstructed ac-
cording to (16), replacing unknown true values of pa-
rameters by their estimates. The reconstructed ver-
sions of the intermediate signalx(k) are shown in
Figures 8a, 9a. The estimateŝ�T = (b1; a1) of pa-
rameters� of the functionG(q�1;�) were calcu-
lated by Eq. (21), using the observations of the aux-
iliary signal x̂(k). Afterwards, the estimatêx1(k) of
the intermediate signalx(k) was recalculated byx̂1(k) = b̂1 u(k�1)+â1x̂1(k�1); 8 k = 2; 100;

(36)
using b̂1; â1 and x̂1(1) = 0. In such a case, the
estimateŝb1; â1 were equal to the true parameters:b1 = 1; a1 = 0:7. The reconstructed versions of the
intermediate signalx(k), calculated by eq. (36) are
shown in Figures 8b, 9b. The accuracy of estimates of
the intermediate signal, calculated by formulas (16)
and (36), is more or less similar except for the first
15 observations, when the FIR model (16) was used.
If x̂(k) has been obtained, then it is simple to sepa-
rate different particles of observations that belong to
the respective side-sets. The estimates of parametersc1; d1 andc0; d0 are calculated according to formu-
las (29) and (30), respectively. In such a case, the re-
arranged observations ofx̂(k) andy(k) were substi-
tuted in formulas (29) and the estimates ofc1 andd1
were determined:̂c1 = d̂1 = 0:1. Then, the estimatesĉ0 and d̂0 were calculated by (30). Their values are
also coincidental with the values of true coefficients:ĉ0=–7.6, whiled̂0=7.6 for the nonlinearity (32) andĉ0=–1.1, whiled̂0=1.1 for the nonlinearity (33), re-
spectively. Note thatN1=14,N3=8 for the periodical
signal (34) (Fig. 2a), andN1=32,N3=28 for the Gaus-
sian white noise (Fig. 3a) were used to calculate the
estimateŝc0; ĉ1; d̂0; d̂1, respectively. The estimates of
the threshold were established by Eqs. (31). The val-
ues of estimateŝa were equal to the true values:a=7.5
anda=1, respectively.

In order to determine how realizations of differ-
ent process- and measurement noises affect the ac-
curacy of recursive estimation of unknown parame-
ters, we have used the Monte Carlo simulation with
10 data samples, each containing 100 pairs of input-
output observations. 10 experiments with the same re-
alization of the process noisev(k) and different real-
izations of the measurement noisee(k) with differ-
ent levels of its intensity have been carried out. The
intensity of noises was assured by choosing respec-
tive signal-to-noise ratios SNR (the square root of
the ratio of signal to noise variances). For the pro-
cess noise, SNR was equal to 10, and for the mea-
surement noise,SNRe was varying, thusSNRe=(1,
10, 100). As inputs for all given nonlinearities the
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Fig. 4. Samples ofy(k) (a) (see Fig. 2c).
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Inputu(k) is of the form (34) (see Fig. 2a))
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(Data sets: left (b), middle (c), right (d). Inputu(k) is white
Gaussian noise (see Fig. 3a))

periodical signal (34) and white Gaussian noise with
variance 1 were chosen. In eachith experiment the
estimates of parameters were calculated. During the
Monte Carlo simulation averaged values of estimates
of the parameters and of the threshold and their con-
fidence intervals were calculated. In Tables 1 and 2,
for each input the averaged recursive estimates of pa-
rameters and the thresholda of the simulated PWA
system (Fig. 1) with the linear part (35) (b1 = 1; a1 =�0:7) and the piecewise nonlinearities (32), (33) with
(c0 = �1:1; c1 = 0:1; d0 = 1:1; d1 = 0:1), and
(c0 = �7:6; c1 = 0:1; d0 = 7:6; d1 = 0:1), respec-
tively, with their confidence intervals are presented.
Note that in each experiment here the value of SNR
was fixed and was the same, while the values of SNR
were varying due to different realizations ofe(k). The
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Monte Carlo simulation implies that the accuracy of
recursive parametric identification of the PWA system
depends on the intensity of measurement noise.

8. Conclusions

The problem of identification of PWA systems
(Fig. 1) could be essentially reduced by a simple data
rearrangement. Afterwards, the available data are par-
titioned into three data sets that correspond to dis-
tinct threshold regression models. Thus, the estimates
of unknown parameters of linear regression models
can be calculated by processing respective sets of the
rearranged output and associated input observations.
A technique, based on ordinary recursive LS, is pro-
posed here for estimating the parameters of linear
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(The intermediate signalx(k) (curve 1), the output signaly(k) (curve 3), the reconstructed versions ofx(k) (curves
2, 4), calculated using Eq. (16)(a) and Eq. (36)(b), respec-
tively. Inputu(k) is of the form (34) (see Fig. 2a))
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Fig. 9. Signals of the PWA system.
(The intermediate signalx(k) (curve 1), the output signaly(k) (curve 3), the reconstructed versions ofx(k) (curves
2, 4), calculated using Eq. (16)(a) and Eq. (36)(b), respec-
tively. Inputu(k) is white Gaussian noise (see Fig. 3a))

Table 1. Averaged estimates of the parametersb1; a1; c0; c1; d0; d1; and thresholdsa,�a with their confidence intervals. Input:
the periodical signal (34). SNR=10.

Values SNRe = 1 SNRe = 10 SNRe = 100b̂1 1:42� 0:33 1:15� 0:03 1:13� 0:00â1 �0:68� 0:05 �0:68� 0:01 �0:68� 0:00ĉ0 �8:47� 4:9 �7:86� 0:65 �7:71� 0:07ĉ1 0:27� 0:72 0:01� 0:11 0:02� 0:01d̂0 3:11� 9:28 6:49� 1:14 6:49� 0:11d̂1 �0:03� 0:39 0:07� 0:05 0:09� 0:01â 13:71 � 12:51 6:5� 0:45 6:62� 0:04�â 1:81� 24:4 �7:42� 1:11 �7:09� 0:1
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Table 2. Averaged estimates of the parametersb1; a1; c0; c1; d0; d1; and thresholdsa,�a with their confidence intervals.
Input—the Gaussian white noise

Values SNRe = 1 SNRe = 10 SNRe = 100b̂1 0:79� 0:21 0:95� 0:02 0:97 � 0:00â1 �0:48� 0:17 �0:71� 0:01 �0:72 � 0:00ĉ0 �1:17� 0:17 �1:04� 0:03 �1:03 � 0:00ĉ1 0:24� 0:3 0:12� 0:02 0:12 � 0:00d̂0 0:89� 0:4 1:07� 0:05 1:09 � 0:01d̂1 �0:02� 0:32 �0:09� 0:03 �0:1� 0:00â 1:02� 0:28 0:92� 0:04 0:91 � 0:00�â 0:81� 0:29 �0:98� 0:02 �0:99 � 0:00
and nonlinear parts of the Wiener system, including
the unknown threshold of the piecewise nonlinearity,
too. During successive steps the unknown intermedi-
ate signal is reconstructed and the missing values of
observations of respective data particles are replaced
by their estimates. Results of numerical simulation
(Figures 2—9 and Tables 1, 2) prove the efficiency
of the proposed recursive approach.
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