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This research focuses on big data visualization that is based on dimensionality reduction methods. We propose 
a multi-level method for data clustering and visualization. It divides the whole data mining process into sep-
arate steps and applies particular dimensionality reduction method considering to analyzed data volume and 
type.  The methods are selected according to their speed and accuracy. Therefore, we present a comparison of 
the selected methods according to these two criteria. Three groups of datasets containing different kind of data 
are used for methods evaluation.  The factors that influence speed or accuracy are determined. The rank of in-
vestigated methods based on research results is presented in this paper.
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1. Introduction
Big data analytics is the process of investigating big 
data to uncover hidden and useful information for 
better decisions. It involves visual presentation of 
data that enables to see hidden relations between ob-
jects which cannot be detected using conventional 
data analysis methods [14]. 
In this research, we focus on big data visualization 

that is based on dimensionality reduction meth-
ods. Our main goal is to find the most effective ways 
to analyse and visualize data of such type. Dimen-
sionality reduction refers to the process of taking a 
data set with a usually large number of dimensions, 
and then creating a new data set with a fewer num-
ber of dimensions, that preserve as much of initial  
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information as possible [6].
We propose a method which divides the data mining 
process into separate steps. At each stage, a particular 
dimensionality reduction and visualization method 
is applied considering to data volume and type.   The 
methods are selected according to their speed and ac-
curacy. Therefore, in the second section of this paper 
we present the comparison of selected dimensionali-
ty reduction methods.
When data are clustered and visualized, there is a 
possibility to see the parameters of each data group. 
The further analysis is performed only for the select-
ed data cluster.
At the initial stage, the accuracy of method is not so 
important, so the fastest visualization method can 
be used. For the following dimensionality reduction 
steps, the demand for accuracy gradually increases. 
This requires using more accurate, but possibly slow-
er methods. During each step, the selected data clus-
ter is divided into smaller sets. At the end, the most 
accurate method processes the data. It would require 
too much resources at the beginning of dimension-
ality reduction, but at the end the data set is small 
enough to be processed in the most accurate way.  
Most often in scientific literature there are just qual-
itative comparisons of different dimensionality re-
duction methods [2], [12], [11]. In some papers [6], 
[5], we can also find speed or accuracy comparisons 
of selected methods. The review of such researches 
leads to insight that some methods are faster, but less 
accurate and that other ones have opposite character-
istics. However, there is a lack of general quantitative 

research of most popular methods that would com-
pare both speed and accuracy.
Therefore, in this paper we investigate these well-
known methods: Multidimensional Scaling (MDS), 
Principal Component Analysis (PCA), Independent 
Component Analysis (ICA), Principal Curves, Local-
ly Linear Embedding (LLE), and Isometric Mapping 
(Isomap).

2. A Review of Dimensionality 
Reduction Methods
A brief summary of the most popular dimensional-
ity reduction methods is presented in this section. It 
is based on researches previously made by Fodor [2], 
Mizuta [7], Sorzano et. al. [12]. According to them, 
much of the data are highly redundant and can be ef-
ficiently brought down to a much smaller number of 
variables without a significant loss of information.

Multidimensional scaling (MDS)
Given n items in a d-dimensional space and an n x n 
matrix of proximity measures among the data items, 
MDS produces a k-dimensional, k ≤ d, representation 
of the items such that the distances among the points 
in the new space reflect the proximities in the data [2].
In this research, we use mds() function from R pack-
age ‘smacof’ [11]. It solves the stress target function 
for symmetric dissimiliarities by means of the major-
ization approach (SMACOF) and reports the Stress-1 
value (normalized).

Figure 1 
A Multi-level method for big data visualisation
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This function allows for fitting three basic types of 
MDS: ratio MDS (used in our case), interval MDS 
(polynomial transformation), ordinal MDS (also 
known as nonmetric MDS) [10].

Principal components analysis (PCA)
PCA is by far one of the most popular algorithms for di-
mensionality reduction [12]. It finds components that 
make projections uncorrelated by selecting the highest 
eigenvalues of the covariance matrix and maximizes 
retained variance [1]. PCA finds the principal compo-
nents of the data, which correspond to the components 
along which there is the most variation [6].

Independent component analysis (ICA)
ICA is a higher-order method that seeks linear projec-
tions, not necessarily orthogonal to each other, that 
are as nearly statistically independent as possible. 
While PCA seeks uncorrelated variables, ICA seeks 
independent variables [2]. It should be noted that sta-
tistical independence is a much stronger condition 
than uncorrelatedness.

Principal curves, surfaces and manifolds
In situations where initial data have some curved 
structure methods like PCA do not work well. In such 
cases, approximating the curve by a straight line will 
not perform a good approximation of the original data. 
For such data type, the solution is to use principal 
curves, surfaces and manifolds [12]. Curve fitting to 
data is an important method for data analysis. When 
we obtain a fitting curve for data, the dimension of the 
data is nonlinearly reduced to one dimension [7].

Locally linear embedding (LLE)
LLE method is used to learn manifolds close to the 
data and project them onto them. For each item, it 
looks for the K‐nearest neighbours and produces a set 
of weights for its approximation. This optimization 
is performed simultaneously for all items. Once the 
weights have been determined, it looks for points of 
lower dimension. The new points are reconstructed 
from its neighbours in the same way (with the same 
weights) as the items they represent [2].

Isometric mapping (Isomap)
If the distances between objects are measured as geo-
desic distances, then the MDS method is called Iso-
map. The geodesic distance between two points in a 

manifold is the one measured along the manifold it-
self; in practical terms, it is computed as the shortest 
path in a neighborhood graph connecting each obser-
vation to its K‐nearest neighbors [2].

3. Research Methodology
The main goal of this research is to compare the speed 
and accuracy of the selected methods of visualization 
based on dimensionality reduction. R was chosen as 
a basis for analysis, because there are various open 
source packages that enable to execute and evaluate 
different dimensionality reduction methods. RStudio 
environment was used to perform the tasks.

3.1 Data
Three groups of different kinds of datasets were cre-
ated for testing purposes.

Randomly generated nonclustered data
First of all, 50 different datasets containing randomly 
generated numbers were created with R function sam-
ple(). The number of columns is from 10 to 50. The num-
ber of items is from 1 000 to 10 000. Thus the smallest 
dataset is 1 000x10 and the largest one is 10 000x50. 

Randomly generated clustered data
The second group contains 25 datasets of clustered 
data. The function genRandomClust from R pack-
age ‘clusterGeneration’ was used to generate cluster 
datasets with specified degree of separation [8]. Each 
dataset has four clusters. The number of columns is 
from 10 to 50. The number of items is from 1 000 to 9 
000. The smallest dataset is 1 000x10 and the largest 
one is 9 000x50.

Real financial data
The third group contains 20 datasets of real financial 
data – stock ratios from finviz.com [13]. In total, there 
is information about 7 000 companies. Each company 
is described by 50 parameters, which can be grouped 
into six categories: overview (price, volume, etc.), fi-
nancial (ROI, ROA, etc.), valuation (EPS, P/E, etc.), 
performance (price changes, volatility, recommenda-
tions), technical (Beta, SMA, etc.), ownership.
The number of columns in datasets is from 10 to 
50. The number of items is from 1 000 to 7 000. The 
smallest dataset is 1 000x10 and the largest one is  
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7 000x50. In all cases of our research, the initial num-
ber of dimensions is reduced to two.

3.2 The Evaluation Criteria
We use two main criteria to compare different methods:
 _ Speed. It is measured as execution time of 

dimensionality reduction process.
 _ Accuracy. We use three different measures to 

evaluate the accuracy:

Stress – the measure got by solving the square loss 
function of MDS method. We used R function mds() 
from package ‘smacof ’ to find the stress value.
Spearman coefficient (The Spearman’s Rank Cor-
relation Coefficient). It is a statistical measure used 
to discover the strength of a link between two sets of 
data [3]. 
This ratio uses the ranks of variables instead of their 
values. Possible values range from -1 (strong nega-
tive relation) to 1 (strong positive relation). If ratio 
is equal to zero, this means there is no statistical link 
between datasets. To calculate this ratio, R function 
cor() with method “spearman” was used.
Shannon entropy. We used R function entropy from 
package ‘entropy’ that estimates the Shannon entro-
py H of the random variable Y from the corresponding 
observed items [9], [4]. 
This estimator shows how accurate the projection got 
by using particular dimensionality reduction method 
retains the initial amount of information. A lesser val-
ue of this measure means better accuracy.

4. Research Results
The results of speed and accuracy comparison for 
each group of data are presented in this section. At the 
end, the overall comparison is made.

4.1 Randomly Generated Nonclustered Data
In the first case, randomly generated nonclustered 
datasets are used for investigation.

The speed of methods
As results show, MDS (smacof ), Isomap and LLE 
methods have the same characteristics:
 _ When the number of instances increases, the 

execution time also increases.

 _ The initial amount of dimensions does not have 
significant effect on the time of execution.

Fig. 2 shows the execution time of MDS (smacof ) 
method for datasets that contain ten columns, but dif-
fer in number of rows. The charts of execution time 
for the datasets having more columns look the same, 
because this factor has no influence. However, Iso-
map is much slower (this can be seen in Fig. 6).

Figure 2 
Execution time of MDS (smacof ) method
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Figure 4 
Execution time of Principal curves
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Figure 9 
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Fig. 10 shows the execution times of these methods 
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For all methods, we found that the same rules apply as 
with nonclustered data: 
• When the number of instances increases, the 

accuracy does not change.
• When the number of initial dimensions increases,

it leads to worse accuracy.
Fig. 13 shows the accuracy values got with dataset 
that contains 7 000 rows and 40 columns. MDS 
(smacof) is the most accurate by two measures: 
Shannon entropy and Spearman coefficient. However, 
according to Stress, Isomap is more accurate than 
MDS (smacof). PCA and ICA showed the moderate 
results. The accuracy of LLE and Principle curves is 
the worst.
The results of speed and accuracy with clustered data 
are almost the same as with nonclustered data.

4.3 Real Financial Data

In the third case, the real stock data are used for 
comparison of dimensionality reduction methods.
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It may seem that MDS (smacof) has the same 
characteristics (when the number of instances 
increases the execution time also increases; the initial 
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on the time of execution). However, in the case with 
real data, we found that execution time slightly 
increases when the number of initial dimensions 
increases (Fig. 14). This contrary relationship is 
unusual and needs further investigation.
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For the remaining methods, the trends of speed are the 
same as in previous cases. However, it was impossible 
to process the real data with LLE method. It found 
data too much correlated.
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With real data, we could not get the measures not only 
for LLE method, but also the Stress value of ICA. This 
confirms that all methods can cope with generated 
data, but real world situations may cause issues to 
them.
Fig. 16 shows the results in case with 7 000 items and 
40 dimensions. MDS (smacof), PCA, ICA and Isomap 
show similar results with all datasets (accuracy 
depends on the initial amount of dimensions, but the 
trends remain the same).
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one rule for all datasets. Fig. 17 shows that when the 
number of initial dimensions constantly increases, 
the values of Spearman coefficient and Shannon en-
tropy fluctuates. This leads to suggestion that infor-
mation, which can be extracted from data, has impact 
on the accuracy of dimensionality reduction.
This is why adding more columns of randomly generated 
data is not the same as adding more real data, which can 
add completely different aspects for analyzed subject.
Fig. 18 shows that more items lead to better accuracy. 
This feature is seen only with real data.
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values of Spearman coefficient and Shannon entropy 
fluctuates. This leads to suggestion that information,
which can be extracted from data, has impact on the 
accuracy of dimensionality reduction.
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Fig. 18 shows that more items lead to better accuracy. 
This feature is seen only with real data.
The rank of methods
Fig. 19 shows the rank of methods according to their 
speed and accuracy while processing the real data. The 
results show that MDS is the most accurate method. 
However, it is not as fast as PCA or ICA. The latter 
two are the fastest methods, but they showed moderate 
accuracy values. The speed of ICA is the same as 
PCA, but it is not so accurate.
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4.4. The Overall Comparison

In this section, we present how the speed and accuracy 
of dimensionality reduction methods depend on the 
kind of data. Fig. 20 shows that the kind of data is not 
important for the speed of methods. It does not affect 
the time of execution.

Figure 20. Execution times for different kind of data

However, it has infuence on the accuracy. Clustered 
data have better Stress values than nonclustered data. 
Moreover, PCA, MDS (smacof) and Isomap showed 
best accuracy exactly with real stock data (Fig. 21).

Figure 21. A Comparison of accuracy (Stress)

According to Spearman coefficient (Fig. 22), the best 
accuracy is also achieved when processing the real 
data. Clustered data also have higher accuracy values 
than nonclustered data. 

Figure 22. Accuracy measures: Spearman coefficient
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Fig. 18 shows that more items lead to better accuracy. 
This feature is seen only with real data.
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speed and accuracy while processing the real data. The 
results show that MDS is the most accurate method. 
However, it is not as fast as PCA or ICA. The latter 
two are the fastest methods, but they showed moderate 
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important for the speed of methods. It does not affect 
the time of execution.
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However, it has infuence on the accuracy. Clustered 
data have better Stress values than nonclustered data. 
Moreover, PCA, MDS (smacof) and Isomap showed 
best accuracy exactly with real stock data (Fig. 21).
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data. Clustered data also have higher accuracy values 
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Figure 23. Accuracy measures: Shannon entropy

According to Shannon entropy (Fig. 23), there is no 
significant difference of accuracy between clustered 
and nonclustered data. However, again, the accuracy is 
much better in case with the real data (except Principal 
curves method).

5. Conclusions
In this paper, we presented the methodology that 
divides data visualisation process into separate steps. 
For each step, individual dimensionality reduction and 
visualization method is applied considering to data 
volume and type. The particular methods are selected 
according to their speed and accuracy. Therefore, we 
presented the comparison of dimensionality reduction 
methods according to these two criteria. Three
different measures were used to evaluate the accuracy:  
Stress, Spearman coefficient and Shannon entropy. All 
methods were tested with three groups of different 
kind of data: nonclustered randomly generated data, 
clustered randomly generated data and real financial 
data.
Several rules were confirmed for randomly generated 
data (both clustered and nonclustered). When the 
number of items increases, the execution time also 
increases. However, the initial amount of dimensions 
does not have a significant effect on the time of 
execution. For accuracy, the situation is the opposite. 
When the number of items increases, the accuracy 
does not change, but when the number of initial 
dimensions increases, it leads to worse accuracy.
Meanwhile, in the case with real data, we found that 
execution time can slightly increase when the number 
of initial dimensions increases. It was also impossible 
to process the real data with LLE method and get 
Stress values of ICA. This shows that real world 
situations may cause issues to particular methods. The 
results also show that more instances of real data lead
to better accuracy. They also show that the kind of 
data is not important for the speed of methods, but it 
has influence on the accuracy. Clustered data have 
better values of accuracy metrics than nonclustered 
data. The best accuracy is achieved when processing 
the real data.

The results show that MDS is the most accurate 
method, but not as fast as PCA or ICA. These are the 
fastest methods, but they showed moderate accuracy 
values. Principal curves and LLE showed the worst 
results. Isomap was significantly slower, but its 
accuracy in some cases can be the best.
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values of Spearman coefficient and Shannon entropy 
fluctuates. This leads to suggestion that information,
which can be extracted from data, has impact on the 
accuracy of dimensionality reduction.

Figure 17. The accuracy of Principal curves

This is why adding more columns of randomly 
generated data is not the same as adding more real 
data, which can add completely different aspects for 
analyzed subject.

Figure 18. The accuracy of Principal curves

Fig. 18 shows that more items lead to better accuracy. 
This feature is seen only with real data.
The rank of methods
Fig. 19 shows the rank of methods according to their 
speed and accuracy while processing the real data. The 
results show that MDS is the most accurate method. 
However, it is not as fast as PCA or ICA. The latter 
two are the fastest methods, but they showed moderate 
accuracy values. The speed of ICA is the same as 
PCA, but it is not so accurate.

Figure 19. A Comparison of speed and accuracy

4.4. The Overall Comparison

In this section, we present how the speed and accuracy 
of dimensionality reduction methods depend on the 
kind of data. Fig. 20 shows that the kind of data is not 
important for the speed of methods. It does not affect 
the time of execution.

Figure 20. Execution times for different kind of data

However, it has infuence on the accuracy. Clustered 
data have better Stress values than nonclustered data. 
Moreover, PCA, MDS (smacof) and Isomap showed 
best accuracy exactly with real stock data (Fig. 21).

Figure 21. A Comparison of accuracy (Stress)

According to Spearman coefficient (Fig. 22), the best 
accuracy is also achieved when processing the real 
data. Clustered data also have higher accuracy values 
than nonclustered data. 

Figure 22. Accuracy measures: Spearman coefficient

data. Clustered data also have higher accuracy values 
than nonclustered data. 
According to Shannon entropy (Fig. 23), there is no 
significant difference of accuracy between clustered 
and nonclustered data. However, again, the accuracy 
is much better in case with the real data (except Prin-
cipal curves method).

5. Conclusions
In this paper, we presented the methodology that di-
vides data visualisation process into separate steps. 
For each step, individual dimensionality reduction and 
visualization method is applied considering to data 
volume and type.  The particular methods are selected 
according to their speed and accuracy. Therefore, we 
presented the comparison of dimensionality reduc-
tion methods according to these two criteria. Three 
different measures were used to evaluate the accuracy:  
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Stress, Spearman coefficient and Shannon entropy. All 
methods were tested with three groups of different kind 
of data: nonclustered randomly generated data, clus-
tered randomly generated data and real financial data.
Several rules were confirmed for randomly generat-
ed data (both clustered and nonclustered). When the 
number of items increases, the execution time also 
increases. However, the initial amount of dimensions 
does not have a significant effect on the time of execu-
tion. For accuracy, the situation is the opposite. When 
the number of items increases, the accuracy does not 
change, but when the number of initial dimensions 
increases, it leads to worse accuracy.
Meanwhile, in the case with real data, we found that 
execution time can slightly increase when the num-
ber of initial dimensions increases. It was also impos-

sible to process the real data with LLE method and 
get Stress values of ICA. This shows that real world 
situations may cause issues to particular methods. 
The results also show that more instances of real data 
lead to better accuracy. They also show that the kind 
of data is not important for the speed of methods, but 
it has influence on the accuracy. Clustered data have 
better values of accuracy metrics than nonclustered 
data. The best accuracy is achieved when processing 
the real data.
The results show that MDS is the most accurate 
method, but not as fast as PCA or ICA. These are the 
fastest methods, but they showed moderate accuracy 
values. Principal curves and LLE showed the worst 
results. Isomap was significantly slower, but its accu-
racy in some cases can be the best.
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