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In this article, a novel method of soft variable structure control of linear systems, desired pole paths, is pro-
posed. The proposed method is helpful to reach a fast response when a continuous control signal and satisfac-
tion of some constraints are desired. The method selects a desired path for closed loop poles instead of the exact 
location of poles, then the pole placement in this path is determined by solving an optimization problem subject 
to a control signal constraint leading to a suboptimal control structure. The stability of the proposed method is 
provided based on the multivariable circle criterion and the Kalman-Yakubovich-Popov lemma. A design pa-
rameter is also introduced in this paper which can adjust a tradeoff between speed of response and smoothness 
of the control signal. Simulation of a satellite model shows an improvement in shortening the settling time and 
softening the control signal compared to published soft variable structure control schemes.
KEYWORDS: Circle criterion, Desired pole paths, Linear control, Nonlinear control, Variable structure control.

1. Introduction
Achieving a fast response while shortening the set-
tling time is one of the main objectives in an industrial 
control process. Time optimal control which achieves 

the fastest settling time can be implemented via bang-
bang control [12]. Although the fast response of bang-
bang control is desirable, discontinuity and chatter-
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ing of the control signal reduce actuator service life 
and increase maintenance cost. Other drawbacks are 
the high control effort and sensitivity to uncertainties 
and disturbances. Therefore, researchers have pro-
posed methods which have settling time close to time 
optimal control, a continuous control signal, and re-
duced control effort [1, 4, 9-10, 14-16, 23].
Variable structure control (VSC) is a strategy in 
which the control law varies as a function of the state 
and switches between k pre-designed controllers [1]. 
The discontinuous function which selects the desired 
controller is called the selection function. Sliding 
mode control [19, 22], high order sliding mode con-
trol [4, 9], supervisory control [2-3], hybrid control 
[6-7], etc., are some examples of VSC. In VSC, sud-
den changes in the control law lead to high frequen-
cy switching, which is not desirable in industrial ap-
plications. If the number of pre-designed controllers 
goes to infinity and the selection function becomes 
continuous, this disadvantage is eliminated and 
the method is called soft variable structure control 
(SVSC). SVSCs can be utilized instead of bang-bang 
control when both a short settling time and continu-
ous control signal are desired. The main methods that 
have been proposed to date in the literature for SVSC, 
which improve regulation rate, are divided into three 
main categories:
1 Soft variable structure control employing an im-

plicit Lyapunov function [1]
2 Dynamical soft variable structure control [1, 10, 15-

16, 23]
3 Soft variable structure control with variable satu-

ration [1, 14]
Huge calculation is an obstacle in online implemen-
tation of SVSC employing an implicit Lyapunov func-
tion. This control method is also too conservative and 
rarely allows the capacity of the control signal to be 
fully exploited to decrease settling time. Dynamical 
SVSC methods have become more popular recently 
and their applications in singular [15-16, 23] and frac-
tional order systems [10] have been reported in the 
literature. Although their structure is more suited to 
continuous time models, the response of the system is 
highly dependent on a designer-defined control vec-
tor. Because no relationship between the control vec-
tor and performance is available, good performance 
is highly dependent on the choice of control vector. 
SVSC with variable saturation, which is recently de-

veloped with S class functions [14], has strict condi-
tions to satisfy the input restriction that may prevent 
efficient utilization of the control signal. In this arti-
cle, a novel method is proposed to improve SVSC and 
resolve the aforementioned obstacles. 
The remainder of this paper is organized as follows. 
After this introduction in the second section, the 
problem of restricted control signal systems is de-
scribed. In the third section, a feedback approach al-
gorithm is proposed. The desired poles path approach 
is described in Section 4. Simulation results are given 
in Section 5 and conclusions in Section 6. 

2. Problem Description
Consider a single input, single output (SISO) control-
lable linear system in the state space with differential 
equation

be utilized instead of bang-bang control when both a 
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The remainder of this paper is organized as follows. 
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third section, a feedback approach algorithm is proposed. 
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2. Problem Description
Consider a single input, single output (SISO) controllable 
linear system in the state space with differential equation
�̇�𝐱𝐱𝐱 = 𝐴𝐴𝐴𝐴𝐱𝐱𝐱𝐱 + 𝐛𝐛𝐛𝐛𝑢𝑢𝑢𝑢,                                                            (1)
where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛 ,𝑢𝑢𝑢𝑢 ∈ ℛ . The control input signal is 
restricted as
|𝑢𝑢𝑢𝑢| ≤ 𝑢𝑢𝑢𝑢0 .                                                                      (2)
Without loss of generality we assume that (1) is in 
standard controllable form or can be transformed into it.  
Thus, the state matrix 𝐴𝐴𝐴𝐴 and the input matrix 𝐛𝐛𝐛𝐛 are in the 
form

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

0
0
⋮
0
−𝑎𝑎𝑎𝑎0

1
0
⋮
0
−𝑎𝑎𝑎𝑎1

0
1
⋮
0
−𝑎𝑎𝑎𝑎2

⋯
…
⋱⋯
⋯

0
0
⋮
1

−𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1⎦
⎥
⎥
⎥
⎤

,𝐛𝐛𝐛𝐛 =

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
1⎦
⎥
⎥
⎥
⎤

.

(3)

We require a continuous, fast and stable controller that 
satisfies the control signal constraint (2), with feasible 
initial state 𝐱𝐱𝐱𝐱0 ∈ 𝑋𝑋𝑋𝑋0 ⊂ ℛ𝑛𝑛𝑛𝑛. Clearly, the requirement of a 
continuous control signal excludes bang-bang control in 
this problem.

3. State Feedback Control 
Approach

One can choose a state feedback control strategy 
and endeavor to place the system poles where both 
stability and the input constraint are met while 
minimizing settling time. Let us recall some 
preliminaries.
Theorem 1. Lyapunov Stability [11]
Consider a system with the differential equation, 
�̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱), where𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) is a continuous function with 
equilibrium point 𝐱𝐱𝐱𝐱 = 0. If there exists a function 
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) with continuous partial derivatives such that:
𝑉𝑉𝑉𝑉(0) = 0
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) > 0, 𝐱𝐱𝐱𝐱 ≠ 0

�̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 0, 𝐱𝐱𝐱𝐱 ≠ 0,
then the equilibrium point, 𝐱𝐱𝐱𝐱 = 0 , will be 
asymptotically stable and 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) will be called a 
Lyapunov function. In linear systems as (1), the 
stability theorem is equivalent to finding a positive 
definite symmetric solution 𝑃𝑃𝑃𝑃 to the Lyapunov 
equation
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 = −𝑄𝑄𝑄𝑄                                                (4)
for an arbitrary positive definite matrix, 𝑄𝑄𝑄𝑄 . The 
Lyapunov equation is derived using the quadratic 
Lyapunov function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱.
Definition 1. Lyapunov Region [1]
If there exists a function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) that satisfies the 
conditions of Theorem 1 for a system �̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(x) and 
𝐺𝐺𝐺𝐺 = {𝐱𝐱𝐱𝐱|𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 𝑐𝑐𝑐𝑐} is bounded, then due to 
negativity of �̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) , 𝐺𝐺𝐺𝐺 is an invariant set and is 
known as a Lyapunov region.
Clearly, placing the closed-loop poles in locations 
with smaller real values speeds up the response. In 
this section, we introduce a feedback gain vector 
function, 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣), that places the closed-loop poles 
on the pole ray depicted in Figure 1 as a function of 
𝑣𝑣𝑣𝑣. We define 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣) such that

𝑣𝑣𝑣𝑣1 < 𝑣𝑣𝑣𝑣2 ⟹
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣1)�� < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣2)�� ,

where 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣) = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�.
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Pole paths

(1)

where x∈ℛn, u∈ℛ. The control input signal is restrict-
ed as

be utilized instead of bang-bang control when both a 
short settling time and continuous control signal are 
desired. The main methods that have been proposed to 
date in the literature for SVSC, which improve 
regulation rate, are divided into three main categories:
1- Soft variable structure control employing an 

implicit Lyapunov function [1]
2- Dynamical soft variable structure control [1, 10, 15-

16, 23]
3- Soft variable structure control with variable 

saturation [1, 14]
Huge calculation is an obstacle in online implementation 
of SVSC employing an implicit Lyapunov function. This 
control method is also too conservative and rarely allows 
the capacity of the control signal to be fully exploited to 
decrease settling time. Dynamical SVSC methods have 
become more popular recently and their applications in 
singular [15-16, 23] and fractional order systems [10]
have been reported in the literature. Although their 
structure is more suited to continuous time models, the 
response of the system is highly dependent on a 
designer-defined control vector. Because no relationship 
between the control vector and performance is available, 
good performance is highly dependent on the choice of 
control vector. SVSC with variable saturation, which is 
recently developed with S class functions [14], has strict 
conditions to satisfy the input restriction that may 
prevent efficient utilization of the control signal. In this 
article, a novel method is proposed to improve SVSC and 
resolve the aforementioned obstacles.
The remainder of this paper is organized as follows. 
After this introduction in the second section, the problem 
of restricted control signal systems is described. In the 
third section, a feedback approach algorithm is proposed. 
The desired poles path approach is described in Section 
4. Simulation results are given in Section 5 and 
conclusions in Section 6.

2. Problem Description
Consider a single input, single output (SISO) controllable 
linear system in the state space with differential equation
�̇�𝐱𝐱𝐱 = 𝐴𝐴𝐴𝐴𝐱𝐱𝐱𝐱 + 𝐛𝐛𝐛𝐛𝑢𝑢𝑢𝑢,                                                            (1)
where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛 ,𝑢𝑢𝑢𝑢 ∈ ℛ . The control input signal is 
restricted as
|𝑢𝑢𝑢𝑢| ≤ 𝑢𝑢𝑢𝑢0 .                                                                      (2)
Without loss of generality we assume that (1) is in 
standard controllable form or can be transformed into it.  
Thus, the state matrix 𝐴𝐴𝐴𝐴 and the input matrix 𝐛𝐛𝐛𝐛 are in the 
form

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

0
0
⋮
0
−𝑎𝑎𝑎𝑎0

1
0
⋮
0
−𝑎𝑎𝑎𝑎1

0
1
⋮
0
−𝑎𝑎𝑎𝑎2

⋯
…
⋱⋯
⋯

0
0
⋮
1

−𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1⎦
⎥
⎥
⎥
⎤

,𝐛𝐛𝐛𝐛 =

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
1⎦
⎥
⎥
⎥
⎤

.

(3)

We require a continuous, fast and stable controller that 
satisfies the control signal constraint (2), with feasible 
initial state 𝐱𝐱𝐱𝐱0 ∈ 𝑋𝑋𝑋𝑋0 ⊂ ℛ𝑛𝑛𝑛𝑛. Clearly, the requirement of a 
continuous control signal excludes bang-bang control in 
this problem.

3. State Feedback Control 
Approach

One can choose a state feedback control strategy 
and endeavor to place the system poles where both 
stability and the input constraint are met while 
minimizing settling time. Let us recall some 
preliminaries.
Theorem 1. Lyapunov Stability [11]
Consider a system with the differential equation, 
�̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱), where𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) is a continuous function with 
equilibrium point 𝐱𝐱𝐱𝐱 = 0. If there exists a function 
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) with continuous partial derivatives such that:
𝑉𝑉𝑉𝑉(0) = 0
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) > 0, 𝐱𝐱𝐱𝐱 ≠ 0

�̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 0, 𝐱𝐱𝐱𝐱 ≠ 0,
then the equilibrium point, 𝐱𝐱𝐱𝐱 = 0 , will be 
asymptotically stable and 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) will be called a 
Lyapunov function. In linear systems as (1), the 
stability theorem is equivalent to finding a positive 
definite symmetric solution 𝑃𝑃𝑃𝑃 to the Lyapunov 
equation
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 = −𝑄𝑄𝑄𝑄                                                (4)
for an arbitrary positive definite matrix, 𝑄𝑄𝑄𝑄 . The 
Lyapunov equation is derived using the quadratic 
Lyapunov function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱.
Definition 1. Lyapunov Region [1]
If there exists a function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) that satisfies the 
conditions of Theorem 1 for a system �̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(x) and 
𝐺𝐺𝐺𝐺 = {𝐱𝐱𝐱𝐱|𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 𝑐𝑐𝑐𝑐} is bounded, then due to 
negativity of �̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) , 𝐺𝐺𝐺𝐺 is an invariant set and is 
known as a Lyapunov region.
Clearly, placing the closed-loop poles in locations 
with smaller real values speeds up the response. In 
this section, we introduce a feedback gain vector 
function, 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣), that places the closed-loop poles 
on the pole ray depicted in Figure 1 as a function of 
𝑣𝑣𝑣𝑣. We define 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣) such that

𝑣𝑣𝑣𝑣1 < 𝑣𝑣𝑣𝑣2 ⟹
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣1)�� < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣2)�� ,

where 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣) = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�.

Figure 1 
Pole paths

(2)

Without loss of generality we assume that (1) is in 
standard controllable form or can be transformed 
into it. Thus, the state matrix A and the input matrix 
b are in the form

be utilized instead of bang-bang control when both a 
short settling time and continuous control signal are 
desired. The main methods that have been proposed to 
date in the literature for SVSC, which improve 
regulation rate, are divided into three main categories:
1- Soft variable structure control employing an 

implicit Lyapunov function [1]
2- Dynamical soft variable structure control [1, 10, 15-

16, 23]
3- Soft variable structure control with variable 

saturation [1, 14]
Huge calculation is an obstacle in online implementation 
of SVSC employing an implicit Lyapunov function. This 
control method is also too conservative and rarely allows 
the capacity of the control signal to be fully exploited to 
decrease settling time. Dynamical SVSC methods have 
become more popular recently and their applications in 
singular [15-16, 23] and fractional order systems [10]
have been reported in the literature. Although their 
structure is more suited to continuous time models, the 
response of the system is highly dependent on a 
designer-defined control vector. Because no relationship 
between the control vector and performance is available, 
good performance is highly dependent on the choice of 
control vector. SVSC with variable saturation, which is 
recently developed with S class functions [14], has strict 
conditions to satisfy the input restriction that may 
prevent efficient utilization of the control signal. In this 
article, a novel method is proposed to improve SVSC and 
resolve the aforementioned obstacles.
The remainder of this paper is organized as follows. 
After this introduction in the second section, the problem 
of restricted control signal systems is described. In the 
third section, a feedback approach algorithm is proposed. 
The desired poles path approach is described in Section 
4. Simulation results are given in Section 5 and 
conclusions in Section 6.

2. Problem Description
Consider a single input, single output (SISO) controllable 
linear system in the state space with differential equation
�̇�𝐱𝐱𝐱 = 𝐴𝐴𝐴𝐴𝐱𝐱𝐱𝐱 + 𝐛𝐛𝐛𝐛𝑢𝑢𝑢𝑢,                                                            (1)
where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛 ,𝑢𝑢𝑢𝑢 ∈ ℛ . The control input signal is 
restricted as
|𝑢𝑢𝑢𝑢| ≤ 𝑢𝑢𝑢𝑢0 .                                                                      (2)
Without loss of generality we assume that (1) is in 
standard controllable form or can be transformed into it.  
Thus, the state matrix 𝐴𝐴𝐴𝐴 and the input matrix 𝐛𝐛𝐛𝐛 are in the 
form

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

0
0
⋮
0
−𝑎𝑎𝑎𝑎0

1
0
⋮
0
−𝑎𝑎𝑎𝑎1

0
1
⋮
0
−𝑎𝑎𝑎𝑎2

⋯
…
⋱⋯
⋯

0
0
⋮
1

−𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1⎦
⎥
⎥
⎥
⎤

,𝐛𝐛𝐛𝐛 =

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
1⎦
⎥
⎥
⎥
⎤

.

(3)

We require a continuous, fast and stable controller that 
satisfies the control signal constraint (2), with feasible 
initial state 𝐱𝐱𝐱𝐱0 ∈ 𝑋𝑋𝑋𝑋0 ⊂ ℛ𝑛𝑛𝑛𝑛. Clearly, the requirement of a 
continuous control signal excludes bang-bang control in 
this problem.

3. State Feedback Control 
Approach

One can choose a state feedback control strategy 
and endeavor to place the system poles where both 
stability and the input constraint are met while 
minimizing settling time. Let us recall some 
preliminaries.
Theorem 1. Lyapunov Stability [11]
Consider a system with the differential equation, 
�̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱), where𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) is a continuous function with 
equilibrium point 𝐱𝐱𝐱𝐱 = 0. If there exists a function 
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) with continuous partial derivatives such that:
𝑉𝑉𝑉𝑉(0) = 0
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) > 0, 𝐱𝐱𝐱𝐱 ≠ 0

�̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 0, 𝐱𝐱𝐱𝐱 ≠ 0,
then the equilibrium point, 𝐱𝐱𝐱𝐱 = 0 , will be 
asymptotically stable and 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) will be called a 
Lyapunov function. In linear systems as (1), the 
stability theorem is equivalent to finding a positive 
definite symmetric solution 𝑃𝑃𝑃𝑃 to the Lyapunov 
equation
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 = −𝑄𝑄𝑄𝑄                                                (4)
for an arbitrary positive definite matrix, 𝑄𝑄𝑄𝑄 . The 
Lyapunov equation is derived using the quadratic 
Lyapunov function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱.
Definition 1. Lyapunov Region [1]
If there exists a function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) that satisfies the 
conditions of Theorem 1 for a system �̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(x) and 
𝐺𝐺𝐺𝐺 = {𝐱𝐱𝐱𝐱|𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 𝑐𝑐𝑐𝑐} is bounded, then due to 
negativity of �̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) , 𝐺𝐺𝐺𝐺 is an invariant set and is 
known as a Lyapunov region.
Clearly, placing the closed-loop poles in locations 
with smaller real values speeds up the response. In 
this section, we introduce a feedback gain vector 
function, 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣), that places the closed-loop poles 
on the pole ray depicted in Figure 1 as a function of 
𝑣𝑣𝑣𝑣. We define 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣) such that

𝑣𝑣𝑣𝑣1 < 𝑣𝑣𝑣𝑣2 ⟹
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣1)�� < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣2)�� ,

where 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣) = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�.
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(3)

We require a continuous, fast and stable controller 
that satisfies the control signal constraint (2), with 
feasible initial state x0 ∈ X0 ⊂ ℛn. Clearly, the require-
ment of a continuous control signal excludes bang-
bang control in this problem.

3. State Feedback Control Approach
One can choose a state feedback control strategy and 
endeavor to place the system poles where both stabil-
ity and the input constraint are met while minimizing 
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settling time. Let us recall some preliminaries.
Theorem 1. Lyapunov Stability [11]
Consider a system with the differential equation, x. = 
f(x), where f(x) is a continuous function with equilib-
rium point x = 0. If there exists a function V(x) with 
continuous partial derivatives such that:

be utilized instead of bang-bang control when both a 
short settling time and continuous control signal are 
desired. The main methods that have been proposed to 
date in the literature for SVSC, which improve 
regulation rate, are divided into three main categories:
1- Soft variable structure control employing an 

implicit Lyapunov function [1]
2- Dynamical soft variable structure control [1, 10, 15-

16, 23]
3- Soft variable structure control with variable 

saturation [1, 14]
Huge calculation is an obstacle in online implementation 
of SVSC employing an implicit Lyapunov function. This 
control method is also too conservative and rarely allows 
the capacity of the control signal to be fully exploited to 
decrease settling time. Dynamical SVSC methods have 
become more popular recently and their applications in 
singular [15-16, 23] and fractional order systems [10]
have been reported in the literature. Although their 
structure is more suited to continuous time models, the 
response of the system is highly dependent on a 
designer-defined control vector. Because no relationship 
between the control vector and performance is available, 
good performance is highly dependent on the choice of 
control vector. SVSC with variable saturation, which is 
recently developed with S class functions [14], has strict 
conditions to satisfy the input restriction that may 
prevent efficient utilization of the control signal. In this 
article, a novel method is proposed to improve SVSC and 
resolve the aforementioned obstacles.
The remainder of this paper is organized as follows. 
After this introduction in the second section, the problem 
of restricted control signal systems is described. In the 
third section, a feedback approach algorithm is proposed. 
The desired poles path approach is described in Section 
4. Simulation results are given in Section 5 and 
conclusions in Section 6.

2. Problem Description
Consider a single input, single output (SISO) controllable 
linear system in the state space with differential equation
�̇�𝐱𝐱𝐱 = 𝐴𝐴𝐴𝐴𝐱𝐱𝐱𝐱 + 𝐛𝐛𝐛𝐛𝑢𝑢𝑢𝑢,                                                            (1)
where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛 ,𝑢𝑢𝑢𝑢 ∈ ℛ . The control input signal is 
restricted as
|𝑢𝑢𝑢𝑢| ≤ 𝑢𝑢𝑢𝑢0 .                                                                      (2)
Without loss of generality we assume that (1) is in 
standard controllable form or can be transformed into it.  
Thus, the state matrix 𝐴𝐴𝐴𝐴 and the input matrix 𝐛𝐛𝐛𝐛 are in the 
form

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

0
0
⋮
0
−𝑎𝑎𝑎𝑎0

1
0
⋮
0
−𝑎𝑎𝑎𝑎1

0
1
⋮
0
−𝑎𝑎𝑎𝑎2

⋯
…
⋱⋯
⋯

0
0
⋮
1

−𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1⎦
⎥
⎥
⎥
⎤

,𝐛𝐛𝐛𝐛 =

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
1⎦
⎥
⎥
⎥
⎤

.

(3)

We require a continuous, fast and stable controller that 
satisfies the control signal constraint (2), with feasible 
initial state 𝐱𝐱𝐱𝐱0 ∈ 𝑋𝑋𝑋𝑋0 ⊂ ℛ𝑛𝑛𝑛𝑛. Clearly, the requirement of a 
continuous control signal excludes bang-bang control in 
this problem.

3. State Feedback Control 
Approach

One can choose a state feedback control strategy 
and endeavor to place the system poles where both 
stability and the input constraint are met while 
minimizing settling time. Let us recall some 
preliminaries.
Theorem 1. Lyapunov Stability [11]
Consider a system with the differential equation, 
�̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱), where𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) is a continuous function with 
equilibrium point 𝐱𝐱𝐱𝐱 = 0. If there exists a function 
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) with continuous partial derivatives such that:
𝑉𝑉𝑉𝑉(0) = 0
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) > 0, 𝐱𝐱𝐱𝐱 ≠ 0

�̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 0, 𝐱𝐱𝐱𝐱 ≠ 0,
then the equilibrium point, 𝐱𝐱𝐱𝐱 = 0 , will be 
asymptotically stable and 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) will be called a 
Lyapunov function. In linear systems as (1), the 
stability theorem is equivalent to finding a positive 
definite symmetric solution 𝑃𝑃𝑃𝑃 to the Lyapunov 
equation
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 = −𝑄𝑄𝑄𝑄                                                (4)
for an arbitrary positive definite matrix, 𝑄𝑄𝑄𝑄 . The 
Lyapunov equation is derived using the quadratic 
Lyapunov function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱.
Definition 1. Lyapunov Region [1]
If there exists a function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) that satisfies the 
conditions of Theorem 1 for a system �̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(x) and 
𝐺𝐺𝐺𝐺 = {𝐱𝐱𝐱𝐱|𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 𝑐𝑐𝑐𝑐} is bounded, then due to 
negativity of �̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) , 𝐺𝐺𝐺𝐺 is an invariant set and is 
known as a Lyapunov region.
Clearly, placing the closed-loop poles in locations 
with smaller real values speeds up the response. In 
this section, we introduce a feedback gain vector 
function, 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣), that places the closed-loop poles 
on the pole ray depicted in Figure 1 as a function of 
𝑣𝑣𝑣𝑣. We define 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣) such that

𝑣𝑣𝑣𝑣1 < 𝑣𝑣𝑣𝑣2 ⟹
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣1)�� < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣2)�� ,

where 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣) = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�.

Figure 1 
Pole paths

then the equilibrium point, x = 0, will be asymptoti-
cally stable and V(x) will be called a Lyapunov func-
tion. In linear systems as (1), the stability theorem is 
equivalent to finding a positive definite symmetric 
solution P to the Lyapunov equation

be utilized instead of bang-bang control when both a 
short settling time and continuous control signal are 
desired. The main methods that have been proposed to 
date in the literature for SVSC, which improve 
regulation rate, are divided into three main categories:
1- Soft variable structure control employing an 

implicit Lyapunov function [1]
2- Dynamical soft variable structure control [1, 10, 15-

16, 23]
3- Soft variable structure control with variable 

saturation [1, 14]
Huge calculation is an obstacle in online implementation 
of SVSC employing an implicit Lyapunov function. This 
control method is also too conservative and rarely allows 
the capacity of the control signal to be fully exploited to 
decrease settling time. Dynamical SVSC methods have 
become more popular recently and their applications in 
singular [15-16, 23] and fractional order systems [10]
have been reported in the literature. Although their 
structure is more suited to continuous time models, the 
response of the system is highly dependent on a 
designer-defined control vector. Because no relationship 
between the control vector and performance is available, 
good performance is highly dependent on the choice of 
control vector. SVSC with variable saturation, which is 
recently developed with S class functions [14], has strict 
conditions to satisfy the input restriction that may 
prevent efficient utilization of the control signal. In this 
article, a novel method is proposed to improve SVSC and 
resolve the aforementioned obstacles.
The remainder of this paper is organized as follows. 
After this introduction in the second section, the problem 
of restricted control signal systems is described. In the 
third section, a feedback approach algorithm is proposed. 
The desired poles path approach is described in Section 
4. Simulation results are given in Section 5 and 
conclusions in Section 6.

2. Problem Description
Consider a single input, single output (SISO) controllable 
linear system in the state space with differential equation
�̇�𝐱𝐱𝐱 = 𝐴𝐴𝐴𝐴𝐱𝐱𝐱𝐱 + 𝐛𝐛𝐛𝐛𝑢𝑢𝑢𝑢,                                                            (1)
where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛 ,𝑢𝑢𝑢𝑢 ∈ ℛ . The control input signal is 
restricted as
|𝑢𝑢𝑢𝑢| ≤ 𝑢𝑢𝑢𝑢0 .                                                                      (2)
Without loss of generality we assume that (1) is in 
standard controllable form or can be transformed into it.  
Thus, the state matrix 𝐴𝐴𝐴𝐴 and the input matrix 𝐛𝐛𝐛𝐛 are in the 
form

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

0
0
⋮
0
−𝑎𝑎𝑎𝑎0

1
0
⋮
0
−𝑎𝑎𝑎𝑎1

0
1
⋮
0
−𝑎𝑎𝑎𝑎2

⋯
…
⋱⋯
⋯

0
0
⋮
1

−𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1⎦
⎥
⎥
⎥
⎤

,𝐛𝐛𝐛𝐛 =

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
1⎦
⎥
⎥
⎥
⎤

.

(3)

We require a continuous, fast and stable controller that 
satisfies the control signal constraint (2), with feasible 
initial state 𝐱𝐱𝐱𝐱0 ∈ 𝑋𝑋𝑋𝑋0 ⊂ ℛ𝑛𝑛𝑛𝑛. Clearly, the requirement of a 
continuous control signal excludes bang-bang control in 
this problem.

3. State Feedback Control 
Approach

One can choose a state feedback control strategy 
and endeavor to place the system poles where both 
stability and the input constraint are met while 
minimizing settling time. Let us recall some 
preliminaries.
Theorem 1. Lyapunov Stability [11]
Consider a system with the differential equation, 
�̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱), where𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) is a continuous function with 
equilibrium point 𝐱𝐱𝐱𝐱 = 0. If there exists a function 
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) with continuous partial derivatives such that:
𝑉𝑉𝑉𝑉(0) = 0
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) > 0, 𝐱𝐱𝐱𝐱 ≠ 0

�̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 0, 𝐱𝐱𝐱𝐱 ≠ 0,
then the equilibrium point, 𝐱𝐱𝐱𝐱 = 0 , will be 
asymptotically stable and 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) will be called a 
Lyapunov function. In linear systems as (1), the 
stability theorem is equivalent to finding a positive 
definite symmetric solution 𝑃𝑃𝑃𝑃 to the Lyapunov 
equation
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 = −𝑄𝑄𝑄𝑄                                                (4)
for an arbitrary positive definite matrix, 𝑄𝑄𝑄𝑄 . The 
Lyapunov equation is derived using the quadratic 
Lyapunov function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱.
Definition 1. Lyapunov Region [1]
If there exists a function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) that satisfies the 
conditions of Theorem 1 for a system �̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(x) and 
𝐺𝐺𝐺𝐺 = {𝐱𝐱𝐱𝐱|𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 𝑐𝑐𝑐𝑐} is bounded, then due to 
negativity of �̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) , 𝐺𝐺𝐺𝐺 is an invariant set and is 
known as a Lyapunov region.
Clearly, placing the closed-loop poles in locations 
with smaller real values speeds up the response. In 
this section, we introduce a feedback gain vector 
function, 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣), that places the closed-loop poles 
on the pole ray depicted in Figure 1 as a function of 
𝑣𝑣𝑣𝑣. We define 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣) such that

𝑣𝑣𝑣𝑣1 < 𝑣𝑣𝑣𝑣2 ⟹
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣1)�� < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣2)�� ,

where 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣) = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�.

Figure 1 
Pole paths

(4)

for an arbitrary positive definite matrix, Q. The Lya-
punov equation is derived using the quadratic Lya-
punov functionm V(x)= xTPx.
Definition 1. Lyapunov Region [1]
If there exists a function V(x) that satisfies the con-
ditions of Theorem 1 for a system x. = f(x) and G = 
{x|V(x) < c} is bounded, then due to negativity of V

.
(x), 

G is an invariant set and is known as a Lyapunov region.
Clearly, placing the closed-loop poles in locations 
with smaller real values speeds up the response. In 
this section, we introduce a feedback gain vector 
function, kT(v), that places the closed-loop poles on 
the pole ray depicted in Figure 1 as a function of v. We 
define kT(v) such that

be utilized instead of bang-bang control when both a 
short settling time and continuous control signal are 
desired. The main methods that have been proposed to 
date in the literature for SVSC, which improve 
regulation rate, are divided into three main categories:
1- Soft variable structure control employing an 

implicit Lyapunov function [1]
2- Dynamical soft variable structure control [1, 10, 15-

16, 23]
3- Soft variable structure control with variable 

saturation [1, 14]
Huge calculation is an obstacle in online implementation 
of SVSC employing an implicit Lyapunov function. This 
control method is also too conservative and rarely allows 
the capacity of the control signal to be fully exploited to 
decrease settling time. Dynamical SVSC methods have 
become more popular recently and their applications in 
singular [15-16, 23] and fractional order systems [10]
have been reported in the literature. Although their 
structure is more suited to continuous time models, the 
response of the system is highly dependent on a 
designer-defined control vector. Because no relationship 
between the control vector and performance is available, 
good performance is highly dependent on the choice of 
control vector. SVSC with variable saturation, which is 
recently developed with S class functions [14], has strict 
conditions to satisfy the input restriction that may 
prevent efficient utilization of the control signal. In this 
article, a novel method is proposed to improve SVSC and 
resolve the aforementioned obstacles.
The remainder of this paper is organized as follows. 
After this introduction in the second section, the problem 
of restricted control signal systems is described. In the 
third section, a feedback approach algorithm is proposed. 
The desired poles path approach is described in Section 
4. Simulation results are given in Section 5 and 
conclusions in Section 6.

2. Problem Description
Consider a single input, single output (SISO) controllable 
linear system in the state space with differential equation
�̇�𝐱𝐱𝐱 = 𝐴𝐴𝐴𝐴𝐱𝐱𝐱𝐱 + 𝐛𝐛𝐛𝐛𝑢𝑢𝑢𝑢,                                                            (1)
where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛 ,𝑢𝑢𝑢𝑢 ∈ ℛ . The control input signal is 
restricted as
|𝑢𝑢𝑢𝑢| ≤ 𝑢𝑢𝑢𝑢0 .                                                                      (2)
Without loss of generality we assume that (1) is in 
standard controllable form or can be transformed into it.  
Thus, the state matrix 𝐴𝐴𝐴𝐴 and the input matrix 𝐛𝐛𝐛𝐛 are in the 
form

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

0
0
⋮
0
−𝑎𝑎𝑎𝑎0

1
0
⋮
0
−𝑎𝑎𝑎𝑎1

0
1
⋮
0
−𝑎𝑎𝑎𝑎2

⋯
…
⋱⋯
⋯

0
0
⋮
1

−𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1⎦
⎥
⎥
⎥
⎤

,𝐛𝐛𝐛𝐛 =

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
1⎦
⎥
⎥
⎥
⎤

.

(3)

We require a continuous, fast and stable controller that 
satisfies the control signal constraint (2), with feasible 
initial state 𝐱𝐱𝐱𝐱0 ∈ 𝑋𝑋𝑋𝑋0 ⊂ ℛ𝑛𝑛𝑛𝑛. Clearly, the requirement of a 
continuous control signal excludes bang-bang control in 
this problem.

3. State Feedback Control 
Approach

One can choose a state feedback control strategy 
and endeavor to place the system poles where both 
stability and the input constraint are met while 
minimizing settling time. Let us recall some 
preliminaries.
Theorem 1. Lyapunov Stability [11]
Consider a system with the differential equation, 
�̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱), where𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) is a continuous function with 
equilibrium point 𝐱𝐱𝐱𝐱 = 0. If there exists a function 
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) with continuous partial derivatives such that:
𝑉𝑉𝑉𝑉(0) = 0
𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) > 0, 𝐱𝐱𝐱𝐱 ≠ 0

�̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 0, 𝐱𝐱𝐱𝐱 ≠ 0,
then the equilibrium point, 𝐱𝐱𝐱𝐱 = 0 , will be 
asymptotically stable and 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) will be called a 
Lyapunov function. In linear systems as (1), the 
stability theorem is equivalent to finding a positive 
definite symmetric solution 𝑃𝑃𝑃𝑃 to the Lyapunov 
equation
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 = −𝑄𝑄𝑄𝑄                                                (4)
for an arbitrary positive definite matrix, 𝑄𝑄𝑄𝑄 . The 
Lyapunov equation is derived using the quadratic 
Lyapunov function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱.
Definition 1. Lyapunov Region [1]
If there exists a function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) that satisfies the 
conditions of Theorem 1 for a system �̇�𝐱𝐱𝐱 = 𝑓𝑓𝑓𝑓(x) and 
𝐺𝐺𝐺𝐺 = {𝐱𝐱𝐱𝐱|𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 𝑐𝑐𝑐𝑐} is bounded, then due to 
negativity of �̇�𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) , 𝐺𝐺𝐺𝐺 is an invariant set and is 
known as a Lyapunov region.
Clearly, placing the closed-loop poles in locations 
with smaller real values speeds up the response. In 
this section, we introduce a feedback gain vector 
function, 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣), that places the closed-loop poles 
on the pole ray depicted in Figure 1 as a function of 
𝑣𝑣𝑣𝑣. We define 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣) such that

𝑣𝑣𝑣𝑣1 < 𝑣𝑣𝑣𝑣2 ⟹
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣1)�� < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣2)�� ,

where 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣) = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�.
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where Ac(v) = (A– bkT(v)).
The following procedure determines the optimum 
feedback gain that provides a fixed structure, fast 
and stable control, and satisfies the input signal con-
straint (2).
Procedure 1: Initialize with a flag value flag=0.
Step 1: Select an appropriate pole ray considering the 
desired or allowed overshoot as depicted in Figure 1. 
Step 2: Select a suitable set of poles on the pole paths 
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and consider v = 1 for this set.
Step 3: Select suitable positive variation steps, s1 and 
s2 with s2 ≪ s1 < 1. For example, s1 = 0.2 and s2 = 0.02  
would be appropriate.
Step 4: Find the feedback gain kT(v) that leads to a 
closed loop system with the selected poles. If the state 
equation of the desired closed loop system is

The following procedure determines the optimum
feedback gain that provides a fixed structure, fast and 
stable control, and satisfies the input signal constraint (2).
Procedure 1: Initialize with a flag value flag=0.
Step 1: Select an appropriate pole ray considering the 
desired or allowed overshoot as depicted in Figure 1. 
Step 2: Select a suitable set of poles on the pole paths and 
consider 𝑣𝑣𝑣𝑣 = 1 for this set.
Step 3: Select suitable positive variation steps, 𝑠𝑠𝑠𝑠1 and 
𝑠𝑠𝑠𝑠2 with 𝑠𝑠𝑠𝑠2 ≪ 𝑠𝑠𝑠𝑠1 < 1 . For example, 𝑠𝑠𝑠𝑠1 = 0.2 and 𝑠𝑠𝑠𝑠2 =
0.02 would be appropriate.
Step 4: Find the feedback gain 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣) that leads to a 
closed loop system with the selected poles. If the state 
equation of the desired closed loop system is

�̇�𝐱𝐱𝐱 = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�𝐱𝐱𝐱𝐱 = 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱 ,                                    (5)

then the control vector 𝐤𝐤𝐤𝐤(𝑣𝑣𝑣𝑣) will be evaluated as follows:

𝐤𝐤𝐤𝐤(𝑣𝑣𝑣𝑣) = �

𝑎𝑎𝑎𝑎�0𝜐𝜐𝜐𝜐−𝑛𝑛𝑛𝑛 − 𝑎𝑎𝑎𝑎0
𝑎𝑎𝑎𝑎�1𝜐𝜐𝜐𝜐−(𝑛𝑛𝑛𝑛−1) − 𝑎𝑎𝑎𝑎1

⋮
𝑎𝑎𝑎𝑎�𝑛𝑛𝑛𝑛−1𝜐𝜐𝜐𝜐−1 − 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1

� ,                 (6)                        

(6)
where 𝑎𝑎𝑎𝑎�𝑗𝑗𝑗𝑗 , 𝑗𝑗𝑗𝑗 = 0,1, … ,𝑛𝑛𝑛𝑛 − 1, are the coefficients of the 
characteristic polynomial of 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣 = 1).
Step 5: Solve the Lyapunov equation (4) of the closed 
loop system for the positive definite matrix, 𝑃𝑃𝑃𝑃, to obtain 
the Lyapunov function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱.
Step 6: Using the Lyapunov function, find a Lyapunov 
region 𝐺𝐺𝐺𝐺 = {𝐱𝐱𝐱𝐱|𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 𝑐𝑐𝑐𝑐} in which the input constraint is 
satisfied. To fully exploit the control signal, the 
hyperplanes ±𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇𝐱𝐱𝐱𝐱 = 𝑢𝑢𝑢𝑢0must be tangent to the Lyapunov 
region. To determine an appropriate 𝑐𝑐𝑐𝑐 value in the 
Lyapunov region formula, solve the optimization 
problem

max 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱       𝐬𝐬𝐬𝐬. 𝐭𝐭𝐭𝐭.
|𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇𝐱𝐱𝐱𝐱| < 𝑢𝑢𝑢𝑢0.                                                          (7)

The solution of (7) is 𝑐𝑐𝑐𝑐 = 𝑢𝑢𝑢𝑢02/𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃−1𝐤𝐤𝐤𝐤.
Step 7: If 𝑋𝑋𝑋𝑋0 ⊄ 𝐺𝐺𝐺𝐺, change 𝜐𝜐𝜐𝜐 to 𝜐𝜐𝜐𝜐 = 𝜐𝜐𝜐𝜐 + 𝑠𝑠𝑠𝑠2, set flag = 1, 
and go to Step 4.
Step 8: If 𝑋𝑋𝑋𝑋0 ⊂ 𝐺𝐺𝐺𝐺 and flag = 0, change the parameter 𝜐𝜐𝜐𝜐

to 𝜐𝜐𝜐𝜐 = 𝜐𝜐𝜐𝜐 − 𝑠𝑠𝑠𝑠1 and go to Step 4. If 𝑋𝑋𝑋𝑋0 ⊂ 𝐺𝐺𝐺𝐺 and flag 
= 1, stop.

The flowchart of Procedure 1 is depicted in Figure 2.
Remark 1: Procedure 1 determines the smallest 𝑣𝑣𝑣𝑣
that yields a Lyapunov region that contains 𝑋𝑋𝑋𝑋0. The 
algorithm is initialized with a 𝑣𝑣𝑣𝑣 value that 
corresponds to a Lyapunov region that does not 
contain 𝑋𝑋𝑋𝑋0. It then progressively adds the variation 
step, 𝑠𝑠𝑠𝑠2 , and checks 𝑋𝑋𝑋𝑋0 ⊂ 𝐺𝐺𝐺𝐺 until it reaches an 
optimum 𝑣𝑣𝑣𝑣 value. The flag prameter is defined to 
make the initialized value of 𝑣𝑣𝑣𝑣 small enough for 
𝑋𝑋𝑋𝑋0 ⊄ 𝐺𝐺𝐺𝐺.
Remark 2: If the feasible initial condition set 𝑋𝑋𝑋𝑋0 is a 
subset of G, then this state feedback control vector 
will satisfy the input constraint. Since G is an 
invariant set and 𝑋𝑋𝑋𝑋0 ⊂ G, the state trajectory cannot 
leave the Lyapunov region of Step 4 and the input 
signal always satisfies (2). Figure 3, illustrates this 
situation. Procedure 1 tries to find the smallest ν that 
leads to a Lyapunov region G, where 𝑋𝑋𝑋𝑋0 ⊂ G.

Figure 2
Flowchart of Procedure 1

(5)

then the control vector k(v) will be evaluated as fol-
lows:

 
 

 

 
The following procedure determines the optimum 
feedback gain that provides a fixed structure, fast and 
stable control, and satisfies the input signal constraint (2). 
Procedure 1: Initialize with a flag value flag=0. 
Step 1: Select an appropriate pole ray considering the 
desired or allowed overshoot as depicted in Figure 1.  
Step 2: Select a suitable set of poles on the pole paths and 
consider 𝑣𝑣𝑣𝑣 = 1 for this set. 
Step 3: Select suitable positive variation steps, 𝑠𝑠𝑠𝑠1  and 
𝑠𝑠𝑠𝑠2 with 𝑠𝑠𝑠𝑠2 ≪ 𝑠𝑠𝑠𝑠1 < 1 . For example, 𝑠𝑠𝑠𝑠1 = 0.2  and 𝑠𝑠𝑠𝑠2 =
0.02 would be appropriate. 
Step 4: Find the feedback gain 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)  that leads to a 
closed loop system with the selected poles. If the state 
equation of the desired closed loop system is 

�̇�𝐱𝐱𝐱 = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�𝐱𝐱𝐱𝐱 = 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱 ,                                    (5) 

then the control vector 𝐤𝐤𝐤𝐤(𝑣𝑣𝑣𝑣) will be evaluated as follows: 
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where 𝑎𝑎𝑎𝑎�𝑗𝑗𝑗𝑗 , 𝑗𝑗𝑗𝑗 = 0,1, … ,𝑛𝑛𝑛𝑛 − 1, are the coefficients of the 
characteristic polynomial of 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣 = 1). 
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Remark 1: Procedure 1 determines the smallest 𝑣𝑣𝑣𝑣 
that yields a Lyapunov region that contains 𝑋𝑋𝑋𝑋0. The 
algorithm is initialized with a 𝑣𝑣𝑣𝑣  value that 
corresponds to a Lyapunov region that does not 
contain 𝑋𝑋𝑋𝑋0. It then progressively adds the variation 
step, 𝑠𝑠𝑠𝑠2 , and checks 𝑋𝑋𝑋𝑋0 ⊂ 𝐺𝐺𝐺𝐺  until it reaches an 
optimum 𝑣𝑣𝑣𝑣  value. The flag prameter is defined to 
make the initialized value of 𝑣𝑣𝑣𝑣  small enough for 
𝑋𝑋𝑋𝑋0 ⊄ 𝐺𝐺𝐺𝐺. 
Remark 2: If the feasible initial condition set 𝑋𝑋𝑋𝑋0 is a 
subset of G, then this state feedback control vector 
will satisfy the input constraint. Since G  is an 
invariant set and 𝑋𝑋𝑋𝑋0 ⊂ G, the state trajectory cannot 
leave the Lyapunov region of Step 4 and the input 
signal always satisfies (2). Figure 3, illustrates this 
situation. Procedure 1 tries to find the smallest ν that 
leads to a Lyapunov region G, where 𝑋𝑋𝑋𝑋0 ⊂ G. 

Figure 2 
Flowchart of Procedure 1 

 

(6)

where âj, j = 0,1, ..., n – 1, are the coefficients of the char-
acteristic polynomial of Ac(v = 1).
Step 5: Solve the Lyapunov equation (4) of the closed 
loop system for the positive definite matrix, P, to ob-
tain the Lyapunov function V(x) = xTPx.
Step 6: Using the Lyapunov function, find a Lyapunov 
region G = {x|V(x) < c} in which the input constraint 
is satisfied. To fully exploit the control signal, the hy-
perplanes ±kTx = u0 must be tangent to the Lyapunov 
region. To determine an appropriate c value in the 
Lyapunov region formula, solve the optimization 
problem

 
The following procedure determines the optimum feedback gain that provides a fixed structure, fast and 
stable control, and satisfies the input signal constraint (2). 
Procedure 1: Initialize with a flag value flag=0. 
Step 1: Select an appropriate pole ray considering the desired or allowed overshoot as depicted in Figure 
1.  
Step 2: Select a suitable set of poles on the pole paths and consider 𝑣𝑣 𝑣 𝑣 for this set. 
Step 3: Select suitable positive variation steps, 𝑠𝑠� and 𝑠𝑠�with 𝑠𝑠� ≪ 𝑠𝑠� < 𝑣. For example, 𝑠𝑠� 𝑣 0.2 and 
𝑠𝑠� 𝑣 0.02 would be appropriate. 
Step 4: Find the feedback gain 𝐤𝐤�(𝑣𝑣) that leads to a closed loop system with the selected poles. If the 
state equation of the desired closed loop system is 

𝐱𝐱� 𝑣 �𝐴𝐴 − �𝐤𝐤�(𝑣𝑣)�𝐱𝐱 𝑣 𝐴𝐴�(𝑣𝑣)𝐱𝐱 ,                                    (5) 

then the control vector 𝐤𝐤(𝑣𝑣) will be evaluated as follows: 

𝐤𝐤(𝑣𝑣) 𝑣 �
𝑎𝑎��𝜐𝜐�� − 𝑎𝑎�

𝑎𝑎��𝜐𝜐�(���) − 𝑎𝑎�
⋮

𝑎𝑎����𝜐𝜐�� − 𝑎𝑎���
� ,                   (6) 

where 𝑎𝑎��, 𝑗𝑗 𝑣 0𝑗𝑣𝑗 𝑗 𝑗 𝑗𝑗 − 𝑣, are the coefficients of the characteristic polynomial of 𝐴𝐴�(𝑣𝑣 𝑣 𝑣). 
Step 5: Solve the Lyapunov equation (4) of the closed loop system for the positive definite matrix, 𝑃𝑃, to 
obtain the Lyapunov function 𝑉𝑉(𝐱𝐱) 𝑣 𝐱𝐱�𝑃𝑃𝐱𝐱. 
Step 6: Using the Lyapunov function, find a Lyapunov region 𝐺𝐺 𝑣 �𝐱𝐱𝐱𝑉𝑉(𝐱𝐱) < 𝑐𝑐� in which the input 
constraint is satisfied. To fully exploit the control signal, the hyperplanes ±𝐤𝐤�𝐱𝐱 𝑣 𝐱𝐱�must be tangent to 
the Lyapunov region. To determine an appropriate 𝑐𝑐 value in the Lyapunov region formula, solve the 
optimization problem 

max𝐱𝐱�𝑃𝑃𝐱𝐱𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑃𝑃.
𝐱𝐤𝐤�𝐱𝐱𝐱 < 𝐱𝐱�.                                                          (7) 

The solution of (7) is 𝑐𝑐 𝑣 𝐱𝐱��/𝐤𝐤�𝑃𝑃��𝐤𝐤. 
Step 7: If 𝑋𝑋� ⊄ 𝐺𝐺, change 𝜐𝜐 to 𝜐𝜐 𝑣 𝜐𝜐 𝜐 𝑠𝑠�, set flag = 1, and go to Step 4. 
Step 8: If 𝑋𝑋� ⊂ 𝐺𝐺 and flag = 0, change the parameter 𝜐𝜐 to 𝜐𝜐 𝑣 𝜐𝜐 − 𝑠𝑠� and go to Step 4. If 𝑋𝑋� ⊂ 𝐺𝐺 and flag 
= 1, stop. 

 The flowchart of Procedure 1 is depicted in Figure 2. 
Remark 1: Procedure 1 determines the smallest 𝑣𝑣 that yields a Lyapunov region that contains 𝑋𝑋�. The 
algorithm is initialized with a 𝑣𝑣 value that corresponds to a Lyapunov region that does not contain 𝑋𝑋�. It 
then progressively adds the variation step, 𝑠𝑠�, and checks 𝑋𝑋� ⊂ 𝐺𝐺 until it reaches an optimum 𝑣𝑣 value. The 
flag prameter is defined to make the initialized value of 𝑣𝑣 small enough for 𝑋𝑋� ⊄ 𝐺𝐺. 
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The following procedure determines the optimum 
feedback gain that provides a fixed structure, fast and 
stable control, and satisfies the input signal constraint (2). 
Procedure 1: Initialize with a flag value flag=0. 
Step 1: Select an appropriate pole ray considering the 
desired or allowed overshoot as depicted in Figure 1.  
Step 2: Select a suitable set of poles on the pole paths and 
consider 𝑣𝑣𝑣𝑣 = 1 for this set. 
Step 3: Select suitable positive variation steps, 𝑠𝑠𝑠𝑠1  and 
𝑠𝑠𝑠𝑠2 with 𝑠𝑠𝑠𝑠2 ≪ 𝑠𝑠𝑠𝑠1 < 1 . For example, 𝑠𝑠𝑠𝑠1 = 0.2  and 𝑠𝑠𝑠𝑠2 =
0.02 would be appropriate. 
Step 4: Find the feedback gain 𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)  that leads to a 
closed loop system with the selected poles. If the state 
equation of the desired closed loop system is 

�̇�𝐱𝐱𝐱 = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�𝐱𝐱𝐱𝐱 = 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱 ,                                    (5) 

then the control vector 𝐤𝐤𝐤𝐤(𝑣𝑣𝑣𝑣) will be evaluated as follows: 

𝐤𝐤𝐤𝐤(𝑣𝑣𝑣𝑣) = �

𝑎𝑎𝑎𝑎�0𝜐𝜐𝜐𝜐−𝑛𝑛𝑛𝑛 − 𝑎𝑎𝑎𝑎0
𝑎𝑎𝑎𝑎�1𝜐𝜐𝜐𝜐−(𝑛𝑛𝑛𝑛−1) − 𝑎𝑎𝑎𝑎1

⋮
𝑎𝑎𝑎𝑎�𝑛𝑛𝑛𝑛−1𝜐𝜐𝜐𝜐−1 − 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1

� ,                   (6)                        

where 𝑎𝑎𝑎𝑎�𝑗𝑗𝑗𝑗 , 𝑗𝑗𝑗𝑗 = 0,1, … ,𝑛𝑛𝑛𝑛 − 1, are the coefficients of the 
characteristic polynomial of 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣 = 1). 
Step 5: Solve the Lyapunov equation (4) of the closed 
loop system for the positive definite matrix, 𝑃𝑃𝑃𝑃, to obtain 
the Lyapunov function 𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱. 
Step 6: Using the Lyapunov function, find a Lyapunov 
region 𝐺𝐺𝐺𝐺 = {𝐱𝐱𝐱𝐱|𝑉𝑉𝑉𝑉(𝐱𝐱𝐱𝐱) < 𝑐𝑐𝑐𝑐} in which the input constraint is 
satisfied. To fully exploit the control signal, the 
hyperplanes ±𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇𝐱𝐱𝐱𝐱 = 𝑢𝑢𝑢𝑢0must be tangent to the Lyapunov 
region. To determine an appropriate 𝑐𝑐𝑐𝑐  value in the 
Lyapunov region formula, solve the optimization 
problem 

max 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝐱𝐱𝐱𝐱       𝐬𝐬𝐬𝐬. 𝐭𝐭𝐭𝐭.
|𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇𝐱𝐱𝐱𝐱| < 𝑢𝑢𝑢𝑢0.                                                          (7) 

The solution of (7) is 𝑐𝑐𝑐𝑐 = 𝑢𝑢𝑢𝑢02/𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃−1𝐤𝐤𝐤𝐤. 
Step 7: If 𝑋𝑋𝑋𝑋0 ⊄ 𝐺𝐺𝐺𝐺, change 𝜐𝜐𝜐𝜐 to 𝜐𝜐𝜐𝜐 = 𝜐𝜐𝜐𝜐 + 𝑠𝑠𝑠𝑠2, set flag = 1, 
and go to Step 4. 
Step 8: If 𝑋𝑋𝑋𝑋0 ⊂ 𝐺𝐺𝐺𝐺 and flag = 0, change the parameter 𝜐𝜐𝜐𝜐 

to 𝜐𝜐𝜐𝜐 = 𝜐𝜐𝜐𝜐 − 𝑠𝑠𝑠𝑠1 and go to Step 4. If 𝑋𝑋𝑋𝑋0 ⊂ 𝐺𝐺𝐺𝐺 and flag 
= 1, stop. 

 The flowchart of Procedure 1 is depicted in Figure 2. 
Remark 1: Procedure 1 determines the smallest 𝑣𝑣𝑣𝑣 
that yields a Lyapunov region that contains 𝑋𝑋𝑋𝑋0. The 
algorithm is initialized with a 𝑣𝑣𝑣𝑣  value that 
corresponds to a Lyapunov region that does not 
contain 𝑋𝑋𝑋𝑋0. It then progressively adds the variation 
step, 𝑠𝑠𝑠𝑠2 , and checks 𝑋𝑋𝑋𝑋0 ⊂ 𝐺𝐺𝐺𝐺  until it reaches an 
optimum 𝑣𝑣𝑣𝑣  value. The flag prameter is defined to 
make the initialized value of 𝑣𝑣𝑣𝑣  small enough for 
𝑋𝑋𝑋𝑋0 ⊄ 𝐺𝐺𝐺𝐺. 
Remark 2: If the feasible initial condition set 𝑋𝑋𝑋𝑋0 is a 
subset of G, then this state feedback control vector 
will satisfy the input constraint. Since G  is an 
invariant set and 𝑋𝑋𝑋𝑋0 ⊂ G, the state trajectory cannot 
leave the Lyapunov region of Step 4 and the input 
signal always satisfies (2). Figure 3, illustrates this 
situation. Procedure 1 tries to find the smallest ν that 
leads to a Lyapunov region G, where 𝑋𝑋𝑋𝑋0 ⊂ G. 

Figure 2 
Flowchart of Procedure 1 

 

(7)

The solution of (7) is c = u2
0 /kTP–1k.

Step 7: If X0 ⊄ G, change v to v = v + s2, set flag = 1, and 
go to Step 4.
Step 8: If  X0 ⊂ G and flag = 0, change the parameter v 
to v = v – s1 and go to Step 4. If X0 ⊂ G and flag = 1, stop.
The flowchart of Procedure 1 is depicted in Figure 2.

Remark 2: If the feasible initial condition set 𝑋𝑋� is a subset of G, then this state feedback control vector will 
satisfy the input constraint. Since G is an invariant set and 𝑋𝑋� ⊂ G, the state trajectory cannot leave the 
Lyapunov region of Step 4 and the input signal always satisfies (2). Figure 3, illustrates this situation. 
Procedure 1 tries to find the smallest ν that leads to a Lyapunov region G, where 𝑋𝑋� ⊂ G. 

Figure 2 
Flowchart of Procedure 1 

 
 

Remark 3: The method discussed in this section is a fixed structure control approach. Once the best pole 
placement, which satisfies the constraints, is found offline, the fixed respective control law will be applied 
to the plant. 

 
Figure 3 
Phase plane diagram of a second order system when 𝑋𝑋� ⊂ 𝐺𝐺 

Figure 2
Flowchart of Procedure 1

Remark 1: Procedure 1 determines the smallest v that 
yields a Lyapunov region that contains X0. The algo-
rithm is initialized with a v value that corresponds to 
a Lyapunov region that does not contain X0. It then 
progressively adds the variation step, s2, and checks 
X0 ⊂ G until it reaches an optimum v value. The flag 
prameter is defined to make the initialized value of v 
small enough for X0 ⊄ G.
Remark 2: If the feasible initial condition set X0 is a 
subset of G, then this state feedback control vector 
will satisfy the input constraint. Since G  is an invari-
ant set and X0 ⊂ G, the state trajectory cannot leave 
the Lyapunov region of Step 4 and the input signal al-
ways satisfies (2). Figure 3, illustrates this situation. 
Procedure 1 tries to find the smallest v that leads to a 
Lyapunov region G, where X0 ⊂ G.

Figure 3
Phase plane diagram of a second order system when X0⊂G

 
 

Remark 3: The method discussed in this section is a 
fixed structure control approach. Once the best pole 
placement, which satisfies the constraints, is found 
offline, the fixed respective control law will be applied 
to the plant.

4. SVSC via Desired Pole Path 
Approach
The method proposed in Section 3, is a good fix struc-
ture solution in designing a rapid controller with con-
tinuous control signal. But during the regulation peri-
od the amplitude of states will decrease, therefore it 
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is possible to implement a faster feedback gain on the 
pole path during regulation period while considering 
input signal constraints. A novel algorithm, which 
is named SVSC via desired pole paths (DPP), is pro-
posed in this section. First, a desired path of closed 
loop poles must be determined with a well-defined 
feedback gain as a function of a parameter v as shown 
in Section 3. If we choose a ray-like path as in Figure 
1, the speed of response of the closed loop system will 
increase by decreasing v. Therefore, to obtain the 
fastest system response, we must minimize v subject 
to the control signal constraints and the online state 
vector. The implementation steps of SVSC via desired 
poles path are as follows:
Procedure 2
Step 1: Run Procedure 1.
Step 2: Set v=1 for the result of Step 1.
Step 3: Get the online state vector, x.
Step 4: Solve the optimization problem

Remark 3: The method discussed in this section is a fixed 
structure control approach. Once the best pole placement,
which satisfies the constraints, is found offline, the fixed 
respective control law will be applied to the plant.

Figure 3
Phase plane diagram of a second order system when 𝑋𝑋𝑋𝑋0 ⊂ 𝐺𝐺𝐺𝐺

4. SVSC via Desired Pole Path 
Approach

The method proposed in Section 3, is a good fix structure 
solution in designing a rapid controller with continuous 
control signal. But during the regulation period the 
amplitude of states will decrease, therefore it is possible to 
implement a faster feedback gain on the pole path during 
regulation period while considering input signal 
constraints. A novel algorithm, which is named SVSC via 
desired pole paths (DPP), is proposed in this section. First, 
a desired path of closed loop poles must be determined 
with a well-defined feedback gain as a function of a 
parameter 𝜐𝜐𝜐𝜐 as shown in Section 3. If we choose a ray-like 
path as in Figure 1, the speed of response of the closed loop 
system will increase by decreasing 𝜐𝜐𝜐𝜐. Therefore, to obtain 
the fastest system response, we must minimize 𝜐𝜐𝜐𝜐 subject to 
the control signal constraints and the online state vector.
The implementation steps of SVSC via desired poles path 
are as follows:
Procedure 2
Step 1: Run Procedure 1.
Step 2: Set 𝜐𝜐𝜐𝜐 = 1 for the result of Step 1.
Step 3: Get the online state vector, 𝐱𝐱𝐱𝐱.
Step 4: Solve the optimization problem

min 𝜐𝜐𝜐𝜐 𝐬𝐬𝐬𝐬. 𝐭𝐭𝐭𝐭.
𝜐𝜐𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 ≤ 𝜐𝜐𝜐𝜐 ≤ 1

|𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱| − 𝑢𝑢𝑢𝑢0 ≤ 0,
                                                               (8)

where 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 > 0.
Step 5: Apply −𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱 to the system.
The best feedback controller in the selected path, which is 
rapid and satisfies the control signal constraints, is 
−𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱 , where 𝑣𝑣𝑣𝑣 is the solution of the optimization 
problem of Step 4. Figures 4 and 5 depict the flowchart and 

scheme of DPP method, respectively.
Remark 4: According to (6) and (8), a polynomial 
programming problem must be solved in Step 4. The 
solution can be obtained by heuristic and Artificial 
Intelligence (AI) methods like Genetic Algorithm 
(GA) [13], Tabu search [18], Bees Algorithm [5] and 
Particle Swarm Optimization (PSO) [8], but the 
recursive nature of these methods is not acceptable in 
online implementation. One can discuss about the 
convexity of this problem and use classical 
optimization methods to solve it. But due to 
simplicity of this problem, finding the feasible space 
of the variable 𝑣𝑣𝑣𝑣 according to constraints is 
suggested. The feasible space of 𝑣𝑣𝑣𝑣 is the intersection 
of the range [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1] and the region bounded by the 
two polynomials of 𝑣𝑣𝑣𝑣 corresponding to the second 
constraint.  The latter can be found using sign 
determination of polynomials. Next, the optimal 
value of the objective function can be easily 
determined in the feasible space.

Figure 4
Flowchart of Procedure 2

Figure 5
Desired pole paths block diagram

(8)

where νmin > 0.
Step 5: Apply –kT(v)x to the system.
The best feedback controller in the selected path, 
which is rapid and satisfies the control signal con-
straints, is –kT(v)x, where v is the solution of the opti-
mization problem of Step 4. Figures 4 and 5 depict the 
flowchart and scheme of DPP method, respectively.
Remark 4: According to (6) and (8), a polynomial 
programming problem must be solved in Step 4. The 
solution can be obtained by heuristic and Artificial 
Intelligence (AI) methods like Genetic Algorithm 
(GA) [13], Tabu search [18], Bees Algorithm [5] and 
Particle Swarm Optimization (PSO) [8], but the re-
cursive nature of these methods is not acceptable in 
online implementation. One can discuss about the 
convexity of this problem and use classical optimiza-
tion methods to solve it. But due to simplicity of this 
problem, finding the feasible space of the variable v 
according to constraints is suggested. The feasible 
space of v is the intersection of the range [vmin, 1] and 
the region bounded by the two polynomials of v corre-
sponding to the second constraint.  The latter can be 

found using sign determination of polynomials. Next, 
the optimal value of the objective function can be eas-
ily determined in the feasible space.

Figure 4
Flowchart of Procedure 2
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Flowchart of Procedure 2 

 
 

 
Figure 5 
Desired pole paths block diagram 

 
 

Remark 5: The appropriate selection of 𝜈𝜈���  in (8) is 
dependent to the stability of the closed loop system and 
will be discussed later in this section.  

 Stability analysis of desired pole path SVSC 
 By implementing this control scheme, the time invariant 
system becomes a continuously switching system. 
Maintaining the stability of the system becomes more 
challenging and must be verified. 
From (3), (5) and (6) we have 
A�(𝑣𝑣) =

⎣
⎢
⎢
⎢
⎡ 0

0
⋮
0

−𝑎𝑎��𝑣𝑣��

1
0
⋮
0

−𝑎𝑎��𝑣𝑣�(���)

0
1
⋮
0

−𝑎𝑎��𝑣𝑣�(���)

…
…⋱
…
…

0
0
⋮
1

−𝑎𝑎����𝑣𝑣��⎦
⎥
⎥
⎥
⎤

.
  

(9) 
 We rewrite (9) as 
A(𝑣𝑣) = A�(1) − RM(𝑣𝑣) ,                                               

(10)                                                          
where A(1) = A(𝑣𝑣)|���,R,M(𝑣𝑣) 𝑣 𝑣�×�and 

R = �0(���)×�1(�×�) �  ,                       
(11)                                                                                

M(𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑�𝑎𝑎��𝑣𝑣��−𝑎𝑎��, ⋯ , 𝑎𝑎����𝑣𝑣��−𝑎𝑎�����  .    
(12) 
The representation (10) is in the form of the closed-
loop state matrix of a linear system with state 
feedback. Figure 6 depicts this configuration. 
 
Figure 6  
Feedback representation of desired pole path approach  
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where A(1) = A(𝑣𝑣)|���,R,M(𝑣𝑣) 𝑣 𝑣�×�and 
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loop state matrix of a linear system with state 
feedback. Figure 6 depicts this configuration. 
 
Figure 6  
Feedback representation of desired pole path approach  

 
 
However, because of switching the value of the 
parameter 𝑣𝑣 changes abruptly, the overall system is 
nonlinear.  We investigate the bound 𝑣𝑣 = 𝑣𝑣𝑣���, 1], 
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(13) 
 
where 𝐱𝐱 𝑣 𝑣�, 𝐱𝐱, 𝐲𝐲 𝑣 𝑣� , A  is Hurwitz and 
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function matrix, where A  is Hurwitz, (A, 𝐱)  is 
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Remark 5: The appropriate selection of vmin in (8) is 
dependent to the stability of the closed loop system 
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Stability analysis of desired pole path SVSC
By implementing this control scheme, the time in-
variant system becomes a continuously switching 
system. Maintaining the stability of the system be-
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comes more challenging and must be verified.
From (3), (5) and (6) we have

Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section. 
Stability analysis of desired pole path SVSC
By implementing this control scheme, the time invariant 
system becomes a continuously switching system. 
Maintaining the stability of the system becomes more 
challenging and must be verified.
From (3), (5) and (6) we have
A𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣) =
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(9)

We rewrite (9) as
A(𝑣𝑣𝑣𝑣) = A𝑐𝑐𝑐𝑐(1) − RM(𝑣𝑣𝑣𝑣),                                              (10)                                                    
where A(1) = A(𝑣𝑣𝑣𝑣)|𝑣𝑣𝑣𝑣=1,R, M(𝑣𝑣𝑣𝑣) ∈ ℛ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛and

R = �
0(n−1)×n

1(1×𝑛𝑛𝑛𝑛)
� ,                                                             (11)                                                                               

M(𝑣𝑣𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒{𝑎𝑎𝑎𝑎�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎�0, ⋯ , 𝑎𝑎𝑎𝑎�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑎𝑎𝑎𝑎�𝑛𝑛𝑛𝑛−1} . (12)
The representation (10) is in the form of the closed-loop 
state matrix of a linear system with state feedback. Figure
6 depicts this configuration.

Figure 6 
Feedback representation of desired pole path approach 

However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion.
Theorem 2. (Multivariable Circle Criterion) [11]
Consider a controllable and observable MIMO feedback 
system
�̇�𝐱𝐱𝐱 = A𝐱𝐱𝐱𝐱 + B𝐮𝐮𝐮𝐮
𝐲𝐲𝐲𝐲 = C𝐱𝐱𝐱𝐱

𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),
                                                   (13)

where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛,𝐮𝐮𝐮𝐮, 𝐲𝐲𝐲𝐲 ∈ ℛ𝑃𝑃𝑃𝑃 , A is Hurwitz and φ: [0,∞) ×
ℛ𝑝𝑝𝑝𝑝 → ℛ𝑝𝑝𝑝𝑝 is a memoryless, possibly time varying 
nonlinearity which is piecewise continuous in 𝑡𝑡𝑡𝑡 and 
locally Lipschitz in 𝐲𝐲𝐲𝐲. If φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0
and Kmax𝐲𝐲𝐲𝐲 globally
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0

∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃                                  (14)

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.
To derive our result, we need the following lemma.
Lemma 1. (Kalman-Yakubovich-Popov) [11]
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝 transfer 
function matrix, where A is Hurwitz, (A, B) is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that

PA + ATP = −LTL − εP
PB = CT − LTW

WTW = D + DT . .
                                  (15)

Theorem 3. (Stability of DPP control)
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P ,
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

          (16)

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1.
We need to check the following two properties:
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous.
From (8), since 𝑣𝑣𝑣𝑣 = 1 always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous.
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎.
From the definition of M(𝑣𝑣𝑣𝑣), since 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 > 0, for 𝑒𝑒𝑒𝑒 =
1, . . ,𝑛𝑛𝑛𝑛 − 1 and 0 < 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 < 𝑣𝑣𝑣𝑣 < 1, M(𝑣𝑣𝑣𝑣) > 0 and 
∀𝑣𝑣𝑣𝑣 ∈ [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1), M(𝑣𝑣𝑣𝑣) ≤ M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). Therefore
M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎
Thus, our system satisfies all the assumptions of 
Theorem 2.
Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))−1𝑅𝑅𝑅𝑅
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P ,
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied.
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16). 
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 

(9)

We rewrite (9) as

Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section. 
Stability analysis of desired pole path SVSC
By implementing this control scheme, the time invariant 
system becomes a continuously switching system. 
Maintaining the stability of the system becomes more 
challenging and must be verified.
From (3), (5) and (6) we have
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(9)

We rewrite (9) as
A(𝑣𝑣𝑣𝑣) = A𝑐𝑐𝑐𝑐(1) − RM(𝑣𝑣𝑣𝑣),                                              (10)                                                    
where A(1) = A(𝑣𝑣𝑣𝑣)|𝑣𝑣𝑣𝑣=1,R, M(𝑣𝑣𝑣𝑣) ∈ ℛ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛and
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0(n−1)×n

1(1×𝑛𝑛𝑛𝑛)
� ,                                                             (11)                                                                               

M(𝑣𝑣𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒{𝑎𝑎𝑎𝑎�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎�0, ⋯ , 𝑎𝑎𝑎𝑎�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑎𝑎𝑎𝑎�𝑛𝑛𝑛𝑛−1} . (12)
The representation (10) is in the form of the closed-loop 
state matrix of a linear system with state feedback. Figure
6 depicts this configuration.

Figure 6 
Feedback representation of desired pole path approach 

However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion.
Theorem 2. (Multivariable Circle Criterion) [11]
Consider a controllable and observable MIMO feedback 
system
�̇�𝐱𝐱𝐱 = A𝐱𝐱𝐱𝐱 + B𝐮𝐮𝐮𝐮
𝐲𝐲𝐲𝐲 = C𝐱𝐱𝐱𝐱

𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),
                                                   (13)

where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛,𝐮𝐮𝐮𝐮, 𝐲𝐲𝐲𝐲 ∈ ℛ𝑃𝑃𝑃𝑃 , A is Hurwitz and φ: [0,∞) ×
ℛ𝑝𝑝𝑝𝑝 → ℛ𝑝𝑝𝑝𝑝 is a memoryless, possibly time varying 
nonlinearity which is piecewise continuous in 𝑡𝑡𝑡𝑡 and 
locally Lipschitz in 𝐲𝐲𝐲𝐲. If φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0
and Kmax𝐲𝐲𝐲𝐲 globally
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0

∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃                                  (14)

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.
To derive our result, we need the following lemma.
Lemma 1. (Kalman-Yakubovich-Popov) [11]
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝 transfer 
function matrix, where A is Hurwitz, (A, B) is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that

PA + ATP = −LTL − εP
PB = CT − LTW

WTW = D + DT . .
                                  (15)

Theorem 3. (Stability of DPP control)
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P ,
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

          (16)

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1.
We need to check the following two properties:
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous.
From (8), since 𝑣𝑣𝑣𝑣 = 1 always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous.
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎.
From the definition of M(𝑣𝑣𝑣𝑣), since 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 > 0, for 𝑒𝑒𝑒𝑒 =
1, . . ,𝑛𝑛𝑛𝑛 − 1 and 0 < 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 < 𝑣𝑣𝑣𝑣 < 1, M(𝑣𝑣𝑣𝑣) > 0 and 
∀𝑣𝑣𝑣𝑣 ∈ [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1), M(𝑣𝑣𝑣𝑣) ≤ M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). Therefore
M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎
Thus, our system satisfies all the assumptions of 
Theorem 2.
Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))−1𝑅𝑅𝑅𝑅
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P ,
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied.
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16). 
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 
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Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛  in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section.  

 Stability analysis of desired pole path SVSC 
 By implementing this control scheme, the time invariant 
system becomes a continuously switching system. 
Maintaining the stability of the system becomes more 
challenging and must be verified. 
From (3), (5) and (6) we have 
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 We rewrite (9) as 
A(𝑣𝑣𝑣𝑣) = A𝑐𝑐𝑐𝑐(1) − RM(𝑣𝑣𝑣𝑣),                                               (10)                                                          

A(1) = A(𝑣𝑣𝑣𝑣)|𝑣𝑣𝑣𝑣=1,R, M(𝑣𝑣𝑣𝑣) ∈ ℛ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛
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1(1×𝑛𝑛𝑛𝑛)
� ,                                                             (11)                                                                                
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The representation (10) is in the form of the closed-loop 
state matrix of a linear system with state feedback. Figure 
6 depicts this configuration. 
 

Figure 6  
Feedback representation of desired pole path approach  

 
 
However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We 
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion. 
Theorem 2. (Multivariable Circle Criterion) [11] 
Consider a controllable and observable MIMO feedback 
system 
�̇�𝐱𝐱𝐱 = A𝐱𝐱𝐱𝐱 + B𝐮𝐮𝐮𝐮
𝐲𝐲𝐲𝐲 = C𝐱𝐱𝐱𝐱

𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),
                                                        (13) 

 
where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛,𝐮𝐮𝐮𝐮, 𝐲𝐲𝐲𝐲 ∈ ℛ𝑃𝑃𝑃𝑃 , A  is Hurwitz and φ: [0,∞) ×
ℛ𝑝𝑝𝑝𝑝 → ℛ𝑝𝑝𝑝𝑝  is a memoryless, possibly time varying 
nonlinearity which is piecewise continuous in 𝑡𝑡𝑡𝑡  and 
locally Lipschitz in 𝐲𝐲𝐲𝐲. If φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0 
and Kmax𝐲𝐲𝐲𝐲 globally 
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0

∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃                                  (14) 

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B  is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.  
To derive our result, we need the following lemma. 
Lemma 1. (Kalman-Yakubovich-Popov) [11] 
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D  be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝  transfer 
function matrix, where A  is Hurwitz, (A, B)  is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊 
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA + ATP = −LTL − εP
PB = CT − LTW

WTW = D + DT . .
                                   (15) 

Theorem 3. (Stability of DPP control) 
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

                    (16) 

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1. 
We need to check the following two properties: 
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous. 
From (8), since 𝑣𝑣𝑣𝑣 = 1  always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2  are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous. 
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎. 
From the definition of M(𝑣𝑣𝑣𝑣), since 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 > 0, for 𝑒𝑒𝑒𝑒 =
1, . . ,𝑛𝑛𝑛𝑛 − 1 and 0 < 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 < 𝑣𝑣𝑣𝑣 < 1,  M(𝑣𝑣𝑣𝑣) > 0 and 
∀𝑣𝑣𝑣𝑣 ∈ [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1), M(𝑣𝑣𝑣𝑣) ≤ M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). Therefore 
M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎  
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎 
Thus, our system satisfies all the assumptions of 
Theorem 2. 
Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))−1𝑅𝑅𝑅𝑅 
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied. 
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16).  
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 

 and

Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section. 
Stability analysis of desired pole path SVSC
By implementing this control scheme, the time invariant 
system becomes a continuously switching system. 
Maintaining the stability of the system becomes more 
challenging and must be verified.
From (3), (5) and (6) we have
A𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣) =
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⎥
⎥
⎥
⎤

.

(9)

We rewrite (9) as
A(𝑣𝑣𝑣𝑣) = A𝑐𝑐𝑐𝑐(1) − RM(𝑣𝑣𝑣𝑣),                                              (10)                                                    
where A(1) = A(𝑣𝑣𝑣𝑣)|𝑣𝑣𝑣𝑣=1,R, M(𝑣𝑣𝑣𝑣) ∈ ℛ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛and

R = �
0(n−1)×n

1(1×𝑛𝑛𝑛𝑛)
� ,                                                             (11)                                                                               

M(𝑣𝑣𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒{𝑎𝑎𝑎𝑎�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎�0, ⋯ , 𝑎𝑎𝑎𝑎�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑎𝑎𝑎𝑎�𝑛𝑛𝑛𝑛−1} . (12)
The representation (10) is in the form of the closed-loop 
state matrix of a linear system with state feedback. Figure
6 depicts this configuration.

Figure 6 
Feedback representation of desired pole path approach 

However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion.
Theorem 2. (Multivariable Circle Criterion) [11]
Consider a controllable and observable MIMO feedback 
system
�̇�𝐱𝐱𝐱 = A𝐱𝐱𝐱𝐱 + B𝐮𝐮𝐮𝐮
𝐲𝐲𝐲𝐲 = C𝐱𝐱𝐱𝐱

𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),
                                                   (13)

where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛,𝐮𝐮𝐮𝐮, 𝐲𝐲𝐲𝐲 ∈ ℛ𝑃𝑃𝑃𝑃 , A is Hurwitz and φ: [0,∞) ×
ℛ𝑝𝑝𝑝𝑝 → ℛ𝑝𝑝𝑝𝑝 is a memoryless, possibly time varying 
nonlinearity which is piecewise continuous in 𝑡𝑡𝑡𝑡 and 
locally Lipschitz in 𝐲𝐲𝐲𝐲. If φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0
and Kmax𝐲𝐲𝐲𝐲 globally
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0

∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃                                  (14)

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.
To derive our result, we need the following lemma.
Lemma 1. (Kalman-Yakubovich-Popov) [11]
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝 transfer 
function matrix, where A is Hurwitz, (A, B) is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that

PA + ATP = −LTL − εP
PB = CT − LTW

WTW = D + DT . .
                                  (15)

Theorem 3. (Stability of DPP control)
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P ,
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

          (16)

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1.
We need to check the following two properties:
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous.
From (8), since 𝑣𝑣𝑣𝑣 = 1 always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous.
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎.
From the definition of M(𝑣𝑣𝑣𝑣), since 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 > 0, for 𝑒𝑒𝑒𝑒 =
1, . . ,𝑛𝑛𝑛𝑛 − 1 and 0 < 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 < 𝑣𝑣𝑣𝑣 < 1, M(𝑣𝑣𝑣𝑣) > 0 and 
∀𝑣𝑣𝑣𝑣 ∈ [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1), M(𝑣𝑣𝑣𝑣) ≤ M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). Therefore
M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎
Thus, our system satisfies all the assumptions of 
Theorem 2.
Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))−1𝑅𝑅𝑅𝑅
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P ,
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied.
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16). 
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 

(11)

M(𝑣𝑣𝑣𝑣) =𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{𝑒𝑒𝑒𝑒�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒�0, ⋯, 𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1} .  (12)

The representation (10) is in the form of the closed-
loop state matrix of a linear system with state feed-
back. Figure 6 depicts this configuration.

Figure 6 
Feedback representation of desired pole path approach

However, because of switching the value of the pa-
rameter v changes abruptly, the overall system is 
nonlinear.  We investigate the bound v=[vmin, 1], which 
guarantees the stability of (9) using the multivariable 
circle criterion.

Theorem 2. (Multivariable Circle Criterion) [11]

Consider a controllable and observable MIMO feed-
back system

 
 

 

Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛  in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section.  

 Stability analysis of desired pole path SVSC 
 By implementing this control scheme, the time invariant 

                                                          

                                                                                

M(𝑣𝑣𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{𝑒𝑒𝑒𝑒�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒�0, ⋯ , 𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1} .    (12) 
-

 

 
Feedback representation of desired pole path approach  

 
 
However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We 
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion. 

 
�̇�𝐱𝐱𝐱 = A𝐱𝐱𝐱𝐱 + B𝐮𝐮𝐮𝐮
𝐲𝐲𝐲𝐲 = C𝐱𝐱𝐱𝐱
𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),

                                                        (13) 

 
where 𝐱𝐱𝐱𝐱 ∈ ℛ𝑛𝑛𝑛𝑛,𝐮𝐮𝐮𝐮, 𝐲𝐲𝐲𝐲 ∈ ℛ𝑃𝑃𝑃𝑃 , A  is Hurwitz and φ: [0,∞) ×
ℛ𝑝𝑝𝑝𝑝 → ℛ𝑝𝑝𝑝𝑝  is a memoryless, possibly time varying 
nonlinearity which is piecewise continuous in 𝑡𝑡𝑡𝑡  and 
locally Lipschitz in 𝐲𝐲𝐲𝐲. If φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0 
and Kmax𝐲𝐲𝐲𝐲 globally 
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0

∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃                                  (14) 

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B  is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.  
To derive our result, we need the following lemma. 
Lemma 1. (Kalman-Yakubovich-Popov) [11] 
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D  be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝  transfer 
function matrix, where A  is Hurwitz, (A, B)  is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊 
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA + ATP = −LTL − εP
PB = CT − LTW

WTW = D + DT . .
                                   (15) 

Theorem 3. (Stability of DPP control) 
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

                    (16) 

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1. 
We need to check the following two properties: 
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous. 
From (8), since 𝑣𝑣𝑣𝑣 = 1  always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2  are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous. 
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎. 
From the definition of M(𝑣𝑣𝑣𝑣), since 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 > 0, for 𝑒𝑒𝑒𝑒 =
1, . . ,𝑛𝑛𝑛𝑛 − 1 and 0 < 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 < 𝑣𝑣𝑣𝑣 < 1,  M(𝑣𝑣𝑣𝑣) > 0 and 
∀𝑣𝑣𝑣𝑣 ∈ [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1), M(𝑣𝑣𝑣𝑣) ≤ M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). Therefore 
M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎  
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎 
Thus, our system satisfies all the assumptions of 
Theorem 2. 
Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))−1𝑅𝑅𝑅𝑅 
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied. 
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16).  
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 

(13)

where x∈ℛn, u, y∈ℛp, A is Hurwitz and φ:[0, ∞) × 
ℛp→ℛp is a memoryless, possibly time varying non-
linearity which is piecewise continuous in t and local-
ly Lipschitz in y. If φ(t, y) is sector bounded by 0 and 
Kmaxy globally

 
 

 

Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛  in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section.  

 Stability analysis of desired pole path SVSC 
 By implementing this control scheme, the time invariant 

                                                          

                                                                                

M(𝑣𝑣𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{𝑒𝑒𝑒𝑒�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒�0, ⋯ , 𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1} .    (12) 
-

 

 
Feedback representation of desired pole path approach  

 
 
However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We 
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion. 

 
�̇�𝐱𝐱𝐱 = A𝐱𝐱𝐱𝐱 + B𝐮𝐮𝐮𝐮
𝐲𝐲𝐲𝐲 = C𝐱𝐱𝐱𝐱

𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),
                                                        (13) 

 
𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃 , A  is Hurwitz and φ: [0,∞) ×

𝑡𝑡𝑡𝑡  and 
φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0 

  
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0
∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃

                                 (14) 

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B  is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.  
To derive our result, we need the following lemma. 
Lemma 1. (Kalman-Yakubovich-Popov) [11] 
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D  be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝  transfer 
function matrix, where A  is Hurwitz, (A, B)  is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊 
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA + ATP = −LTL − εP
PB = CT − LTW

WTW = D + DT . .
                                   (15) 

Theorem 3. (Stability of DPP control) 
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

                    (16) 

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1. 
We need to check the following two properties: 
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous. 
From (8), since 𝑣𝑣𝑣𝑣 = 1  always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2  are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous. 
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎. 
From the definition of M(𝑣𝑣𝑣𝑣), since 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 > 0, for 𝑒𝑒𝑒𝑒 =
1, . . ,𝑛𝑛𝑛𝑛 − 1 and 0 < 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 < 𝑣𝑣𝑣𝑣 < 1,  M(𝑣𝑣𝑣𝑣) > 0 and 
∀𝑣𝑣𝑣𝑣 ∈ [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1), M(𝑣𝑣𝑣𝑣) ≤ M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). Therefore 
M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎  
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎 
Thus, our system satisfies all the assumptions of 
Theorem 2. 
Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))−1𝑅𝑅𝑅𝑅 
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied. 
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16).  
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 

(14)

and Z(s) = In+KmaxC(sIn–A)–1B is strictly positive real 
(SPR), then the feedback system is absolutely stable. 
To derive our result, we need the following lemma.
Lemma 1. (Kalman-Yakubovich-Popov) [11]
Let Z(s)=C(sIn–A)–1B + D be a p×p transfer function ma-
trix, where A is Hurwitz, (A, B) is controllable, and (A, 
C) is observable. Then, Z(s) is strictly positive real if and 
only if there exist a positive definite symmetric matrix 
P, matrices W and L, and a positive constant ε such that

 
 

 

Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛  in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section.  

 Stability analysis of desired pole path SVSC 
 By implementing this control scheme, the time invariant 

                                                          

                                                                                

M(𝑣𝑣𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{𝑒𝑒𝑒𝑒�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒�0, ⋯ , 𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1} .    (12) 
-

 

 
Feedback representation of desired pole path approach  

 
 
However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We 
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion. 
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𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),
                                                        (13) 

 
𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃 , A  is Hurwitz and φ: [0,∞) ×

𝑡𝑡𝑡𝑡  and 
φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0 

  
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0

∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃                                  (14) 

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B  is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.  
To derive our result, we need the following lemma. 
Lemma 1. (Kalman-Yakubovich-Popov) [11] 
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D  be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝  transfer 
function matrix, where A  is Hurwitz, (A, B)  is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊 
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA + ATP = −LTL − εP
PB = CT − LTW
WTW = D + DT .

                                   (15) 

Theorem 3. (Stability of DPP control) 
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

                    (16) 

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1. 
We need to check the following two properties: 
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous. 
From (8), since 𝑣𝑣𝑣𝑣 = 1  always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2  are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous. 
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎. 
From the definition of M(𝑣𝑣𝑣𝑣), since 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 > 0, for 𝑒𝑒𝑒𝑒 =
1, . . ,𝑛𝑛𝑛𝑛 − 1 and 0 < 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 < 𝑣𝑣𝑣𝑣 < 1,  M(𝑣𝑣𝑣𝑣) > 0 and 
∀𝑣𝑣𝑣𝑣 ∈ [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1), M(𝑣𝑣𝑣𝑣) ≤ M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). Therefore 
M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎  
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎 
Thus, our system satisfies all the assumptions of 
Theorem 2. 
Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))−1𝑅𝑅𝑅𝑅 
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied. 
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16).  
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 

(15)

Theorem 3. (Stability of DPP control)
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P, ma-
trix L and a positive constant ε such that

 
 

 

Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛  in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section.  

 Stability analysis of desired pole path SVSC 
 By implementing this control scheme, the time invariant 

                                                          

                                                                                

M(𝑣𝑣𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{𝑒𝑒𝑒𝑒�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒�0, ⋯ , 𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1} .    (12) 
-

 

 
Feedback representation of desired pole path approach  

 
 
However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We 
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion. 

 
�̇�𝐱𝐱𝐱 = A𝐱𝐱𝐱𝐱 + B𝐮𝐮𝐮𝐮
𝐲𝐲𝐲𝐲 = C𝐱𝐱𝐱𝐱

𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),
                                                        (13) 

 
𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃 , A  is Hurwitz and φ: [0,∞) ×

𝑡𝑡𝑡𝑡  and 
φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0 

  
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0

∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃                                  (14) 

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B  is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.  
To derive our result, we need the following lemma. 
Lemma 1. (Kalman-Yakubovich-Popov) [11] 
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D  be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝  transfer 
function matrix, where A  is Hurwitz, (A, B)  is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊 
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA + ATP = −LTL − εP
PB = CT − LTW

WTW = D + DT . .
                                   (15) 

Theorem 3. (Stability of DPP control) 
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

                    (16) 

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1. 
We need to check the following two properties: 
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous. 
From (8), since 𝑣𝑣𝑣𝑣 = 1  always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2  are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous. 
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎. 
From the definition of M(𝑣𝑣𝑣𝑣), since 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 > 0, for 𝑒𝑒𝑒𝑒 =
1, . . ,𝑛𝑛𝑛𝑛 − 1 and 0 < 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 < 𝑣𝑣𝑣𝑣 < 1,  M(𝑣𝑣𝑣𝑣) > 0 and 
∀𝑣𝑣𝑣𝑣 ∈ [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1), M(𝑣𝑣𝑣𝑣) ≤ M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). Therefore 
M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎  
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎 
Thus, our system satisfies all the assumptions of 
Theorem 2. 
Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))−1𝑅𝑅𝑅𝑅 
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied. 
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16).  
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 

(16)

Proof: We first show that the assumptions of Theo-
rem 1 hold for our system. Clearly, the pair (Ac(1), R) is 
in controllable form and is therefore controllable. The 
pair (Ac(1), In) is observable and since all the eigenval-
ues are located in the left hand plane by Procedure 1, 
Ac(1) is Hurwitz for v =1. We need to check the follow-
ing two properties:
1 M(v) is piece-wise continuous.
From (8), since v=1 always satisfies the constraints, 
the optimal solution of (8) is a root of the polynomial 
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(kT(v)x)2 = u0
2or vmin. Since the coefficients of (kT(v)x)2  

are continuous functions of the state, they vary con-
tinuously with the state, as do the roots of the polyno-
mials [17]. Therefore, M(v) is always piecewise con-
tinuous.
2 

 
 

 

Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛  in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section.  

 Stability analysis of desired pole path SVSC 
 By implementing this control scheme, the time invariant 

                                                          

                                                                                

M(𝑣𝑣𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{𝑒𝑒𝑒𝑒�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒�0, ⋯ , 𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1} .    (12) 
-

 

 
Feedback representation of desired pole path approach  

 
 
However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We 
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion. 

 
�̇�𝐱𝐱𝐱 = A𝐱𝐱𝐱𝐱 + B𝐮𝐮𝐮𝐮
𝐲𝐲𝐲𝐲 = C𝐱𝐱𝐱𝐱

𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),
                                                        (13) 

 
𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃 , A  is Hurwitz and φ: [0,∞) ×

𝑡𝑡𝑡𝑡  and 
φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0 

  
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0

∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃                                  (14) 

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B  is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.  
To derive our result, we need the following lemma. 
Lemma 1. (Kalman-Yakubovich-Popov) [11] 
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D  be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝  transfer 
function matrix, where A  is Hurwitz, (A, B)  is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊 
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA + ATP = −LTL − εP
PB = CT − LTW

WTW = D + DT . .
                                   (15) 

Theorem 3. (Stability of DPP control) 
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

                    (16) 

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1. 
We need to check the following two properties: 
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous. 
From (8), since 𝑣𝑣𝑣𝑣 = 1  always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2  are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous. 
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎. 
From the definition of M(𝑣𝑣𝑣𝑣), since 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 > 0, for 𝑒𝑒𝑒𝑒 =
1, . . ,𝑛𝑛𝑛𝑛 − 1 and 0 < 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 < 𝑣𝑣𝑣𝑣 < 1,  M(𝑣𝑣𝑣𝑣) > 0 and 
∀𝑣𝑣𝑣𝑣 ∈ [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1), M(𝑣𝑣𝑣𝑣) ≤ M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛). Therefore 
M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎  
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎 
Thus, our system satisfies all the assumptions of 
Theorem 2. 
Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))−1𝑅𝑅𝑅𝑅 
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied. 
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16).  
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 

From the definition of M(v), since ai > 0,for i = 1,..,n-
1 and 0<vmin< v < 1,  M(v)>0 and ∀v∈[vmin, 1), M(v) ≤ 
M(vmin). Therefore

 
 

 

Remark 5: The appropriate selection of 𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛  in (8) is 
dependent to the stability of the closed loop system and will 
be discussed later in this section.  

 Stability analysis of desired pole path SVSC 
 By implementing this control scheme, the time invariant 

                                                          

                                                                                

M(𝑣𝑣𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{𝑒𝑒𝑒𝑒�0𝑣𝑣𝑣𝑣−𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒�0, ⋯ , 𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1𝑣𝑣𝑣𝑣−1−𝑒𝑒𝑒𝑒�𝑛𝑛𝑛𝑛−1} .    (12) 
-

 

 
Feedback representation of desired pole path approach  

 
 
However, because of switching the value of the parameter 
𝑣𝑣𝑣𝑣 changes abruptly, the overall system is nonlinear.  We 
investigate the bound 𝑣𝑣𝑣𝑣 = [𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 , 1], which guarantees the 
stability of (9) using the multivariable circle criterion. 

 
�̇�𝐱𝐱𝐱 = A𝐱𝐱𝐱𝐱 + B𝐮𝐮𝐮𝐮
𝐲𝐲𝐲𝐲 = C𝐱𝐱𝐱𝐱

𝐮𝐮𝐮𝐮 = −φ(t, 𝐲𝐲𝐲𝐲),
                                                        (13) 

 
𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃 , A  is Hurwitz and φ: [0,∞) ×

𝑡𝑡𝑡𝑡  and 
φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) is sector bounded by 0 

  
φT(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲)[φ(𝑡𝑡𝑡𝑡, 𝐲𝐲𝐲𝐲) − Kmax𝐲𝐲𝐲𝐲] ≤ 0

∀t ≥ 0, ∀𝐲𝐲𝐲𝐲 ⊂ ℛ𝑃𝑃𝑃𝑃                                  (14) 

and 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + KmaxC(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B  is strictly 
positive real (SPR), then the feedback system is 
absolutely stable.  
To derive our result, we need the following lemma. 
Lemma 1. (Kalman-Yakubovich-Popov) [11] 
Let 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) = C(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − A)−1B + D  be a 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝  transfer 
function matrix, where A  is Hurwitz, (A, B)  is 
controllable, and (A, C) is observable. Then, 𝑍𝑍𝑍𝑍(𝑠𝑠𝑠𝑠) is 
strictly positive real if and only if there exist a 
positive definite symmetric matrix 𝑃𝑃𝑃𝑃 , matrices 𝑊𝑊𝑊𝑊 
and 𝐿𝐿𝐿𝐿, and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA + ATP = −LTL − εP
PB = CT − LTW

WTW = D + DT . .
                                   (15) 

Theorem 3. (Stability of DPP control) 
The desired pole path control of (1) is stable if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that 

PA𝑐𝑐𝑐𝑐(1) + A𝑐𝑐𝑐𝑐(1)𝑇𝑇𝑇𝑇P = −LTL − 𝜀𝜀𝜀𝜀P
PR = M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)T − √2LT.

                    (16) 

Proof: We first show that the assumptions of 
Theorem 1 hold for our system. Clearly, the pair 
(A𝑐𝑐𝑐𝑐(1), R) is in controllable form and is therefore 
controllable. The pair (A𝑐𝑐𝑐𝑐(1), 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛) is observable and 
since all the eigenvalues are located in the left hand 
plane by Procedure 1, A𝑐𝑐𝑐𝑐(1) is Hurwitz for 𝑣𝑣𝑣𝑣 = 1. 
We need to check the following two properties: 
1- M(𝑣𝑣𝑣𝑣) is piece-wise continuous. 
From (8), since 𝑣𝑣𝑣𝑣 = 1  always satisfies the 
constraints, the optimal solution of (8) is a root of the 
polynomial (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2 = 𝑢𝑢𝑢𝑢02 or 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 . Since the 
coefficients of (𝐤𝐤𝐤𝐤𝑻𝑻𝑻𝑻(𝑣𝑣𝑣𝑣)𝐱𝐱𝐱𝐱)2  are continuous functions 
of the state, they vary continuously with the state, as 
do the roots of the polynomials [17]. Therefore, 
M(𝑣𝑣𝑣𝑣) is always piecewise continuous. 
2- 𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎. 

M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)] ≤ 𝟎𝟎𝟎𝟎  
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣) − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)]𝐲𝐲𝐲𝐲 ≤ 𝟎𝟎𝟎𝟎 
𝐲𝐲𝐲𝐲𝐓𝐓𝐓𝐓M(𝑣𝑣𝑣𝑣)T[M(𝑣𝑣𝑣𝑣)𝐲𝐲𝐲𝐲 − M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)𝐲𝐲𝐲𝐲] ≤ 𝟎𝟎𝟎𝟎 

Next, we verify that 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 + M(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛)(𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴(1))− 𝑅𝑅𝑅𝑅 
is positive real.  Applying Lemma 1 with the matrix 
𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 , the matrix is positive real matrix if there 
exist a positive semidefinite symmetric matrix P , 
matrix L and a positive constant 𝜀𝜀𝜀𝜀 such that (16) is 
satisfied. 
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant 𝜀𝜀𝜀𝜀 that satisfy (16).  
A smaller 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 is equal to larger sector in (14) and if 
a particular choice fails to find an appropriate P in 
(16), a larger 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 should be used to prove the 

Thus, our system satisfies all the assumptions of 
Theorem 2.
Next, we verify that In + M(vmin)(sIn–A(1))–1R is posi-
tive real. Applying Lemma 1 with the matrix D = In, the 
matrix is positive real matrix if there exist a positive 
semidefinite symmetric matrix P, matrix L and a posi-
tive constant ε such that (16) is satisfied.
Theorem 3 shows that the stability of the switch-
ing system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P, a matrix L, and a 
positive constant ε that satisfy (16). 
A smaller vmin is equal to larger sector in (14) and if a 
particular choice fails to find an appropriate P in (16), 
a larger vmin should be used to prove the stability.
Remark 6: A necessary (but not sufficient) condition 
for (16) to have a solution is that the matrix product 
A(1)A(vmin) does not have any negative real eigenval-
ues [20]. This eliminates inadmissible values of vmin 
without solving (12).

5. Simulation Results
Figure 7 shows the control system for a simple satel-
lite model [21]. The satellite is a rotational unit iner-
tia controlled by a pair of thrusters that provide the 
desired torque between a positive constant torque U 
(positive firing) and a negative torque –U (negative 
firing). The goal of the control system is to main-
tain the satellite antenna at a zero angle by firing the 
thrusters in the admissible bound. The mathematical 
model of this system is:

stability.
Remark 6: A necessary (but not sufficient) condition for 
(16) to have a solution is that the matrix product 
A(1)A(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛) does not have any negative real eigenvalues 
[20]. This eliminates inadmissible values of 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 without 
solving (12).

5. Simulation Results

Figure 7 shows the control system for a simple satellite 
model [21]. The satellite is a rotational unit inertia 
controlled by a pair of thrusters that provide the desired 
torque between a positive constant torque 𝑈𝑈𝑈𝑈 (positive 
firing) and a negative torque −𝑈𝑈𝑈𝑈 (negative firing). The 
goal of the control system is to maintain the satellite 
antenna at a zero angle by firing the thrusters in the 
admissible bound. The mathematical model of this system 
is:
�̈�𝜃𝜃𝜃 = 𝑢𝑢𝑢𝑢 .                                                                           (17)
With 𝜃𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥1and �̇�𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥2, the state equation of the system 
can be represented by
�̇�𝐱𝐱𝐱 = �0 1

0 0� 𝐱𝐱𝐱𝐱 + �01� 𝑢𝑢𝑢𝑢 .
                                          (18)

Consider the feasible initial states 𝑥𝑥𝑥𝑥1(0) < 1, 𝑥𝑥𝑥𝑥2(0) < 1,
input signal constraint |𝑢𝑢𝑢𝑢| ≤ 10 and 𝑦𝑦𝑦𝑦 = 𝑥𝑥𝑥𝑥. A poles path 
given by a radial line at 45° angle from the negative real 
axis is desired. Running Procedure 1 leads to 𝐤𝐤𝐤𝐤 = �22� as 
depicted in Figure 8.

Figure 7
Satellite control system

Figure 8
Lyapunov region, constraints and feasible initial state region in 
phase plane 

The closed loop dynamic equation considering Step 4 of 
Procedure 1 can be expressed by

�̇�𝐱𝐱𝐱 = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�𝐱𝐱𝐱𝐱 = � 0 1
−2𝑣𝑣𝑣𝑣−2 −2𝑣𝑣𝑣𝑣−1� 𝐱𝐱𝐱𝐱 .

(19)

It can be verified that if 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 = 0.5 is chosen, P =
�24 4

4 4�will satisfy the conditions of Theorem 3.

Figures 9 and 10 compare the response and the 
control signal of bang-bang control, state feedback 
control, dynamical SVSC, variable saturation SVSC 
and the proposed DPP approach to the 𝐱𝐱𝐱𝐱𝟎𝟎𝟎𝟎 =
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As shown in Figure 9, our proposed method, desired 
pole paths, has good performance compared to state 
feedback control, dynamical SVSC, and variable 
saturation SVSC. The output of our proposed method 
is close to the response of time optimal control while 
the control signal is continuous as shown in Figure 
10. Figure 10 also shows that this good performance 
is achieved while the input signal constraints are 
satisfied. 
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controlled by a pair of thrusters that provide the desired 
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firing) and a negative torque −𝑈𝑈𝑈𝑈 (negative firing). The 
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admissible bound. The mathematical model of this system 
is:
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given by a radial line at 45° angle from the negative real 
axis is desired. Running Procedure 1 leads to 𝐤𝐤𝐤𝐤 = �22� as 
depicted in Figure 8.
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PA + A�P = −L�L − εP
PB = C� − L�W

W�W = D + D� . .
                                   (15) 

Theorem 3. (Stability of DPP control) 
The desired pole path control of (1) is stable if there exist 
a positive semidefinite symmetric matrix P, matrix L and 
a positive constant 𝜀𝜀 such that 

PA�(1) + A�(1)�P = −L�L − 𝜀𝜀P
PR = M(𝑣𝑣���)� − √2L�.                     (16) 

Proof: We first show that the assumptions of Theorem 1 
hold for our system. Clearly, the pair (A�(1), R) is in 
controllable form and is therefore controllable. The pair 
(A�(1), 𝐼𝐼�) is observable and since all the eigenvalues are 
located in the left hand plane by Procedure 1, A�(1) is 
Hurwitz for 𝑣𝑣 = 1. We need to check the following two 
properties: 
1- M(𝑣𝑣) is piece-wise continuous. 
From (8), since 𝑣𝑣 = 1 always satisfies the constraints, the 
optimal solution of (8) is a root of the polynomial 
(𝐤𝐤𝑻𝑻(𝑣𝑣)𝐱𝐱)� = 𝑢𝑢�� or 𝑣𝑣��� . Since the coefficients of 
(𝐤𝐤𝑻𝑻(𝑣𝑣)𝐱𝐱)� are continuous functions of the state, they vary 
continuously with the state, as do the roots of the 
polynomials [17]. Therefore, M(𝑣𝑣)  is always piecewise 
continuous. 
2- 𝐲𝐲𝐓𝐓M(𝑣𝑣)�[M(𝑣𝑣)𝐲𝐲 − M(𝑣𝑣���)𝐲𝐲] ≤ 𝟎𝟎. 
From the definition of M(𝑣𝑣), since 𝑎𝑎� > 0, for 𝑖𝑖 =
1, . . , 𝑛𝑛 − 1 and 0 < 𝑣𝑣��� < 𝑣𝑣 < 1,  M(𝑣𝑣) > 0 and ∀𝑣𝑣 𝑣
[𝑣𝑣���, 1), M(𝑣𝑣) ≤ M(𝑣𝑣���). Therefore 
M(𝑣𝑣)�[M(𝑣𝑣) − M(𝑣𝑣���)] ≤ 𝟎𝟎  
𝐲𝐲𝐓𝐓M(𝑣𝑣)�[M(𝑣𝑣) − M(𝑣𝑣���)]𝐲𝐲 ≤ 𝟎𝟎 
𝐲𝐲𝐓𝐓M(𝑣𝑣)�[M(𝑣𝑣)𝐲𝐲 − M(𝑣𝑣���)𝐲𝐲] ≤ 𝟎𝟎 
Thus, our system satisfies all the assumptions of Theorem 
2. 
Next, we verify that 𝐼𝐼� + M(𝑣𝑣���)(𝑠𝑠𝐼𝐼� − 𝐴𝐴(1))��𝑅𝑅  is 
positive real.  Applying Lemma 1 with the matrix 𝐷𝐷 = 𝐼𝐼�, 
the matrix is positive real matrix if there exist a positive 
semidefinite symmetric matrix P, matrix L and a positive 
constant 𝜀𝜀 such that (16) is satisfied. 
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P , a matrix L , and a 
positive constant 𝜀𝜀 that satisfy (16).  
A smaller 𝑣𝑣��� is equal to larger sector in (14) and if a 
particular choice fails to find an appropriate P in (16), a 
larger 𝑣𝑣���should be used to prove the stability. 
Remark 6: A necessary (but not sufficient) condition for 
(16) to have a solution is that the matrix product 
A(1)A(𝑣𝑣���) does not have any negative real eigenvalues 
[20]. This eliminates inadmissible values of 𝑣𝑣��� without 
solving (12). 

 
5. Simulation Results 

 
Figure 7 shows the control system for a simple satellite 
model [21]. The satellite is a rotational unit inertia 
controlled by a pair of thrusters that provide the desired 

torque between a positive constant torque 𝑈𝑈 
(positive firing) and a negative torque −𝑈𝑈 (negative 
firing). The goal of the control system is to 
maintain the satellite antenna at a zero angle by 
firing the thrusters in the admissible bound. The 
mathematical model of this system is: 
𝜃𝜃� = 𝑢𝑢 .                        
(17) 
With 𝜃𝜃 = 𝜃𝜃�and 𝜃𝜃� = 𝜃𝜃� , the state equation of the 
system can be represented by 
𝐱𝐱� = �0 1

0 0� 𝐱𝐱 + �0
1� 𝑢𝑢 .                                            

(18) 
Consider the feasible initial states 𝜃𝜃�(0) <
1, 𝜃𝜃�(0) < 1, input signal constraint |𝑢𝑢| ≤ 10 and 
𝑦𝑦 = 𝜃𝜃. A poles path given by a radial line at 45° 
angle from the negative real axis is desired. 
Running Procedure 1 leads to 𝐤𝐤 = �2

2� as depicted 
in Figure 8. 
 
Figure 7 
Satellite control system 

 
 

Figure 8 
Lyapunov region, constraints and feasible initial state 
region in phase plane  

 
The closed loop dynamic equation considering Step 
4 of Procedure 1 can be expressed by 

𝐱𝐱� = �𝐴𝐴 − �𝐤𝐤�(𝑣𝑣)�𝐱𝐱 = � 0 1
−2𝑣𝑣�� −2𝑣𝑣��� 𝐱𝐱 .    (19) 

It can be verified that if 𝑣𝑣��� = 0.5 is chosen, P =
�24 4

4 4�will satisfy the conditions of Theorem 3. 

Figures 9 and 10 compare the response and the 
control signal of bang-bang control, state feedback 
control, dynamical SVSC, variable saturation SVSC 
and the proposed DPP approach to the 𝐱𝐱𝟎𝟎 =
[1, −0.95]�disturbance. 
Figure 9 

Figure 8
Lyapunov region, constraints and feasible initial state 
region in phase plane 

  

PA + A�P = −L�L − εP
PB = C� − L�W

W�W = D + D� . .
                                   (15) 

Theorem 3. (Stability of DPP control) 
The desired pole path control of (1) is stable if there exist 
a positive semidefinite symmetric matrix P, matrix L and 
a positive constant 𝜀𝜀 such that 

PA�(1) + A�(1)�P = −L�L − 𝜀𝜀P
PR = M(𝑣𝑣���)� − √2L�.                     (16) 

Proof: We first show that the assumptions of Theorem 1 
hold for our system. Clearly, the pair (A�(1), R) is in 
controllable form and is therefore controllable. The pair 
(A�(1), 𝐼𝐼�) is observable and since all the eigenvalues are 
located in the left hand plane by Procedure 1, A�(1) is 
Hurwitz for 𝑣𝑣 = 1. We need to check the following two 
properties: 
1- M(𝑣𝑣) is piece-wise continuous. 
From (8), since 𝑣𝑣 = 1 always satisfies the constraints, the 
optimal solution of (8) is a root of the polynomial 
(𝐤𝐤𝑻𝑻(𝑣𝑣)𝐱𝐱)� = 𝑢𝑢�� or 𝑣𝑣��� . Since the coefficients of 
(𝐤𝐤𝑻𝑻(𝑣𝑣)𝐱𝐱)� are continuous functions of the state, they vary 
continuously with the state, as do the roots of the 
polynomials [17]. Therefore, M(𝑣𝑣)  is always piecewise 
continuous. 
2- 𝐲𝐲𝐓𝐓M(𝑣𝑣)�[M(𝑣𝑣)𝐲𝐲 − M(𝑣𝑣���)𝐲𝐲] ≤ 𝟎𝟎. 
From the definition of M(𝑣𝑣), since 𝑎𝑎� > 0, for 𝑖𝑖 =
1, . . , 𝑛𝑛 − 1 and 0 < 𝑣𝑣��� < 𝑣𝑣 < 1,  M(𝑣𝑣) > 0 and ∀𝑣𝑣 𝑣
[𝑣𝑣���, 1), M(𝑣𝑣) ≤ M(𝑣𝑣���). Therefore 
M(𝑣𝑣)�[M(𝑣𝑣) − M(𝑣𝑣���)] ≤ 𝟎𝟎  
𝐲𝐲𝐓𝐓M(𝑣𝑣)�[M(𝑣𝑣) − M(𝑣𝑣���)]𝐲𝐲 ≤ 𝟎𝟎 
𝐲𝐲𝐓𝐓M(𝑣𝑣)�[M(𝑣𝑣)𝐲𝐲 − M(𝑣𝑣���)𝐲𝐲] ≤ 𝟎𝟎 
Thus, our system satisfies all the assumptions of Theorem 
2. 
Next, we verify that 𝐼𝐼� + M(𝑣𝑣���)(𝑠𝑠𝐼𝐼� − 𝐴𝐴(1))��𝑅𝑅  is 
positive real.  Applying Lemma 1 with the matrix 𝐷𝐷 = 𝐼𝐼�, 
the matrix is positive real matrix if there exist a positive 
semidefinite symmetric matrix P, matrix L and a positive 
constant 𝜀𝜀 such that (16) is satisfied. 
Theorem 3 shows that the stability of the switching 
system (5) is guaranteed if we can find a positive 
semidefinite symmetric matrix P , a matrix L , and a 
positive constant 𝜀𝜀 that satisfy (16).  
A smaller 𝑣𝑣��� is equal to larger sector in (14) and if a 
particular choice fails to find an appropriate P in (16), a 
larger 𝑣𝑣���should be used to prove the stability. 
Remark 6: A necessary (but not sufficient) condition for 
(16) to have a solution is that the matrix product 
A(1)A(𝑣𝑣���) does not have any negative real eigenvalues 
[20]. This eliminates inadmissible values of 𝑣𝑣��� without 
solving (12). 

 
5. Simulation Results 

 
Figure 7 shows the control system for a simple satellite 
model [21]. The satellite is a rotational unit inertia 
controlled by a pair of thrusters that provide the desired 

torque between a positive constant torque 𝑈𝑈 
(positive firing) and a negative torque −𝑈𝑈 (negative 
firing). The goal of the control system is to 
maintain the satellite antenna at a zero angle by 
firing the thrusters in the admissible bound. The 
mathematical model of this system is: 
𝜃𝜃� = 𝑢𝑢 .                        
(17) 
With 𝜃𝜃 = 𝜃𝜃�and 𝜃𝜃� = 𝜃𝜃� , the state equation of the 
system can be represented by 
𝐱𝐱� = �0 1

0 0� 𝐱𝐱 + �0
1� 𝑢𝑢 .                                            

(18) 
Consider the feasible initial states 𝜃𝜃�(0) <
1, 𝜃𝜃�(0) < 1, input signal constraint |𝑢𝑢| ≤ 10 and 
𝑦𝑦 = 𝜃𝜃. A poles path given by a radial line at 45° 
angle from the negative real axis is desired. 
Running Procedure 1 leads to 𝐤𝐤 = �2

2� as depicted 
in Figure 8. 
 
Figure 7 
Satellite control system 

 
 

Figure 8 
Lyapunov region, constraints and feasible initial state 
region in phase plane  

 
The closed loop dynamic equation considering Step 
4 of Procedure 1 can be expressed by 

𝐱𝐱� = �𝐴𝐴 − �𝐤𝐤�(𝑣𝑣)�𝐱𝐱 = � 0 1
−2𝑣𝑣�� −2𝑣𝑣��� 𝐱𝐱 .    (19) 

It can be verified that if 𝑣𝑣��� = 0.5 is chosen, P =
�24 4

4 4�will satisfy the conditions of Theorem 3. 

Figures 9 and 10 compare the response and the 
control signal of bang-bang control, state feedback 
control, dynamical SVSC, variable saturation SVSC 
and the proposed DPP approach to the 𝐱𝐱𝟎𝟎 =
[1, −0.95]�disturbance. 
Figure 9 

The closed loop dynamic equation considering Step 4 
of Procedure 1 can be expressed by

stability.
Remark 6: A necessary (but not sufficient) condition for 
(16) to have a solution is that the matrix product 
A(1)A(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛) does not have any negative real eigenvalues 
[20]. This eliminates inadmissible values of 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 without 
solving (12).

5. Simulation Results

Figure 7 shows the control system for a simple satellite 
model [21]. The satellite is a rotational unit inertia 
controlled by a pair of thrusters that provide the desired 
torque between a positive constant torque 𝑈𝑈𝑈𝑈 (positive 
firing) and a negative torque −𝑈𝑈𝑈𝑈 (negative firing). The 
goal of the control system is to maintain the satellite 
antenna at a zero angle by firing the thrusters in the 
admissible bound. The mathematical model of this system 
is:
�̈�𝜃𝜃𝜃 = 𝑢𝑢𝑢𝑢 .                                                                           (17)
With 𝜃𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥1and �̇�𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥2, the state equation of the system 
can be represented by
�̇�𝐱𝐱𝐱 = �0 1

0 0� 𝐱𝐱𝐱𝐱 + �01� 𝑢𝑢𝑢𝑢 .
                                          (18)

Consider the feasible initial states 𝑥𝑥𝑥𝑥1(0) < 1, 𝑥𝑥𝑥𝑥2(0) < 1,
input signal constraint |𝑢𝑢𝑢𝑢| ≤ 10 and 𝑦𝑦𝑦𝑦 = 𝑥𝑥𝑥𝑥. A poles path 
given by a radial line at 45° angle from the negative real 
axis is desired. Running Procedure 1 leads to 𝐤𝐤𝐤𝐤 = �22� as 
depicted in Figure 8.

Figure 7
Satellite control system

Figure 8
Lyapunov region, constraints and feasible initial state region in 
phase plane 

The closed loop dynamic equation considering Step 4 of 
Procedure 1 can be expressed by

�̇�𝐱𝐱𝐱 = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�𝐱𝐱𝐱𝐱 = � 0 1
−2𝑣𝑣𝑣𝑣−2 −2𝑣𝑣𝑣𝑣−1� 𝐱𝐱𝐱𝐱 .

(19)

It can be verified that if 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 = 0.5 is chosen, P =
�24 4

4 4�will satisfy the conditions of Theorem 3.

Figures 9 and 10 compare the response and the 
control signal of bang-bang control, state feedback 
control, dynamical SVSC, variable saturation SVSC 
and the proposed DPP approach to the 𝐱𝐱𝐱𝐱𝟎𝟎𝟎𝟎 =
[1,−0.95]Tdisturbance.

Figure 9
Output responses, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

Figure 10
Control signals, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

As shown in Figure 9, our proposed method, desired 
pole paths, has good performance compared to state 
feedback control, dynamical SVSC, and variable 
saturation SVSC. The output of our proposed method 
is close to the response of time optimal control while 
the control signal is continuous as shown in Figure 
10. Figure 10 also shows that this good performance 
is achieved while the input signal constraints are 
satisfied. 

(19)

It can be verified that if vmin = 0.5 is chosen, 

stability.
Remark 6: A necessary (but not sufficient) condition for 
(16) to have a solution is that the matrix product 
A(1)A(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛) does not have any negative real eigenvalues 
[20]. This eliminates inadmissible values of 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 without 
solving (12).

5. Simulation Results

Figure 7 shows the control system for a simple satellite 
model [21]. The satellite is a rotational unit inertia 
controlled by a pair of thrusters that provide the desired 
torque between a positive constant torque 𝑈𝑈𝑈𝑈 (positive 
firing) and a negative torque −𝑈𝑈𝑈𝑈 (negative firing). The 
goal of the control system is to maintain the satellite 
antenna at a zero angle by firing the thrusters in the 
admissible bound. The mathematical model of this system 
is:
�̈�𝜃𝜃𝜃 = 𝑢𝑢𝑢𝑢 .                                                                           (17)
With 𝜃𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥1and �̇�𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥2, the state equation of the system 
can be represented by
�̇�𝐱𝐱𝐱 = �0 1

0 0� 𝐱𝐱𝐱𝐱 + �01� 𝑢𝑢𝑢𝑢 .
                                          (18)

Consider the feasible initial states 𝑥𝑥𝑥𝑥1(0) < 1, 𝑥𝑥𝑥𝑥2(0) < 1,
input signal constraint |𝑢𝑢𝑢𝑢| ≤ 10 and 𝑦𝑦𝑦𝑦 = 𝑥𝑥𝑥𝑥. A poles path 
given by a radial line at 45° angle from the negative real 
axis is desired. Running Procedure 1 leads to 𝐤𝐤𝐤𝐤 = �22� as 
depicted in Figure 8.

Figure 7
Satellite control system

Figure 8
Lyapunov region, constraints and feasible initial state region in 
phase plane 

The closed loop dynamic equation considering Step 4 of 
Procedure 1 can be expressed by

�̇�𝐱𝐱𝐱 = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�𝐱𝐱𝐱𝐱 = � 0 1
−2𝑣𝑣𝑣𝑣−2 −2𝑣𝑣𝑣𝑣−1� 𝐱𝐱𝐱𝐱 .

(19)

It can be verified that if 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 = 0.5 is chosen, P =
�24 4

4 4�will satisfy the conditions of Theorem 3.

Figures 9 and 10 compare the response and the 
control signal of bang-bang control, state feedback 
control, dynamical SVSC, variable saturation SVSC 
and the proposed DPP approach to the 𝐱𝐱𝐱𝐱𝟎𝟎𝟎𝟎 =
[1,−0.95]Tdisturbance.

Figure 9
Output responses, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

Figure 10
Control signals, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

As shown in Figure 9, our proposed method, desired 
pole paths, has good performance compared to state 
feedback control, dynamical SVSC, and variable 
saturation SVSC. The output of our proposed method 
is close to the response of time optimal control while 
the control signal is continuous as shown in Figure 
10. Figure 10 also shows that this good performance 
is achieved while the input signal constraints are 
satisfied. 

 
will satisfy the conditions of Theorem 3.
Figures 9 and 10 compare the response and the con-
trol signal of bang-bang control, state feedback con-



Information Technology and Control 2018/3/47454

Figure 9
Output responses, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

Figure 10
Control signals, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

Figure 11
Effect of vmin on the output responses  

Figure 12
Effect of vmin on the control signals  

stability.
Remark 6: A necessary (but not sufficient) condition for 
(16) to have a solution is that the matrix product 
A(1)A(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛) does not have any negative real eigenvalues 
[20]. This eliminates inadmissible values of 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 without 
solving (12).

5. Simulation Results

Figure 7 shows the control system for a simple satellite 
model [21]. The satellite is a rotational unit inertia 
controlled by a pair of thrusters that provide the desired 
torque between a positive constant torque 𝑈𝑈𝑈𝑈 (positive 
firing) and a negative torque −𝑈𝑈𝑈𝑈 (negative firing). The 
goal of the control system is to maintain the satellite 
antenna at a zero angle by firing the thrusters in the 
admissible bound. The mathematical model of this system 
is:
�̈�𝜃𝜃𝜃 = 𝑢𝑢𝑢𝑢 .                                                                           (17)
With 𝜃𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥1and �̇�𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥2, the state equation of the system 
can be represented by
�̇�𝐱𝐱𝐱 = �0 1

0 0� 𝐱𝐱𝐱𝐱 + �01� 𝑢𝑢𝑢𝑢 .
                                          (18)

Consider the feasible initial states 𝑥𝑥𝑥𝑥1(0) < 1, 𝑥𝑥𝑥𝑥2(0) < 1,
input signal constraint |𝑢𝑢𝑢𝑢| ≤ 10 and 𝑦𝑦𝑦𝑦 = 𝑥𝑥𝑥𝑥. A poles path 
given by a radial line at 45° angle from the negative real 
axis is desired. Running Procedure 1 leads to 𝐤𝐤𝐤𝐤 = �22� as 
depicted in Figure 8.

Figure 7
Satellite control system

Figure 8
Lyapunov region, constraints and feasible initial state region in 
phase plane 

The closed loop dynamic equation considering Step 4 of 
Procedure 1 can be expressed by

�̇�𝐱𝐱𝐱 = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�𝐱𝐱𝐱𝐱 = � 0 1
−2𝑣𝑣𝑣𝑣−2 −2𝑣𝑣𝑣𝑣−1� 𝐱𝐱𝐱𝐱 .

(19)

It can be verified that if 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 = 0.5 is chosen, P =
�24 4

4 4�will satisfy the conditions of Theorem 3.

Figures 9 and 10 compare the response and the 
control signal of bang-bang control, state feedback 
control, dynamical SVSC, variable saturation SVSC 
and the proposed DPP approach to the 𝐱𝐱𝐱𝐱𝟎𝟎𝟎𝟎 =
[1,−0.95]Tdisturbance.

Figure 9
Output responses, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

Figure 10
Control signals, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

As shown in Figure 9, our proposed method, desired 
pole paths, has good performance compared to state 
feedback control, dynamical SVSC, and variable 
saturation SVSC. The output of our proposed method 
is close to the response of time optimal control while 
the control signal is continuous as shown in Figure 
10. Figure 10 also shows that this good performance 
is achieved while the input signal constraints are 
satisfied. 

stability.
Remark 6: A necessary (but not sufficient) condition for 
(16) to have a solution is that the matrix product 
A(1)A(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛) does not have any negative real eigenvalues 
[20]. This eliminates inadmissible values of 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 without 
solving (12).

5. Simulation Results

Figure 7 shows the control system for a simple satellite 
model [21]. The satellite is a rotational unit inertia 
controlled by a pair of thrusters that provide the desired 
torque between a positive constant torque 𝑈𝑈𝑈𝑈 (positive 
firing) and a negative torque −𝑈𝑈𝑈𝑈 (negative firing). The 
goal of the control system is to maintain the satellite 
antenna at a zero angle by firing the thrusters in the 
admissible bound. The mathematical model of this system 
is:
�̈�𝜃𝜃𝜃 = 𝑢𝑢𝑢𝑢 .                                                                           (17)
With 𝜃𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥1and �̇�𝜃𝜃𝜃 = 𝑥𝑥𝑥𝑥2, the state equation of the system 
can be represented by
�̇�𝐱𝐱𝐱 = �0 1

0 0� 𝐱𝐱𝐱𝐱 + �01� 𝑢𝑢𝑢𝑢 .
                                          (18)

Consider the feasible initial states 𝑥𝑥𝑥𝑥1(0) < 1, 𝑥𝑥𝑥𝑥2(0) < 1,
input signal constraint |𝑢𝑢𝑢𝑢| ≤ 10 and 𝑦𝑦𝑦𝑦 = 𝑥𝑥𝑥𝑥. A poles path 
given by a radial line at 45° angle from the negative real 
axis is desired. Running Procedure 1 leads to 𝐤𝐤𝐤𝐤 = �22� as 
depicted in Figure 8.

Figure 7
Satellite control system

Figure 8
Lyapunov region, constraints and feasible initial state region in 
phase plane 

The closed loop dynamic equation considering Step 4 of 
Procedure 1 can be expressed by

�̇�𝐱𝐱𝐱 = �𝐴𝐴𝐴𝐴 − 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤𝑇𝑇𝑇𝑇(𝑣𝑣𝑣𝑣)�𝐱𝐱𝐱𝐱 = � 0 1
−2𝑣𝑣𝑣𝑣−2 −2𝑣𝑣𝑣𝑣−1� 𝐱𝐱𝐱𝐱 .

(19)

It can be verified that if 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 = 0.5 is chosen, P =
�24 4

4 4�will satisfy the conditions of Theorem 3.

Figures 9 and 10 compare the response and the 
control signal of bang-bang control, state feedback 
control, dynamical SVSC, variable saturation SVSC 
and the proposed DPP approach to the 𝐱𝐱𝐱𝐱𝟎𝟎𝟎𝟎 =
[1,−0.95]Tdisturbance.

Figure 9
Output responses, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

Figure 10
Control signals, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC 
and 5: the proposed DPP approach

As shown in Figure 9, our proposed method, desired 
pole paths, has good performance compared to state 
feedback control, dynamical SVSC, and variable 
saturation SVSC. The output of our proposed method 
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is achieved while the input signal constraints are 
satisfied. 

trol, dynamical SVSC, variable saturation SVSC and 
the proposed DPP approach to the x0 = [1, –0.95]T dis-
turbance.
As shown in Figure 9, our proposed method, desired 
pole paths, has good performance compared to state 
feedback control, dynamical SVSC, and variable sat-
uration SVSC. The output of our proposed method is 
close to the response of time optimal control while 
the control signal is continuous as shown in Figure 
10. Figure 10 also shows that this good performance 

is achieved while the input signal constraints are sat-
isfied. 
Effect of vmin: The response and the control signal of 
DPP controlled system with vmin = 0.3 and vmin = 0.5  are 
compared in Figures 11 and 12. 
There is a tradeoff between speed of response and 
smoothness of the control signal. A larger vminmakes 
the control signal smoother but slows down the re-
sponse while a smaller vmin speeds up the response 
with loss of control signal smoothness. The designer 
must choose a compromise value of  vmin  depending on 
the specific design requirements.

 

 

Output responses, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC and 5: 
the proposed DPP approach 

 
 

Figure 10 
Control signals, 1: bang-bang control, 2: state feedback control, 
3: dynamical SVSC, 4: variable saturation SVSC and 5: the 
proposed DPP approach 

 
 

As shown in Figure 9, our proposed method, desired pole 
paths, has good performance compared to state feedback 
control, dynamical SVSC, and variable saturation SVSC. 
The output of our proposed method is close to the 
response of time optimal control while the control signal 
is continuous as shown in Figure 10. Figure 10 also 
shows that this good performance is achieved while the 
input signal constraints are satisfied.  
 

 

 

Figure 11 
Effect of vmin on the output responses   

 
Figure 12 
Effect of vmin on the control signals   

 
 
Effect of 𝝊𝝊𝒎𝒎𝒎𝒎𝒎𝒎: The response and the control signal 
of DPP controlled system with 𝜐𝜐��� = 0.3  and 
𝜐𝜐��� = 0.5 are compared in Figures 11 and 12.  
There is a tradeoff between speed of response and 
smoothness of the control signal. A larger 
𝜐𝜐���makes the control signal smoother but slows 
down the response while a smaller 𝜐𝜐��� speeds up 
the response with loss of control signal smoothness. 
The designer must choose a compromise value of 
𝜐𝜐���depending on the specific design requirements. 
 
6. Conclusion 

 
This paper proposes a new method to determine 
optimal locations for closed loop poles in selected 
pole paths to achieve a fast response and smooth 
control signal subject to constraints. By exploiting 
the fact that the norm of the state decays 
exponentially, the method increases the control gain 
progressively to achieve the desired time response. 
Our simulation results show that the method is 
superior to the previous SVSC approaches. Its 
response is close to bang-bang time-optimal control 
with a smooth control input thus eliminating the 
undesirable impact of discontinuous control on the 
system. 
Future work will assess the robustness of this 
methodology and extend it to multivariable system, 
nonlinear systems, as well as singular and fractional 
order systems. Another research avenue for future 

 

 

Output responses, 1: bang-bang control, 2: state feedback 
control, 3: dynamical SVSC, 4: variable saturation SVSC and 5: 
the proposed DPP approach 

 
 

Figure 10 
Control signals, 1: bang-bang control, 2: state feedback control, 
3: dynamical SVSC, 4: variable saturation SVSC and 5: the 
proposed DPP approach 

 
 

As shown in Figure 9, our proposed method, desired pole 
paths, has good performance compared to state feedback 
control, dynamical SVSC, and variable saturation SVSC. 
The output of our proposed method is close to the 
response of time optimal control while the control signal 
is continuous as shown in Figure 10. Figure 10 also 
shows that this good performance is achieved while the 
input signal constraints are satisfied.  
 

 

 

Figure 11 
Effect of vmin on the output responses   

 
Figure 12 
Effect of vmin on the control signals   

 
 
Effect of 𝝊𝝊𝒎𝒎𝒎𝒎𝒎𝒎: The response and the control signal 
of DPP controlled system with 𝜐𝜐��� = 0.3  and 
𝜐𝜐��� = 0.5 are compared in Figures 11 and 12.  
There is a tradeoff between speed of response and 
smoothness of the control signal. A larger 
𝜐𝜐���makes the control signal smoother but slows 
down the response while a smaller 𝜐𝜐��� speeds up 
the response with loss of control signal smoothness. 
The designer must choose a compromise value of 
𝜐𝜐���depending on the specific design requirements. 
 
6. Conclusion 

 
This paper proposes a new method to determine 
optimal locations for closed loop poles in selected 
pole paths to achieve a fast response and smooth 
control signal subject to constraints. By exploiting 
the fact that the norm of the state decays 
exponentially, the method increases the control gain 
progressively to achieve the desired time response. 
Our simulation results show that the method is 
superior to the previous SVSC approaches. Its 
response is close to bang-bang time-optimal control 
with a smooth control input thus eliminating the 
undesirable impact of discontinuous control on the 
system. 
Future work will assess the robustness of this 
methodology and extend it to multivariable system, 
nonlinear systems, as well as singular and fractional 
order systems. Another research avenue for future 



455Information Technology and Control 2018/3/47

6. Conclusion
This paper proposes a new method to determine op-
timal locations for closed loop poles in selected pole 
paths to achieve a fast response and smooth control 
signal subject to constraints. By exploiting the fact 
that the norm of the state decays exponentially, the 
method increases the control gain progressively to 
achieve the desired time response. Our simulation re-
sults show that the method is superior to the previous 
SVSC approaches. Its response is close to bang-bang 

time-optimal control with a smooth control input 
thus eliminating the undesirable impact of discontin-
uous control on the system.
Future work will assess the robustness of this method-
ology and extend it to multivariable system, nonlinear 
systems, as well as singular and fractional order sys-
tems. Another research avenue for future investigation 
is the selection of pole paths and the introduction of a 
smoothness parameter in the design procedure.
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