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Extracting and retaining valuable information from multiple data streams of the traffic Cyber-Physical Systems
(CPS) hasbeen attracted an increasing amount of attentions by the related researchers. In this paper, the Incre-
mental Clustering framework is proposed for multiple sensor data streams by low rank approximation Matrix
Factorization (IC-MF), which can monitor the distribution of clusters over multiple sensor data streams based
on their correlation. In the IC-MF, both the low-rank matrix approximation and matrix factorization-based
clustering are applied, and IC-MF incorporates the historical results and the relationship between the nodes of
the current step and previous step. To improve the accuracy of the increments, alow-rank approximation of the
adjacency matrix is obtained at each time step, and makes IC-MF work directly in the low-rank subspace. The
main idea of IC-MF is to make use of the similarity between two consecutive time steps to quickly update the
approximating subspace. The performance and efficiency of the algorithm are demonstrated by traffic CPS ex-
periments on the real and synthetic data sets. The experimental results show the effectiveness of the proposed
algorithm for clustering multiple evolving data streams.

KEYWORDS: Cyber-Physical Systems (CPS), Sensor Data Streams, Incremental Clustering, Matrix Decom-
position.

1. Introduction

The Cyber-Physical Systems (CPS) has been applied  ing[18]. The CPS contains a large amount of sensors
in a wide range of domains, such as traffic systems, that generate abundant data records in real time. In
energy and industrial automation, health and bio- the CPS,large amounts of sensor data need to be effi-
medical agriculture, etc. So the CPS has become ciently stored and processed to extract useful infor-
an active topic in data mining and machine learn-  mation [14].
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Traffic Cyber-Physical Systems are anticipated to
achieve full coordination and optimization of traf-
fic systems via the increased multiple sensor data
streams between the transportation cyber systems
and traffic physical systems [18]. In this paper, we will
focuse on finding out interesting and useful knowl-
edge by analyzing the correlation among multiple
sensor data streams. In some cases, the correlation
between sensor data streams reports unusual or ab-
normal events; such a relationship change may imply
fundamental changes of the monitored objects and
possess high domain significance. Mining multiple
sensor data streams is an area of research that at-
tempts to extract useful information by analyzing the
correlation among these multiple data streams [26].

The clustering is the most widely used to take data
mining automatically. The similar data streams are
put together into a group or the dissimilar ones are
separated into different groups. By clustering mul-
tiple sensor data streams dynamically, we observe
the changes of cluster numbers and the members of
each cluster, and then the useful information can
be extracted to make decision or manage data in
various applications. One of the challenges of sen-
sor data streams is the dynamic nature. At different
time-steps, the number of data streams (insertion
and removal of sensor data streams) or the number
of clusters structure (insertion and removal of clus-
ters) might change. It is expected that the algorithm
can discover the change over a series of time-steps to
clustering multiple sensor data streams.

To discover the changes in the communities at each
time-step, there exist some incremental and evolu-
tionary clustering algorithms that are designed to
handle dynamic data [3, 17, 24, 25]. However, sensor
data streams require the incremental algorithms to
handle not only reflecting the corresponding change
among data streams. In the practical applications, the
monitored processes generating time-stamped data
may change drastically over time. This also requires
the algorithm to be robust enough as a dramatical
change happens from one time-step to the next. The
clustering algorithm for multiple sensor data streams
also can be used to identify data that deviate from his-
torical patterns. Clustering at a particular time-step
should be based on the associations between data
streams at the time-step.
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Graphs are used in a wide range of complex systems,
such as traffic system, sensor network, social network,
and so on, since they capture the general notion of an
association between two entities [20, 23]. Matrix can
be regarded as a common representation of a graph,
such as a similarity matrix for a graph. The nodes
of the graph are sensor data streams, and an edge is
formed among each pair of nodes. The weight of each
edge reflects the similarity at one time step between
each pair of sensor data streams.

In this paper, the Incremental Clustering algorithm
for multiple sensor data streams of traffic CPS is
proposed based on low rank approximation Matrix
Factorization (IC-MF), which can monitor the distri-
bution of clusters over multiple sensor data streams
based on their correlation. Comparing with cluster-
ing directly the multiple data streams periodically,
an efficient incremental clustering update is applied
in this paper. This work is focusing more on multiple
sensor data streams based on the correlation evolving
over time. To improve the accuracy of the increments,
a low-rank approximation of the adjacency matrix is
used at each time-step. This algorithm acts directly
on the low-rank subspace. The main idea of IC-MF is
to apply the similarity between two consecutive time-
steps to quickly update the approximating subspace.

The rest of the paper is organized as follows. Related
works are given in Section 2, which includes clus-
tering data streams, matrix decom- position and its
applications. Preliminaries and similarity in IC-MF
are given in Section 3. The detailed procedures for
mining multiple sensor data streams are presented in
Section 4 and 5. Section 6 presents the experimental
results and finally we conclude the paper with a sum-
mary and discussion of the future work in Section 7.

2. Related Works

2.1. Clustering Data Streams

Data streams mining has become an active area in data
mining community [12]. The goal is to process the in-
coming data efficiently without recalculation from
scratch and without buffering from much historical
data. Because of its importance and expressiveness,
various problems are studied under data streams min-
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ing, such as clustering, classification, and so on.

Clustering multiple data streams or grouping data
streams is supposed to process at each time stamp.
Various research works have been reported [2, 5, 6,
25]. Joint clustering framework of multiple networks
includes an online component that periodically com-
putes and stores detailed summary statistics and an
off-line component which responds to a wide variety
of inputs [5]. Beringer and Hullermeier discuss clus-
tering over parallel data streams [2]. The Discrete
Fourier transformation (DFT) is used to summarize
the data streams, and an online version of the classi-
cal K-means clustering algorithm is proposed. An in-
cremental update mechanism was used to avoid the
recalculation of DFT coefficients, and the data pro-
cessing method that minimizes time was proposed
in reference [18]. A COD (Clustering on Demand)
framework was provided to dynamically clustering
multiple data streams [9]. In [25], Yeh et al. proposed
the COMET-CORE framework for online clusters over
multiple evolving streams by correlations and events.
DGClust (Distribute Grid Clusting) algorithm is
applied in clustering distributed sensor data streams,
which reduces both the dimensionality and the com-
munication burdens [19]. The core of DGClust fo-
cuses on online discretization of data, frequent state
monitoring, and online partition clustering. For ex-
ploring data correlation in sensor networks, o — local
spatial clustering algorithm constructs a dominating
set as the sensor network [16]. The data aggregation is
based on the performance of the dominators in terms
of their information description/ summarization.

However, these methods are applied in clustering
data streams over a period of time, and the correlation
between data streams can change in that period. An
incremental approach to clustering for data streams
over time is a relatively new topic, such as incremen-
tal spectral clustering, evolutionary clustering. Incre-
mental algorithms on web data gain more and more
attention [8] with the success of Google. Evolutionary
clustering has been a relatively new topic and was
first formulated by Chakrabarti et al. [3]. Evolutionary
clustering simultaneously optimizes two potentially
conflicting criteria, i.e., the clustering should fit the
current data as much as possible, meanwhile it can
not deviate dramatically from the historic context. It
is important for the clustering algorithm to adapt to
the recent changes in the evolving data. So Wang et
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al. proposed ECKF (Evolutionary Clustering based
on low rank Kernel matrix Factorization) framework
for evolutionary clustering large-scale data based on
low-rank kernel matrix factorization [24]. Chi et al.
[4] stepped further to evolutionary spectral cluster-
ing by incorporating temporal smoothness. In [17], an
incremental approach is presented by extended stan-
dard spectral clustering to handle evolving data. The
exigent-system and the cluster labels are incremen-
tally updated as data points are inserted/ deleted or
similarity changes occur.

2.2. Matrix Factorization and Applications

Graphs are applied in a wide range, such as transpor-
tation networks, sensor networks, social networks,
and so on. The various problems are researched under
graph mining. To find clusters in graphs is a new chal-
lenge if the graph is evolving over time. The matrix is
a usual representation of a graph. The relationships
between matrix factorization and k-means clustering
have been explored [9].

The SVD (Singular Value Decomposition) has been
served as a building block for many important appli-
cations, such as PCA (Principal Component Analysis)
and LSI (Latent Semantic Indexing) [13]. SVD factor-
izes a matrix with the general form of A =~ SVDT, where
S is a unitary basis consisting of left-singular vectors
of A, D is a unitary basis consisting of right-singular
vectors of A, and V is a diagonal matrix with singu-
lar values on the diagonal. In SVD, since matrices S
and D are allowed to have negative eigenvalues, the
projected data might have negative values in spite of
the original data being positive. This can prevent the
clustering results from be intuitively applied, such as
documents or images that have a positive data input.

Nonnegative Matrix Factorization (NMF) [6,15] is a
linear and non-negative approximate data represen-
tation technique. NMF focuses on the analysis of data
matrices whose elements are nonnegative, a common
occurrence in data sets derived from text and imag-
es. The non-negative data matrix A is factorized into
matrices F and G as A ~ FG', with the constraints that
FeR¥ and GeR™* are non-negative. It is distin-
guished from the other methods by using non-neg-
ativity constraints. Semi-NMF and Convex-NMF
algorithms are to expand the range of application of
NMF [10]. Semi-NMF usually offers a low-dimen-
sional representation of data points which lends itself
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to a convenient clustering interpretation. The matrix
G is restricted to be nonnegative while placing no re-
striction on the signs of F'and allowing data matrix X
to have mixed signs. Convex-NMF restricts the col-
umns of F' to be convex combinations of data points
in X. The NMF clustering method has been proposed
[10], where F is considered to be a centroid matrix as
every column represents a cluster center, and G is the
cluster indicator matrix.

In particular, the result of the K-means clustering
run can be written as a matrix factorization A = FG7,
where A is a data matrix, F contains the cluster cen-
troids, and G contains the cluster membership indica-
tors. Nonnegative matrix factorization focuses on the
analysis of data matrices whose elements are nonneg-
ative [15].

To extend the applicable range of the NMF method,
when the data matrix is unconstrained, Semi-NMF is
motivated from the perspective of clustering [10]. The
NMEF restricts G to be a nonnegative while placing no
restriction on the signs of F. For reasons of interpret-
ability, the Convex-NMTF constrains the basis vectors
F=(f,-,f). Thevector defining F'lies within the col-
umn space of A: f; = w,a, + -+ + w,a, = Aw, or F = AW.
It can be applied to both nonnegative and mixed-sign
data matrices. This constraint could interpret the col-
umns f; as weighted sums of certain data points and
these columns would capture a notion of the centroid.

However, the traditional NMF, Semi-NMF, and Con-
vex-NMF are linear models and they may fail to dis-
cover the nonlinearities of data streams. In real world,
the data streams have potential nonlinear structure.
The kernel method is a powerful technique in deal-
ing with nonlinear correlations. To achieve linearity
of the nonlinearity, the kernel method is to map the
datanonlinearly into a kernel feature space. The Con-
vex-NMF method can be accomplished in the kernel
feature space to process the nonlinear data.

Although these methods are successfully applied, the
graphs require the huge amounts of space. Indeed,
several important applications can be modeled as
large sparse graphs, such as traffic network analysis,
social network analysis. Low rank approximation for
the matrix of a graph is essential in finding patterns
and detecting anomalies. It can extract correlations
and remove noise from matrix structured data. This
has led to the development of these methods, such as
Column and Row (CUR) decomposition [12], Com-

2019/1/48

pact Matrix Decomposition (CMD) [22], and the fam-
ily of Colibri [23].

The matrix CUR decomposition [12] is a powerful
technique for low rank matrix decomposition. It
can be regarded as an approximation of a matrix A~
CUR, where A e R™™", C'is an mxc matrix consisting of
C randomly picked columns of A, R is an rxn matrix
consisting of » randomly picked rows of A, and U'is a
cxr matrix computed from C and R. The CUR decom-
position is operated by first selecting the representa-
tive column and row exemplars as the left and right
matrices according to their probability distributions
and then computes the middle matrix based on these
two matrices. CUR decomposition both reveals infor-
mation about the structure of the matrix and allows
computations to be performed more efficiently.

The CMD [22] can be employed to obtain sparse low
rank approximations. Each unique sample is scaled
up based on square root of the number of times in
the initial subspace. The CMD is often used to de-
tect anomalies and monitor time-evolving graphs. In
comparison to CUR, CMD not only achieves equal
accuracy as CUR, but also takes less space and com-
putational. Moreover, CMD not only can analyze stat-
ic graphs, but can handle with dynamic graphs. The
family of Colibri[23] islow rank method for static and
dynamic graphs, respectively. Colibri-S saves space
and time by eliminating linearly dependent columns
while iterating over sampled columns to construct
the subspace used for low rank approximation. Co-
libri-D builds on Colibri-S, and performs incremental
updates efficiently, by exploiting the “smoothness”
between two consecutive time steps.

3. Preliminaries and Formulations

3.1. Problem Statement

For a highway traffic monitoring system, the records
of the traffic flow are generated in real time. We as-
sume that data items arrive synchronously. That
means that all data streams can be updated simulta-
neously. The data streams will be updated each time
new blocks of values arrive. It is reasonable to assume
that the sensors are the points in the graph and an
edge is formed between each pair of sensors. These
data records can be used to construct graphs of traf-



Information Technology and Control

fic networks periodically. The details are depicted as
follows.

Let G® = (S®, E®, WY) be a graph associated with
the sensor network of traffic system at time t, where
si”e S® represents the set of sensors associated with
graph G, eg) e E® represents the set of edges between
sft) and sy), and pff) € WY denotes the edge weight of
ef}). We assume that G® are n sensors generating data
streams simultaneously. Without loss of generality,
we use the adjacency matrix X € R™" to represent a
graph with weights G© = (S©, E®, W®). The weight pg)
on each edge is a function of the similarity between
sensors 5§” and 55” at t. XO(i, j) is the element at the
ith row and jth column of the matrix X®, X©(,, ) is the
jth column of X®. Every row or column in X® corre-
sponds to a node in S®. If there is an edge from node
s € S tonode s € 8 with similarity p);’, we set the
value of X®(i, §) to pf/') € W®, Otherwise, we set it to
Zero.

At time ¢, the clustering algorithm partitions G®
into k clusters. The mode of cluster is defined by
CY ={AY,A, - A} Vi€ {1, k}. A, should meet the
following conditions:

k
@ UA" =155}
i=1

) Na’=e;

(¢) The similarity of Vs

s € 55 determined by p.).
The cluster A, is a set of similar data streams such that
Al = {sf'),u-,é"g,]‘} (|A, 9] is the total number of streams
in A,%). The set of all clusters found is represented by

(C(t).
3.2. Correlation Coefficient

In traffic CPS, the data source is assumed to generate
a large volume of real time event records for massive
sensor data streams. Comparing with static time se-
ries, it is desirable to track a time-evolving correla-
tion that captures their changing similarity.

Since the sensor data streams can grow infinitely and
arrive continuous, it is often difficult to buffer and
process all data. We consider readings within a pre-
defined time window of length w. The most common
type of time window is sliding window that has the
fixed length and comprises the w most recent obser-
vations. To support efficient processing and evolving
for sensor data streams, we divide the data streams
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of length w into m blocks. The length of each block
equals /, which means that w ={-m. This time segment
is called a “block”. The data streams will be updated
in a “block-wise” manner. Whenever a new block of
length [ accumulates, the algorithm builds a new slid-
ing window by inserting the new block into the be-
ginning of the sliding window, and removing the old
block from the end. Then, the algorithm clusters the
data in the new window. The process of multiple sen-
sor data streams over a sliding window is depicted in
Figure 1.

Figure 1
Sliding window w divided into [ blocks of size m

w=1-m Bnew
>

/
%

l : /?
% : //
L 7
1 LA -
] - :
S |
" : time
t-w+1 t -
B w=1-m

In Figure 1, B, B,-, B, denote a sequence of
blocks, B,={S".5".-+,8/"}, B,={s", 5", 5"}

B =8 gt L. 8"V For monitoring clusters
among multiple sensor data streams evolving over
time, it is not desirable to compute the similarities p;
from scratch at each time point ¢. The observations of
data streams usually change rapidly over time. It im-
plies that the rise or fall of one data stream impacts
the behavior of the other data streams. To discover
potential anomalies and capture various trend or pat-
tern types based on the time-evolving nature of these
relationships, we discuss lagged correlation between
two sliding windows for two sensor data streams. If X
and Y are two random variables, the Pearson correla-
tion is defined as follows

plp,v) = E(N”);f(M)E(V)’ @

nov
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where g, and g, are the standard deviations of £ and v,
respectively, and E(uv), E(u) and E(v) are the expecta-
tions of random variables y, v, and po.

Given the sliding window w, the lag & of data
stream S =(s,,s,.,s,) is denoted as S “(e) =
(Sis11> Simwez™s Siwee)- Liag € is a positive integer. The
lagged correlation p,f]'.’”)(s) between two data streams
5" and Sj“') atlag ¢is computed by the following equa-
tion:

t—e —_ —
p;.w)(g) _ ZT=HU+1 (Sz',ws B Si)(sfx,r B s].) ’ @
Uiaj

where §; and S; are the mean values in the shifted
sliding window [t-w+1+¢t] and [t-w+1,t-¢], re-
spectively, and o, and g; are the standard deviations
in [t-w+1+¢gt] and [t-w+1,t-¢], respectively. Once
e=0, ,05;“”)(0) is the local Pearson’s correlation. In a
stream context, the lagged correlation can be comput-
ed as follows[26]

t t—e
E S. E S.
_ t—wtlte @ t—wtl J

w—¢ (6))

0.0 .
v

w)

where ¢"(¢) is the inner product between the shift-
ed windows S, [t-w+1+et] and S, [t-w+1,t-¢],
> .5 and 300 s are the sum over the two
shifted windows, respectively, and o, can be comput-
ed as follows

t 2
0-7; — Z;“Hrpre (5i>2 _ (Et—w+1+g Si) , 4)

w—¢
where Z:w“ﬂ (s)" denotes the sum of the squares
of the shifted window [t-w+1+¢,t]. The value of o,
can be computed similarly in the shifted window
[t-w+1,t-¢].
Inthe case of multiple data streams, two different data
streams are regarded as two independent random
variables. The recent data are usually more important
than the aged data. To reflect the bias toward data, the
weighted correlation measurement for incremental
updating will be chosen by this works[25]. Given a
fading function f(¢), at one time step t, the correlation
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coefficient between two data streams .S, and S; based
on Pearson correlation can be defined as follows

’lﬁ(w)(E) . ZZ—ur+1+e f(t)szZ::z,H f(t)sj

7 (e) = Y w—¢ ®
Y 0’;0"].

where f(t) is a monotonically non-decreasing func-
tion of time index ¢ [25], and o] can be computed as
follows

(0w |
G .

At different time steps, the data size or the data struc-
ture might change. We observe a set of new edges,
with associated edge weights. The adjacency matrix
X can be built by incrementally updating its data re-
cords in a “block-wise” manner.

a,=3 )

3.3. Low Rank Approximation

In this paper, the problem for clustering multiple sen-
sor data streams is treated as a matrix decomposition
problem. It is assumed that the large graphs are con-
structed by the multiple sensor data streams which
can generate a large volume of event records at time ¢.
At each time step, by exploiting the “smoothness” be-
tween two consecutive time steps, the adjacency ma-
trix X will be incrementally updated. Once the adja-
cency matrix X € R"" is constructed, the next step is
going to be matrix decomposition and error measure.

To find patterns and detect anomalies, low rank ap-
proximation is a good indicator to identify the com-
munity in the graph. Such as SVD, CUR, CMD, and the
family of Colibri can be applied to the adjacency ma-
trix X for generating a low-rank approximation. A unique
and independent subspace Cis formed with an iterative
procedure, and subspace Cis constructed by using the
biased sampling method [12]. The family of Colibri is
to eliminate linearly dependent columns to construct
the subspace used for low rank approximation from
the data matrix X [23]. The subspace C is initialized
with C = C,(;,1) and the core matrix U is written as
U = (C"C)". The approximation matrix X can be
written as X = C UR", where C, € R™ (R, € R") con-
tain c¢(r) scaled columns (rows) sampled from X, and
U eR™ isa small dense matrix which can be com-
puted from C, and R.. The core matrix U = (C*C)' is
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the Moore-Penrose pseudoinverse of the square ma-
trix CTC. In the next iterative process, the ith column
of matrix C, is checked to see if it is linearly depen-
dent on the current columns of C. If not, this column
is appended to C and the core matrix U is updated;
else, this sample is discarded. In the end, Cis obtained
by eliminating all the redundant columns from C,,.

If the subspace matrix C is given, the approxima-
tion of the original adjacency matrix X can be writ-
ten as X = C(C"C)'C"X. The core matrix U satisfies
U=(C"C)*. R"is defined as C*X. The final approxima-
tion of X can be written as X = CUR" .

The metric for approximation error is useful for
anomaly detection, where a sudden large error may
suggest structural changes in the multiple sensor data
streams. The square of the Euclidean distance and the
generalized Kullback-Leibler divergence are common
metric. In this study, we minimize the distance func-
tion D(X || X) between the adjacency matrix X and
the product of latent factors X. The distance function
is defined as follows

DX [| X)

=|x-%[ = ;(X.. -X,). .

Notethatif ) | X =} X =1 thedistancefunction

reduces to Kullback-Leibler divergence measure.

4. Matrix Factorization-Based
Incremental Clustering
Framework (IC-MF)

4 1. Clustering Framework for Multiple
Sensor Data Streams

To achieve an incremental clustering in a sliding
window w, the graphs can be constructed periodi-
cally (e.g., one graph per block). For example, we can
construct graph G™ and G™ for time block m and
m-1, respectively. Let X™ and X" be the adjacen-
cy matrix associated with graphs G and G, respec-
tively. In addition, it is assumed that there is a third
set of edges connecting the nodes between G™ and
GD, We denote the adjacency matrix for these edg-
es as X' When a new time block m-1 is coming,
we can construct the adjacency matrix X by updat-
ing its entries as data records are coming in. Each
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new record triggers an update on an entry (7, j) with
a value increase of Ap, i.e., X®(@3, ) = X9®, j) + Ap, we
can get adjacency matrix XV, Then, we will update
the matrix C{"*" and try to identify those linearly in-
dependent columns C™* within C!"*" as well as the
core matrix U, The core matrix U™ is updated
simultaneously with more columns added in X, At
the end, R™ is computed by the following equation:
(RO™D)T = (CmDYT XmeD),

To consider the similarity between two consecutive
time steps, the previous results and the correlation
between two blocks will be embedded in the model
with the cost of deviating from an accurate represen-
tation of the current data. We can minimize the ob-

jective function in equation (8) with respect to R,
R(mfl)’ U‘(m)’ U‘(m—l)’ and U’(mfl,m):

J= D(X | CLU R :
D( (m—1) H Og(m (m— I)R m—1) )r+ , (8)
D(Xm 1,m) HRm)Um lm (m—1) )

where X is the approximation of the adjacency ma-
trix X, C'\" is the subspace of the adjacency matrix
X, U™ is the weight matrix at m, R is the cluster
indicator matrix at m, and similar definitions are
made for X™Y Cﬁ{"’” and U™V, Next, we interpret
the role of X i ) and U™ matrix in the objective
function. X ™ is the approximation of the adjacen-
cy matrix Xt U-1m reflects the correspondence
between the subgroups derived from X ™, Indeed,
the objective function can be rewritten as follows

J =
. o(m) - .
min ZXf/m) log — ;] — _X(vm_*— (C(,('")U('")R“”J )U +
m)p7(m) pp(m 2
; [cyu ™R,
~ v (m—1) ~ L)
ZXZH) log e _ — XY 4 [plr-vy bR .9
. [Cﬁ\mf U(mf )R\m? ) ]k\
T(m—1,m)
ZXW—LM log th _ X(m—l.m) + [R<m)Uzm—l.m)Rm—U"]
- ik [R(W)Um Lm) pa(m F ]w ik ks

We take the partial derivatives of J with respect to
R™ and R™ in equations (10) and (11) (the partial
derivatives with respect to U™ and U™ can be sim-
ilarly derived).

N | ( [ (m)pr(m )]
Z m X aj 4 [C m)yr(m ]
aR Y E [y R Y
M 7X[m lm)[R m 1;U(m71.m)'1] 5 GO)
+ ia aj + [R(mfl)U(mfl,m)r ]
— [R(m)U(mq.m)R(mq)" ] aj




Information Technology and Control

X(mfl)[C(Tnfl)U(m—l)]
ia X aj (m=1)77(m~1)
M —+[C U }
(m=1)p7(m=1) pp(m=1) X aj
aR m—1) Z U ]m
- > (D
N _Xl(umfl.m)[R(m)U(mfl,m)]M R
L+ Ry
[R(m)U(m—l,m)R(m—l)l ]m aj

Given the objective function (9) and its partial deriv-
atives, the updates of the these matrices R™, R,
U™, U and U™ ™ can be solved by using a gradient
descent approach. Now we give an iterative matrix
factorization with asymptotic convergence based on

updating rules:

R(W) P R(m) %
¥ Xm)[(]/v m U(m)] M Xm l,m)[R(m ngrm l,m)T]

2 >

p [C);n U(m)R m)" ],”
S [ A rm) SN -1y pm—1m)”
Z;[CX'U 1, +Z;[R gttt

aj

[R(m)U(m—l.m)R(m—l)T ] N (12)

ia

R RUn1
o m=1)1F(m— 1) (m—1)
o XDy ]

o [Cg(mfl)U(m ) Rlm-1)"

Z[le ml

a=1

X m—1m) [R(m U m— l,m)]
aj
m)U m—1,m) R m— 1)T] ’ (1‘3)

i

- lm

i

U(m Lm)  prlmetm) o

X(’” Lm)
Za 12}7 1[

(L [R“"] [, )

U(m U(m) x
o lew] ]

Za 1Zb 1 R( n)’! ]
(Z;zzl szl{OXm ]m [R(m)]bj)

T
Y Y X(m—l)

o Rt .

b=1 1 1 (m—1
[y RIT .
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The proofs of correctness and convergence of the up-

date formulas are given in Section 5.
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4.2. Algorithm Description

At the beginning of this section, the IC-MF frame-
work is shown in Figure 2. It consists of two phases:
the preprocessing phase and the clustering phase. In
the first maintaining phase, the coming data streams
have statistical property are statistics, and will be
preprocessed. We will try to reveal the cluster evolu-
tionary in the clustering phase.

Figure 2
IC-MF Framework

Data Streams

Preprocessing

S

:"’ Data LN similarity
E

[

I
I
I
Summarization —/| Measure |
I
I
I

S
e e e e e e o —— —— —— — —
L § SR
l Error Low Rank Matrix | Cluserin
| Measure Approximation Decomposition | 9
! |
e e e e e — -

Algorithm 1 summarizes the whole procedure of the
proposed IC-MF. Based on the statistical and similari-
ty measure, suppose the adjacency matrices X, XD
and X are given, as well as the clustering results
including U™ and R™. Now we need to obtain U™
and G™, as well as the new representative subspace
and approximation. The variable factors are initial-
ized by the previous clustering results instead of ran-
dom values to improve the clustering efficiency [10].

Algorithm 1: Tteration Updating

Input: Matrices X™, X™D, X01m and maximum
iteration T'

Output: Matrices R™, R™D and U™

1 Initialize R™, RV, U™, R™-D and U™
Repeat

Fori=1:Tdo

Update R™ via Eq. (12)

Update R via Eq. (13) with R™

Update U™ via Eq. (14) with R and R™
Update U™ via Eq. (15) with R®™

Update U™V via Eq. (16) with R

W N o0 61 A W DN
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9 Set R « R™' Ron-D ( Rm-1 [Jim) (_ [Jim)
U’(m—l) — U’(m—l)’ and U'(m—l,m) — I]'(m—l,m)'.

10 If (converged) then

11 Break

12 End if

13 End for

14 Until converged

15 Return R, R®-D and U@™-1m

Since the correlation between data streams will be
changed, IC-MF reports cluster results through ma-
trix factorization and low rank approximation for
multiple sensor data streams, which is an incremen-
tal clustering algorithm. This algorithm can deal with
the problem of continuously monitoring clustering
structures of multiple sensor data streams from sen-
sor networks. The adjacency matrix is constructed
and analyzed based on the data streams generated by
the sensors of applications. In Algorithm 2, the clus-
tering result is generated from each sliding window w,
in which w depends on the user. The number of clus-
ters mustberecalculated in each w. As soon as the cor-
relation coefficients in w are available for all streams,
the iteration updating algorithm is used to obtain the
clustering results. As the time goes on, the results C™
of cluster at the new time step are compared with the
cluster results C“" at current time step, so the evo-
lution of event can be mined. These results can be fed
into different mining applications such as anomaly
detection and state analysis.

Algorithm 2: IC - MF (S, s, e, w, )
Input: Data set .S, start time s, end time e, time hori-
zon w, length of block [;

Output: EvolutioneventT' = {C",C?, ..., C"V, C™}

1 While (m =1: lw/l‘){

2 Construct the adjacency matrices X, XD,
X(m—l,m);

3 Determine the cluster number k®;

4 Associate the nodes and clusters between two
blocks, and R™, R™V and U™ '™ are obtained by
Algorithm 1;

5 If ((C(m) - C(cm'rent)){
6 T=TUu{C™};
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7 m=
g Cm
9}
10}
11 Return T;

m+1;
— (C(m).

5. Theoretical Analysis

5.1. Correctness and Convergence

We consider the objective function (9), whose con-
strained solution satisfies KKT (Karush Kuhn- Tucker)
complementary conditions under the updating rules
in (12)-(16). The proof can be shown by using the aux-
iliary functions.

Definition 1. Z(R™, R™7) is an auxiliary function
for J(R™) if the conditions Z(R™, R™D) > J(R™),
Z(R0D Rm-D) = J(R™D) are satisfied.

Lemma 1: For any R™ and RV, if Z,(R™, R™) and
Z,(R™, R™V) are auxiliary functions for J,(R™) and
J,(R™), respectively, then Z = Z, + Z, is the auxiliary
function for J = J, + J,. Furthermore, the objective
function J decreases monotonically under the condi-
tion R™ = arg m1n Z(R, R™™DV) .

Proof: The proof that Z is an auxiliary function of Jis
as follows:

J(R™) = J,(R™)+J,(R™)

S ZL(R m 71% m—1) )+ Z (R m) R(m—l)) (17)
S ZI(R m— 1) (m—1) )+ VA (R m—1) R(m—l)) )
— J(R(m 1) )

Thus, Z(R™, R™-Y) < Z(R™-), R™-V), J(R™) < J(R™-Y),
The proof'is complete.

Theorem 1: For fixed RV, U™, U™ and U™ ™, the
update formula for R given in equation (12), the ob-
jective function in (9) decreases monotonically.

Proof: Lemma 1 suggests that it is sufficient to show
that minimizing the auxiliary function of the sum-
mation decreases the overall objective function[4].
To prove the correctness and convergence of our pro-
posed algorithm, here we give the auxiliary function
Z, for the term D(X™ || ¢"U" R™") which is quadratic
in R™. The auxiliary functlon for other terms can be
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similarly derived. First, the objective function can be
written as follows:

~ X(m)
_ (m if
J, fZXU >1og70 - ] -
! X i (18)

o m gm* ]
ij

X

X 4

K

By minimizing D(X™ || cu om) Rm* ), we can obtain
the updating rule of R as follows:

N X(m)[c(m)U(m)]m

Z ja Mx

— [C m)y7(m) m)I Lj

(m)yr(m
>lopu,
a=1

To ensure Z,(R, R™) > J,(R™), the parameter a,,, is de-
fined as follows:

R(m) e R m) (]9)
kg 1)

(C('"’) o g
ik

X KOTY

le% =
kil (m) (m) p(m
Zm(CX ir Uks st

Obviously, Zm a =1.We use convexity of the log-
arithmic function to derive the following inequality:

_ (m) (m) (m)T
logZ<C’X )%kUu R" <
Kl

mpm® (21)

)’]‘ ‘ (20)

Substituting (21) in (18), the following expression is
obtained

( (m) Hcm (m)>§

Xm 1 X (m) _ m) m) 1 X UH ] .
og Z% gt

D

ij

C<m>) U“’”RW'

T (m) ( X ik
XU day, log e BV
Kl

a,

+ Z(C m )L- ("L (m)‘

Considering o, in equation (22), the following objec-
tive function is obtained

K

(C(m)) U(m)R(m‘

2

i

Xf;n) log Xl(]m) _ (m _ (]m ( T «
i m m) p(m
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X
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Equation (23) is the auxiliary function of J,. We de-
note it as Z (R, R™). Taking derivative of Z, with re-
spect to R ™ we have

(C’W) g
in ke T Tap

X
(m) (m) p(m)" p(m)
er (CX )H. U, RSP RM (24)

(m)
kq

,Z (m)
2l

Letting 07, / GR;Z") =0, we obtain the updating rule as
follows

5R m)
Pq

(m) m)yr(m)
N
i m m m)’
R(m) — R(m) [Cﬁ( )U( )R( ) ]iP ({)5)
pq Pq ZN [C(m)U(m)] ’
i=1t" X iq

Equation (25) is the same as (19). Similarly, the term
D(X(W*LW) || R(m)U( -

T 0
m=bm RO can be written as

X(m—l,m)
Jz = ZX;@AM) log ( )1]( —1m) p(m—1)"
i JBCUSTTR, (26)
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Xz‘k + Zkl R ¢ Ukl le

ik
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Taking derivative of equation (28) with respect to R;j)
and equating it to zero, we have
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Minimizing the original objective function (8) with
respect to R, we have

miI)l J(R(m)) — H}in (J1(R(m)) + Jz(R(m)))
RO )
(30)

< min(Z,(R,R™) + Z,(R,R™))
Rm)

Taking derivative of Z,(R, R™) + Z,(R, R™) with re-

spect to R™ and equating it to zero we get update for-

mula (12). By Lemma 1, we know that the objective

function in (30) is monotonically decreasing. The

proofis complete.

Similarly, by reversing the roles of R, U™, U™V and
U™ the update rule for R P hasbeen given in (13).
The objective function is decreasing monotonically
and the other three update rules are all similar.

6. Experimental Results
6.1. Evaluation Methods

The candidates for comparison include normalized cut
by Shi and Malik [20]. In this paper, Ncut and Ncut-M
refer to normalized cut algorithm applied on the in-
dividual block and multi-block, respectively. We also
compare it with the other algorithms at the same ob-
jective function given in (9). For a comparison, we ap-
plied the following evaluation metrics.

To evaluate the clustering quality, all our comparisons
are conducted using Normalized mutual information
(NMI). Between two random variables CAT (Catego-
ry Label) and CLS (Cluster Label), Normalized Mutu-
al Information (NMI) is defined as follows [25]
NMI(CAT,CLS) = [(CAT.CLS)
JH(CAT)H(CLS)

(31)

where I(CAT, CLS) is the mutual information be-
tween CAT and CLS.

The entropies H(CAT) and H(CLS) are used for nor-
malizing the mutual information to be in the range of
[0, 1]. Before presenting the results of quality evalua-
tion, we discuss the definition of NMI. The NMI can
be depicted as:

Hao) jx0] n- ni .
D2t log|
i=1 j=1 i n-n

i g

NMI =
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where 7 is the number of documents, n, and n, denote
the number of documents in category ¢ and cluster
J, respectively, and n,; denotes the number of docu-
ments in category i as well as in cluster j, and £® and
k® are cluster numbers of the true and predicted clus-
ters. The NMI score is 1 if the clustering results per-
fectly match the category labels, and the score is 0 if
data are randomly partitioned. The higher the NMI
score, the better the clustering quality.

The CPU spends time in computing the output matri-
ces as the metric to quantify the computational expense.
Note that all the experiments are implemented on
the same machine. At each time step, for each given
clustering number, 10 times run will be implemented
in the experiment and the average value of these 10
times run results are obtained.

6.2. Synthetic Datasets

In this section, we apply synthetic datasets to demon-
strate that IC-MF can efficiently cluster data for mul-
tiple evolving data streams over time. The number of
nodes and the number of clusters at each time step are
given. The synthetic datasets are generated by apply-
ing prototype systems used in [2], which is defined as
follows: f(t + At) = f(t) + (¢t +AL), £t +At) = () + u(t),
in which f(*) is a stochastic process, t = 0,At,2At,...,
u(t) are independent random variables uniformly
distributed in an interval [-a,a]. So, the data stream
S() can be defined as S(¢) = f(¢ + h(t)) + g(t), where h()
and g(-) are stochastic processes that are generated
in the same way as the prototype f(*). The constant a
determines the smoothness of a data stream, and can
be different for p(), h(-) and g(*), for example, 0.05, 0.1

Figure 3

The average NMI value with the number of data
stream variation
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and 0.2, respectively. In this paper, we apply a window
size of w(t) seconds to construct an adjacency matrix
every w(t) seconds.

To examine the quality of IC-MF for clustering mul-
tiple data streams, we generate random datasets with
the number of streams ranging from 10 to 1000. Each
stream has a length of 2000 points. For each method,
the length of the block is 100 points. The average NMI
values for three methods of synthetic datasets are
plotted in Figure 3. As expected, IC-MF is manifestly
more efficient than other three methods. The reason
is that IC-MF incorporates the previous clustering
results and considers the geometric structure of the
data in this experiment.

The performances of four methods are given while
the time window evolving over time and the number
of clusters in the data varies from 2 to 10. The number
of streams is fixed at 400, and each of them contains
1000 points. The data streams are split into 10 win-
dows, and each window consists of 100 data records.
In Table 1, the averages NMI among four methods
with different time window on synthetic dataset are
shown. The IC-MF algorithm has highest NMI values
at evolving time steps, so this algorithm greatly out-
performs the others. The reasonis thatitincorporates
the last approximation results, clustering results, and
the connection between two time steps for clustering
multiple evolving data streams.

The average NMI values for each method with differ-
ent clusters are shown in Figure 4. We can find that

Table 1

The NMI among four methods with different
time windows

Time step Ncut Ncut-M C-MF IC-MF
1 0.35 0.42 0.54 0.73
2 0.38 041 0.53 0.69
3 0.39 0.39 0.66 0.78
4 0.31 0.43 0.54 0.71
5 0.34 041 0.69 0.74
6 0.32 0.45 0.51 0.68
7 0.33 0.39 0.67 0.72
8 0.3 041 0.57 0.75
9 0.29 0.36 0.51 0.68

10 0.36 0.37 0.53 0.79
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the NMI value decreases by applying these methods
as the numbers of clusters increase. This is due to a
greater number of clusters in the dataset, and the
clusters become closer to each other. The algorithms
merge some of the clusters and lead to the NMI values
of the clustering algorithms decrease.

Finally, the average processing time is evaluated for a

Figure 4

The average NMI value with the number of
clusters variation
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round of clustering multiple data streams. There are
different factors which can affect the execution time.
In the experiment, the effects of the window size and
the number of data streams on the response time are
evaluated by the compared algorithms.

The following experiment, the effect of window size
on the execution time is evaluated by four algorithms:
Ncut, Ncut-M, C-MF and IC-MF. In this experiment,
the window size w(t) from 300 to 3600, the number of
data streams is fixed at 400, each of data streams con-
tains 1000 points, and the dataset contains 4 clusters.
In Figure 5, as the window size increases, the average
processing time of these algorithms increases. The
y-axis shows the execution time, and the x-axis rep-
resents the window size w(¢). Although the time in-
creases for all these algorithms, the IC-MF algorithm
is superior to the others.

In Figure 6, the y-axis shows the execution time, while
the x-axis represents the number of data streams, and
the number of data streams varies from 10 to 1000.
The other parameters are fixed as follows: w(t) = 300s,
k = 4. The processing time of C-MF for the clustering
data streams is presented on the present time step.
Note that, as the number of streams increases, the
execution time of these methods increases. However,
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Figure 5

The average processing time when the window size w(t)
varies from 300 to 3600
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the time of the IC-MF increases much more slow-
ly than others. Since IC-MF and C-MF are all in the
approximation subspace, the execution efficiencies of
these two methods are higher than Ncut-M and Ncut.

6.3. Real World Datasets

The highway traffic monitoring system is a typical ap-
plication of the CPS. In real experiments, we employ
multiple sensor data streams of transportation system
to evaluate the performance of IC-MF. The datasets
are collected from the PeMS traffic monitoring system.
With the sensor devices installed on road networks,
the monitoring system watches the traffic flow of ma-
jor U.S highways in 24 hours x 7 days. The datasets are
collected from over 4000 sensors on 38 highways.

Inthe following experiment, the quality of the NMI on
real world datasets is evaluated by these algorithms.
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In this experiment, the window size w(t) = 3600s, and
the number of data streams is fixed at 1000. We extract
records generated in some day. In Table 2, the average
values of NMI among four methods during 00:00:00
to 23:59:59 on real world dataset are shown. The IC-
MF has more outperformance than all the other ap-
proaches, and it also has highest NMIs at evolving
time steps. The reason is that the IC-MF incorporates
the last approximation results, clustering results, and
the connection between two time steps for clustering
multiple evolving data streams over time.

Applying the real world datasets, we investigate the
relationship among multiple data streams evolve

Table 2
Average NMI on Real World Dataset

Time/hours Ncut Ncut-M C-MF IC-MF
1 0.28 0.3 0.35 042
2 0.29 0.31 0.38 0.41
3 0.31 0.32 0.39 0.39
4 0.21 0.27 0.31 043
5 0.24 0.3 0.34 041
6 0.33 0.35 0.32 0.45
7 0.22 0.24 0.33 0.39
8 0.2 0.28 0.3 0.41
9 0.19 0.23 0.29 0.36

10 0.23 0.25 0.36 0.37
11 0.25 0.27 0.35 042
12 0.28 0.31 0.38 041
13 0.29 0.3 0.39 0.39
14 0.22 0.3 0.31 043
15 0.19 0.29 0.34 041
16 0.21 0.25 0.32 0.45
17 0.2 0.27 0.33 0.39
18 0.19 0.29 0.3 041
19 0.17 0.29 0.29 0.36
20 0.23 0.3 0.36 0.37
21 0.21 0.31 0.33 0.39
22 0.22 0.3 0.3 041
23 0.19 0.25 0.29 0.36
24 0.2 0.29 0.36 0.37
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Figure 7
The average processing time on Real World Datasets
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in a period of time. By the records from the highway
traffic monitoring system, we apply a window size of
w(t) = 300s to construct an adjacency matrix. As
shown in Figure 7, C-MF is faster than IC-MF meth-
od. The reason is that the objective function of IC-MF
method has taken the previousresultsinto the current
time block. IC-MF is applied to the clustering multiple
data streams by matrix factorization in the low rank
approximation subspace, so IC-MF has more outper-
formance than Ncut-M. In addition, IC-MF takes less
processing time than the other algorithms.

6.4. NHST (Null Hypothesis Significance
Testing) of Algorithm Out-Performance

To verify the superiority and effectiveness of the pro-
posed algorithm, the NHST (Null Hypothesis Signifi-
cance Testing) of algorithm out-performance is verified
by the data sets collected from the PeMS traffic mon-
itoring system. The Wilcoxon signed-ranks test is a
nonparametric alternative to the paired t-test, which
ranks the differences in performances of two classifiers
for each data set, ignoring the signs, and compares the
ranks for the positive and the negative differences [12].

Let d, again be the difference between the perfor-
mance scores of the two classifiers on the i-th out of
N data sets. The differences are ranked according to
their absolute values; average ranks are assigned in
case of ties. Let R* be the sum of ranks for the data
sets on which the second algorithm outperformed the
first, and R™ the sum of ranks for the opposite. Ranks
of d,=0 are split evenly among the sums; if there is an
odd number of them, one is ignored:

2019/1/48

R* = "rank(d) + %Z rank(d.)
d.=0

>0

R = Z rank(d,) + %Z rank(d,) .

d,<0 4,=0

(33)

Let T'be the smaller of the sums, T'= min(R*, R").

For a larger number of data sets, the statistics are de-
fined as follows

- LN 41
7 4

= 1 > (34)
\/24N(N +1)(2N +1)

where N is the number of data sets. Z is distributed
approximately normally. With a confidence level of
o = 0.05, the null-hypothesis can be rejected if Z is
smaller than -1.96. In Table 3, the average NMI on
Real World Dataset is a part of Table 2.

Table 3
Average NMI values of the C-MF and IC-MF on Real
World Dataset

Time/hours C-MF IC-MF Difference  Rank
1 0.35 042 0.07 6
2 0.38 041 0.03 3
3 0.39 0.39 0 1
4 0.31 043 0.08 8
5 0.34 041 0.07 6
6 0.32 045 0.13 10
7 0.33 0.39 0.06 4
8 0.3 041 011 9
9 0.29 0.36 0.07 6

10 0.36 0.37 0.01 2

From Table 3,the sum of ranks for the positive differenc-
esis computed as R* = 6+3+0.5+8+6+10 +4+9+6+2=54.5
and the sum of ranks for the negative differences equals
R = 0. From (34), we obtain Z=-2.8. According to the
table of exact critical values for the Wilcoxon’s test,
for a confidence level of a=0.05 and N=10 data sets, the
difference between the classifiers is significant if Z is
smaller than -1.96. We therefore reject the null-hypoth-
esis. This is to say the difference between the two clas-
sifiers (C-MF and IC-MF) is significant.
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7. Conclusions

In this paper, the IC-MF method is proposed to ex-
tract and retain meaningful information on large
sensor data streams from the traffic CPS. The pro-
posed method is able to monitor the nonstationary
data streams, and also can dynamically construct
and analyze time- evolving data streams from sen-
sor networks. Compared with previous methods,
the proposed IC-MF algorithm can keep updating
an existing clustering model to mine the correlation
between multiple sensor data streams. IC-MF is an
incremental approach of matrix factorization to han-
dle evolving data streams over time. Based on matrix
factorization, a framework for clustering multiple
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