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Abstract. In this paper, a new approach (scheme) to the analysis of quad-trees in the discrete wavelet spectrum of a 
digital image is proposed. During the pre-scanning phase, the proposed scheme generates problem-oriented binary 
codes for the whole set of quad-tree roots (wavelet coefficients) and thereby accumulates information on the signi-
ficance of respective descendants (wavelet coefficients comprising quad-trees on the view). The developed scheme can 
be efficiently applied to any zero-tree based image coder, such as the embedded zero-tree wavelet (EZW) algorithm of 
Shapiro and set partitioning in hierarchical trees (SPIHT) by Said and Pearlman. Fairly impressive performance of the 
proposed quad-tree analysis scheme, in the sense of image encoding times, is demonstrated using the SPIHT algorithm 
and the discrete Le Gall wavelet transform. 
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1. Introduction 

Over the last few decades, the discrete wavelet 
transform (DWT), as well as wavelets themselves, has 
gained widespread acceptance in signal processing in 
general and in image compression in particular [1-4]. 
In many applications wavelet-based schemes (also 
known as sub-band coding) outperform other coding 
schemes like the one (JPEG) based on DCT [5]. Since 
there is no need to block the input image and its basis 
functions have variable length, wavelet coding sche-
mes at higher compression rates avoid blocking arte-
facts (so peculiar to JPEG). Wavelet-based coding 
provides substantial improvements in image quality at 
higher compression ratios, is more robust under trans-
mission of images and also facilitates progressive 
image reconstruction. 

Highly useful are image coders that allow prog-
ressive encoding with an embedded bit stream, such as 
the embedded zero-tree wavelet (EZW) image coder, 
suggested by Shapiro [6]. With embedded bit streams, 
the wavelet coefficients are encoded in bit planes, with 
the most significant bit planes being transmitted first. 
In that way, the decoder can cease decoding at any 
point in the bit stream, and it will reconstruct an image 
with required level of accuracy. Different variants of 
zero-tree based progressive image coders have been 
developed since Shapiro introduced his algorithm in 
1993. The SPIHT (Set Partitioning in Hierarchical 
Trees) algorithm, proposed by Said and Pearlman, 
shows excellent results in this class of coders [7]. 

Some other interesting ideas and innovative proposals 
in the area are presented in [8-12]. 

Embedded bit plane encoding is more efficient if 
one reorders the wavelet coefficient data in such a way 
that coefficients with small absolute values tend to get 
clustered together, increasing the lengths of the zero 
run in the bit planes. Data structures such as insignifi-
cant quad-trees (zero-trees) are very efficient in 
achieving such clustering of zeros. They are used in 
EZW, SPIHT, and other wavelet-based image coders. 

Though there is a number of wavelet-based image 
coding schemes available, the need for improved per-
formance and wide commercial usage demand newer 
and better techniques to be developed. 

Modest attempts to improve image encoding times 
in zero-tree based image coding procedures were 
made by Kunal Mukherjee et al. [13]. Unfortunately, 
their RMF (Recursive Merge Filter) based EZW algo-
rithm is bound up with Haar wavelets, and is abso-
lutely inapplicable to higher order wavelets (Le Gall, 
Daubechies, etc.). 

In this paper, we propose a novel idea (scheme) for 
the improved analysis of quad-trees in the discrete 
wavelet spectrum of the image under processing. The 
proposed scheme generates finite task-oriented binary 
codes for all roots (wavelet coefficients) of available 
quad-trees, estimates the current threshold value and 
makes a decision over the significance of wavelet 
coefficients (descendants) comprising quad-trees on 
the view. The developed scheme, being applied to 
SPIHT encoder, noticeably improves image encoding 
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times ( (3 11)%− , for lossless compression, and (5 – 
90)%, for lossy compression; Section 4) and, natu-
rally, the overall performance of the encoder. In 
parallels, impact of the image smoothness level on the 
efficiency of SPIHT image encoders is touched on. 

2.  Set partitioning in hierarchical trees 
(SPIHT) coding 

The SPIHT coder is a highly refined version of the 
EZW algorithm and is a powerful image compression 
algorithm that produces an embedded bit stream from 
which the best reconstructed images (in the mean 
square error sense) can be extracted at various bit 
rates. Some of the best results, for a wide class of 
images, have been obtained with SPIHT. Hence, it has 
become the state-of-the-art algorithm for image comp-
ression. 

For better understanding of the proposed ideas, we 
here briefly present the encoding procedure of the 
conventional SPIHT algorithm [7]. 

Let 1 2[ ( , )]Y k k  stand for the discrete wavelet spect-
rum of the digital image under processing 1 2[ ( , )]X m m ; 

1 2 1 2, , , {0,1, , 1}k k m m N∈ −… , 2nN = , Nn∈ . Also, 
let 1 2( , )O k k  denote the set of indices of all offspring 
(children) of the wavelet coefficient (node) 1 2( , )Y k k , 

1 2( , )D k k – the set of indices of all descendants (child-
ren, grandchildren, etc.) of 1 2( , )Y k k , 1 2( , )L k k  – the 
set of all descendants except the offspring (Figure 1).  

The SPIHT encoder explores three control lists, 
namely: LIP – the list of insignificant (with respect to 
a given threshold T) wavelet coefficients (points, 
nodes), LSP – the list of significant (with respect to T) 
wavelet coefficients and LIS – the list of insignificant 
(with respect to T) sets (zero-trees). The contents of 
LIS are classified in types D and L which represent the 

1 2( , )D k k and 1 2( , )L k k  cases, respectively. By the 
way, a wavelet coefficient 1 2( , )Y k k  is said to be 
insignificant with respect to a given threshold 

2 ( {0,1,2, })r
rT T r= = ∈ …  if 1 2| ( , ) | rY k k T< ; other-

wise ( 1 2| ( , ) | rY k k T≥ ), it is said to be significant. 

Now, the image encoding phase is as follows. 

1. Compute max 2 1 2log max{| ( , ) |}r r Y k k= = ⎢ ⎥⎣ ⎦ ; ini-
tialize control sets: {(0,0), (0,1), (1,0), (1,1)}LIP = , 

{(0,1), (1,0), (1,1)}LIS =  with contents of type D , and 
LSP = ∅ . 

2. For each 1 2( , )k k LIP∈ , output 1 2( , )rS k k ; here 

1 2( , ) 1rS k k = , if 1 2| ( , ) | rY k k T≥ , and 1 2( , ) 0rS k k = , 
otherwise. If 1 2( , ) 1rS k k = , then output the sign of the 
coefficient 1 2( , )Y k k  (0 – negative, 1 - positive). 

3. For each set, specified by 1 2( , )k k LIS∈ , do: if 
type D, compute 1 2( ( , ))rS D k k  ( 1 2( ( , )) 1rS D k k = , if 

1 2 1 2 1 2max{ | ( , ) | ( , ) ( , )} 2rY k k k k D k k∗ ∗ ∗ ∗ ∈ ≥ , otherwise, 

1 2( ( , )) 0rS D k k = ) and if 1 2( ( , )) 1rS D k k = , output 

1 2( , )rS k k∗ ∗ , for each 1 2 1 2( , ) ( , )k k O k k∗ ∗ ∈ , and if 

1 2( , ) 1rS k k∗ ∗ = , add 1 2( , )k k∗ ∗  to the LSP and output sign 
of the coefficient 1 2( , )Y k k∗ ∗ , otherwise, add 1 2( , )k k∗ ∗  to 
the end of the LIP (note: if 1 2( , ) 0rS k k∗ ∗ = , for all 

1 2 1 2( , ) ( , )k k O k k∗ ∗ ∈ , add 1 2( , )k k  to the end of the LIS 
as an entry of type L) else if type L, compute  

1 2( ( , ))rS L k k and if 1 2( ( , )) 1rS L k k = , add each 

1 2 1 2( , ) ( , )k k O k k∗ ∗ ∈  to the end of the LIS as an entry of 
type D and remove 1 2( , )k k  from the LIS. 

4. For each 1 2( , )k k  in LSP (except those just ad-
ded above), output the r-th most significant bit of the 
coefficient 1 2( , )Y k k . 

5. If 0r > , then decrease the value of r  by one 
and go to the step 2. 

 

(a) 

 

(b) 

Figure 1. Wavelet coefficients are scanned in a left-to-right 
order: (a) parent- offspring dependencies in spatial 

orientation tree (quad-tree structure); (b) the scanning 
trajectory is such that ancestors are always traversed before 

descendants 

For more detailed description of the algorithm, we 
refer the reader to [7]. 
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3.  Improved quad-tree analysis scheme in the 
SPIHT algorithm 

The most time-consuming operation of the SPIHT 
algorithm is bound up with finding numerical values 
of the parameters 1 2( ( , ))rS D k k  and 1 2( ( , ))rS L k k , for  

1 2( , )k k LIS∈  (Step 3; Section 2), because at that time 
all quad-trees in the discrete wavelet spectrum 

1 2[ ( , )]Y k k  of the image 1 2[ ( , )]X m m  are analysed re-
peatedly for significant nodes (wavelet coefficients) 
with respect to decreasing threshold values. 

To avoid repeated scanning and verification of 
wavelet coefficients, comprising volumes of quad-
trees ( 1 2( , )D k k  and 1 2( , )L k k )  in the DWT spectrum 

1 2[ ( , )]Y k k , for significance with respect to changing 
threshold values, we have developed an original quad-
tree analysis scheme, which  guarantees better perfor-
mance of the encoding phase in SPIHT. 

Let 1 2[ ( , )]Y k k , as before, be the discrete wavelet 
(Haar, Le Gall, Daubechies, etc.) spectrum of the  
image 1 2[ ( , )]X m m  ( 1 2 1 2, , , {0,1, , 1}k k m m N∈ −… ) and 

max 2 1 2 1 2log max{ | ( , ) | , {0,1, , 1}}r Y k k k k N⎢ ⎥= ∈ −⎣ ⎦… . 

Consider a coefficient 1 2( , )Y k k  ( 1 2( , )k k LIS∈ ) 
which is the root (parent) of the quad-tree comprising 
a particular set of wavelet coefficients (descendants). 

Let us associate 1 2( , )Y k k  with two binary codes 
(one for the offspring of 1 2( , )Y k k , another for the 
descendants of 1 2( , )Y k k , except offspring) of length 
( max 1r + ) each, namely: 

max1 2 1 2 1 1 2 0 1 2( , ) ( , ) ( , ) ( , )rU k k u k k u k k u k k= 〈 〉… , 

max1 2 1 2 1 1 2 0 1 2( , ) ( , ) ( , ) ( , )rV k k v k k v k k v k k= 〈 〉… . 

The above codes are generated by the one-pass 
scanning of the discrete wavelet spectrum 1 2[ ( , )]Y k k  
as shown below. 

1. 1 2( , ) 1ru k k = , if at least one of coefficients 
(taken by absolute value) 1 2(2 , 2 )Y k k , 

1 2(2 1, 2 )Y k k+ , 1 2(2 , 2 1)Y k k +  or 1 2(2 1, 2 1)Y k k+ +  
falls into the half-open interval 1[2 ,2 )r r+ , 

max{0,1, , }r r∈ … , and 1 2( , ) 0ru k k = , otherwise; 

2. For all max{0,1, , }r r∈ … , 1 2( , )rv k k  is equal to 
the logical sum of 1 2(2 ,2 )ru k k , 1 2(2 ,2 1)ru k k + , 

1 2(2 1, 2 )ru k k+  and 1 2(2 1,2 1)ru k k+ + , provided 

1 28 max{ , } 4 1N k k N≤ ≤ − , and 1 2( , )rv k k  is equal 
to the logical sum of 1 2(2 ,2 )ru k k , 1 2(2 , 2 )rv k k , 

1 2(2 ,2 1)ru k k + , 1 2(2 , 2 1)rv k k + , 1 2(2 1, 2 )ru k k+ , 

1 2(2 1,2 )rv k k+ , 1 2(2 1,2 1)ru k k+ + , 1 2(2 1,2 1)rv k k+ + , 
provided 1 21 max{ , } 8 1k k N≤ ≤ − . 

We here observe that in the first instance it is abso-
lutely necessary to generate binary codes 1 2( , )V k k  
with index pairs 1 2( , )k k  satisfying the inequality 

1 28 max{ , } 4 1N k k N≤ ≤ − , then codes 1 2( , )V k k  
with index pairs 1 2( , )k k  satisfying the inequality 

1 216 max{ , } 8 1N k k N≤ ≤ − , and, finally, codes 

1 2( , )V k k  with index pairs 1 2( , )k k  satisfying the 
equality 1 2max{ , } 1k k = (Figure 2). 

 
  (a) (b) (c) 

Figure 2. Generation of binary codes 1 2( , )V k k  for the descendants of 1 2( , )Y k k  ( 1 2, {0,1, , 4 1}k k N∈ −… ): (a) Binary codes 

1 2( , )U k k , associated with wavelet coefficients in the dark-grey region, are used to generate binary codes 1 2( , )V k k , associated 
with wavelet coefficients in the lighter-grey region; (b) – (c) Binary codes 1 2( , )U k k  and 1 2( , )V k k  in the dark-grey regions are 

used to generate binary codes 1 2( , )V k k  in the lighter-grey regions 

Thus, to state that the quad-tree, specified by the 
wavelet coefficient (root, parent) 1 2( , )Y k k  
( 1 2, {0,1, , 2 1}k k N∈ −… ), has no significant wavelet 
coefficients (descendants) with respect to the thre-
shold 2r

rT T= =  ( max{0,1, , }r r∈ … ), it suffices to as-

certain that 1 2( , ) 0ru k k =  and 1 2( , ) 0rv k k = , instead 
of analysing the whole tree for significance (the key 
moment of the proposed idea). 

It goes without saying that the described quad-tree 
analysis scheme can be used with other coding 
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algorithms similar to the SPIHT algorithm and for 
other data as images. 

4. Experimental results 

To implement both the conventional and the new 
(supplemented with the proposed quad-tree analysis 
scheme) versions of the SPIHT algorithm, the discrete 
Le Gall (wavelet) transform (DLGT) was employed. 
The latter transform possesses a tolerable “energy 
compaction” property, has a fast performing technique 
and facilitates lossless compression of digital images. 
Incidentally, the default reversible transform in JPEG 
2000 is implemented exactly by means of DLGT [3]. 

On purpose to estimate efficiency of the developed 
quad-tree analysis scheme, a number of digital images 
of size 256×256, characterized by different smooth-
ness level, were processed, namely (Figure 3): 
Acura.bmp, Cameraman.bmp, Forest.bmp. Computer 
simulation was performed on a PC with CPU: Intel® 
Core(TM)2 Quad CPU Q8200@ 2.33 GHz, RAM 3 
GB, OS System: 32-bit Windows Vista; Programming 
language: Java. 

As it can be seen from Table 1, application of the 
developed quad-tree analysis scheme to lossless en-
coding (the threshold value 0 1T T= = ), as well as to 
lossy encoding ( 1rT T= > ), of test images leads to 
noticeable image encoding time gains SPIHT SPIHTτ τ ∗−  
( SPIHTτ  denotes the time needed to encode a particular 
test image using the conventional SPIHT algorithm, 
whereas SPIHTτ ∗  - the time needed to encode the same 
image using the new proposed version of the SPIHT 
algorithm). 

For instance, in the case of lossless image en-
coding ( 0 1T T= = ), the new version of the SPIHT 
algorithm performs (1.06–1.12) times better than the 
conventional SPIHT algorithm. Furthermore, with in-
creasing values of the threshold ,T  the obtainable 
image encoding speed gains ( )SPIHT SPIHTτω τ τ ∗= −  

100SPIHTτ ⋅  (%) have tendency to increase (Figure 4). 
Also, we here observe that the overall performance 

of both the conventional SPIHT algorithm and the 
modified SPIHT algorithm depends on the smoothness 
level (class) of the image under processing [14]. The 
lower smoothness of the image, the longer image 
encoding times (for both algorithms), and slightly less 
visible (in terms of τω ; lossy encoding) advantage  of 
the modified SPIHT algorithm over the conventional 
one (Figure 5). 

Finally, we notice that the smoothness level α of 
test images was determined by computing the rate of 
“decay” of respective DCT coefficients. In particular, 

1.12α = , for the test image Acura.bmp, 0.77α = , for 
Cameraman.bmp, and 0.40α = , for Forest.bmp. 

 

 
(a) 

 
(b) 

 

(c) 

Figure 3. Test images 256x256: (a) Acura.bmp; 
(b) Cameraman.bmp; (c) Forest.bmp  

5. Conclusion 

In the paper, a novel scheme for the accelerated 
analysis of quad-trees in the discrete wavelet spectrum 
of a digital image is proposed. The proposed scheme 
generates problem-oriented binary codes for the entire set of 
quad-tree roots (wavelet coefficients) and accumulates 
information on the significance of respective descendants 
(wavelet coefficients comprising quad-trees on the view). 

The developed scheme can be successfully applied 
to any zero-tree based image encoder, such as EZW 
algorithm, SPIHT algorithm, EBCOT (Embedded 
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Block Coding with Optimal Truncation [3]) and 
others. 

Table 1. Image encoding times SPIHTτ  and SPIHTτ ∗  (sec).  

Acura Cameraman Forest Test image 

Threshold SPIHTτ  
SPIHTτ ∗  SPIHTτ  

SPIHTτ ∗  SPIHTτ SPIHTτ ∗

0 1T T= =  9.513 8.481 10.904 10.626 44.370 41.732

1 2T T= =  2.632 2.372 7.580 7.209 35.009 33.028

2 4T T= =  1.017 0.597 3.121 3.070 25.420 24.206

3 8T T= =  0.698 0.294 1.429 1.269 19.820 17.937

4 16T T= =  0.503 0.121 0.691 0.544 15.297 13.830

5 32T T= =  0.391 0.034 0.283 0.155 10.061 9.377 

Numerous experimental results show that imple-
mentation of the proposed quad-tree analysis scheme 
in the SPIHT algorithm noticeably improves image 
encoding times ( (3 11)%− , for lossless image comp-
ression, and (5 90)%− , for lossy compression) and, 
naturally, the overall performance of the encoder. 

 
Figure 4. Image encoding speed gains (lossless 

and lossy image compression) 

Also, the image encoding speed gains directly de-
pend on the smoothness class of the image under 
processing. The lower smoothness of the image, the 
longer image encoding times (for both versions of the 
SPIHT algorithm) and merits of the new SPIHT algo-
rithm stop manifesting so visibly in comparison with 
the conventional SPIHT algorithm. 

 
 

Figure 5. Impact of image smoothness on the efficiency 
of SPIHT encoders  
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