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Abstract. Number of software applications is growing rapidly, as well as their importance and complexity. The
need of quality assurance of these applications is increasing. Testing is one of the key processes to ensure the quality of
software and object-oriented applications in particular. In order to test large and complex systems, test automation
methods are needed, which evaluate whether the software is working properly. The main goal is to improve
effectiveness of object-oriented applications testing by creating an automated test data generation method for complex

data structures.

This paper presents a test data generation method by adhering to software under test static model and its model
constraints. The method provides an algorithm that allows generating test data for complex data structures, by
analysing software under test model, its constraints and using constraint solving techniques for building corresponding
test data objects and their hierarchies. The presented method is exemplified by simple case studies as well as a large

I++ protocol implementing web service project.

Keywords: test data generation, complex data types, imprecise model constraints.

1. Introduction

In atypical software development organization,
the cost of providing assurance that the program will
perform satisfactorily within the expected deployment
environments via appropriate debugging, testing, and
verification activities can take from 50 to 75 percent
of the total development cost [15]. Many of these
activities can be automated, reducing their cost,
increasing system quality, reducing the time to market
and the maintenance costs.

The aim of this paper is to present an automated
test data generation method for complex data
structures. Object-oriented applications manipulate
with various object hierarchies. Those applications in
most cases operate with complex data structures,
which in most cases are presented as objects
aggregating or composing other objects. Traditional
test data generation methods mainly generate tests for
software unit under test (or parts of it) that use simple
data structures, such as integers, floats, strings, arrays
and pointers. However, these methods are unable
generating meaningful or at least usable test data for
unit testing of object oriented programs.
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Most of real-world applications are composed of
units working with complex data types as arguments.
A test data generator generates input values for the
selected method depending on the parameter type. For
example, if the parameter is of type signed short int
(in C++), the test generator will generate a value from
the interval starting with —32,768 and ending with
32,767. If the parameter is of type signed short int, the
generation algorithm is straightforward — the
generated value has to be selected from the allowed
range (the range depends on programming language
and parameter type). However, there are more
complicated types, and one of them is a string. The
parameter of type string can be of any length. Test
data generation algorithms, which are based on the
values selection from allowed intervals, are suitable
for generating values for types which are built-in into
programming language. The usual types are: integer,
float, long, double, short, byte, char and string. Real-
world software implementations use complex types in
most cases. The complex types are: arrays, lists,
classes, interfaces, and structures.
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The usual value generation algorithm for the
parameter of type array or list is trivial. Generation for
class or structure types is more complicated and
requires ad ata flattening technique [25]. The
parameter of a complex type is converted into a set of
parameters which are of simple types.

The challenge comes when test data generation is
applied for complex types and hierarchical class
structures, as illustrated in the example in Figure 1.

Person

Employee Subcontractor Intern
+agreed_payment : float
0.1 1.*
0.* 1
WorkHistory Contract

PaymentsCalculator

+calculatePayment(in person : Person, in periodStart : Date, in periodEnd : Date) : double

Figure 1. Class structure with various relations

The question is how to generate test data for
method calculatePayment. Random values will not
always fit since the implicit condition periodStart <
periodEnd needs to be satisfied. Moreover, most of
generators would use null value for person object as
its type is an abstract class. Another case is the
Subcontractor object, which wouldn’t make sense
without the relation to the Contract class.

This paper proposes solution to these problems by
applying type flattening strategy, generating values for
primitive types and filtering out those values, which
do not match model constraints. Besides, it provides
test data generation algorithm, presents software to be
used for method evaluation, describes data generation
end condition and the means for test data quantity
reduction.

2. Problem statement

Figure 2 gives an example of the class Triangle,
which is a part of the 3D renderer software. The class
Triangle contains three attributes: a, b and c. Each
attribute represents the triangle edge length and is of a
float type. There also is the class Rasterizer with the
method render. The method accepts two input
parameters: the triangle and the texture and returns the
array of Pixel objects. The triangle class is of a
complex type.

The test generator cannot generate input values for
the parameter triangle. To overcome this, the type
flattening could be performed, method Render could
be transformed into the one which accepts 4

192

parameters: triangle_a, triangle b, triangle c and fex.
But this approach could have removed the meaning of
a triangle.

Triangle Pixel
2 float -x : float
b : float Vo N Color
-c : float -2 : float N
-color : Color o byte
- ~J-g: byte
N 7 -b : byte
AN ,/ -a: byte
\\ 7
N /
AN //
N 7
N 7

Rasterizer

+render(in triangle : Triangle, in texture) : Pixel

Figure 2. The 3d renderer software class diagram

The generator can generate invalid triangle objects.
If the generator can understand the triangle object, it
could adhere to some constraints, like: triangle edges
have to be positive values; the sum of two edge
lengths cannot be larger than the length of the
remaining edge. In this case, the test generator just
sees three float parameters and can generate any
values, thus making some invalid triangles. This is
similar to a possibility to generate an invalid float
value and pass it as a p arameter value to a method
under test. But this situation is not possible with
simple types; the programming language syntax will
not allow this to happen. But there is no means in
programming language syntax to overcome a similar
situation with complex types.

The main issues addressed in this paper are the
following:

1. How to deal with complex data types and
generate valid values at the same time. After
the type flattening, the test generator could
generate a larger amount of invalid objects
than an amount of valid ones. For example, if
the random generator [7] is used for
generating test data for testing Render
method, it will generate a large amount of
invalid triangles and just a few valid ones.

2. How to solve such cases, when the type of an
input value is defined by interface or abstract
class. In most cases, test data generators can
provide empty (null) value [32].

3. Test data generation driven by static model
constraints

If the test generator is aware of model constraints
associated with complex types, it can generate only
the valid test data. The test generator can differentiate
between correct and invalid objects of complex types
(for performing boundary value testing) and a required
amount of valid objects of complex types. In this case
the generator could create test data for parameters of
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complex types which is the same as test data for
parameters of simple types.

For example, the class Triangle has the OCL [4]
constraints presented in Figure 3.

1. context Triangle
2 inv: a > 0
3. inv: b > 0
4. inv: ¢ > 0
5 inv: a + b > ¢
6 inv: a + ¢ > b
7 inv: b + ¢ > a

Figure 3. OCL constraints for the complex type Triangle
in the Renderer software

Table 1. OCL constraints for the complex type Triangle
fields in the Renderer software

No. a b c Valid Constraint
. 3 4 5 true
2. 1 1 true
Invalidates the 5"
3. 1 2 3 false OCL line.
Invalidates the 2™
4 0 1 2 false OCL line.
Invalidates the 7
3. 34 130 3 false OCL line.
6. 10 | 10 | 14 true
7. 12 | 12 | 20 true
Invalidates the 6"
8 12 | 24 | 12 | false OCL line.
Invalidates the 3™
9. 1 -1 1 false OCL line.
Invalidates the 2™, 3¢
101 -1 0} -5 false and 4™ OCL lines.

The OCL constraints for the Triangle class define
that attributes a, b and ¢ have to have positive values
(lines 2-4). The OCL constraints also define what a
correct rectangle is. The triangle edge length has to be
smaller than the sum of the other remaining two edge
lengths (lines 5-7). The generated values for Render
method are presented in Table 1.

If the constraints are not used during test
generation, all ten test data sets could be suitable for
testing the Render method. But only the 4 test data
sets are valid out of 10. In this case, too many values
could only be used for testing the boundary
conditions. The constraints for triangle class reduce an
available set of input values: the constraint on the 2™
line reduces the set by half, the constraint on the 3"
line reduces the remaining set by other half, and the
constraint on the 4™ line reduces the remaining set by
other half as well. All those eliminated halves could be
replaced by only 1-2 boundary values. This could
reduce test generation time, memory consumption and
storage requirements for storing generated tests.

3.1. Generation algorithm

The proposed test data generation algorithm uses a
complex type flattening strategy, generates values for
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simple types, assembles complex types from simple
types and filters out unnecessary generated values,
which do not match model constraints.

The test data generation algorithm for generating
test data for single class method is presented in
Figure 4.

For clarity, the test data generation algorithm is
split into several parts. The test data algorithm takes a
method description (extracted from a code or a model)
as an input. The generator extracts all method
parameters and their types and generates a test value
for each parameter. After the test value is generated
for ap arameter, the generator checks if the value
matches OCL pre-condition and if not, itis rejected
and a new one is generated.

Input: The Method M which accepts a set
of parameters
Pi (i=0;n).
Parameter types Ti (i=0;n) for
each parameter Pi.
OCL constraints PC for the method M
(pre-conditions)
Output: A set of generated values Vi (i=0;n)
for each parameter Pi.
1. While there are method parameters left do
2. Get parameter type Ti
3. value = determine the parameter type
4. and generate the value for Pi, Ti.
5. If (Vi does not match PC conditions)
6. then
7. Return to the step 3.
8. else
9. add value to the set V.
10. Select next parameter Pi
11. (go to the step 1.)

Figure 4. The test data generation algorithm for
a class method

The process continues until a generated value
matches OCL pre-conditions or the time limit for
generating value is exceeded or generated invalid
values count is exceeded, which is a safeguard for
terminating infinitive generation. The generation is
repeated for all method parameters. The generated test
values for each parameter are assembled into atest
data set, which in turn is stored for later usage or
executed on software under test.

The test data generator uses several different test
data generation algorithms. The algorithm has to be
selected based on the parameter type. The algorithm
selection is presented in Figure 5.

The test generator checks parameter type and
selects the suitable generation algorithm. The
algorithm is applied for such types as a simple type, a
complex type and an array. When the parameter is of
the pointer type in one case the generation algorithm
for an array is used, in other case the generation
algorithm for ap arameter of the type, which the
pointer refers to is used. Selected algorithm is
different each time in order to generate data for both
cases. If the element is of nested array type, the
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algorithm is applied recursively until other type is

encountered.
Input: The parameter P

The parameter P type T

The generated value V for the
parameter P of the type T

Output:

1. If T is a simple type then
2. V = generate simple value (T)
3. If T is an array then
4 V = generate an array of values of
the type T
5. If T is complex type then
6. V = generate the value for the complex
type T
If P is pointer of type T then

~J

8. If generation number is even then
9. V = generate the array of values
of type T
10. Else
11. V = generate the value of type T and
12. create pointer to it

Figure 5. Selection of test generation algorithm based
on the parameter type

The test data generation for a parameter of a
simple type is trivial and is presented in Figure 6.

Input:
Output:

The parameter type T
The generated value V

1. Select the real number from the
interval [0;1]

2. Scale the selected value to the interval
allowed by the T range.

3. V = scaled value.

Figure 6. Test data generation for a parameter
of a simple type

The test generator has to generate a value from the
interval [0; 1]. The normal distribution generation can
be used. Then the generator determines the allowed
values range for parameter type and scales the
generated value to match it. For example, if parameter
is of the integer type, the allowed values range is [-
32768; 32767]. For example, generator will select a
value 0.1. The value 0.1 is scaled and it becomes -
26214 (-26214 = (32767 — (-32768)) * 0.1 + -32768).
If parameter is of the char type (Unicode, 16-bit), it is
actually an integer value with-in a range [0; 65535].
The value generation is the same as for the integer
type parameter.

The test data generation for a parameter of an array
type is presented in Figure 7. The generator selects a
length for an array. Then it executes the test data
generation algorithm for each array value. The
generated value is checked if it matches OCL
constraints. If the generated value does not match, it is
generated again. The value generation algorithm is
executed until all array elements are generated.

The test data generation algorithm is used for
generating values for parameters of a string type. Due
to the nature of the string, which is just an abstraction
of an array of character elements, the array generation
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algorithm is used. By execution the value generation
algorithm for each array element, the generator can
generate test data for parameters which are of the
array type, where the array is composed of complex
type elements.

Input: The parameter type T

Output: The generated array V of elements
of the type T

1. Select array length L

2. 1i=0

3. While i < L do

4. generate the value for the type T

5. check if value satisfies OCL constraints

6. If does not match then

7. go to step 3.

8. add generated value to the array V

9. i=1+1

Figure 7. Test data generation for a parameter
of an array type

When the generation algorithms for simple types,
array types, and pointer types are present, the test data
generation algorithm can be defined for complex
types. The test data generation for the parameter of the
complex type is presented in Figure 8.

The test data generation algorithm for complex
types reuses the algorithms for selecting generation
algorithm, generating test data for simple, pointer and
array type parameters. The test data generation
algorithm for complex types takes as an input
parameter type and OCL invariant constraints for that
type. The OCL constraints are used to ensure that the
correct object is constructed. The algorithm performs
type flattening. At the first step, the empty object of
parameter type is constructed. At this step the OCL
constraints are not checked, because they obviously
would be invalidated.

Input: The parameter type T (class name)
The list of the class T invariants
INVi (i=0;n)

Output: The generated object V of the type T

1. Select implementing type for the
object V.

2. Construct the empty class object V
3. For each class field Fi (i=0;n) do
4. Get field type Ti
5. Generate the value for the field Fi
of the type Ti
6. For each class invariant INVj
(3J=0;n) do
7. Check if the generated value
satisfies INVj
8. If the value does not satisfy then
9. go to step 4.
10. assign the generated value to
the field Fi
11. For each class invariant INVJ (j=0;n)
12. which defines relations between
attributes do
13. Check if the generated value
satisfies INVj
14. If value does not satisfy then
15. go to step 2.

Figure 8. Test data generation for parameter of
class/structure type
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The generator extracts all attributes defined in the
class and executes the test data generation algorithm
selection and value generation algorithms for each
attribute. If the attribute is of the complex type, the
generator executes the same algorithm for value
generation of the complex type, but in this case the
other type is passed as an input to the algorithm. The
value for the attribute is generated, and it is checked
against OCL invariants. If the value satisfies all OCL
invariants (defined for a class type and relevant to the
attribute), the value is assigned to the object attribute.
At this step, only invariants are checked which do not
define relations between attributes (for example, inv: a
<b + cis not checked at this step, only inv: a>0 is
checked). If value does not match OCL invariants, the
new value is generated. The generation is repeated
until the correct value is selected or time out is
reached (to avoid deadlock conditions). This
generation process is repeated for all object attributes.
When all attributes are generated, OCL invariants are
once again evaluated. In this case, the invariants
which define relations between attributes are
evaluated (these invariants cannot be checked in the
first phase, because not all attributes have defined
values). If the OCL invariants are not satisfied, the
whole generated object is discarded and a new one is
generated. The test data generation algorithm is
provided in Figure 9.

3.2. Inheritance and interface handling

Test data generation for complex object types gets
more complicated when the argument has a type of its
parent. The object-oriented inheritance principle
prevents generator from directly selecting required
class and building its object. The software under test
model could contain a set of classes that extend the
argument class for which generator has to generate an
object. If the type is a regular class (not an interface or
an abstract class), the simplest case would be just to
create object of required class and assign values for its
fields.

More general solution is to find all classes in the
model that directly or indirectly inherits class T (some
parameter type). Then all classes that inherit type T
are identified, the generator can choose any of them
and instantiate the object. The next test case could
take the same or the other class. The coverage criteria
could also be extended by measuring what subset of
possible classes was used for tests. In some cases, the
list of classes, that inherit T class, could be empty.
When such a situation is encountered, test generator
can build a stub class adhering to model constraints.
Constraints, that are valid for the base class, should be
valid and for the stub class now.

The situation with interface could be handled in
the same manner: finding implementing classes,
selecting one of them or building a stub, as it is
illustrated in Figure 10. It is possible to build the more
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select next
method parameter

simple
parameter type

generate a value from
the [0..1] interval

class/struct

select object
implementing type

select next
attribute

generate a vale for
the attribute

alues generated
or all attribute

Yes

No

reset all attributes
values

enerated vatue

matches pre

onstrain
;

Yes

values generated fo
all parameters

Figure 9. Test data generation algorithm for method
parameters of complex types

intelligent stub by taking the model constraints into
account.

The stub could randomly extend any of classes that
extend class T or implements interface. The generator
implements missing methods by providing empty
method bodies. Then object is stubbed and generated,
the OCL constraints are checked to verify if the object
is correct. If constraints are not satisfied, the object
and its stub are discarded, the algorithm is repeated
again — a new abstract class or a new class is created
as a stub with an implemented interface.

Inheritance and interface handling for
generation includes the following steps:

1. Find objects having a type of abstract class or
interface;

2. Detect aset of extending or implementing
classes;

test
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object type

. class
interface

Abstract class

Find extending
classes

Find implementing

classes in model ™

build class object <

4 A
. Select one Generate attribute
implementing Select one class —
values
class
; End

Cosntruct stub
class

Figure 10. Object type selection and its value generation

3. Select aclass from inheritance hierarchy to
use in object creation using random selection
algorithm (with giving a higher priority for
classes, which were not used in previous test
data sets). This prioritized selection would
allow to increase the generated tests code
coverage;

4. Create complex type object and attribute
values.

3.3. Test data generation end condition

The test generator has to overcome one critical
problem — the object generation has to be completed
in a finite amount of time. For deciding when to
terminate test generation, test generation algorithm has
to adhere to two problems:

e Generation of one test data set (object

hierarchy for one parameter is fully generated);

e All test data sets generation.

Object hierarchies can contain circular references,
for example, when object A points to B, and B points
to A (Such a structure could be created adhering the
composite design pattern [10]). The generator can
endlessly generate object hierarchy in this case, as it
follows the composition, and aggregation links in the
model. To overcome this issue, the generator
constructs the class composition graph and searches
for loops in it. First of all, the loop is traversed only
once, and for the next loop iteration the terminating
values (null) are selected instead of building another
set of objects.

In other cases, the object hierarchy could be too
deep. To handle this situation, the generator can be
parameterized with maximum depth value, thus
limiting generation time. For example, generation
depth of 1 means that values for a class with fields of
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Select field <

)

Find loop for a
class (find upper
class object in
hierarchy)

Is there a loop

no For all complex fields
v recursively repeat alg.

Create class
object

Assign null or discovered
object
(usually for bi-direction child
parent relation)

A

Generate class
simple type fields

A

Decrease depth
count

f depth coun
>0

false

Generate values
for all complex
field types

truep|

Assign null values
for class/struct
type fields

v

end

Figure 11. Object hierarchy generation and loops handling

simple type would be generated and fields of complex
types would have assigned null values. The depth of 2
would mean that all values of class fields would be
generated, and recursively algorithm would be
invoked for all fields that are of complex types, but for
those fields the objects would be constructed as for
depth 1 — simple field would get values, complex ones
would get terminating (null) value. The summarized
hierarchy depth and loops handling in test data
generation algorithm is presented in Figure 11.

The whole test generation usually stops when the
generator has generated a specific amount of test data.
The tester specifies the needed amount of tests. The
generator produces the required amount of tests and
terminates. After the generation, the usual testing
procedure occurs: the generated tests are executed, the
code coverage is measured, and bugs are detected or
not. When the tester has generated a certain amount of
tests and bugs have not been found, the tester has to
end testing assuming that the software under test is
defect free or has to decide that another set of tests has
to be generated. The tester has to make a choice: end
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testing or generate more tests and continue testing.
The tester usually uses code coverage metric as a
source for decision making on ending or continuing
testing procedure. Based on the code coverage, the
tests running time or the project schedule constraints,
the tester decides when to end testing. The automatic
test generator has no any influence on deciding when
to end the tests generation.

The proposed test cases generation method uses
the feedback driven test cases generation strategy. The
test generator generates atest data set, executes the
software unit under test with the generated test data
set, evaluates the testing result and testing metrics and
decides if an additional set of test data is needed. The
test generator uses the testing oracle (OCL constraints)
as a means to evaluate if more tests are needed. The
test generator has two different cases to evaluate:

e  When the bug is found;

e  When bug is not found.

When the bug is found, there is no point in
generating more unit tests and executing them. The
bug has been already found in the class method under
test, and the test generator can work on testing other
class methods and other classes.

When there are no bugs detected, the test
generation could continue indefinitely. The proposed
test generator uses the test pass accuracy coefficient
and coverage as a stop condition. The test generation
ends when one of the following conditions is met:

e The defined coverage is achieved,

e The coverage does not change after the

subsequent tests generation.

For example, suppose that the test generator has
generated 1000 test cases and executed them. After the
execution, the code coverage is 78%, and the required
coverage is 90%. Additional 1000 tests cases were
generated and executed, but the coverage still remains
at 78%. This situation could mean that there are
unreachable branches in the software under test. If the
coverage does mnot increase (after performing
additional test cases generation and execution
iterations), the testing process is stopped. These cases
are reported as warnings for possible unreachable
parts of code.

The test generator generates some test cases and
executes them. If the bug has been found, the testing
ends. If the bug has not been found, the code coverage
is measured. If the selected coverage level has been
achieved, the tests generation and execution ends. If
the coverage has not been achieved, the time out value
is checked. In this context, time out value means, if
the code coverage level has not been changed after
performing additional tests generation and execution
steps, the testing has to be terminated.

The coverage criterion can be selected freely by
tester and could be one of the following [3, 8]:

e All-branches;

e All-operators;

e All-code lines;
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Generate test

Execute test

Yes

Found a bug

heCoverage >= than
selected sufficient
coverage?

No bugs found

Figure 12. When to end tests generation

e The percentage of possible

exercised;

e  Model coverage.

When using OCL constraints for filtering input
values, the amount of generated input values can be
reduced. The tester can select a generation function for
generating input values (for example, uniform
distribution). Based on the generation function, the
software under test could be tested with the most
important values from the filtered interval. The test
generation will continue until the selected percentage
of possible input values are exercised. For example, if
test input values are generated using a normal
distribution function, all possible input values are
generated with the same probability. If the tester
chooses to generate values based on a normal
distribution function, the majority of input values will
be generated closely to average (most typical) value.

The tester can also decide when the testing should
be stopped in case the coverage level is not increasing
anymore. For example, the tester can decide that after
10000 additional test cases were generated and
executed and the coverage has not increased, the
testing should stop.

Besides the regular coverage criteria, the test
generator method uses the model coverage criteria —
the test generator tries to use as much as possible data
model classes while generating test data. For example,
if software model has 10 classes implementing one
interface, the 100% coverage means that at least 10
test data sets were generated, and each of 10 classes
were used in tests.

input values
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3.4. Constraint solving technique

While generating values for acl ass fields, the
backtracking [6] constraints solving algorithm is used.
Test generator orders fields by their dependencies
count. The generator selects afield with smallest
dependencies value and generates initial value for it,
finally, generator checks if the generated value
satisfies model constraints. If the value does satisfy
constraints, the value is accepted and the algorithm
proceeds to the next field. If the value does not satisfy
constraints, generator backtracks and selects new
value repeating the process again. The backtracking
steps are presented in Figure 9 (the backtracking steps
are presented as negative decision transitions).

4. Test data quantity reduction

The input values count (that could be generated)
depends on the programming language used for the
implemented software under test. For example, if the
class method takes only one parameter of an integer
type, there are already 4294967295 possible input
values. If the method accepts two parameters of
integer type, the possible amount of input values is
4294967295 If the class method takes, for example, a
parameter of complex type, the generated inputs count

can be calculated by using the following formula:
Cype» When _simple _type

Jpov(type) = ﬁ Jfpv(attr,),otherwise

i=l1

(1

here, fpv(type) — the amount of possible input values
for the type “type”; ¢y, — the amount of possible input
values for the simple type “fype”, selected from
Table 2; attr; — the type of the attribute which is a part
of the “type” type.

The formula flattens the complex type and
multiplies all the input values counts, which could be
generated for each complex type attribute. For
example, if there is the complex type Vector4D, which
is composed of 4 attributes: x, y, z, and w (each
attribute is of a float type), the input values count is
calculated as follows:

fpv(Vector4D) = (ﬁzv(ﬂoat))4 =34 10* 2)
Table 2. The input values counts for some types
No Type Input values count
1. | Integer | 2°%=4294967296
2. | Float 2°% = 4294967296
3. | Double | 2% =18446744073709551616
4. | Long 2% = 18446744073709551616
5. | Char 28 =256
6. | Byte 2% =256
7. Vector3 232=
d 79228162514264337593543950336
8. Triangle | 2°*"=
79228162514264337593543950336
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Thus, even for a method which accepts only one
input parameter of quite not very complex type, the
generated input values count is quite big. The amount
of possible input values for a method which accepts n
input parameters can be calculated using the following
formula:

Tpp = ]i[ﬁW(p,-) 3)

i=1
here, Tpp — the total generated input values count for a
method of n input parameters; p; — the i-th input
parameter type; n — the number of input parameters for
the method.

Using OCL constraints, the generated input values
count could be reduced. The reduction level depends
on the OCL constraints. The generated input values
count can be calculated using the following formula:

Tpp'= ]L_[ﬁW(pJ er, )

here, Tpp’ — the total generated input values count for
a method of n input parameters; p; — the i-th input
parameter type; n — the number of input parameters for
the method; cr; — the reduction level of input values
for the i-th parameter.

The reduction level depends on the OCL
constraints, associated with the method parameter or
parameter type, precision level. If the constraints are
precise, only a few values are used (boundary values).
If the constraints are not available — there is no
reduction at all. The reduction level can be within
bounds:

(6))

The cr; value of 1 means that there is no reduction
at all (thus there is no OCL constraints constraining a
method input parameter or its type). The value 0 could
mean that all possible input values are eliminated, but
this case is not possible (because at least one boundary
value has to be used). The cr; value can be calculated
using the 7-th formula. This formula depends on the «;
value, which is calculated as follows:

" 0.5,
ai :Z 2j71

=

O<cr,<=1.

(6)

here, a@; the precision level of OCL constraints
associated with a class field or method, result value;
n— the count of “>”, “<” “>="_“<=" gperators.

La, 21-cb
o= .
1—a, +cb,otherwise

)

here, cr; — the input values reduction level; a; — the
precision level calculated using the 6-th formula; c¢b —
the percentage of input values allocated for testing
boundary conditions (it is usually 0,01, and cb has to
be greater than 0).

The generated input values count can be reduced
by several times. The reduction level can be calculated
by dividing the amount of generated input values
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count without using OCL constraints by the generated
input values count using the OCL constraints as
follows:

Top ];[fbv(p,-) X (8)

:F: n =7
PP T vy -er, [en
i i=1

r

The reduction level depends only on the available
OCL constraints and their precision levels. If there are
no OCL constraints, the cr; values are equal to 1, and »
value becomes equal to 1. The generated input values
count is not reduced in this case.

The reduction level can be calculated for the
example system presented in Figure 2, which also has
OCL constraints presented in Figure 3as follows:

Tpp=2"-2".22=79.10%

(10)

cry=cr, =cr, =1-0,75+0,01=0,26 (11)

Tpp'=27-0.26-2-0.26-2 -026~13-10" (15
r:%z56.8

0.26 (13)

The cb value was equal to 0.01 when the 7"
formula was applied. The one percent of possible
input values is allocated for boundary conditions
testing. The OCL constraints precision level a; was
calculated using the 6™ formula and is equal to 0.75.
The reduction values are the same for all method
parameters; their values are equal to 0.26. After the
calculation with all values included, the reduction is
56.8. This means that by adding 6 OCL constraints for
the class Triangle, the generated input values count is
reduced by 56.8 times.

5. Metrics

This paper presents the theoretical model of test
data generation using model constraints. However, the
proposed test data generation method does not depend
on any specific coverage criteria. The coverage
criteria could be any of those:

1. Code coverage;

2. Path coverage;

3. Model coverage and evaluation of the
amount of existing classes and interfaces,
which were used from the model.

The following section provides the method

evaluation including an example model and OCL
constraints.

6. Evaluation

The test generation method was assessed at testing
a commercial application. The application under test
was implemented using Java programming language
as an xml web service. The application was an
implementation of a quality parameters exchange
protocol. The quality exchange protocol (I++) was
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developed by majority of European automakers. The
protocol (and an application itself) is designed to
allow transferring selected automobile quality
parameters from CAD (Computer Aided Design)
application to factory production software for
measuring the selected quality parameters. The
application is providing a simple interface: just a set
of several methods in one class for loading,
transforming and storing quality parameters data. The
complexity lays in the method parameters; each
function takes as an input and returns a result of a
complex data structure. The data structure is defined
in 129 different classes and its instance is composed of
several hundred objects that are interconnected
between each other. The fragment of I++ DMS [40]
data model is presented in the following figure.

1 InspectionPlan

.
EY
IPE

:
R —

IPE_Angle

Cangle : float

Tolerance IPE_SurfacePoint

“position : Vector3D

Tol_Size Tol_AxisAngle

Vector3D

[ float
Ly : float
2 : float

’—’ Tol_AxisAngl Tol_AxisAng| Tol_AxisAng|
1
1

IntervalToleranceCriteria

“upper - float
ower : float

Figure 13. The fragment of [++ DMS data model

The subset of measurement plan is presented in the
figure, which models the whole measurement plan
(InspectionPlan class) for one part of the car, and
defines as et of possible features that could be
measured on the car body. The possible features have
types (in this fragment the angle and surface point
features are visible). The angle feature is presented as
the IPE_Angle class and uses aco mposite design
pattern [10]. It aggregates any other two features
(specifying the angle between the selected two
features). The surface point feature (defined by
IPE SurfacePoint) only contains the coordinates in 3D
space. Each feature contains nominal values (defined
by IPE classes and their attributes) and allowed
manufacturing deviations, tolerances that specify in
what range the manufactured part features could fall.
For example, a surface point feature position can vary
in some interval by X, y, and z axes; an angle value
can vary in three intervals parallel to X, y, and z axes.
The nominal and tolerance values are joined by QC
object (quality control) that connects IPE extending
objects and relevant Tolerance extending objects. The
InspectionPlan object in turn aggregates all the QC
objects, thus containing the full measurement plan for
one part of the car. The static model by itself does not
contain information what objects could be aggregated
by QC object. For example, if QC aggregates
IPE SurfacePoint object, itis not allowed for it to
aggregate Tol AxisAngle or its child classes, as that
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would not make sense in measurement plan. To
overcome this issue, the model is enhanced by using
OCL model constraints. For this small model
fragment, the OCL constraints are presented in the
following figure.

1. context InspectionPlan

2. inv invariant InspectionPlanl:

3. gc->forAll (gc : QC |
gc.ipe.oclIsTypeOf (IPE Angle) = true
implies gc.tolerances.length = 3 and

gc.tolerances[0].oclIsTypeOf (Tol AxisAngleX)

= true and

gc.tolerances[1l].oclIsTypeOf (Tol AxisAngleY)

= true and

gc.tolerances[2].0clIsTypeOf (Tol AxisAngleZ)
true)

4 inv invariant_ InspectionPlan2:

5. gc->select (gc : QC |
gc.ipe.oclIsTypeOf (IPE Angle) = false)

6. inv invariant InspectionPlan3:

7. gc->forAll (gc : QC |

gc.ipe.oclIsTypeOf (IPE SurfacePoint) = true

implies gc.tolerances.length = 3 and
gc.tolerances[0].oclIsTypeOf (Tol AxisPosX)
true and

gc.tolerances[1] .oclIsTypeOf (Tol AxisPosY) =
true and
gc.tolerances[2].0oclIsTypeOf (Tol AxisPosZ) =
true)

8.

9. context QC

10. inv invariant QCl:

11. ipe->forAll (ipe: IPE |
parent.ipe.contains (ipe))

12. inv invariant QCCheckTolerances:

13. tolerances->forAll (tolerances:
Tolerance |
parent.tolerances.contains (tolerances))

14.

15. context TolAngle

16. inv invariant TolAnglel:

17. value.upper > value.lower

18. inv invariant TolAngle2:

19. value.upper <= parent.ipe.angle

20. inv invariant TolAngle3:

21. value.lower >= parent.ipe.angle

22.

23. context IPE

24. inv invariant IPE:

25. name.regExpMatch (' [1-9] [0-9]{11}")

Figure 14. I++ DMS data models OCL constraints

The model defines that InspectionPlan object
composes all the IPE, Tolerance, and QC objects, and
each QC object only aggregates Tolerance and IPE
objects from the InspectionPlan lists. This constraint is
presented in lines 9-13. Those constraints state that
every object referenced by QC object, must be
contained in InspectionPlan lists. The other complex
relation is modeled in the 3™ line. That constraint
states that if the QC aggregates IPE_Angle object, it
also is required to aggregate 3 Tolerance objects:
Tol AxisAngleX, Tol AxisAngleY, and
Tol AxisAngleZ. As well, the IPE angle is not
allowed to aggregate itself (line 5), it cannot measure
angle between itself and some other features, and as
well it has to reference two different features. The
similar situation is for the IPE_SurfacePoint object: if
QC aggregates this object, it also have to aggregate
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Tol AxisPosX, Tol AxisPosY, and Tol AxisPosZ (not
visible on a diagram snippet) objects (line 7). Another
constraint defines that for angle features the nominal
value has to be within tolerance bounds (lines 15-21).
The final constraint (lines 23 - 25) defines that
features name (IPE.name) has to match certain regular
expression — name is four numbers string that does not
start with 0.

The test data were generated for one single method
“storeProductStructure” in the class IppWebService.
This method allows exchanging quality data between
the car manufactures and their suppliers. This method
accepts just several parameters: inspectionPlan, and
sender.

The sender parameter is a simple one: it consists of
the application name and the user name who are
calling web service method. The inspection plan is
more complex. It is the root object that aggregates all
other objects. It represents measurement plan for one
car part. The related model constraints for [++ DMS
model are presented as OCL constraints. OCL
constraints for all objects are written manually using
Eclipse with OCL plugin and placed in as eparate
single file.

The test generator has analysed the model and
constructed several test data sets, presented in
Figure 15 as an object diagram.

IP1 : InspectionPlan

]

c1:Qc €2:QC -
I |
TX: Tol_AxisAngleX Al:IPE_Angle
--------- angle : float =35

— |
TZ : Tol_AxisAngleZ |
SP2 : IPE_SurfacePoint

— | position : Vector3D

TY : Tol_AxisAngleY

SP1 : IPE_SurfacePoint

position : Vector3D

IC : IntervalToleranceCriteria

upper : float = 38
lower : float = 34

Figure 15. Test data set as generated inspection plan
object structure

The generator starts from the root object and
constructs InspectionPlan object. This object is
supposed to compose several QC objects. To satisfy
this requirement, generator randomly selects QC list
size (2), and generates QC objects in the loop. The
first QC object is supposed to aggregate one IPE
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object. To satisfy this requirement, test data generator
randomly picks one of the classes that extend IPE
class (in this case it is IPE_Angle).

Then test generator repeats test data generation
algorithm and builds IPE_Angle. While generating the
IPE_Angle object, an arbitrary value is selected for the
angle field. Also two additional objects have to be
created that. They are aggregated by IPE Angle
object. Those two object types are randomly selected
from classes that extend the IPE class, and the test
data generation algorithm is performed for them again.
As the last IPE SurfacePoint objects are the
terminating nodes, the test data algorithm returns back
and generates the remaining Tolerance objects that are
required by QC object.

As the QC now aggregates the IPE_Angle object,
the OCL constraints allow only generating 3 tolerance
objects of Tol AxisAngleX, Tol AxisAngleY, and
Tol AxisAngleZ types, thus again repeating test data
generation algorithm for those objects. As each
Tol AxisX,Y,Z object aggregates
InternalToleranceCriteria object, the generator has to
generate those objects as well. As generator generates
InternalToleranceCriteria objects, itb uilds random
object and checks if upper and lower values match
constraints (navigating through model till the
IPE_Angle object and checking if upper and lower
values match the IPE Angle.angle field value). If
upper and lower values are incorrect, the generator
discards them and selects new ones. As
IntervalToleranceCriteria objects are constructed, the
generator retreats back for generating inspectionPlan
objects and generates remaining QC objects using the
same approach, but in this case it can pick other
random IPE Types, for example, itc an pick
IPE_SurfacePoint type and in result it will build a
different objects sub-hierarchy. Then InspectionPlan
object is generated, the generated data structure
creation steps are printed as JUnit [23] statements, and
calls for the storelnspectionPlan method are generated.
The test data generator can mark the generated object
hierarchies as the ones that are valid (matches all
model constraints) and the ones that are invalid (do
not match constraints). It is expected for unit test to
fail using invalid data, and to succeed using valid
ones. Thus it serves as an initial test oracle.

7. Related work

7.1. Random test data generation

The simplest test data generation strategy is
random test data generation. Test data are created by
selecting input values randomly [7] for software under
test methods and checking if generator has reached the
defined coverage criterion. In this case, test data
contain mostly meaningless data (from software
domain perspective).

The authors proposed modifications to random
generation technique which performs feedback
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analysis of tests execution results [29, 32].Tests are
executed and the coverage is calculated. Based on the
coverage level, the decision is made if next random
values have to be generated.

The advantage of this approach is that the
generation algorithm is quite simple and easy to
implement. The drawback of this approach is that the
generation is atime consuming process, especially
when the software unit under test is quite complex.

7.2. Path based tests generation

Software control flow charts are created during the
unit analysis. Test inputs are generated using graph
theory methods. Generated inputs drive the software
execution by some paths. The input data selection
algorithm is the main part of the generator. The
selected data would force the code to be executed into
the selected code branch. For data selection the
constraints solving techniques [12] and the relaxation
methods are used [14]. These methods select initial
values and, based on the feedback from software
execution metrics, perform selected values adjusting.
Unfortunately, these approaches work only with
values inside the unit under test which are of a simple
type (float, integer, etc..) and are not capable to handle
units which are calling other methods, functions
and/or operate with variables of complex types
(arrays, pointers, data structures, etc..). Gotlieb et al.
have proposed method for test generator, which can
generate tests for software which uses pointers [13].
There are similar methods for testing software which
calls procedures and/or functions [21, 35]. It is
proposed to use data transformation into equivalent
data types, while testing software, which operates with
complex data types, and then use existing generation
methods [22, 26]. The advantage of path-based test
generation is the possibility to generate the minimal
needed test data set which would satisfy the selected
coverage criterion. Also, during code analysis, the
unreachable paths of code could be detected and
marked as failures [2]. The disadvantage of path-based
test generation algorithms is that they are quite
complex and not always guarantee a full code
coverage.

7.3. Dynamic testing

The test generation is based on the data gathered
during software unit execution instead of data
collected during static code analysis. The software
unit is executed with some input data and during its
execution the runtime parameters are observed:
executed paths, executed branches, executed
operators. Based on observations, the new additional
input data are generated in order to drive execution by
selected control flow path [8]. F erguson et al. are
proposing various methods for improving code
coverage by tests, such as the chaining approach [8].
Hierons et al. are proposing the program slicing by
diving software unit into separate branches [18]. The
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main drawback of these approaches is that the
execution of software has to be performed, which
requires the preparation of the whole software
infrastructure (environment). This preparation cannot
be performed automatically. The advantage of those
methods is that tests can be generated very quickly.

7.4. Search-based software testing

The genetic algorithms can be adapted for test
generation [5, 16, 19, 33]. The initial set of tests cases
is created, after that tests are executed and their
efficiency is measured using the selected coverage
criterion. During the next iteration, child tests are
generated by selecting better performing tests and
killing less successful tests. Using this approach, tests
are created which achieve the selected coverage
criterion with less test data or with less testing time.
The advantage of these approaches is that test
generation is fast, the main drawback: there is no
guarantee that the defined goal of test generation will
be reached at all.

7.5. Model-based generation

Tests can be generated when the implementation of
software under test is still not present. Tests are
generated using software models. Formal and informal
models can be used as a source for test generation. It
is also possible to generate tests directly from
requirements specification. But in this case the models
are needed anyways. These models could be
transformed from requirements specification, even
from the textual ones [11]. During the test generation
using formal specifications, the black box methods
can be used, such as boundary values analysis and
average values analysis. Model-based test generation
is increasingly becoming more and more important
due to the emergence of the model driven engineering
[36] and the model driven development [24] methods.

Formal specifications, expressed in the Z notation
[34] and others [30], strictly define the software
functionality. Using a formal software specification, it
is possible to generate tests for that software. The
formal specifications allow generating not only test
data but can also provide an oracle which would be
able to determine if software works correctly with
given test data. Due to the fact that formal
specifications are used for defining critical systems
and real time systems, their testing can be alleviated
by generated tests from formal specifications [39].
The disadvantage of those methods is that creating
formal specifications is expensive and only a few
projects were developed using such strategy.

The Unified Modeling Language (UML) [9] is
semi-formal modeling language. These informal
models have some features which could be handy
during test generation. These models are called tests-
ready models [27]. They are usually extended to some
extent in order to be suitable for test generation. For
example, UML has a testing profile [1]. An Object
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Constraint Language (OCL) [4, 37] model (in addition
to UML models) could be used for test generation.
Informal models are actively used for testing software
developed using product lines approach [27].

Tests generated using software models usually try
to examine such cases as: missing action, incorrect
data manipulation by overrunning buffers, incorrect
data manipulation between class boundaries, incorrect
code logic, incorrect timing and synchronization, and
program code statements execution it incorrect
sequence.

It is possible to transform software models into
graphs, such as state graphs. For example, UML
diagrams (state or sequence diagrams) can be used for
test generation by transforming them into graphs.
When the graphs are created, the usual test generation
techniques (for testing program code) can be used
[31]. Kim et al. are also proposing to transform
models from one language into other ones. Target
languages are more suitable for test generation, for
example, the UML models are transformed into SAL
(Symbolic Analysis Laboratory) models and SAL
models are used to generate tests [20].

Oriat has proposed the Jartege tool and a method
for random generation of unit tests for Java classes
defined in JML (Java Modeling Language) [28]. JML
allows writing invariants for Java classes and pre and
post-conditions for operations. JML specifications are
used as at est oracle and for the elimination of
irrelevant test cases. Test cases are generated
randomly. Proposed method defines how to construct
test data using class constructors and methods calls for
setting the object initial state.

7.6. Combined techniques

It is possible to mix code based and model based
test generation methods together. It is not always
possible to have the full specification of software
under test. In order to test this software the mix of
code-based test generation and model-based test
generation methods can be used. Visser et al. have
proposed a path finding tool [38]. Data structures are
generated from a description of method preconditions.
The generalized symbolic execution is applied to the
code of the precondition. Test inputs are found by
solving the constraints in the path condition. This
method gives full coverage of the input structures in
the preconditions. Then the software code is available,
the code is executed symbolically. A number of paths
are extracted from the method. An input structure and
a path condition define a set of constraints that the
input values should satisfy in order to execute the
path. Infeasible structures are eliminated during input
generation.

There are also methods for combining both
techniques together [2]. Test data are generated based
on code-based generation techniques. Software is
executed with generated test data, then it is checked if
software has entered the undefined in the model state,
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or has exceeded restrictions that are defined for its
variables [17]. Based on code and specification, it is
possible to verify if code paths executed during testing
are defined in the model and allow to check if
software has not changed its state to the undefined in
the model or has performed illegal transition from one
state to another one, thus violating specification [2].

8. Conclusions and future work

The OCL constraints can be used for filtering test
data. Using the OCL constraints and the proposed
generation method, alarge amount of meaningless
values is filtered out from the generated test data. The
more meaningless test data are removed, the faster
tests can be executed. The invariant and pre-condition
OCL constraints can be used for filtering the generated
test data. The pre-condition OCL constraints filter
which test data could be passed to the software under
test. The invariant constraints can be used to ensure
that only the valid objects of complex types could be
passed to the software under test.

Using the defined algorithm, incorrectly
constructed objects of complex types could be
detected early and not used for testing. The
constructed complex object is checked against
invariant constraints. If the object is not valid one, the
test generator could discard, or use as the boundary
value in tests. By knowing which object is valid and
which one is not, the generator can limit the amount of
test data, which use unnecessary boundary values.
Even for a trivial sample, the test data quantity could
be reduced by 50 times;

The use of af eedback driven test generation
technique prevents from test never ending test
generation and execution situation. When the bug is
detected, the test generation and execution finishes.
When bugs are not found, the test generation and
execution continues until the chosen coverage a
criterion is met. After generation and execution of
some tests, the coverage change is measured. If the
coverage is not changing, the testing ends. This
happens when the code contains unreachable
branches;

We have presented the theoretical model of test
data generation using model constraints. The future
work includes improving and evaluating test data
generation method by using other constraints solving
algorithms instead of simple backtracking one. The
future works as well includes evaluating method by
testing full I++ DMS service and measuring selected
coverage.
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