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In this paper, an H∞ ILC algorithm is designed for network-based uncertain systems with communication con-
straints, where the system is suffering from data dropouts and data quantization. Here, it is assumed that the 
system state and tracking error are first quantized through a logarithmic quantizer, which can decode these 
data into finite quantization levels. Furthermore, the model of packet dropout is described as the Bernoulli 
binary value sequences with known probability. Then, the 2-D dynamic of such ILC process is established by a 
stochastic Roesser model. To deal with the quantization error, the sector bound method is also utilized. A suffi-
cient condition is obtained for such systems and the condition can realize the design of the ILC controller. The 
effectiveness of the proposed design is validated by application to an injection molding process.
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1. Introduction
Iterative learning control was first proposed by 
Airimoto in 1984 [4]. It is an effective tracking con-

trol approach for dynamic systems that performs 
repeated tasks over a finite time interval. After three 
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decades of developments, ILC has made considerable 
theoretical achievements. Meanwhile, ILC is widely 
used in many practical systems, for instance, robotic 
systems, traffic control systems, industrial batch 
processes and hard disk drives [1, 4, 6, 12, 13, 22, 23, 
29, 31, 33]. Most of the existing ILC literature is con-
sidered for the conventional point-to-point control 
systems, where the information can fully transmit 
between the controller and the plant. In practice, net-
worked control systems (NCSs) have aroused wide-
spread concern and application [3, 16, 19, 20, 27, 35, 
36]. Compared with point-to-point control systems, 
NCSs have some advantages such as easy installation, 
high security and low maintenance cost. However, 
due to the limitation of network bandwidth and the 
influence of transmission channel, it is easy to cause 
some incomplete information, such as data dropout, 
communication delay and data quantization.  
Some research results have been obtained for the iter-
ative learning control systems with data losses. In [2], 
a packet dropout compensation approach is proposed 
by using ILC for networked control systems. It is 
shown that this design can relax the result of critical 
data dropout rate, which will change the stability of 
NCSs. In [26], an averaging ILC scheme is introduced 
to nonlinear systems with packet dropouts, where 
the one step network-induced delay can also be seen 
as packet dropout. It is shown that the missing data 
can be compensated by the average of previous data. 
In [8], the convergence of nonlinear ILC systems 
with packet losses is discussed, where the situation 
considered is one in which data dropout occurs si-
multaneously both on the control input side and on 
the measurement output side. The main results of 
[8] are that the ILC system still guarantees conver-
gence even though there exists data packet loss. In 
[9], by using super-vector formulation, an H∞ ILC 
design method is developed where the H∞ perfor-
mance is defined along iteration axis and the ILC 
controller design is discussed under the framework 
of stochastic systems. In [11], a 2-D stochastic Roess-
er model is established for discrete time linear ILC 
systems with random data dropouts. Based on this 
formulation, the problem of learning gain design can 
be transformed into the mean square stability for 
such established 2-D system. In [14], a stochastic ap-
proximation ILC algorithm is developed for a class of 
nonlinear systems with measurement missing, where 
the control direction of the system is also unknown.

On the other hand, data quantization is also an im-
portant issue for NCSs [7, 17, 25, 30]. That is because 
the data need to be quantized before being transferred 
to the next network node owing to the limited trans-
mission capacity of the network. In our previous work 
[10], the data quantization is first discussed for ILC 
systems, where the data quantization occurs at the 
measurement output side. Some convergence condi-
tions are established for both linear systems and non-
linear systems. The main result shows that, due to the 
effect of data quantization, the tracking error converg-
es to a bound relying on the quantization level. Large 
quantization density will cause large tracking error. 
Hence, it is an interesting work to design an ILC algo-
rithm to reduce the influence of data quantization.
This paper focuses on the problem of ILC design 
for network-based uncertain systems with packet 
dropouts and data quantization. The objective is to 
design an ILC algorithm so that the impact of data 
quantization and missing can be reduced. It is no-
ticed that the 2-D Roesser model is an effective tool 
to describe the dynamical behavior of ILC systems 
[21, 24, 32]. Hence, here we also first establish the 
2-D Roesser model for such ILC processes to de-
sign the controller. To describe the communication 
constraints, Bernoulli processes are introduced for 
modeling packet dropouts and the logarithmic type 
quantizer is selected to compress the system data. 
The stochastic mean-square asymptotical stability is 
also introduced in this paper to establish the stability 
of such 2-D system. A sufficient asymptotical stability 
condition is given for the 2-D system with an H∞ dis-
turbance attenuation level by using the sector bound 
method, and the stability condition can realize the de-
sign of the ILC controller.
There are at least two differences between this paper 
and existing works. Firstly, comparing with the exist-
ing ILC design based on 2-D model in [28], this paper 
considers the effect of communication constraints 
and iteration-varying disturbances. The stability 
analysis is given under the framework of stochastic 
systems, and the proposed controller has an H∞

 dis-
turbance attenuation level. Secondly, comparing with 
the result in [10], the proposed design can reduce the 
influence of the data quantization. The algorithm 
proposed in this paper can get zero tracking error 
if the disturbance tends to zero, thus [10] can only 
obtain bounded tracking error. The main contribu-
tion of this paper can be summarized as follows: (1) 



Information Technology and Control 2018/3/47566

The ILC design is considered for linear systems with 
communication constraints, where the data dropout 
and data quantization occur due to the limitation of 
transmission channel. (2) A 2-D stochastic Roesser 
model is established to describe the dynamics of the 
ILC system and then the problem of ILC design can 
be transformed into the synthetic of the 2-D system. 
The rest of the paper is organized as follows. Section 
2 introduces the NCSs framework for the ILC sys-
tems. Section 3 gives a sufficient asymptotical sta-
bility condition for the established 2-D system. The 
condition can realize the design of the ILC controller. 
Section 4 supplies a numerical example to validate 
the effectiveness of the proposed design.  
Notation: Let T  denote the matrix transposition and

nR  denote the n -dimensional Euclidean space and 
I and 0 stand for identity matrix and zero matrix, 
respectively.  stands for the standard diagonal 
matrix. A matrix without special instructions has an 
appropriate demission to ensure that the algebraic op-
erations are compatible. { }E x  denotes the expectation 
of x  and  { }|E x y  stands for the condition expectation. 

2. Problem Formulation
Let us consider the following discrete time linear re-
petitive system 
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where the subscript k  denotes iteration and t  
denotes discrete time. ( , ) , ( , ) ,∈ ∈n lx t k R y t k R  

( , ) , ( , )∈ ∈mu t k R w t k R   are state, output and input 
variables and iteration-varying disturbances. 
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perturbations of A  and B . They can be described 
as 

1

2

,
,

A E F
B E F

∆ = Σ
∆ = Σ

                                 (2) 

where Σ  is an uncertain matrix satisfying 
T IΣ Σ ≤ . 1 2, ,E F F  are constant matrices used 

to describe the determinate parts of the 
uncertain perturbations, which can also 
reflect the structures of A∆  and B∆ . 

0(0, ) kx k x=  denotes the initial condition of 
the system at the k th iteration. 

For system (1), the ILC law is introduced as 
follows  

( , ) ( , 1) ( , ),u t k u t k r t k= − +                          (3) 

where ( , )r t k  is the control updated signal.  

In many of the existing ILC approaches, the 
control updated law is usually chosen as  

( )( , ) ( 1, ), ( , ), , ( , ,r t k f e t k e t k e t p k= + −  

where ( , ) ( ) ( , )de t k y t y t k= −  is the tracking 
error and p  is a constant. Using this 
expression, many different types of ILC 
algorithms can be constructed, such as P-
type, PD-type and PID-type. In this paper, 
we consider the following ILC updated law 

    
( )1 2( , ) ( , ) ( , 1) ( 1, 1),r t k K x t k x t k K e t k= − − + + −    

(4) 

where 1 2,K K  are gain metrics to be 
designed. As shown in (4), the above 
updated term contains tracking error signals 
at current iteration, state signals at current 
iteration and previous iteration. This scheme 
can merge the advantages of both feedback 
control, such as robustness, and ILC, such as 
extra performance from learning process 
[24, 32]. 

As shown in Fig. 1, this paper assumes that 
the ILC is executed in a network 
environment.  For convenience, we only 
consider the communication channel 
existing in the output measurement side. 
Hence, the data ( , )r t k  are first quantized by 
a quantizer, then the quantized data are 
transmitted to the ILC controller. In this 
process, the packet loss often occurs.  
Assume that the controller has an intelligent 
detection function, it can determine whether 
the data are lost or not. Then, the ILC law (3) 
can be described as 
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Notice that the closed-loop system is described as a 
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leads to that the 2-D system (11) is a stochastic 
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According to Theorem 1 in [11], we can 
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Notice that the closed-loop system is described as a 
2-D Roesser system in (11). The objective of this 
paper is to find feasible matrices 1 2,K K  such that 
the 2-D system (11) is stable and has an H∞  
disturbance attenuation level. It is worth pointing 
out that the existence of random variable ( , )t kσ  
leads to that the 2-D system (11) is a stochastic 
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Based on the above two definitions, the objective of 
this paper is to design an ILC law in form of (5),  
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two-dimensional Lyapunov function. Then a 
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{ } { }( , ) 0, ( , ) ( , ) (1 ).E t k E t k t kσ σ σ σ σ= = −    

Then the 2-D system (11) can be rewritten as  

( )

1

( 1, ) ( , )
( , )

( , 1) ( , )

( , ).

h h

v v

x t k x t k
A BK t k BK

x t k x t k

B t k

σ σ

ω

   +
= + +   +   
+

    



           

(12) 

Theorem 1: Assume that the packet missing 
rates σ  and the matrices 1, , ,A B B K    are all 
known.  Given a scalar 0γ > , if there exist 
positive definite matrices 1 2,P P  satisfying 

( ) 2
1 1

*
0,T T

I

B P A BK B PB Iσ γ

Ψ + 
< 

+ −  
  

    (13) 

where  

( ) ( )
( ) ( )
{ }

2

2
1 2

,

,

, 0, (1 ),

σ σ

φ

φ σ σ

Ψ = + +

+ −

> = −

T

T

A BK P A BK

BK P BK P

P diag P P

    

   



 

then the 2-D system is mean-square 
asymptotically stable and has an H∞  
performance.  

Proof. We first consider the stability of the 2-
D system without disturbance. In this case, 
the system (12) becomes 

( )( 1, ) ( , )
( , )

( , 1) ( , )

h h

v v

x t k x t k
A BK t k BK

x t k x t k
σ σ

   +
= + +   +   
    

                  

(14) 

and the condition (13) implies 

( ) ( ) ( ) ( )2

0.

σ σ φ+ + +

− <

T T
A BK P A BK BK P BK

P

        

                

(15) 

According to Theorem 1 in [11], we can 
obtain that the system (14) is mean-square 
asymptotically stable. 

Now, we prove that the 2-D stochastic 
system (12) has the H∞  disturbance 
attenuation level. 

Assume that the initial boundary conditions 
of the system are zero, that is, 

(0, ) 0, ( ,0) 0h vx i x i= =  for all i . Firstly, we 
define the following index 

( )
( )

1

1 1 1

( 1, ) ( 1, )
,

( , 1) ( , 1)

.

Th h
T

v v

TT T

T T T T

x t k x t k
J E P x x Px

x t k x t k

x x x A BK PB

B P A BK x B PB

σ ω

ω σ ω ω

    + + −    + +     

= Ψ + +

+ + +

  


  

  

  



 

Another index is introduced as 
2 ,T T Tx x Jγ ω ω ξ ξΠ − + = Ω 

  
where  

(14)

and the condition (13) implies

( )

1

( 1, ) ( , )
( , )

( , 1) ( , )

( , ).

h h

v v

X t k X t k
A t k BK

X t k X t k

B t k

σ

ω

   +
= +   +   
+

  

  (11) 

Notice that the closed-loop system is described as a 
2-D Roesser system in (11). The objective of this 
paper is to find feasible matrices 1 2,K K  such that 
the 2-D system (11) is stable and has an H∞  
disturbance attenuation level. It is worth pointing 
out that the existence of random variable ( , )t kσ  
leads to that the 2-D system (11) is a stochastic 
system. Hence, the stability definition under the 
formwork of stochastic system needs to be 
introduced before proceeding further discussion.   

Definition 1 ([18]): Consider the 2-D system (11). If 

{ }2lim ( , ) 0
+ →∞

=
t k

E x t k  holds for every bounded 

initial condition and ( , ) 0,t kω = where 

( , )= ( , ) ( , )
Th vx t k X t k X t k  ， , then the system is said 

to be mean-square asymptotically stable.  

Definition 2 ( H∞  performance): Given a scalar 
0γ > ,  if the 2-D system satisfies Definition 1, in 

addition, 2E
x γ ω<  holds for any external 

disturbance [0, )ω∈ ∞ , where 

2 2

2
0 0 0 0

( , ) , ( , ) ,ω ω
∞ ∞ ∞ ∞

= = = =

 = = 
 
∑∑ ∑∑E
t k t k

x E x t k t k  

then the 2-D system (11) is mean-square and has an 
H∞  disturbance attenuation level.  

Based on the above two definitions, the objective of 
this paper is to design an ILC law in form of (5),  
such that the 2-D stochastic system is mean-square 
and asymptotically stable and has an H∞  
disturbance attenuation level.  

H∞ ILC Design 
In this section, we first give a sufficient condition 
to satisfy Definition 2 for system (11) by using a 
two-dimensional Lyapunov function. Then a 
feasible controller can be obtained based on the 
condition of solving the linear matrix inequality. 

Define ( , ) ( , )t k t kσ σ σ= − . It is obvious that  

{ } { }( , ) 0, ( , ) ( , ) (1 ).E t k E t k t kσ σ σ σ σ= = −    

Then the 2-D system (11) can be rewritten as  

( )

1

( 1, ) ( , )
( , )

( , 1) ( , )

( , ).

h h

v v

x t k x t k
A BK t k BK

x t k x t k

B t k

σ σ

ω

   +
= + +   +   
+

    



           

(12) 

Theorem 1: Assume that the packet missing 
rates σ  and the matrices 1, , ,A B B K    are all 
known.  Given a scalar 0γ > , if there exist 
positive definite matrices 1 2,P P  satisfying 

( ) 2
1 1

*
0,T T

I

B P A BK B PB Iσ γ

Ψ + 
< 

+ −  
  

    (13) 

where  

( ) ( )
( ) ( )
{ }

2

2
1 2

,

,

, 0, (1 ),

σ σ

φ

φ σ σ

Ψ = + +

+ −

> = −

T

T

A BK P A BK

BK P BK P

P diag P P

    

   



 

then the 2-D system is mean-square 
asymptotically stable and has an H∞  
performance.  

Proof. We first consider the stability of the 2-
D system without disturbance. In this case, 
the system (12) becomes 

( )( 1, ) ( , )
( , )

( , 1) ( , )

h h

v v

x t k x t k
A BK t k BK

x t k x t k
σ σ

   +
= + +   +   
    

                  

(14) 

and the condition (13) implies 

( ) ( ) ( ) ( )2

0.

σ σ φ+ + +

− <

T T
A BK P A BK BK P BK

P

        

                

(15) 

According to Theorem 1 in [11], we can 
obtain that the system (14) is mean-square 
asymptotically stable. 

Now, we prove that the 2-D stochastic 
system (12) has the H∞  disturbance 
attenuation level. 

Assume that the initial boundary conditions 
of the system are zero, that is, 

(0, ) 0, ( ,0) 0h vx i x i= =  for all i . Firstly, we 
define the following index 

( )
( )

1

1 1 1

( 1, ) ( 1, )
,

( , 1) ( , 1)

.

Th h
T

v v

TT T

T T T T

x t k x t k
J E P x x Px

x t k x t k

x x x A BK PB

B P A BK x B PB

σ ω

ω σ ω ω

    + + −    + +     

= Ψ + +

+ + +

  


  

  

  



 

Another index is introduced as 
2 ,T T Tx x Jγ ω ω ξ ξΠ − + = Ω 

  
where  

(15)



569Information Technology and Control 2018/3/47
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quantization. This result is still applicable to the 2-
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In this case, the considered 2-D system is a  
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and matrix ∆  with appropriate dimensions 
satisfying T I∆∆ ≤ , the following inequality holds 

1 .T T T T TX Y Y X XX Y Yε ε −∆ + ∆ ≤ +  

Now, we can give the following result. 

Theorem 2: If there exist a positive definite 
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then the 2-D system is mean-square 
asymptotically stable and has an ∞H  
performance. Furthermore, when the above 
condition is satisfied, a feasible controller 
gain can be given as below 
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Define 1Q P−= . Pro- and post multiplying 
{ }, , , , , , ,diag Q I I I I I I I  for (22) and setting 

M KQ= , the proof can be obtained.  

Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a 
H∞  disturbance attenuation level. Furthermore, 
this condition can also supply a feasible solution of 
ILC gain by solving LMI.  

Remark 3: For a fixed γ , the feasible solution of 
LMI (19) can give a sub-optimal H∞  ILC design 
result. If γ  is not fixed, the optimal performance 
index γ  can be searched by solving the following 
convex programming problem: 

1 2 1 2

2

, , , ,
min

Q Q M M ε
γ

                                  (23) 

s.t.  (19). 

In this case, we can give an optimal ∞H  ILC design 
result.  

An Illustrative Example 
In this section, the proposed design is used for an 
injection molding process. Injection molding 
process has the characteristic of repeated 
operation, where some important process variables 
are controlled to track certain desired trajectories 
repetitively to ensure the product quality [32]. In 
injection molding process, injection velocity is an 
important variable in filling stage. It is controlled 
by operating the opening of a hydraulic valve. The 
injection molding velocity control systems can be 
described as the following state-space model [32]: 
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where ,A B∆ ∆  may be caused by model 
mismatch or nonlinearity of the injection 
modeling process. In this simulation, it is 
assumed that ,A B∆ ∆  only varied on 
iteration domain randomly. That is  
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where 1,2 ( )kξ  are unknown variables. 
( , )w k t  is a random disturbance and it is 

selected as a uniformly distributed sequence 
in [ 0.001,0.001]− .   

The desired trajectory is given as: 
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For the initial conditions, it is assumed that 
1 2(0, ) (0, ) 0x k x k= =  for all k . The control 

input is given as ( ,0) 0u t =  for all t . The 
parameters of the logarithmic quantizer are 

0=0.8 0.1zρ =， . In this simulation, we 
consider two different packet dropouts, that 
is  

Case 1: 1,σ =  

Case 2: 0.8.σ =  

Obviously, in the first case, there is no data 
loss, and in the second case, there is a data 
loss of 20%. Based on the Theorem 2, the 
corresponding controllers can be computed 
as  10.5,optγ =  1 2[ 0.80 0.59], 0.52K K= − =  
for Case 1 and 

1 212.8, [ 0.92 0.63], 0.37opt K Kγ = = − =  for 
Case 2. For Case 1, system outputs at 5th, 
10th and 50th iterations are plotted in Fig. 2. 
It can be seen that the tracking error can be 
reduced to within 0.01 at the 5th iteration. 
As the number of iterations increases, the 
tracking error becomes smaller and smaller. 
After the 50th iteration, a satisfied tracking 
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Define 1Q P−= . Pro- and post multiplying 
{ }, , , , , , ,diag Q I I I I I I I  for (22) and setting 

M KQ= , the proof can be obtained.  

Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a 
H∞  disturbance attenuation level. Furthermore, 
this condition can also supply a feasible solution of 
ILC gain by solving LMI.  

Remark 3: For a fixed γ , the feasible solution of 
LMI (19) can give a sub-optimal H∞  ILC design 
result. If γ  is not fixed, the optimal performance 
index γ  can be searched by solving the following 
convex programming problem: 
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s.t.  (19). 

In this case, we can give an optimal ∞H  ILC design 
result.  

An Illustrative Example 
In this section, the proposed design is used for an 
injection molding process. Injection molding 
process has the characteristic of repeated 
operation, where some important process variables 
are controlled to track certain desired trajectories 
repetitively to ensure the product quality [32]. In 
injection molding process, injection velocity is an 
important variable in filling stage. It is controlled 
by operating the opening of a hydraulic valve. The 
injection molding velocity control systems can be 
described as the following state-space model [32]: 
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where ,A B∆ ∆  may be caused by model 
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where 1,2 ( )kξ  are unknown variables. 
( , )w k t  is a random disturbance and it is 

selected as a uniformly distributed sequence 
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For the initial conditions, it is assumed that 
1 2(0, ) (0, ) 0x k x k= =  for all k . The control 

input is given as ( ,0) 0u t =  for all t . The 
parameters of the logarithmic quantizer are 

0=0.8 0.1zρ =， . In this simulation, we 
consider two different packet dropouts, that 
is  

Case 1: 1,σ =  

Case 2: 0.8.σ =  

Obviously, in the first case, there is no data 
loss, and in the second case, there is a data 
loss of 20%. Based on the Theorem 2, the 
corresponding controllers can be computed 
as  10.5,optγ =  1 2[ 0.80 0.59], 0.52K K= − =  
for Case 1 and 

1 212.8, [ 0.92 0.63], 0.37opt K Kγ = = − =  for 
Case 2. For Case 1, system outputs at 5th, 
10th and 50th iterations are plotted in Fig. 2. 
It can be seen that the tracking error can be 
reduced to within 0.01 at the 5th iteration. 
As the number of iterations increases, the 
tracking error becomes smaller and smaller. 
After the 50th iteration, a satisfied tracking 

Define 1Q P-= . Pro- and post multiplying 
{ }, , , , , , ,diag Q I I I I I I I  for (25) and setting M KQ= , 

the proof can be obtained. 
Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a H∞  
disturbance attenuation level. Furthermore, this con-
dition can also supply a feasible solution of ILC gain 
by solving LMI. 
Remark  3: For a fixed γ , the feasible solution of 
LMI (22) can give a sub-optimal H∞  ILC design re-
sult. If γ  is not fixed, the optimal performance index 
γ  can be searched by solving the following convex 
programming problem:
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Define 1Q P−= . Pro- and post multiplying 
{ }, , , , , , ,diag Q I I I I I I I  for (22) and setting 

M KQ= , the proof can be obtained.  

Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a 
H∞  disturbance attenuation level. Furthermore, 
this condition can also supply a feasible solution of 
ILC gain by solving LMI.  

Remark 3: For a fixed γ , the feasible solution of 
LMI (19) can give a sub-optimal H∞  ILC design 
result. If γ  is not fixed, the optimal performance 
index γ  can be searched by solving the following 
convex programming problem: 
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s.t.  (19). 

In this case, we can give an optimal ∞H  ILC design 
result.  

An Illustrative Example 
In this section, the proposed design is used for an 
injection molding process. Injection molding 
process has the characteristic of repeated 
operation, where some important process variables 
are controlled to track certain desired trajectories 
repetitively to ensure the product quality [32]. In 
injection molding process, injection velocity is an 
important variable in filling stage. It is controlled 
by operating the opening of a hydraulic valve. The 
injection molding velocity control systems can be 
described as the following state-space model [32]: 
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where ,A B∆ ∆  may be caused by model 
mismatch or nonlinearity of the injection 
modeling process. In this simulation, it is 
assumed that ,A B∆ ∆  only varied on 
iteration domain randomly. That is  
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where 1,2 ( )kξ  are unknown variables. 
( , )w k t  is a random disturbance and it is 

selected as a uniformly distributed sequence 
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For the initial conditions, it is assumed that 
1 2(0, ) (0, ) 0x k x k= =  for all k . The control 

input is given as ( ,0) 0u t =  for all t . The 
parameters of the logarithmic quantizer are 

0=0.8 0.1zρ =， . In this simulation, we 
consider two different packet dropouts, that 
is  

Case 1: 1,σ =  

Case 2: 0.8.σ =  

Obviously, in the first case, there is no data 
loss, and in the second case, there is a data 
loss of 20%. Based on the Theorem 2, the 
corresponding controllers can be computed 
as  10.5,optγ =  1 2[ 0.80 0.59], 0.52K K= − =  
for Case 1 and 

1 212.8, [ 0.92 0.63], 0.37opt K Kγ = = − =  for 
Case 2. For Case 1, system outputs at 5th, 
10th and 50th iterations are plotted in Fig. 2. 
It can be seen that the tracking error can be 
reduced to within 0.01 at the 5th iteration. 
As the number of iterations increases, the 
tracking error becomes smaller and smaller. 
After the 50th iteration, a satisfied tracking 
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s.t.  (22).
In this case, we can give an optimal ∞H  ILC design 
result. 

5. An Illustrative Example
In this section, the proposed design is used for an injection 
molding process. Injection molding process has the char-
acteristic of repeated operation, where some important 
process variables are controlled to track certain desired 
trajectories repetitively to ensure the product quality 
[32]. In injection molding process, injection velocity is 
an important variable in filling stage. It is controlled by 
operating the opening of a hydraulic valve. The injection 
molding velocity control systems can be described as the 
following state-space model [32]: 
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Define 1Q P−= . Pro- and post multiplying 
{ }, , , , , , ,diag Q I I I I I I I  for (22) and setting 

M KQ= , the proof can be obtained.  

Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a 
H∞  disturbance attenuation level. Furthermore, 
this condition can also supply a feasible solution of 
ILC gain by solving LMI.  

Remark 3: For a fixed γ , the feasible solution of 
LMI (19) can give a sub-optimal H∞  ILC design 
result. If γ  is not fixed, the optimal performance 
index γ  can be searched by solving the following 
convex programming problem: 
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s.t.  (19). 

In this case, we can give an optimal ∞H  ILC design 
result.  

An Illustrative Example 
In this section, the proposed design is used for an 
injection molding process. Injection molding 
process has the characteristic of repeated 
operation, where some important process variables 
are controlled to track certain desired trajectories 
repetitively to ensure the product quality [32]. In 
injection molding process, injection velocity is an 
important variable in filling stage. It is controlled 
by operating the opening of a hydraulic valve. The 
injection molding velocity control systems can be 
described as the following state-space model [32]: 
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mismatch or nonlinearity of the injection 
modeling process. In this simulation, it is 
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this simulation, we consider two different packet 
dropouts, that is 
Case 1: 1,σ =
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Obviously, in the first case, there is no data loss, 
and in the second case, there is a data loss of 
20%. Based on the Theorem 2, the corresponding 
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1 2[ 0.80 0.59], 0.52K K= - =  for Case 1 and 
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2. For Case 1, system outputs at 5th, 10th and 50th 
iterations are plotted in Fig. 2. It can be seen that the 
tracking error can be reduced to within 0.01 at the 5th 
iteration. As the number of iterations increases, the 
tracking error becomes smaller and smaller. After 
the 50th iteration, a satisfied tracking performance 
can be obtained. Notice that the small oscillation at 
the 50th iteration is produced by the effect of random 
disturbance. Furthermore, the tracking error is also 
plotted in Fig. 3 to show the convergence procedure 
clearly, where the horizontal coordinate is the num-
ber of iterations and the vertical coordinate is maxi-
mum tracking error. 
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that even though there exists a large tracking error at 
the start iteration due to the effect of packet dropouts 
and data quantization, better tracking performance 
can also be obtained through iteration learning process. 
Notice that the oscillation in Fig. 4 (c) is greater than 
that in Case 1 in Fig. 2 (c), which also illustrates that 
the data dropout will enlarge the effect of random 
disturbance for the ILC systems. 

6. Conclusions
In this paper, a robust H∞ ILC has been designed 
for network-based uncertain systems with both 
random data dropouts and data quantization. It is 
assumed that the system state and tracking error 
are first quantized through a logarithmic quantizer, 
which can decode these data into finite quantization 

levels. Furthermore, the model of packet dropout is 
described as the Bernoulli binary value sequences 
with known probability. Then the considered ILC 
systems can be transformed into a 2-D stochastic 
system. An asymptotical stability condition has been 
developed for such 2-D system and then a feasible ILC 
design approach is given. It is shown that the proposed 
ILC design can suppress the influence of random data 
dropouts, data quantization and the iteration-varying 
disturbances effectively. 
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