
Information Technology and Control 2018/3/47564

Robust Quantized H∞ ILC Design 
for Uncertain Systems with 
Communication Constraints

ITC 3/47
Journal of Information Technology  
and Control
Vol. 47 / No. 3 / 2018
pp. 564-574
DOI 10.5755/j01.itc.47.3.18451   
© Kaunas University of Technology

Robust Quantized H∞ ILC Design for Uncertain Systems with 
Communication Constraints

Received  2017/06/23 Accepted after revision  2018/07/30

    http://dx.doi.org/10.5755/j01.itc.47.3.18451  

Corresponding author: buxuhui@gmail.com

Bu Xuhui 
School of Electrical Engineering & Automation, Henan Polytechnic University, Jiaozuo, China.  
Institute of Artificial Intelligence & Control, Qingdao University of Science and Technology, Qingdao, China 
e-mail: buxuhui@gmail.com

Cui Zhongyuan 
College of Computer Science and Technology, Zhoukou Normal University, Zhoukou, China,  
e-mail: cuizy@zknu.edu.cn;

Cui Lizhi, Qian Wei 
School of Electrical Engineering & Automation, Henan Polytechnic University, Jiaozuo, China,  
e-mail: clzh0308@hpu.edu.cn; qwei@hpu.edu.cn

In this paper, an H∞ ILC algorithm is designed for network-based uncertain systems with communication con-
straints, where the system is suffering from data dropouts and data quantization. Here, it is assumed that the 
system state and tracking error are first quantized through a logarithmic quantizer, which can decode these 
data into finite quantization levels. Furthermore, the model of packet dropout is described as the Bernoulli 
binary value sequences with known probability. Then, the 2-D dynamic of such ILC process is established by a 
stochastic Roesser model. To deal with the quantization error, the sector bound method is also utilized. A suffi-
cient condition is obtained for such systems and the condition can realize the design of the ILC controller. The 
effectiveness of the proposed design is validated by application to an injection molding process.
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1. Introduction
Iterative learning control was first proposed by 
Airimoto in 1984 [4]. It is an effective tracking con-

trol approach for dynamic systems that performs 
repeated tasks over a finite time interval. After three 
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decades of developments, ILC has made considerable 
theoretical achievements. Meanwhile, ILC is widely 
used in many practical systems, for instance, robotic 
systems, traffic control systems, industrial batch 
processes and hard disk drives [1, 4, 6, 12, 13, 22, 23, 
29, 31, 33]. Most of the existing ILC literature is con-
sidered for the conventional point-to-point control 
systems, where the information can fully transmit 
between the controller and the plant. In practice, net-
worked control systems (NCSs) have aroused wide-
spread concern and application [3, 16, 19, 20, 27, 35, 
36]. Compared with point-to-point control systems, 
NCSs have some advantages such as easy installation, 
high security and low maintenance cost. However, 
due to the limitation of network bandwidth and the 
influence of transmission channel, it is easy to cause 
some incomplete information, such as data dropout, 
communication delay and data quantization.  
Some research results have been obtained for the iter-
ative learning control systems with data losses. In [2], 
a packet dropout compensation approach is proposed 
by using ILC for networked control systems. It is 
shown that this design can relax the result of critical 
data dropout rate, which will change the stability of 
NCSs. In [26], an averaging ILC scheme is introduced 
to nonlinear systems with packet dropouts, where 
the one step network-induced delay can also be seen 
as packet dropout. It is shown that the missing data 
can be compensated by the average of previous data. 
In [8], the convergence of nonlinear ILC systems 
with packet losses is discussed, where the situation 
considered is one in which data dropout occurs si-
multaneously both on the control input side and on 
the measurement output side. The main results of 
[8] are that the ILC system still guarantees conver-
gence even though there exists data packet loss. In 
[9], by using super-vector formulation, an H∞ ILC 
design method is developed where the H∞ perfor-
mance is defined along iteration axis and the ILC 
controller design is discussed under the framework 
of stochastic systems. In [11], a 2-D stochastic Roess-
er model is established for discrete time linear ILC 
systems with random data dropouts. Based on this 
formulation, the problem of learning gain design can 
be transformed into the mean square stability for 
such established 2-D system. In [14], a stochastic ap-
proximation ILC algorithm is developed for a class of 
nonlinear systems with measurement missing, where 
the control direction of the system is also unknown.

On the other hand, data quantization is also an im-
portant issue for NCSs [7, 17, 25, 30]. That is because 
the data need to be quantized before being transferred 
to the next network node owing to the limited trans-
mission capacity of the network. In our previous work 
[10], the data quantization is first discussed for ILC 
systems, where the data quantization occurs at the 
measurement output side. Some convergence condi-
tions are established for both linear systems and non-
linear systems. The main result shows that, due to the 
effect of data quantization, the tracking error converg-
es to a bound relying on the quantization level. Large 
quantization density will cause large tracking error. 
Hence, it is an interesting work to design an ILC algo-
rithm to reduce the influence of data quantization.
This paper focuses on the problem of ILC design 
for network-based uncertain systems with packet 
dropouts and data quantization. The objective is to 
design an ILC algorithm so that the impact of data 
quantization and missing can be reduced. It is no-
ticed that the 2-D Roesser model is an effective tool 
to describe the dynamical behavior of ILC systems 
[21, 24, 32]. Hence, here we also first establish the 
2-D Roesser model for such ILC processes to de-
sign the controller. To describe the communication 
constraints, Bernoulli processes are introduced for 
modeling packet dropouts and the logarithmic type 
quantizer is selected to compress the system data. 
The stochastic mean-square asymptotical stability is 
also introduced in this paper to establish the stability 
of such 2-D system. A sufficient asymptotical stability 
condition is given for the 2-D system with an H∞ dis-
turbance attenuation level by using the sector bound 
method, and the stability condition can realize the de-
sign of the ILC controller.
There are at least two differences between this paper 
and existing works. Firstly, comparing with the exist-
ing ILC design based on 2-D model in [28], this paper 
considers the effect of communication constraints 
and iteration-varying disturbances. The stability 
analysis is given under the framework of stochastic 
systems, and the proposed controller has an H∞

 dis-
turbance attenuation level. Secondly, comparing with 
the result in [10], the proposed design can reduce the 
influence of the data quantization. The algorithm 
proposed in this paper can get zero tracking error 
if the disturbance tends to zero, thus [10] can only 
obtain bounded tracking error. The main contribu-
tion of this paper can be summarized as follows: (1) 
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The ILC design is considered for linear systems with 
communication constraints, where the data dropout 
and data quantization occur due to the limitation of 
transmission channel. (2) A 2-D stochastic Roesser 
model is established to describe the dynamics of the 
ILC system and then the problem of ILC design can 
be transformed into the synthetic of the 2-D system. 
The rest of the paper is organized as follows. Section 
2 introduces the NCSs framework for the ILC sys-
tems. Section 3 gives a sufficient asymptotical sta-
bility condition for the established 2-D system. The 
condition can realize the design of the ILC controller. 
Section 4 supplies a numerical example to validate 
the effectiveness of the proposed design.  
Notation: Let T  denote the matrix transposition and

nR  denote the n -dimensional Euclidean space and 
I and 0 stand for identity matrix and zero matrix, 
respectively.  stands for the standard diagonal 
matrix. A matrix without special instructions has an 
appropriate demission to ensure that the algebraic op-
erations are compatible. { }E x  denotes the expectation 
of x  and  { }|E x y  stands for the condition expectation. 

2. Problem Formulation
Let us consider the following discrete time linear re-
petitive system 
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where the subscript k  denotes iteration and t  
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( , ) , ( , )∈ ∈mu t k R w t k R   are state, output and input 
variables and iteration-varying disturbances. 
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where Σ  is an uncertain matrix satisfying 
T IΣ Σ ≤ . 1 2, ,E F F  are constant matrices used 

to describe the determinate parts of the 
uncertain perturbations, which can also 
reflect the structures of A∆  and B∆ . 

0(0, ) kx k x=  denotes the initial condition of 
the system at the k th iteration. 

For system (1), the ILC law is introduced as 
follows  

( , ) ( , 1) ( , ),u t k u t k r t k= − +                          (3) 

where ( , )r t k  is the control updated signal.  

In many of the existing ILC approaches, the 
control updated law is usually chosen as  

( )( , ) ( 1, ), ( , ), , ( , ,r t k f e t k e t k e t p k= + −  

where ( , ) ( ) ( , )de t k y t y t k= −  is the tracking 
error and p  is a constant. Using this 
expression, many different types of ILC 
algorithms can be constructed, such as P-
type, PD-type and PID-type. In this paper, 
we consider the following ILC updated law 

    
( )1 2( , ) ( , ) ( , 1) ( 1, 1),r t k K x t k x t k K e t k= − − + + −    

(4) 

where 1 2,K K  are gain metrics to be 
designed. As shown in (4), the above 
updated term contains tracking error signals 
at current iteration, state signals at current 
iteration and previous iteration. This scheme 
can merge the advantages of both feedback 
control, such as robustness, and ILC, such as 
extra performance from learning process 
[24, 32]. 

As shown in Fig. 1, this paper assumes that 
the ILC is executed in a network 
environment.  For convenience, we only 
consider the communication channel 
existing in the output measurement side. 
Hence, the data ( , )r t k  are first quantized by 
a quantizer, then the quantized data are 
transmitted to the ILC controller. In this 
process, the packet loss often occurs.  
Assume that the controller has an intelligent 
detection function, it can determine whether 
the data are lost or not. Then, the ILC law (3) 
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To this end, this paper discusses the following 
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Notice that the closed-loop system is described as a 
2-D Roesser system in (11). The objective of this 
paper is to find feasible matrices 1 2,K K  such that 
the 2-D system (11) is stable and has an H∞  
disturbance attenuation level. It is worth pointing 
out that the existence of random variable ( , )t kσ  
leads to that the 2-D system (11) is a stochastic 
system. Hence, the stability definition under the 
formwork of stochastic system needs to be 
introduced before proceeding further discussion.   

Definition 1 ([18]): Consider the 2-D system (11). If 

{ }2lim ( , ) 0
+ →∞

=
t k

E x t k  holds for every bounded 

initial condition and ( , ) 0,t kω = where 
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to be mean-square asymptotically stable.  
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then the 2-D system (11) is mean-square and has an 
H∞  disturbance attenuation level.  

Based on the above two definitions, the objective of 
this paper is to design an ILC law in form of (5),  
such that the 2-D stochastic system is mean-square 
and asymptotically stable and has an H∞  
disturbance attenuation level.  

H∞ ILC Design 
In this section, we first give a sufficient condition 
to satisfy Definition 2 for system (11) by using a 
two-dimensional Lyapunov function. Then a 
feasible controller can be obtained based on the 
condition of solving the linear matrix inequality. 

Define ( , ) ( , )t k t kσ σ σ= − . It is obvious that  
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Theorem 1: Assume that the packet missing 
rates σ  and the matrices 1, , ,A B B K    are all 
known.  Given a scalar 0γ > , if there exist 
positive definite matrices 1 2,P P  satisfying 

( ) 2
1 1

*
0,T T

I

B P A BK B PB Iσ γ

Ψ + 
< 

+ −  
  

    (13) 

where  

( ) ( )
( ) ( )
{ }

2

2
1 2

,

,

, 0, (1 ),

σ σ

φ

φ σ σ

Ψ = + +

+ −

> = −

T

T

A BK P A BK

BK P BK P

P diag P P

    

   



 

then the 2-D system is mean-square 
asymptotically stable and has an H∞  
performance.  

Proof. We first consider the stability of the 2-
D system without disturbance. In this case, 
the system (12) becomes 
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According to Theorem 1 in [11], we can 
obtain that the system (14) is mean-square 
asymptotically stable. 

Now, we prove that the 2-D stochastic 
system (12) has the H∞  disturbance 
attenuation level. 
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Notice that the closed-loop system is described as a 
2-D Roesser system in (11). The objective of this 
paper is to find feasible matrices 1 2,K K  such that 
the 2-D system (11) is stable and has an H∞  
disturbance attenuation level. It is worth pointing 
out that the existence of random variable ( , )t kσ  
leads to that the 2-D system (11) is a stochastic 
system. Hence, the stability definition under the 
formwork of stochastic system needs to be 
introduced before proceeding further discussion.   
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Based on the above two definitions, the objective of 
this paper is to design an ILC law in form of (5),  
such that the 2-D stochastic system is mean-square 
and asymptotically stable and has an H∞  
disturbance attenuation level.  

H∞ ILC Design 
In this section, we first give a sufficient condition 
to satisfy Definition 2 for system (11) by using a 
two-dimensional Lyapunov function. Then a 
feasible controller can be obtained based on the 
condition of solving the linear matrix inequality. 
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on an assumption that the system matrices 

1, , ,A B B K    and parameters σ  are all known. 
However, the aim of this paper is to design the ILC 
gain matrices 1K  and 2K . In the following, we will 
give the ILC design method based on the condition 
in Theorem 1.  

Lemma 1 [5]:  Assume ,X Y  are matrices or vectors 
with appropriate dimensions. For any scalar 0ε >  
and matrix ∆  with appropriate dimensions 
satisfying T I∆∆ ≤ , the following inequality holds 
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Now, we can give the following result. 
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then the 2-D system is mean-square 
asymptotically stable and has an ∞H  
performance. Furthermore, when the above 
condition is satisfied, a feasible controller 
gain can be given as below 
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By using Schur Complement, (21) can be 
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This completes the proof. 

Remark 1:  In Theorem 1, we give a sufficient 
condition for 2-D systems with communication 
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quantization. This result is still applicable to the 2-
D system without communication constraints. If 
there is no communication constraint between the 
controller and plant, then Ο = 0 , 1σ =  and 0φ = . 
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However, the aim of this paper is to design the ILC 
gain matrices 1K  and 2K . In the following, we will 
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in Theorem 1.  
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with appropriate dimensions. For any scalar 0ε >  
and matrix ∆  with appropriate dimensions 
satisfying T I∆∆ ≤ , the following inequality holds 
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then the 2-D system is mean-square 
asymptotically stable and has an ∞H  
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Define 1Q P−= . Pro- and post multiplying 
{ }, , , , , , ,diag Q I I I I I I I  for (22) and setting 

M KQ= , the proof can be obtained.  

Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a 
H∞  disturbance attenuation level. Furthermore, 
this condition can also supply a feasible solution of 
ILC gain by solving LMI.  

Remark 3: For a fixed γ , the feasible solution of 
LMI (19) can give a sub-optimal H∞  ILC design 
result. If γ  is not fixed, the optimal performance 
index γ  can be searched by solving the following 
convex programming problem: 
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s.t.  (19). 

In this case, we can give an optimal ∞H  ILC design 
result.  

An Illustrative Example 
In this section, the proposed design is used for an 
injection molding process. Injection molding 
process has the characteristic of repeated 
operation, where some important process variables 
are controlled to track certain desired trajectories 
repetitively to ensure the product quality [32]. In 
injection molding process, injection velocity is an 
important variable in filling stage. It is controlled 
by operating the opening of a hydraulic valve. The 
injection molding velocity control systems can be 
described as the following state-space model [32]: 

[ ]

1.58 0.59
( , 1) ( , )

1 0

1 1
( , ) ( , ),

0 1

( , ) 1.69 1.42 ( , ),

x k t A x k t

B u k t w k t

y k t x k t

  −  
+ = + ∆   

  
      + + ∆ +     

    
 = −


 

where ,A B∆ ∆  may be caused by model 
mismatch or nonlinearity of the injection 
modeling process. In this simulation, it is 
assumed that ,A B∆ ∆  only varied on 
iteration domain randomly. That is  
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where 1,2 ( )kξ  are unknown variables. 
( , )w k t  is a random disturbance and it is 

selected as a uniformly distributed sequence 
in [ 0.001,0.001]− .   

The desired trajectory is given as: 
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For the initial conditions, it is assumed that 
1 2(0, ) (0, ) 0x k x k= =  for all k . The control 

input is given as ( ,0) 0u t =  for all t . The 
parameters of the logarithmic quantizer are 

0=0.8 0.1zρ =， . In this simulation, we 
consider two different packet dropouts, that 
is  

Case 1: 1,σ =  

Case 2: 0.8.σ =  

Obviously, in the first case, there is no data 
loss, and in the second case, there is a data 
loss of 20%. Based on the Theorem 2, the 
corresponding controllers can be computed 
as  10.5,optγ =  1 2[ 0.80 0.59], 0.52K K= − =  
for Case 1 and 

1 212.8, [ 0.92 0.63], 0.37opt K Kγ = = − =  for 
Case 2. For Case 1, system outputs at 5th, 
10th and 50th iterations are plotted in Fig. 2. 
It can be seen that the tracking error can be 
reduced to within 0.01 at the 5th iteration. 
As the number of iterations increases, the 
tracking error becomes smaller and smaller. 
After the 50th iteration, a satisfied tracking 
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Define 1Q P−= . Pro- and post multiplying 
{ }, , , , , , ,diag Q I I I I I I I  for (22) and setting 

M KQ= , the proof can be obtained.  

Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a 
H∞  disturbance attenuation level. Furthermore, 
this condition can also supply a feasible solution of 
ILC gain by solving LMI.  

Remark 3: For a fixed γ , the feasible solution of 
LMI (19) can give a sub-optimal H∞  ILC design 
result. If γ  is not fixed, the optimal performance 
index γ  can be searched by solving the following 
convex programming problem: 
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s.t.  (19). 

In this case, we can give an optimal ∞H  ILC design 
result.  

An Illustrative Example 
In this section, the proposed design is used for an 
injection molding process. Injection molding 
process has the characteristic of repeated 
operation, where some important process variables 
are controlled to track certain desired trajectories 
repetitively to ensure the product quality [32]. In 
injection molding process, injection velocity is an 
important variable in filling stage. It is controlled 
by operating the opening of a hydraulic valve. The 
injection molding velocity control systems can be 
described as the following state-space model [32]: 
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where 1,2 ( )kξ  are unknown variables. 
( , )w k t  is a random disturbance and it is 

selected as a uniformly distributed sequence 
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For the initial conditions, it is assumed that 
1 2(0, ) (0, ) 0x k x k= =  for all k . The control 

input is given as ( ,0) 0u t =  for all t . The 
parameters of the logarithmic quantizer are 

0=0.8 0.1zρ =， . In this simulation, we 
consider two different packet dropouts, that 
is  

Case 1: 1,σ =  

Case 2: 0.8.σ =  

Obviously, in the first case, there is no data 
loss, and in the second case, there is a data 
loss of 20%. Based on the Theorem 2, the 
corresponding controllers can be computed 
as  10.5,optγ =  1 2[ 0.80 0.59], 0.52K K= − =  
for Case 1 and 

1 212.8, [ 0.92 0.63], 0.37opt K Kγ = = − =  for 
Case 2. For Case 1, system outputs at 5th, 
10th and 50th iterations are plotted in Fig. 2. 
It can be seen that the tracking error can be 
reduced to within 0.01 at the 5th iteration. 
As the number of iterations increases, the 
tracking error becomes smaller and smaller. 
After the 50th iteration, a satisfied tracking 
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Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a H∞  
disturbance attenuation level. Furthermore, this con-
dition can also supply a feasible solution of ILC gain 
by solving LMI. 
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Define 1Q P−= . Pro- and post multiplying 
{ }, , , , , , ,diag Q I I I I I I I  for (22) and setting 

M KQ= , the proof can be obtained.  

Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a 
H∞  disturbance attenuation level. Furthermore, 
this condition can also supply a feasible solution of 
ILC gain by solving LMI.  

Remark 3: For a fixed γ , the feasible solution of 
LMI (19) can give a sub-optimal H∞  ILC design 
result. If γ  is not fixed, the optimal performance 
index γ  can be searched by solving the following 
convex programming problem: 
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s.t.  (19). 

In this case, we can give an optimal ∞H  ILC design 
result.  

An Illustrative Example 
In this section, the proposed design is used for an 
injection molding process. Injection molding 
process has the characteristic of repeated 
operation, where some important process variables 
are controlled to track certain desired trajectories 
repetitively to ensure the product quality [32]. In 
injection molding process, injection velocity is an 
important variable in filling stage. It is controlled 
by operating the opening of a hydraulic valve. The 
injection molding velocity control systems can be 
described as the following state-space model [32]: 
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where ,A B∆ ∆  may be caused by model 
mismatch or nonlinearity of the injection 
modeling process. In this simulation, it is 
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where 1,2 ( )kξ  are unknown variables. 
( , )w k t  is a random disturbance and it is 

selected as a uniformly distributed sequence 
in [ 0.001,0.001]− .   
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For the initial conditions, it is assumed that 
1 2(0, ) (0, ) 0x k x k= =  for all k . The control 

input is given as ( ,0) 0u t =  for all t . The 
parameters of the logarithmic quantizer are 

0=0.8 0.1zρ =， . In this simulation, we 
consider two different packet dropouts, that 
is  

Case 1: 1,σ =  

Case 2: 0.8.σ =  

Obviously, in the first case, there is no data 
loss, and in the second case, there is a data 
loss of 20%. Based on the Theorem 2, the 
corresponding controllers can be computed 
as  10.5,optγ =  1 2[ 0.80 0.59], 0.52K K= − =  
for Case 1 and 

1 212.8, [ 0.92 0.63], 0.37opt K Kγ = = − =  for 
Case 2. For Case 1, system outputs at 5th, 
10th and 50th iterations are plotted in Fig. 2. 
It can be seen that the tracking error can be 
reduced to within 0.01 at the 5th iteration. 
As the number of iterations increases, the 
tracking error becomes smaller and smaller. 
After the 50th iteration, a satisfied tracking 
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s.t.  (22).
In this case, we can give an optimal ∞H  ILC design 
result. 

5. An Illustrative Example
In this section, the proposed design is used for an injection 
molding process. Injection molding process has the char-
acteristic of repeated operation, where some important 
process variables are controlled to track certain desired 
trajectories repetitively to ensure the product quality 
[32]. In injection molding process, injection velocity is 
an important variable in filling stage. It is controlled by 
operating the opening of a hydraulic valve. The injection 
molding velocity control systems can be described as the 
following state-space model [32]: 
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Define 1Q P−= . Pro- and post multiplying 
{ }, , , , , , ,diag Q I I I I I I I  for (22) and setting 

M KQ= , the proof can be obtained.  

Remark 2: Theorem 2 gives another LMI condition 
for the 2-D stochastic system. If this condition is 
satisfied, the mean-square asymptotic stability can 
be guaranteed and, meanwhile, the system has a 
H∞  disturbance attenuation level. Furthermore, 
this condition can also supply a feasible solution of 
ILC gain by solving LMI.  

Remark 3: For a fixed γ , the feasible solution of 
LMI (19) can give a sub-optimal H∞  ILC design 
result. If γ  is not fixed, the optimal performance 
index γ  can be searched by solving the following 
convex programming problem: 
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s.t.  (19). 

In this case, we can give an optimal ∞H  ILC design 
result.  

An Illustrative Example 
In this section, the proposed design is used for an 
injection molding process. Injection molding 
process has the characteristic of repeated 
operation, where some important process variables 
are controlled to track certain desired trajectories 
repetitively to ensure the product quality [32]. In 
injection molding process, injection velocity is an 
important variable in filling stage. It is controlled 
by operating the opening of a hydraulic valve. The 
injection molding velocity control systems can be 
described as the following state-space model [32]: 
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where ,A B∆ ∆  may be caused by model 
mismatch or nonlinearity of the injection 
modeling process. In this simulation, it is 
assumed that ,A B∆ ∆  only varied on 
iteration domain randomly. That is  
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where 1,2 ( )kξ  are unknown variables. 
( , )w k t  is a random disturbance and it is 
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For the initial conditions, it is assumed that 
1 2(0, ) (0, ) 0x k x k= =  for all k . The control 

input is given as ( ,0) 0u t =  for all t . The 
parameters of the logarithmic quantizer are 

0=0.8 0.1zρ =， . In this simulation, we 
consider two different packet dropouts, that 
is  

Case 1: 1,σ =  

Case 2: 0.8.σ =  

Obviously, in the first case, there is no data 
loss, and in the second case, there is a data 
loss of 20%. Based on the Theorem 2, the 
corresponding controllers can be computed 
as  10.5,optγ =  1 2[ 0.80 0.59], 0.52K K= − =  
for Case 1 and 

1 212.8, [ 0.92 0.63], 0.37opt K Kγ = = − =  for 
Case 2. For Case 1, system outputs at 5th, 
10th and 50th iterations are plotted in Fig. 2. 
It can be seen that the tracking error can be 
reduced to within 0.01 at the 5th iteration. 
As the number of iterations increases, the 
tracking error becomes smaller and smaller. 
After the 50th iteration, a satisfied tracking 
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1 2(0, ) (0, ) 0x k x k= =  for all k . The control input 

is given as ( ,0) 0u t =  for all t . The parameters of 
the logarithmic quantizer are 0=0.8 0.1zρ =， . In 
this simulation, we consider two different packet 
dropouts, that is 
Case 1: 1,σ =

Case 2: 0.8.σ =

Obviously, in the first case, there is no data loss, 
and in the second case, there is a data loss of 
20%. Based on the Theorem 2, the corresponding 
controllers can be computed as 10.5,optγ =  

1 2[ 0.80 0.59], 0.52K K= - =  for Case 1 and 
1 212.8, [ 0.92 0.63], 0.37opt K Kγ = = - =  for Case 

2. For Case 1, system outputs at 5th, 10th and 50th 
iterations are plotted in Fig. 2. It can be seen that the 
tracking error can be reduced to within 0.01 at the 5th 
iteration. As the number of iterations increases, the 
tracking error becomes smaller and smaller. After 
the 50th iteration, a satisfied tracking performance 
can be obtained. Notice that the small oscillation at 
the 50th iteration is produced by the effect of random 
disturbance. Furthermore, the tracking error is also 
plotted in Fig. 3 to show the convergence procedure 
clearly, where the horizontal coordinate is the num-
ber of iterations and the vertical coordinate is maxi-
mum tracking error. 
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System output profiles for Case 1: (a) 5th iteration. (b) 10th 
iteration. (c) 50th iteration
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that even though there exists a large tracking error at 
the start iteration due to the effect of packet dropouts 
and data quantization, better tracking performance 
can also be obtained through iteration learning process. 
Notice that the oscillation in Fig. 4 (c) is greater than 
that in Case 1 in Fig. 2 (c), which also illustrates that 
the data dropout will enlarge the effect of random 
disturbance for the ILC systems. 

6. Conclusions
In this paper, a robust H∞ ILC has been designed 
for network-based uncertain systems with both 
random data dropouts and data quantization. It is 
assumed that the system state and tracking error 
are first quantized through a logarithmic quantizer, 
which can decode these data into finite quantization 

levels. Furthermore, the model of packet dropout is 
described as the Bernoulli binary value sequences 
with known probability. Then the considered ILC 
systems can be transformed into a 2-D stochastic 
system. An asymptotical stability condition has been 
developed for such 2-D system and then a feasible ILC 
design approach is given. It is shown that the proposed 
ILC design can suppress the influence of random data 
dropouts, data quantization and the iteration-varying 
disturbances effectively. 

 Acknowledgement
This work is supported by the National Natural 
Science Foundation of China (Nos. 61573129), the In-
novative Scientists and Technicians Team of Henan 
Polytechnic University (T2017-1) and the Program 
for Science and Technology Innovation Talents in 
Universities of Henan Province (16HASTIT046).

References 
1. Ahn, H. S., Chen, Y., Moore, K. L. Iterative Learning 

Control: Brief Survey and Categorization. IEEE Trans-
actions on Systems, Man, and Cybernetics-Part C: Ap-
plications and Reviews, 2007, 37(6), 1099-1121. https://
doi.org/10.1007/978-1-84628-859-3

2. Ahn, H. S., Chen, Y. Q., Moore, K. L. Discrete-Time In-
termittent Iterative Learning Control with Indepen-
dent Data Dropouts. Proceedings of 17th IFAC World 
Congress, Korea, 2008, 12442-12447. 

3. Alarcon-Aquino, V., Ramirez-Cortes, J. M., Gomez-Gil, 
P., Starostenko, O., Garcia-Gonzalez, Y. Network Intru-
sion Detection Using Self-Recurrent Wavelet Neural 
Network with Multidimensional Radial Wavelons. In-
formation Technology and Control, 2014, 43(4), 347-
358. https://doi.org/10.5755/j01.itc.43.4.4626 

4. Arimoto, S., Kawamura, S., Miyazaki, F. Bettering 
Operation of Robots by Learning. Journal of Robotic 
Systems, 1984, 1(2), 123-140. https://doi.org/10.1002/
rob.4620010203 

5. Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnan, V. 
Linear Matrix Inequalities in System and Con-
trol Theory. SIAM, Philadelphia, 1994. https://doi.
org/10.1137/1.9781611970777

6. Bristow, D. A., Tharayil, M., Alleyne, A. G. A Survey of 
Iterative Learning Control: A Learning-Based Method 
for High-Performance Tracking Control. IEEE Control 

Systems, 2006, 26(3), 96-114. https://doi.org/10.1109/
MCS.2006.1636313 

7. Brockett, R. W., Liberzon, D. Quantized Feedback Sta-
bilization of Linear Systems. IEEE Transactions on 
Automatic Control, 2000, 45(7), 1279-1289. https://doi.
org/10.1109/9.867021 

8. Bu, X. H., Yu, F. S., Hou, Z. S., Wang, F. Z. Iterative Le-
arning Control for a Class of Nonlinear Systems with 
Random Packet Losses. Nonlinear Analysis: Real 
World Applications, 2013, 14(1), 567-580. https://doi.
org/10.1016/j.nonrwa.2012.07.017 

9. Bu, X. H., Hou, Z. S., Yu, F. S., Wang, F. Z. H∞ Iterative 
Learning Controller Design for a Class of Discrete-Ti-
me Systems with Data Dropouts. International Journal 
of Systems Science, 2014, 45(9), 1902-1912. https://doi.
org/10.1080/00207721.2012.757815 

10. Bu, X. H., Wang, T. H., Hou, Z. S., Chi, R. H. Iterative 
Learning Control for Discrete-time Systems with Qu-
antised Measurements. IET Control Theory & Appli-
cations. 2015, 9(9), 1455-1460. https://doi.org/10.1049/
iet-cta.2014.1056 

11. Bu, X. H., Hou, Z. S., Jin, S. T. An Iterative learning Con-
trol Design Approach for Networked Control Systems 
with Data Dropouts. International Journal of Robust 
and Nonlinear Control, 2016, 26(1), 91-109. https://doi.
org/10.1002/rnc.3300 



Information Technology and Control 2018/3/47574

12. Chi, R. H., Hou, Z. S., Xu, J. X. Adaptive ILC for a Class of Dis-
crete-Time Systems with Iteration-Varying Trajectory and 
Random Initial Condition. Automatica, 2008, 44 (8), 2207-
2213. https://doi.org/10.1016/j.automatica.2007.12.004

13. Chi, R. H., Wang, D. W., Hou, Z. S., Jin, S. T. Data-Driven 
Optimal Terminal Iterative Learning Control. Journal 
of Process Control, 2012, 22 (10), 2026-2037. https://
doi.org/10.1016/j.jprocont.2012.08.001  

14. Dong, S., Wang, Y. Q. ILC for Networked Nonlinear Sys-
tems with Unknown Control Direction Through Ran-
dom Lossy Channel. Systems & Control Letters, 2015, 77, 
30-39. https://doi.org/10.1016/j.sysconle.2014.12.008 

15. Du, C., Xie L., Zhang C. H∞ Control and Robust Sta-
bilization of Two-Dimensional Systems in Roesser 
Models. Automatica, 2011, 37(2), 205-211. https://doi.
org/10.1016/S0005-1098(00)00155-2 

16. Faraji-Niri, M., Jahed-Motlagh, M. Stochastic Stability 
and Stabilization of Semi-Markov Jump Linear Sys-
tems with Uncertain Transition Rates. Information 
Technology and Control, 2017, 46(1), 37-52. https://doi.
org/10.5755/j01.itc.46.1.13881

17. Fu, M., Xie, L. The Sector Bound Approach to Quan-
tized Feedback Control. IEEE Transactions on Au-
tomatic Control, 2005, 50(11), 1698-1710. https://doi.
org/10.1109/TAC.2005.858689 

18. Gao, H., Lam, J., Xu, S., Wang, C. Stability and Stabili-
zation of Uncertain 2-D Discrete Systems with Sto-
chastic Perturbation. Multidimensional Systems and 
Signal Processing, 2005, 16(1), 85-106. https://doi.
org/10.1007/s11045-004-4739-y

19. Gupta, R. A., Chow, M. Y. Networked Control System: 
Overview and Research Trends. IEEE Transactions on 
Industrial Electronics, 2010, 57(7), 2527-2535. https://
doi.org/10.1109/TIE.2009.2035462

20. Hespanha, J. P., Naghshtabrizi, P., Xu, Y. G. A Survey of 
Recent Results in Networked Control Systems, Pro-
ceedings of the IEEE, 2007, 95(1), 138-162. https://doi.
org/10.1109/JPROC.2006.887288

21. Hladowski, L., Galkowski, K., Cai, Z., Rogers, E., Free-
man, C. T., Lewin, P. L. Experimentally Supported 2-D 
Systems Based Iterative Learning Control Law Design 
for Error Convergence and Performance. Control En-
gineering Practice, 2010, 18(4), 339-348. https://doi.
org/10.1016/j.conengprac.2009.12.003 

22. Hou, Z. S., Xu, J. X., Yan, J. W. An Iterative Learning Ap-
proach for Density Control of Freeway Traffic Flow via 
Ramp Metering. Transportation Research Part C, 2008, 
16 (1), 71-97. https://doi.org/10.1016/j.trc.2007.06.007

23. Hou, Z. S., Wang, Z. From Model-Based Control to Da-
ta-Driven Control: Survey, Classification and Perspec-
tive. Information Sciences, 2013, 235, 3-35. https://doi.
org/10.1016/j.ins.2012.07.014 

24. Li, X. D., Chow, T. W. S., Ho, J. K. L. 2-D System Theory 
Based Iterative Learning Control for Linear Continu-
ous Systems with Time Delays. IEEE Transactions on 
Circuits and Systems I: Regular Papers, 2005, 52(7), 
1421-1430. https://doi.org/10.1109/TCSI.2005.851706

25. Liberzon, D. Hybrid Feedback Stabilization of Systems 
with Quantized Signals. Automatica, 2003, 39(9), 1543-
1554. https://doi.org/10.1016/S0005-1098(03)00151-1

26. Liu, C. P., Xu, J. X., Wu, J. Iterative Learning Control for 
Network Systems with Communication Delay or Data 
Dropout. Proceedings of 48rd IEEE Conference on De-
cision and Control, China, 2009, 4858-4863. https://doi.
org/10.1109/CDC.2009.5400749

27. Liu, Q., Yang, G. H. Quantized Feedback Control for Ne-
tworked Control Systems under Information Limitati-
on. Information Technology and Control, 2011, 40(3), 
218-226. https://doi.org/10.5755/j01.itc.40.3.630

28. Ma, X. H., Bu, X. H. A Novel Iterative Learning Control 
Design for Linear Discrete Time Systems Based on a 2D 
Roesser System. Information Technology and Control, 
2016, 45(4), 384-392. 

29. Meng, D., Jia, Y., Du, J., Yu, F. Data-Driven Control for 
Relative Degree Systems via Iterative Learning. IEEE 
Transactions on Neural Network, 2012, 22(12), 2213-
2225. https://doi.org/10.1109/TNN.2011.2174378

30. Peng, C., Tian, Y. C. Networked H∞ Control of Linear 
Systems with State Quantization. Information Scien-
ces, 2007, 177(24), 5763-5774. https://doi.org/10.1016/j.
ins.2007.05.025

31. Shen, D., Wang, Y. Survey on Stochastic Iterative Lear-
ning Control. Journal of Process Control, 2014, 24(12), 
64-77. https://doi.org/10.1016/j.jprocont.2014.04.013 

32. Shi, J., Gao, F., Wu, T. J. Robust Design of Integrated Fe-
edback and Iterative Learning Control of a Batch Pro-
cess Based on a 2D Roesser System. Journal of Process 
Control, 2005, 15(8), 907-924. https://doi.org/10.1016/j.
jprocont.2005.02.005

33. Wang, Y., Gao, F., Doyle, F. J. III. Survey on Iterative 
Learning Control, Repetitive Control, and Run-to-Run 
Control. Journal of Process Control, 2009, 19(10), 1589-
1600. https://doi.org/10.1016/j.jprocont.2009.09.006 

34. Wang, Y., Yang, Y., Zhao, Z. Robust Stability Analysis 
for an Enhanced ILC-Based PI Controller. Journal of 
Process Control, 2013, 23(2), 201-214. https://doi.or-
g/10.1016/j.jprocont.2012.08.004 

35. Yang, T. C. Networked Control System: A Brief Survey. 
IEE Proceedings-Control Theory and Applications, 2006, 
153(4), 403-412. https://doi.org/10.1049/ip-cta:20050178

36. Zhang, L. X., Gao, H. J., Kaynak, O. Network-Induced 
Constraints in Networked Control Systems-A Survey. 
IEEE Transactions on Industrial Informatics, 2013, 9(1), 
403-416. https://doi.org/10.1109/TII.2012.2219540




