
Information Technology and Control 2018/3/47588

On Improving Efficiency and
Utilization of Last Level Cache in
Multicore Systems

ITC 3/47
Journal of Information Technology
and Control
Vol. 47 / No. 3 / 2018
pp. 588-608
DOI 10.5755/j01.itc.47.3.18433
© Kaunas University of Technology

On Improving Efficiency and Utilization of Last Level
Cache in Multicore Systems

Received 2017/06/22 Accepted after revision 2018/08/08

 http://dx.doi.org/10.5755/j01.itc.47.3.18433

Corresponding author: zulfiqar.memon@nu.edu.pk

Yumna Zahid, Hina Khurshid, Zulfiqar A. Memon
Department of Computer Science, National University of Computer and Emerging Sciences (NUCES-FAST)
Karachi, Pakistan, yumna.zahid@gmail.com, hinakhurshid18@gmail.com, zulfiqar.memon@nu.edu.pk

With the increasing need of computational power the trend towards multicore processors is ubiquitous. The
current on-chip architecture comprises multiple cores which usually share last level cache which can be physi-
cally distributed on chip. In order to provide system predictability, especially for a real time system where qual-
ity of service (QoS) depends on minimum miss rates and low worst case execution time (WCET) for applica-
tions running on different cores, efficient cache management techniques are required. Since memory hierarchy
and its management is the key of overall system performance and access to off-chip memory for data consumes
many clock cycles along with many units of power it is important to restrict the off-chip access and provide the
optimum solution for the on-chip access. To increase performance and energy efficiency, various techniques
are proposed. This article aims to provide the researchers with the state-of-the-art critical review of the var-
ious approaches that focus on data replication and cache partitioning techniques for L3 cache. The existing
literature is presented through several classifications based on appropriate design and algorithm. Maintaining
energy efficient system is a crucial challenge for multicore processors. We have discussed various techniques
which address upscaling performance without compromising on energy efficiency. Lastly, different literature
work is discussed where authors evaluate cache and/or various processors for high performance applications
such as bioinformatics, image and video processing, IOT applications and applications using DSP processors.
KEYWORDS: last level cache, multicore, data replication, cache partitioning, cache management, energy effi-
ciency, high-performance applications.

1 Introduction
As the computational power and large amounts of
data processing are increasingly in demand, on-chip

multicore optimal performance becomes crucial.
Modern multicore architectures support hierarchi-

589Information Technology and Control 2018/3/47

cal memory organization; this includes private L1 and
L2 caches for each individual core, L3 shared on-chip
cache, and off-chip DRAM. Last-level Cache (LLC) or
L3 cache is an integral component where data stored
are easily accessed by many cores concurrently. LLC
allows low latency access rate for data with high tem-
poral and spatial locality compared to off-chip mem-
ory data retrieval. However, multicore performance
can easily degrade due to large evictions of data from
LLC and interference caused by cores performing on
the same cache lines. Although L1 and L2 cache elim-
inates the problem of cache contention but offers lim-
ited space for data storage. The resultant interference
and data eviction can lead to highly variable perfor-
mance that can be detrimental to the system quality
of service (QoS). Energy efficiency is another vital
aspect to consider in multicore systems. Higher en-
ergy requirement not only is an unsustainable prac-
tice but can also generate poor system predictability.
Thereby, it is imperative to develop countermeasures
to efficiently utilize LLC for improved performance
and energy consumption. This article provides two
categories of measurements for improved LLC utili-
zation: data replication and partitioning techniques
applied on LLC. Table 1 shows the comparative anal-
ysis of the various techniques employed to optimize
the L3 cache using Data Replication and Cache Par-
titioning.
Data replication mechanism is essential for main-
taining high cache hit rates and data locality by rep-
licating cache lines on LLC close to the requesting
core [39]. Proposed data replication protocol offers
many advantages. The protocol will decrease energy
consumption (resulting in low heat generation) and
memory latency by replicating cache lines which will
be reused frequently in the last level cache of the re-
questing core. Moreover, with the help of a classifier,
which will be adjusted on runtime at the granularity
of cache lines, the protocol will balance data locality
on caches and off-chip miss rates. This protocol will
allow coherence complexity which will be similar to
classic coherence protocol. Data replicas will be al-
lowed on the last level cache of core where the request
will be made. Furthermore, coherence complexity
will also be allowed. This means if a miss occurs in
the L1 cache and as a result, the last level cache will be
searched for requesting data; data are invalidated on
the local cache of a core.

Partitioning techniques increase process indepen-
dence, reduce interference among jobs running on
different cores concurrently, and hence utilize pro-
cessor’s capacity efficiently. Many methods have been
implemented or proposed both in software and hard-
ware to address issues regarding partitioning. This
paper addresses some cache partitioning techniques
most common being page coloring which brings an
improvement to way-partitioning by allocating dif-
ferent colors to pages assigned to tasks [25]. Page
coloring reduces chances of overlapping of L3 cache
space among processors. This article describes how
page coloring is employed. OS scheduling algorithm
also impacts contention among workloads. Two main
scheduling algorithms, partitioned-based scheduling
algorithm and global-based scheduling algorithm, are
presented and evaluated against the performance of
page coloring. Moving on, dynamic cache partitioning
scheme known as COLORIS [73] is another method-
ology which addresses the issue of cache interference
more finely by allowing dynamic re-coloring based
on application phase transition [30]. This article
discusses cache utilization with dynamic cache par-
titioning and the consequent overhead with re-par-
titioning. Both of the above-mentioned techniques
are still coarse-grained, that is to say, addresses par-
titioning at the set of blocks. Vantage, another meth-
od, implements fine-grained allocations to processes
on multiple cores by partitioning at cache lines [61].
It proposes high associativity with line placement in
LLC. There is increased isolation brought on by par-
titioning most of the cache rather than all of it. This
way, when workloads assigned to partitions require
more capacity than allocated, can borrow space from
the un-partitioned region and so reduce eviction of
other cache lines. This article uses statistical analysis
to evaluate Vantage. In order to exploit heterogeneity
in spatial locality among workloads, a two-dimen-
sional approach called Spatial Locality-aware Cache
Partitioning (SLCP) [26] was proposed. It claims to
modify cache line sizes as well as allocating capacity
[36]. It calculates capacity requirement in terms of
the temporal and spatial locality at run-time for each
individual task. Software techniques, as described,
alleviate cache interference to an extent but require
cache locking, implemented in hardware, to fully iso-
late tasks among cores.
The rest of the paper is organized as follows. Section

Information Technology and Control 2018/3/47590

2 provides an insight into multicore architecture and
memory hierarchy. It also elaborates how energy plays
an important role when designing such multicore
platforms. Section 3 focuses on Data replication tech-
niques. Section 4 discusses shared cache partitioning
techniques. In Section 5, energy efficient implemen-
tation with respect to both data replication and par-
titioning techniques on LLC is presented. Section 6
gives some insight on how LLC design plays a crucial
role in High-Performance Computing. Moreover,
Section 7 enlist some of the main limitations to Data
Replication or Cache Partitioning techniques. Lastly,
Section 8 concludes the research paper.

2. Background
In order to increase the processor’s performance
which can be affected by various reasons including
memory latency computer architects proposed the
idea of number of cores on a single processor chip.
Multi-core processors do various tasks like multi-
threading, multitasking, security and other physical
checks which results in higher heat generation. This
in turn will raise other issues like scalability and pow-
er constraints among multi-core network commu-
nication. Applications used multithreading on mul-
ticores to get faster operations. In order to improve
performance and energy efficiency good scalability
for multicore and assurance of single core perfor-
mance is important [39].
Memory hierarchy efficiency is directly proportional
to access latencies of private and shared caches and
their hit rates. Much of the die area of the processor
occupied by the Last Level caches are expected to
hold quite a few megabytes of data. The shared Last
level cache, which provides megabytes to multicore,
is hard to manage since it requires cache coherency
protocols on architectural level. These protocols uti-
lize data locality and scalability of directory to get
data faster from local caches in single chip multicore
organizations but, on other hand, data continue to
displace on private caches. Private caches also suffer
from capacity limitation due to frequent communi-
cation between cores over data [40]. Capacity lim-
itation is also one of the reasons for cache miss rates
[5]. In order to reduce these miss rates several tech-
niques have been proposed so far like larger block-

size, Instruction pre-fetching, data pre-fetching,
higher associativity, controlled pre-fetching, compil-
er pre-fetching and victim caches. These techniques
reduce miss rates, however cache performance is not
enough due to often miss penalties in case of cache
miss. Here introduced the idea of multi-level caches
along with techniques like priority to read miss over
write miss, non-blocking caches, critical word first etc.
Introduction of multi-level cache significantly im-
proves performance of overall system as compared
to single cache organization. Later, when multi core
was introduced with already proposed techniques,
the data locality and off chip miss rates were balanced
by Last level cache organization. Private LLC organi-
zation, on the other hand, had high off chip miss rate.
Non-Uniform cache access is a result of shared LLC
organization that effects chip locality but their off
chip miss rates are low since cache lines are not rep-
licated [37].
Multicore processor improves parallelism and per-
formance as compared to single core processors, but
it comes with complexities like coherency, memory
consistency and synchronization issues. Many solu-
tions have been proposed so far in order to reduce
complexities and achieve maximum performance
from multicore architecture. To reduce coherence
complexity, data migration and data replication, en-
forced on cache using snoopy or directory protocol.
However, snoopy protocol does not show significant
performance when the number of cores increased
more than eight cores per processor. Here directo-
ry protocol takes lead with contrast to various cache
coherency protocols like MSI, MESI, MOSI, MOESI,
MESIF, MERSI, DragonFly and FireFly.
Multicore processors have their own private (L1 and/
or L2) and shared cache (L3 and/or L4 also known as
Last Level Cache) where directory is stored on each
LLC of core that is also shared with cores. Directory
keeps track of the metadata on each block and of which
cache block holds what data along with its status.

3. Data Replication Techniques
This section will elaborate on the various data repli-
cation techniques employed in LLC to enhance the ef-
ficiency of multicore processors. Multiple approach-
es are discussed as proposed by different researchers.

591Information Technology and Control 2018/3/47

3.1. Data Replication on Last Level Cache

Baseline multi-core system contains network con-
troller for communication between cores and main-
taining network traffic. Each core contains private
cache along with cache lines, shared cache (Last level
cache) with directory to maintain coherency among
caches. In classic approach of MESI (Modified-Exclu-

Table 1
Comparative Analysis of L3 Cache Optimizing Techniques

efficiency of multicore processors. Multiple approaches are discussed as proposed by different
researchers.

3.1 Data Replication On Last Level Cache

Baseline multi-core system contains network controller for communication between cores and
maintaining network traffic. Each core contains private cache along with cache lines, shared cache (Last
level cache) with directory to maintain coherency among caches. In classic approach of MESI (Modified-
Exclusive-Shared-Invalid) protocol, if one private cache L1 of core A holds data and another private
cache of other core B requests for the same data, then it sends request on network [10]. If requested data
in private cache of Core A are valid and the respective core is free to respond back, then Core B is given
the requested data and data block is marked with Shared state; otherwise core B needs to wait.
Meanwhile, if another core C requests for the same data, then it needs to wait too in order to get requested
data. This phenomenon effects processor performance while cores are in waiting state. It also increases
network traffic since cores need to check repeatedly if data are available [48].

Table 1 Comparative Analysis of L3 Cache Optimizing Techniques

To overcome the issue, many researchers have proposed replication techniques. Kurian et al. [39] have

sive-Shared-Invalid) protocol, if one private cache L1
of core A holds data and another private cache of other
core B requests for the same data, then it sends request
on network [10]. If requested data in private cache of
Core A are valid and the respective core is free to re-
spond back, then Core B is given the requested data and
data block is marked with Shared state; otherwise core
B needs to wait. Meanwhile, if another core C requests

Information Technology and Control 2018/3/47592

for the same data, then it needs to wait too in order to
get requested data. This phenomenon effects proces-
sor performance while cores are in waiting state. It also
increases network traffic since cores need to check re-
peatedly if data are available [48].
To overcome the issue, many researchers have pro-
posed replication techniques. Kurian et al. [39] have
come up with the idea of copying data into requestor
LLC slice so that if private cache needs data it should
be available to its own shared LLC. This mechanism
will track and classify reuse of each cache line of last
level cache with the help of classifier who will track
down the locality information of the cores.

3.1.1. Methodology
Authors classify each core into either replica shar-
er or non-replica sharer. Initially, all cores will be
non-replica sharer since there is no replica made so
far. Each core, either replica sharer or non-replica
sharer, will contain home reuse counter and replica
reuse counter along with replica threshold.
On a read miss, request will be sent to home location
and data will be replicated on private and LLC cache
if replication bit mode is true (replication bit is set
to true when home reuse counter gets to replication
threshold).
Replication bit mode and home reuse counter (tracks
the number of times home location is accessed by spe-
cific core for data) is initially set to zero (0). When re-
quest for data comes to home location, reuse counter
is incremented by one. If home reuse counter is small-
er than the threshold value, data will not be replicated
and only requested data will be given to private cache
of requester core.
When a miss occurs for write request, directory pro-
tocol checks local LLC for replicated data.
1 If replica is not found, request will be sent to home

location. On each access request, home reuse count-
er will be incremented. As soon as home reuse
counter reaches the threshold value, replica will be
created for requester core; otherwise requested data
will be directly given to requester core.

2 If replica is found at LLC location in Modified (M)
or Exclusive (E) state, data are given to private
cache and replica counter will be incremented.

3 If replica in LLC block is in Shared (S) state, then
directory will first invalidate all replicas in LLC and

data in private cache before updating and home re-
use counter will be set to 0 for all non-replica shar-
er except writer.

By far Least Recently Used (LRU) protocol is consid-
ered to be most successful block replacement protocol
but it still has a room for improvement. Various authors
have proposed modified versions of LRU [18]. Kurian
et al. [39] proposed locality classifier which with the
help of the locality information identifies if core will
remain replica sharer or not. It helps to identify when
any invalidation or eviction request comes to core.

3.1.2. Evaluation
By reviewing ideas for data replication it has been
observed that data replication has a fault of storage
overhead since data replication is placed in cache. For
example, lets suppose 16kb data be stored in local pri-
vate cache of 64kb, whereas its replication copy (16kb)
is stored in its local LLC of 128kb. Replication space
of the same size is also filled in home location LLC
and home location private cache. For the 16kb data,
additional storage overhead (considering only repli-
cation data size in LLC of both cores) is 32kb (almost
double the size in this example). Moreover, in order
to keep track the replicated data and to maintain the
coherency between them, a directory is also needed
which will take its own storage capacity. On the other
hand, coherency protocol capacity also increases due
to the addition of separate tags and counters of the
directory protocol to maintain coherency in private
caches of the replicated data. Additionally, classifier
needs to update locality information each time along
with the replicated core sharer list [6]. This makes the
directory an expensive solution as compared to previ-
ously proposed coherency protocols.
Network traffic increases when communication be-
tween caches and LLC occurs for the acknowledg-
ment of invalidation and eviction [39]. These signals
are actually the acknowledgment messages, used to
send invalidation and eviction information along
with home reuse counter and replica reuse counter.

3.2. Data Replication on CMP-NuRAPID
To improve the performance of Chip MultiProces-
sors (CMP), various designers have combined design
metrics with constraints in order to optimize perfor-
mance [42, 56]. Many researchers have proposed dif-
ferent approaches [68, 72, 74] to optimize CMP per-

593Information Technology and Control 2018/3/47

formance. Chishti et al. [15] proposed data replication
ideas on CMP-NuRAPID that replication should be
made near to requester core and it should only take
place for read requests. They replicated data on re-
quester core if only read requests are made from core.
They controlled replication by avoiding replicating
data for read-write requests.

3.2.1. Methodology
The authors in [15] have explored the possibilities of
achieving fast access and enough capacity in shared
and private cache by proposing the following ideas:
1 To allocate copies (for read-only requests) close to

the requesting core, so that access should be fast.
Controlled-replication is required to minimize ca-
pacity issue raised by replicating copies near to the
requesting core.

2 Since off-chip communication is slower than on-
chip communication, in-situ communication was
proposed to have fast access to data.

3 The authors have proposed the idea of capaci-
ty-stealing from neighboring cache, since com-
munication between the neighbors in CMP is not
expensive. This provides dynamic customization
of on-chip capacity.

The authors also exploits data arrays, tag arrays and
pointers in CMP-NuRAPID architecture to execute
proposed ideas. In order to achieve replication for
read-only requests MESI protocol was modified. A
new state was added in already existing MESI protocol
so that in-situ communication can also be achieved.
This new protocol was named as MESIC (Modified,
Exclusive, Shared, Invalidate, Communication).

3.2.2. Evaluation
Chishti et al. [15] analyzed the performance metric
for controlled replication and In-situ communica-
tion individually and together with metric parame-
ters; multithread workloads and multiprogrammed
workloads, respectively [9]. Results show that pro-
posed techniques significantly decrease capacity and
Read-only sharing misses. On average, CMP-NuRAP-
ID achieved better performance over shared cache by
13% and for private caches by 8%.

3.3. Tag Replication Along with Cache Line
Replication on data level still lacks significant out-
come and provides a room for improvement. To keep

this in consideration, Wang et al. [70] proposed an
idea to replicate cache tag along with cache data. They
utilize data locality information to replicate most re-
cently accessed cache tag into buffer named Tag Rep-
lication Buffer (TRB).

3.3.1. Methodology
Tag replica is created when data are fetched into pri-
vate cache and there is no tag entry of it in tag replica
buffer and second when data are fetched into private
cache and its entry is added into tag array. In order to
improve security and reliability of TRB, [70] further
proposed Selective-TRB. This scheme only works for
dirty cache lines and replicates only dirty cache line
data. The authors in [70] further exploit LRU replace-
ment policy to propose their own modified LRU poli-
cy with the help of FIFO.

3.3.2. Evaluation

Wang et al. [70] exploited memory access locality to
design TRB and to increase reliability in TRB. The
authors also proposed Selective-TRB which dis-
played significant performance rate in contrast with
other proposed work for data replication and small-
er overhead since, these techniques works on dirty
cache lines. TRB shows performance improvement
of almost 90% when tags are accessed via tag buffer
(keeping tags replica). Their Selective tags replica-
tion technique with modified replacement policy
LRU+FIFO shows improvement of 97% when per-
formed over tags of dirty cache data.

3.4. Replication on Cluster Level
Hardavellas et al. [28] proposes replication of data on
clusters for reactive-NUCA architecture. Cluster lev-
el replica is defined as a number of cores where maxi-
mum one replica should be present on a cache.

3.4.1. Methodology
During analysis the authors in [28] observed that differ-
ent characteristics were exhibited, when the cache was
accessed both for instructions and data (in both private
and shared caches), which in result leads to the imple-
mentation of not only different data migration policies
but also different replication and placement policies [7].
By exploiting this observation, the authors designed Re-
active-NUCA for block placement in distributed caches
with lower overhead and latency. Architecture places

Information Technology and Control 2018/3/47594

blocks at the appropriate location of cache by reacting
to class of cache access. The proposed technique intel-
ligently works with O.S to minimize coherency issues
and support data placement, migration and replication
policy without using any external protocol.

3.4.2. Evaluation
The size of cluster was increased by adding as many
cores as possible, resulting in increasing hit latency on
last level cache but reduced data locality and last lev-
el miss rates. Since miss rate on the last level did not
improved and also due to the existing clustering, each
location needs to search whether the data is present
in L1 cache or not, causing not only delays in network
but also exhibit drastic network performance.
However, results show that RNUCA displayed perfor-
mance stability and improvement on average by 14%
for private cache designs, 6% for shared and 5% for ideal
cache design. Their maximum achievement was 32%.

4. Cache Partitioning Techniques
This section lays out a comparative analysis of various
methodologies proposed to isolate workloads in LLC
and to help alleviate interference between co-running
processes on multicore processors.

4.1. Page Coloring Cache Partitioning
Page coloring cache partitioning technique, as pro-
posed by Gracioli and Frohlich [25], allows isolation
in task workloads in multicore processors by assign-
ing different colors to individual tasks [27]. This sec-
tion discusses the methodology used and the experi-
ments carried out on various working set sizes (WSS)
using either Partitioned-based scheduling algorithm
(Partitioned-EDF) or Global-based scheduling algo-
rithm (Global- EDF), and its evaluation.

4.1.1. Methodology
Page coloring is a software-based partitioning tech-
nique designed to reduce cache interference caused
when a task on one core evicts L3 cache line belonging
to a (possibly) preempted task of the same core or an-
other core. Page coloring utilizes the virtual to physical
page address translations in a set-associative indexed
cache [66]. Using an 8MB shared 16-way set associa-
tive cache with 64-bytes per line, we are provided with
213 sets in the cache (8MB/16 ways x 1 way/64 B). The
first 6 bits in the cache address relate to words in the
cache line, the next 13 bits access a set, and the next 13
bits define a line from one of the 16 ways.
In page coloring, colors are assigned to each page such
as color 0 to page 0, color 1 to page 1 and so on. The
colors are repeated after reaching the maximum col-

Figure 1
Mapping of physical pages to cache locations [24]

4 Cache Partitioning Techniques
This section lays out a comparative analysis of various methodologies proposed to isolate workloads in
LLC and to help alleviate interference between co-running processes on multicore processors.

4.1 Page Coloring Cache Partitioning

Page coloring cache partitioning technique, as proposed by Gracioli and Frohlich [25], allows isolation
in task workloads in multicore processors by assigning different colors to individual tasks [27]. This
section discusses the methodology used and the experiments carried out on various working set sizes
(WSS) using either Partitioned-based scheduling algorithm (Partitioned-EDF) or Global-based
scheduling algorithm (Global- EDF), and its evaluation.

4.1.1 Methodology

Page coloring is a software-based partitioning technique designed to reduce cache interference caused
when a task on one core evicts L3 cache line belonging to a (possibly) preempted task of the same core
or another core. Page coloring utilizes the virtual to physical page address translations in a set-associative
indexed cache [66]. Using an 8MB shared 16-way set associative cache with 64-bytes per line, we are
provided with 213 sets in the cache (8MB/16 ways x 1 way/64 B). The first 6 bits in the cache address
relate to words in the cache line, the next 13 bits access a set, and the next 13 bits define a line from one
of the 16 ways.

Figure 1 Mapping of physical pages to cache locations [24]

In page coloring, colors are assigned to each page such as color 0 to page 0, color 1 to page 1 and so on.
The colors are repeated after reaching the maximum color, calculated as (cache size / number of ways /
page size). Hence, in our example, page 128 maps to the same color as page 0. Figure 1 shows how the
actual pages are mapped to each cache set.

595Information Technology and Control 2018/3/47

or, calculated as (cache size / number of ways / page
size). Hence, in our example, page 128 maps to the
same color as page 0. Figure 1 shows how the actual
pages are mapped to each cache set.
Scheduling algorithms play an important part in the
performance of partitioning schemes. The two al-
gorithms discussed in Page Coloring Methodology
are global-based scheduling and partitioned-based
scheduling. Global Earliest-Deadline-First (G-EDF)
[24] is a type of global scheduling algorithm where the
OS defines one ready queue of tasks to be distributed
among the available processors. When a job is pre-
empted from one core, it can be migrated to another
processor for resumption. On the other hand, in a Par-
titioned-EDF (P-EDF), a partitioning heuristic stat-
ically assigns tasks into available processors where
they are executed and no migration takes place for
preemptive tasks. G-EDF is optimal for mixed-criti-
cality levels co-exist in the same system.

4.1.2. Evaluation
The experiment was carried out on an Intel i7-2600
processor [62]. The super colors were assigned to the
number of tasks in each set with two additional colors
for an uncolored heap and another one for the OS. The
super color is calculated when the number of colors
defined for tasks are less than the maximum number
of colors, as given by (1).

= % . .Supercolor pagecolor max num ofcolors. (1)

The experiment was carried out with the following
scenarios by evaluating page coloring in terms of OS
scheduling algorithms on the Worst-Case Execution
Time (WCET) of tasks.
 _ S1: OS and each task allocate data from a different

super color.
 _ S2: Each task allocates data from a different super

color. OS allocates data from a non-colored and
sequential heap. This creates interference between
data allocated by OS and the data of each task,
because OS can access a cache line of any color.

 _ S3: Each task allocates data from the same super
color. OS allocates data from a different super color.

Page coloring cache partitioning increases the system
predictability by meeting deadlines [67]. It achieves
this by using isolation of workloads. In P-EDF, page

coloring was effective up to 128 KB of WSS and in
G-EDF up to 64 KB due to some interference caused
during migration. Inter-core communication is re-
duced by cache coherency protocol since all data are
small enough to be able to fit in L2 cache and invalida-
tions are minimized in L3. For larger WSS, the P-EDF
is effective since partitioning of the L3 cache isolates
and hence avoids contention between tasks running
on different cores simultaneously.

4.2. Coloris: Dynamic Page Coloring
Due to the dynamic nature of applications, frequent
repartitions of L3 cache become crucial for cache uti-
lization. Static partitioning as discussed in Section
4.1 fails to address re-coloring repartitioning based
on application phase change. Ye et al. [73] came up
with COLORIS (COLOR ISolation), which is a frame-
work implemented to dynamically repartition cache
while maintaining fairness or Qos.
Re-coloring is a tedious task that can incur substan-
tial overhead. It requires allocation of page frames,
copying pages from memory and freeing old page
frames when necessary. There can also be chances
of naive allocation of colors among applications in
such a way as to increase contention among tasks and
consequent thrashing. A simple example would be
a 2-core, 6-page color system with two running pro-
cesses (P1, P2) and one ready process (P3). The page
colors allotted to these three processes might be 1, 2,
3, 4, 5, 6 and 1, 2, 3, respectively [35]. Now, if process
P2 needs to be preempted and replaced with process
P3 to run on one core while P1 continues to run on the
other, two processes will increase contention drasti-
cally for the same subset of space in the cache as the
colors for both processes are the same. This would re-
quire re-coloring in an efficient manner.
This section will discuss its implementation details
and the findings based on the experimental results.

4.2.1. Methodology
Shown in Figure 2 is the architecture of COLORIS
which comprises two major components: a Page Col-
or Manager and a Color-aware Page Allocator.
The Color-aware Page Allocator has replaced the Linux
memory allocator framework which involves overhead
by frequently calling the Buddy System to refill the list
of free pages of a specific color in the page frame cache
[65]. In COLORIS, instead, a memory pool is utilized

Information Technology and Control 2018/3/47596

for all page requests in a way that free pages, which are
assigned the same color, are linked together and hence
multiple lists are formed. The allocator, when request-
ed for a page, collaborates with Page Color Manager
to ascertain the colors assigned to the requesting pro-
cess. The allocator then picks one of these colors in a
round-robin manner and returns a page with that color
from the memory pool. In the case of absence of that
color another color is picked, also assigned to the pro-
cess, or in the case of none of them present it contacts
the Buddy System to populate the memory pool with
new pages of various colors.

Figure 2
Architectural Overview of COLORIS [73]

contention drastically for the same subset of space in the cache as the colors for both processes are the
same. This would require re-coloring in an efficient manner.
This section will discuss its implementation details and the findings based on the experimental results.

4.2.1 Methodology

Shown in Figure 2 is the architecture of COLORIS which comprises two major components: a Page
Color Manager and a Color-aware Page Allocator.
The Color-aware Page Allocator has replaced the Linux memory allocator framework which involves
overhead by frequently calling the Buddy System to refill the list of free pages of a specific color in the
page frame cache [65]. In COLORIS, instead, a memory pool is utilized for all page requests in a way
that free pages, which are assigned the same color, are linked together and hence multiple lists are formed.
The allocator, when requested for a page, collaborates with Page Color Manager to ascertain the colors
assigned to the requesting process. The allocator then picks one of these colors in a round-robin manner
and returns a page with that color from the memory pool. In the case of absence of that color another
color is picked, also assigned to the process, or in the case of none of them present it contacts the Buddy
System to populate the memory pool with new pages of various colors.

Figure 2 Architectural Overview of COLORIS [73]

The Page Color Manager, as already briefly explained, is a component in COLORIS responsible for
assigning colors to processes via specific policies. In order to effectively utilize all the L3 cache space
among cores, Color Manager adopts a more flexible scheme. It divides the cache into N contiguous
sections with an equivalent number of cores. Then each section is assigned to the individual core of C/N
page colors where C is the total number of colors available. In this way, N co-running processes have the
advantage of fully utilizing cache capacity with enhanced isolation.
The static partitioning still incurs a large overhead when migration of processes needs to be performed
in the case of load balancing. To overcome this problem and to exploit dynamic phase changing of the
process, re-coloring is exercised. Page Color Manager makes online color assignment changes based on
dynamic application behavior in such a way that if one process does not require the entire local cache

The Page Color Manager, as already briefly explained,
is a component in COLORIS responsible for assign-
ing colors to processes via specific policies. In order to
effectively utilize all the L3 cache space among cores,
Color Manager adopts a more flexible scheme. It di-
vides the cache into N contiguous sections with an
equivalent number of cores. Then each section is as-
signed to the individual core of C/N page colors where
C is the total number of colors available. In this way, N
co-running processes have the advantage of fully uti-
lizing cache capacity with enhanced isolation.
The static partitioning still incurs a large overhead
when migration of processes needs to be performed in
the case of load balancing. To overcome this problem
and to exploit dynamic phase changing of the process,
re-coloring is exercised. Page Color Manager makes
online color assignment changes based on dynamic

application behavior in such a way that if one process
does not require the entire local cache section, some
colors can be reclaimed; likewise, other processes can
get more cache space by sharing colors from other
sections [46]. This does, however, reinstate some in-
terference but by sharing information on color utili-
zation and scheduling processes using schedulers the
chances of contention can be mitigated.

4.2.2. Evaluation
With respect to re-coloring, experiments were carried
out using four benchmarks: povary, tonto, omnetpp and
gamess. omnetpp is memory intensive with others hav-
ing a smaller memory footprint in order for repartition-
ing to be possible. Multiple configurations were tested
on a 32-bit Ubuntu 12.04 Linux OS with kernel version
3.8.8 using threshold values as shown in Table 2.

Table 2
Experimental Configuration [73]

Configuratons LowThreshold(%) HighThreshold(%)

C1 30 65

C2 30 75

C3 0 100

C4 (40, 0, 30, 40) (80, 60, 65, 80)

C5 - -

C6 30 75

These are global cache miss rate thresholds. Appli-
cations with miss rates higher than High Threshold
require more cache space where as with applications
having miss rates lower than Low Threshold can pro-
vide their local cache vacant space for repartitioning.
In C3, re-coloring is not possible due to their threshold
levels. C5 was used for the special case in which every
benchmark was executed using full cache space (for
more details, please refer to the given reference [73]).
Using static cache partitioning, the miss rates of om-
netpp reach 77.8%. Whereas, using re-coloring (C1 and
C2) the miss rates were contained within the range
of threshold. This means QoS requirement was met.
Instead of using system default QoS specification de-
pendent upon uniform threshold values, independent
QoS can be satisfied as shown in C4 configuration.
Here, Low Threshold was kept at 0 for tonto in order

597Information Technology and Control 2018/3/47

to avoid taking its cache space and hence its miss rate
was retained below 40%. This shows that individual
QoS can be effectively guaranteed using COLORIS
framework for repartitioning.

4.3. Vantage: Fine-Grain Cache Partitioning
Techniques, so far discussed in Cache Partitioning,
are coarse-grained partitioning which allows sections
in terms of sets (multiples of page size x cache way).
This reduces associativity and cannot be extended
to support a number of cores more than 4 without
compromising QoS and isolation among partitions.
Vantage, proposed by Sanchez and Kozyrakis [61], is a
scalable and efficient technique which employs fine-
grained cache partitioning. Vantage is capable of sup-
porting a large number of partitions defined at cache
line granularity for on chip multiprocessors (CMPs)
with as many as 32 cores. It proposes to maintain high
associativity and strong isolation. Vantage is applica-
ble on caches with high associativity such as skew-as-
sociative caches [63] or zcaches [60] indexed with
good hashing. It can work with set associative caches
but with lower performance.
Vantage is derived from statistical analysis and not
from empirical observation. It implements partitions
partially most of the cache, instead of complete cache
space. This way when partitions outgrow their allo-
cations, they can take space from an unpartitioned
cache instead of compromising space from other par-
titions which effectively reduces interference.

4.3.1. Methodology
Vantage uses soft partitioning which does not phys-
ically restrict line placement. It evicts lines using
churn-based management. Churn-based Manage-
ment uses insertion rates (insertions per unit of time)
known as churns to match demotions of line per par-
titions. This is implemented by firstly dividing the

cache into two logical regions – a managed and an
unmanaged region, by using tags [49]. LRU (Least Re-
cently Used) replacement algorithm is used to rank
line irrespective of region. On eviction, lines from the
unmanaged region have higher priority over lines in
the managed region. Churn-based Management al-
lots apertures per partition. This way replacement
candidates below the assigned aperture are demoted
first to the unmanaged region and either evicted or in
the case of getting a hit are promoted back. Promo-
tion and demotions are manipulated simply by using
tags. Aperture (A) is the threshold value used to allow
demotions on average rather than one candidate per
eviction. This increases the associativity. For exam-
ple, if A = 0.05, it will demote every candidate that is
on the top 5% of eviction priorities. It thus keeps the
insertion and demotion rates of each partition equiv-
alent so that their sizes are approximately constant.
Since Vantage implements partitioning through the
replacement process, this implicates for changes in
the cache controller. The cache controller is given the
target size of each partition which is set using exter-
nal allocation policy (such as UCP [58]) and partition
ID of each cache access. Each line is, thereby, tagged
and on each replacement controller performs evic-
tions from the unmanaged region, demotions or pro-
motions from the managed regions based on access
rates of cache lines.

4.3.2. Evaluation
The simulation is performed using an x86-64 sim-
ulator based on Pin [43] which models both small
and large-scale CMPs. For small-scale configuration
wherein simulations were carried out using a 4-core
system, the performance is evaluated using a mixture
of 350 workloads derived from different categories as
listed in Table 3. There are 35 possible combinations
of these four categories each forming a class. There

Table 3
Classification of SPEC CPU2006 workloads [61]

 Insensitive(n) perlbench, bwaves, gamess, gromacs, namd, gobmk, dealII, povray, calculix, hmmer

Cache-friendly (f) bzip2, gcc, zeusmp, cactusADM, leslie3d, astar

Cache-fitting (t) soplex, lbm, omnetpp, sphinx3, xalancbmk

Thrashing/streaming (s) mcf, milc, GemsFDTD, libquantum

Information Technology and Control 2018/3/47598

are 10 mixes per class with each application being
randomly selected from the ones in its category yield-
ing 350 workloads.
Vantage provides much larger improvements than ei-
ther way-partitioning or Promotion-Insertion Pseu-
do-Partitioning (PIPP) giving a 6.2% geometric mean
on average and up to 40% speedups. PIPP or way-par-
titioning shows worst-case performance of 29% and
22% respectively, as compared to 4% for Vantage. Par-
titioning adversely affects associativity for these work-
loads using way-partitioning or PIPP which establish-
es the importance of maintaining high associativity.
Vantage also shows higher performance in all work-
loads except one, i.e., an un-partitioned cache, which
is a factor by which other configurations such as
way-partitioning have an edge. However, in associa-
tivity sensitive workloads, Vantage has already out-
performed both alternatives. Evaluation using zcache
shows how high associativity in Vantage has allowed
it to provide higher throughput.

4.4 Spatial Locality-Aware Cache
Partitioning
Vantage does provide fine-grained partitioning de-
sign but is limited to: 1) caches with good hashing and
associativity, and 2) it only exploits temporal locality
[8]. Heterogeneity in the spatial locality is rarely used
in the partitioning schemes discussed above. Spatial
locality refers to block/line size which, if manipulat-
ed correctly, can reduce the capacity allocation among

multiple cores and thereby provide drastic improve-
ments in system performance. Gupta and Zhou [26]
proposed Spatial Locality-Aware Cache Partitioning
(SLCP), which leverages a two-dimensional optimi-
zation in cache partitioning wherein both block size
and capacity is considered providing heterogeneous
organization for various workloads.
SLCP argues that, for memory intensive work, a
larger block size would render a small overall cache
capacity requirement. In order to achieve this goal,
a unified approach is proposed in SLCP, known as
Locality Score to measure both temporal locality and
spatial locality at runtime and make amendments as
to the optimal heterogeneous organization. Locality
Score LS(X, Y) is a function that defines the hit rate
based on the future window size (X) of a referenced
address and the neighborhood size (Y) of a fully-asso-
ciative cache with capacity of (X * Y). X is essentially
the reuse distance, whereas Y is the block/line size.

4.4.1 Methodology
SLCP online Locality-monitoring framework uses
a hardware approach for estimating a two-dimen-
sional locality (temporal and spatial) in cache access
streams. Figure 3 shows an architectural view of
the SLCP including processors and cache hierarchy
where two things have been added: 1) the online local-
ity monitor hardware, and 2) the logic for running the
partitioning algorithm.
SLCP hardware is comprised of a few sets of auxiliary
tag directories (ATD) [58] and locality score (LScore)

Figure 3
The SLCP Architecture for LLCs [26]

sensitive workloads, Vantage has already outperformed both alternatives. Evaluation using zcache shows
how high associativity in Vantage has allowed it to provide higher throughput.

4.4 Spatial Locality-Aware Cache Partitioning

Vantage does provide fine-grained partitioning design but is limited to: 1) caches with good hashing and
associativity, and 2) it only exploits temporal locality [8]. Heterogeneity in the spatial locality is rarely
used in the partitioning schemes discussed above. Spatial locality refers to block/line size which, if
manipulated correctly, can reduce the capacity allocation among multiple cores and thereby provide
drastic improvements in system performance. Gupta and Zhou [26] proposed Spatial Locality-Aware
Cache Partitioning (SLCP), which leverages a two-dimensional optimization in cache partitioning
wherein both block size and capacity is considered providing heterogeneous organization for various
workloads.
SLCP argues that, for memory intensive work, a larger block size would render a small overall cache
capacity requirement. In order to achieve this goal, a unified approach is proposed in SLCP, known as
Locality Score to measure both temporal locality and spatial locality at runtime and make amendments
as to the optimal heterogeneous organization. Locality Score LS(X, Y) is a function that defines the hit
rate based on the future window size (X) of a referenced address and the neighborhood size (Y) of a fully-
associative cache with capacity of (X * Y). X is essentially the reuse distance, whereas Y is the block/line
size.

4.4.1 Methodology

SLCP online Locality-monitoring framework uses a hardware approach for estimating a two-dimensional
locality (temporal and spatial) in cache access streams. Figure 3 shows an architectural view of the SLCP
including processors and cache hierarchy where two things have been added: 1) the online locality
monitor hardware, and 2) the logic for running the partitioning algorithm.
SLCP hardware is comprised of a few sets of auxiliary tag directories (ATD) [58] and locality score
(LScore) counters. Multiple ATDs and LScore counters are employed for different cache block sizes. All
the ATDs have the same number of way as in the original cache so as to capture the locality information
for different cache capacity. The LScore counters are used to record cache hits in the ATDs when varying
number of ways and various block sizes are assigned.

Figure 3 The SLCP Architecture for LLCs [26]

599Information Technology and Control 2018/3/47

counters. Multiple ATDs and LScore counters are
employed for different cache block sizes. All the ATDs
have the same number of way as in the original cache
so as to capture the locality information for different
cache capacity. The LScore counters are used to re-
cord cache hits in the ATDs when varying number of
ways and various block sizes are assigned.
Locality score counters are added to each core with
the intent of maximizing the weighted sum of scores
across all the co-scheduled benchmarks to be fed into
the partitioning algorithm in SLCP.
The two-dimensional LScore array is based on (L, K),
where Lthentry in the LScore–K counter maintains:
1) the number of cache hits for block size K, and 2) the
capacity of L*(C0 / α), where C0 is the baseline cache
capacity and (C0 / α) is the capacity of one cache way
using α as the associativity of LLC. This is reduced
into a single-dimensional LScore vector (L) to lever-
age the lookahead algorithm [26]. The lookahead algo-
rithm is used to determine the partition configuration
only after a fixed amount of cycles. LScore counters
are shifted, instead of resetting them completely, so
that history is retained.

4.4.2. Evaluation
SLCP is implemented using an in-house execu-
tion-driven simulator. Baseline memory hierarchy
configuration constitutes three levels of caches, private
L1 and L2 caches and a shared non-inclusive L3 cache.
SLCP is tested with the following five categories of
4-way multiprogrammed workloads: 4H, 3H1L, 2H2L,
1H3L and 4L. The 4H category has 4 benchmarks with
high MPKI (Misses Per Kilo Instructions) and the
3H1L category has 3 benchmarks with high MPKI and
1 benchmark with low MPKI and so on.
SLCP shows an average of 18.2% (20.9%) perfor-
mance improvement, highlighting the importance of
leveraging spatial locality for partitioning. The per-
formance improvements can be regarded as due to the
joint optimizations of SLCP which assign less capac-
ity to the benchmarks that can exploit spatial locali-
ty in limited cache capacity. It can also be perceived
that multiprogrammed workloads with a higher num-
ber of high MPKI benchmarks tend to improve with
SLCP. This can be awarded by assigning large cache
block sizes which trigger higher hit rates as well as
IPC improvements while at the same time also donate
cache capacity to other benchmarks.

5. Energy Efficiency
Energy efficiency is a crucial consideration in multi-
core systems, especially in mobile devices where bat-
tery life can be adversely affected and devices tend to
heat up leading to poor performance. Many architec-
tures support disjoint execution of background and
foreground applications to cater to high responsive-
ness which can increase energy tax in terms of bat-
tery life, power and capital expenditure. In multicore
processors, the allocation of the core to applications
and frequency of these cores are factors to consider
while making energy efficient policies. Cache energy
reduction techniques have been widely studied. In
these techniques, turning off parts of the cache in or-
der to reduce static energy is usually employed. Race-
to-halt, a term coined, to indicate a scenario where
additional cores used to speed up execution is liable
to conserving energy by finishing up tasks quickly and
consequently allowing the system to be in a low-pow-
er state [16]. This can, however, lead to counter-intu-
itive performance when memory-bound applications
are run on a number of cores at high frequency and are
in a waiting state for the data to be provided.
LLC spend a larger fraction of their energy in the form
of leakage energy and hence need techniques which
work by turning off a part of the cache to reduce the
leakage energy consumption. These approaches
based on the retentiveness of turned-off blocks, are
broadly ramified into two techniques, namely state
preserving and state destroying. Based on this, Li et
al. [41] have compared the effectiveness of both tech-
niques. They conclude that it is more cost effective to
employ a state-destroying technique when fetching
a missed block is not critical, compared to state-pre-
serving technique. This is because state-destroying
technique completely turns off the block and hence
helps to conserve more energy.
For both state-preserving and state-destroying leak-
age control, architectural techniques make use of
some well-known circuit-level mechanisms. Powell
et al. [57] propose a circuit design named gated VDD,
which facilitates state-destroying leakage control.
This technique adds an extra transistor in the supply
voltage path or ground path of the SRAM (static ran-
dom access memory) cell. For reducing the leakage
energy of the SRAM cell, this transistor is turned off
and by stacking effect of the transistor, the leakage

Information Technology and Control 2018/3/47600

current is reduced by orders of magnitude.
Several energy saving techniques are based on the
generational nature of cache access, which implies
that cache lines have a period of frequent use when
they are first brought into the cache, and then have
a period of dead time before they are evicted. There-
fore, if a cache line has not been accessed for a certain
number of cycles (called decay interval or update win-
dow), it indicates that the line has become dead and
it can be put in low leakage mode for saving energy.
Using this principle, Flautner et al. [21] proposed a
drowsy-cache technique which puts the dead cache
lines into low-power state-preserving mode. Simi-
larly, Kaxiras et al. [34] proposed a decay cache tech-
nique which puts the dead cache lines into low-power
state-destroying mode.
Several researchers have proposed improvements to
the original decay-cache technique, but in all such
proposals, the optimal value of the decay interval was
varying with the applications. Zhou et al. [75] pro-
posed a technique for dynamically adapting decay
interval for each application. Their technique only
turns off data and keeps tags alive. Using tags, their
technique estimates the hypothetical miss rate, which
would be there if all the data lines were active. Then,
the aggressiveness of cache line turning off is con-
trolled to make the actual miss rate to closely track
the hypothetical miss rate. Abella et al. [1] keep track
of the inter access time and the number of accesses
for each cache line and use this to compute suitably
decay time for each individual cache line.
Lu and Guo [44] proposed two dynamic voltage /fre-
quency scheduling (DVFS) based algorithms: 1) pre-
DVS, and 2) post-DVS, for multicore systems which
employ fixed-priority scheduling with task splitting.
The post-DVS, also known as DVFS after schedul-
ing, works like a conventional DVS for fixed-priority
scheduling. It allocates just the right amount of fre-
quency to sub-tasks which are split, after schedul-
ing in a way that tasks which are performed first are
executed quickly so the leading ones get enough fre-
quency to meet the deadlines. This conserves energy
while meeting timing constraints on synchronization
for scheduling with task-splitting. Moreover, pre-
DVS performs pre scheduling frequency evaluation
of tasks. This assumes prolonged execution times
for scheduling of tasks so that all tasks are complet-
ed within the required time limit so energy is saved,

achieving more energy conservation than post-DVS.
It manages this by determining the total utilization of
task-set and number of available cores so that every
task is divided equally among all the cores and the en-
ergy is maximally conserved.
Another methodology, as proposed by Xu et al. [71], re-
fers to minimizing energy consumption in multicore
platform for parallel tasks. It takes a practical approach
by considering processors with discrete modes of op-
erations and have timing constraints. The algorithm
discussed operate on either rigid task, which have fixed
parallelism or moldable task whose parallelism can
only be decided at run time. For both types of tasks, first
the problem is formulated as a 0-1 Integer Linear Pro-
gram (0-1 ILP) and then either a two-step (rigid tasks)
or a three-step (moldable tasks) heuristic is applied. In
the first case, the heuristic schedules tasks using a lev-
el-packing algorithm and then it decides upon another
step to determine the level of frequency required with
minimum energy consumption. Similarly, in moldable
tasks, the third step also addresses the level of parallel-
ism required for each individual task. Based on simu-
lation results, the heuristics energy consumption is
almost equal to that of 0-1 ILPs.
Chen at al. [13] combined both DVFS and Dynam-
ic Power Management (DPM) to address the energy
consumption issue with multicore systems. Their
approach is based on Mixed Integer Linear Program-
ming (MILP), optimizes both DVFS and DPM for
applications composed of a set of tasks. It uses acyl-
ic graphs (DAG) to represent their precedence levels
while mapping them on multicore processors. The
energy model considers varied sources of power con-
sumption for a set of discrete frequencies, and also
the time/energy overhead. The algorithm is used to
determine the optimal time-triggered non-preemp-
tive schedule and execution frequency of tasks in an
application, and in doing so reduces total energy con-
sumed in MPSoCs.
Mittal and Zhang [51] used dynamic cache reconfig-
uration techniques for cache leakage energy saving.
The caches are configured to conserve maximum en-
ergy and keep performance sensitivity bounded. They
tested a large number of potential configurations using
low-overhead and micro-architecture components
with easy integration on multicore chips. The meth-
odology makes certain that energy is uniformly con-
served throughout the system, outperforming other

601Information Technology and Control 2018/3/47

comparable methodologies used in high end embed-
ded, desktop, servers and other multitasking systems.

6. Last Level Cache in High-
Performance Applications
Introduction of caches in third generation comput-
er architecture solved the problem of slowness and
expensiveness of main memory in early decades of
computing. As time passed by, level of caches were
introduced to achieve higher CPU performance. Cur-
rent growth in the area of high speed performance
applications like physics simulations e.g. ALE3D,
chemistry or biology applications e.g. IBM sequoia;
require high performance of processors. As time pass-
es, many techniques are introduced in order to opti-
mize processor performance like pipelining, higher
clock speed, parallelism, branch prediction and even
number of transistors are added per chip. These tradi-
tional approaches, however, bring some limitations or
challenges like memory latency or power dissipation.
To hide memory latency, many multithreaded tech-
niques have been introduced and adopted by proces-
sors like Intel Xeon family processors, Atom, Core i7
and others.

6.1. High Performance DSP Applications
Digital signal processors process analog signals but
high performance digital signal processing systems
process digital signals rapidly. One of high perfor-
mance applications of DSP is wireless base station.
System designers of the high performance DSP were
given limited option of choice but some of manufac-
tures produce series of programmable DSP parts. DSP
processors by Intel, Analog Devices [59], Motorolla,
Texas Instrument improved already existed architec-
ture by improving performance achieved by improving
clock speed and reducing power consumption [17].
Many high performance applications, for example,
data analytics applications, image processing and/
or graphic processing applications required machine
learning techniques on big data which required exten-
sive computational power. Faella [19] compared DSP
processor, GPU and Intel Core i7 to analyze the per-
formance of these processors for support vector ma-
chine (SVM) algorithm. It was observed that last level

cache was better utilized and needed for the imple-
mentation of the proposed method. The performance
measure done by the author shows lower clock speed
for DSP processors than Intel i7 processor. A per-
formance comparison of GPUs with Intel i7 showed
that although GPU clock speed was slower than Intel
i7, it showed better performance with performance
improvement techniques. This may be attributed ei-
ther due to its adaptability of different computational
intensive algorithms or its architectural support for
parallel computations.

6.2. Bioinformatics Applications
Bioinformatics applications required higher perfor-
mance computation for analyzing huge amount of
data. Current methodologies and computing power
are not sufficient enough to surpass this bottleneck
[22]. However, many manufacturers provide multi-
core processors and/or prototypes to achieve the high
performance computation like Intel Terascale Pro-
cessors [45] or Microsystems UltraSPARC T2 [64].
Intel Terascale processors provide first level cache L1
to each core and numerous levels of L2 cache. How-
ever, researches are carried on to explore the possi-
bility of large and low latency last level cache using
3D-stacking [29].

Figure 4
Two level strategies on multicore processor [11]

Bioinformatics applications required higher performance computation for analyzing huge amount of
data. Current methodologies and computing power are not sufficient enough to surpass this bottleneck
[22]. However, many manufacturers provide multi-core processors and/or prototypes to achieve the high
performance computation like Intel Terascale Processors [45] or Microsystems UltraSPARC T2 [64].
Intel Terascale processors provide first level cache L1 to each core and numerous levels of L2 cache.
However, researches are carried on to explore the possibility of large and low latency last level cache
using 3D-stacking [29].

Figure 4 Two level strategies on multicore processor [11]

Still many applications required some parallelization algorithms since they are not able to fully exploit
the power provided by these processors. Galvez et al. [22] provided such parallelism algorithm (named
as Fast LSA) in order to fully exploit the computational power. The algorithm was tested on different
benchmarks, which shows great performance on a standalone general-purpose multicore chip. The
performance of an algorithm that did not require floating point calculations was measured on
Multicore64-NW, and it obtained 20 times faster optimal alignment. The algorithm exploits the three
level cache of TilExpress-20G cards along with improved MESH for communication between cores,
cache and shared memory. Another optimizing technique utilizing caches was proposed by Chaichoompu
et al. [11]. The authors proposed multithreading and vectorizing strategies to improve performance. To
exploit multithreading in bioinformatics applications, the authors proposed a compiler optimization
strategy to perform software profiling in order to analyze and distinguish the portions which
bioinformatics tool can improve or those which cannot be improved. Later those code parts, which are
not executed in a sequential manner, were modified by thread library or via loop optimization technique.
The optimized code was verified in a final step to compare the results on multiple cores processors. Intel
Core 2 Duo, Intel Core Solo, Intel Pentium 4 were used in order to test the proposed algorithm. These all
processors own two level of caches in which last level cache is L2. Figure 4 shows the flow of the
algorithm.

6.3 IOT Based Applications

In an Internet era, high computing devices are growing and evolving Internet of things (IoT). Intelligence
is embedded into devices which are network of sensors, actuators or processors to ease daily life style.

Information Technology and Control 2018/3/47602

Still many applications required some parallelization
algorithms since they are not able to fully exploit the
power provided by these processors. Galvez et al. [22]
provided such parallelism algorithm (named as Fast
LSA) in order to fully exploit the computational pow-
er. The algorithm was tested on different benchmarks,
which shows great performance on a standalone gen-
eral-purpose multicore chip. The performance of an
algorithm that did not require floating point calcula-
tions was measured on Multicore64-NW, and it ob-
tained 20 times faster optimal alignment. The algo-
rithm exploits the three level cache of TilExpress-20G
cards along with improved MESH for communication
between cores, cache and shared memory. Another
optimizing technique utilizing caches was proposed
by Chaichoompu et al. [11]. The authors proposed
multithreading and vectorizing strategies to improve
performance. To exploit multithreading in bioinfor-
matics applications, the authors proposed a compiler
optimization strategy to perform software profiling in
order to analyze and distinguish the portions which
bioinformatics tool can improve or those which can-
not be improved. Later those code parts, which are
not executed in a sequential manner, were modified
by thread library or via loop optimization technique.
The optimized code was verified in a final step to
compare the results on multiple cores processors. In-
tel Core 2 Duo, Intel Core Solo, Intel Pentium 4 were
used in order to test the proposed algorithm. These all
processors own two level of caches in which last level
cache is L2. Figure 4 shows the flow of the algorithm.

6.3. IOT Based Applications
In an Internet era, high computing devices are grow-
ing and evolving Internet of things (IoT). Intelligence
is embedded into devices which are network of sen-
sors, actuators or processors to ease daily life style.
From short range transceivers to high impact gadgets
[3], all sorts of devices ranging from those of automo-
tive industry to those of aerospace, from infrastruc-
ture to medical services, from defense industry to daily
house hold items, and in many more other areas, IoT-
based applications have so much influence to improve
our way of life. According to statistics, 70 billion of de-
vices will be connected to Internet in the 2020. Howev-
er, the discussed field is still growing and researchers
are working on optimizing the already existed solu-
tions and finding solutions for complex problems.

For high computation, many IoT devices used GPU
or Hybrid GPU/CPU approaches. GPUs are multicore
architecture which are highly parallel and use multi-
threading [20, 32]. Modern GPUs, including GigaByte
GTX and NVIDIA Geforce, have hundreds of process-
ing units which achieve massive arithmetic calcula-
tion [38]. For high-performance computing, there are
high-performance optimized GPUs that help to com-
pute big data in data centers. However, their perfor-
mance requirement based on sufficient parallelism,
combine memory access and/or coherent execution
among threads. Many applications have non regular
memory access pattern and GPU caches exhibit poor
performance if there is mismatch in cache hierarchy
design [14]. In GPUs, memory latency is usually not
hidden in larger caches, hence GPUs use multithread-
ing to hide latency, but it is useful only for applica-
tions which use multithreading.
To avoid poor performance and to achieve easy com-
munication between threads, some GPU manufactur-
ers improved memory hierarchy design and thread-
ing communication. NVIDIA introduced Compute
Unified Device Architecture (CUDA), which provides
parallel computing platform and runs on hundreds
of GPU processor core and is highly parallel in na-
ture [33]. Due to intensive computational power, it is
much faster than CPU and is used in many high-per-
formance computing applications. The installed
shared memory has low-latency and it is plugged-in
near each processor core [55]. CUDA based GPUs are
introduced with global and shared memory access,
where global memory accesses are always cached in
L2 cache.

6.4. Image and Video Processing Applications
Many high computational applications require high
performance processors to carry out extensive com-
putation in less time and given memory storage.
Sometimes it is hard to choose between different pro-
cessors, which can cater application needs. Evaluating
the performance of processor before choosing one, is
the key to satisfy application computational needs.
Many authors try to evaluate processor’s performance
on different basis, like time to perform one single op-
eration, memory consumption or energy consumption
of processor and have proposed different techniques
to optimize the performance by optimizing cache or
last level cache. Asaduzzaman and Mahgoub [2] eval-

603Information Technology and Control 2018/3/47

uated the performance of cache in DSP processors for
MPEG4 applications using different cache sizes. They
proposed simulation program which optimizes the
cache size for task rate. The authors have run a sim-
ulation program against 384KB, 512KB and 1024KB.
For 384KB cache size, proposed simulation fails since
DSP utilization reached beyond 100% usage but, for
512KB and 1024 cache size, performance improved
but it did not impact on DSP utilization. Hoozemans
et. al. [31] evaluated the performance of VLIW proces-
sors, rVEX and Xilinx MicroBlaze for high resolution
image processing applications. The authors conclude
that rVEX processors gave 80% faster result for image
processing convolution algorithm and 2.3 to 3 factor
times better result for grayscale conversion. Blair et al.
[4] evaluated by comparing FPGA, GPU and DSP per-
formance for image processing and computer vision
algorithms. The authors compare performance on
different algorithms for the execution time to process
images or computer visions. It has been stated that
GPU performance is better than FPGA implementa-
tion on DSP slices.

7. Challenges
This section discusses the challenges and limitations
of data replication and cache partitioning techniques
in Last Level Cache.

7.1. Data Replication
Data replication is one of the most effective and highly
researched technique, used to handle memory latency
issue, since it increases the availability of data, and en-
hances the performance and reliability [23]. However,
it comes with overheads too, e.g., if the environment
deals only with read-only request, then performance
will be increased significantly (as discussed and proved
in Section 3), otherwise for write requests there is a
need to maintain consistency among replicas.

7.1.1. Storage
Replication techniques come with storage overhead
which cannot be dealt with beyond some extent, since
replication techniques do not only rely on creating
multiple copies, but they also need to maintain the
consistency among them. Some of the techniques [39,
70] use additional classifier or tags, which also re-

quires additional capacity to store information about
replicated data. Kurian et al. [39] showed that locality
classifier, which is required to maintain consistency,
took additional 30% of storage overhead for 64 cores
and it increase gradually as the number of cores are
added in the system. Classifier used to maintain con-
sistency took extra 36 bits for each entry in the 64-
core processor which ultimately costs 60% more stor-
age than the baseline protocol as discussed in [39].
Storage overhead for tag replication is massive [70],
due to this reason the researchers prefer to use selec-
tive replication approach. Nevertheless, storage over-
head still manages to reach 15.6%, which ultimately
may cause performance degradation, considering a
gradual increase in data replication and failures in
the network.

7.1.2. Maintaining Consistency
All data replication techniques come in packaged
with the protocols and methodologies for maintain-
ing consistency. These protocols and methodologies
covers consistency issues, however, achieving full
consistency is impossible and some inconsistencies
are still present in the system.
There is a chance of conflict, when updating replicas,
e.g., if the number of updates increases (due to more
replicas), then there is a possibility of conflict among
updates at the same time. If the number of replicas
are increased, then there is a chance that consistency
becomes weak due to difficulty in maintaining con-
sistency among all replicas (e.g., insufficient network
bandwidth).

7.1.3. Network Traffic
All replications involving consistency models and ap-
proaches are the reason for additional network traffic
and bandwidth requirement [47]. To maintain consis-
tency, there is a need to update every single data item
replicated, which in turn results in additional opera-
tion of write-update requests, including original data
access or write request. These protocols need extra
acknowledgment transactions in case of data invali-
dation or eviction [24, 40, 70].

7.1.4. Additional Power Consumption
Data replication techniques are proposed to minimize
memory latency and increase energy efficiency, how-
ever, protocols incurred with consistency are the rea-

Information Technology and Control 2018/3/47604

son for additional energy consumption of system. For
example, if replicas are greater in number and there
is a need to update or fetch replicated data and pro-
cessor is busy with some other task, then request will
be piled up and ultimately all bandwidth will be used
to fulfill an on ongoing operation. This situation ulti-
mately increases energy consumption of the system.

7.2. Cache Partitioning

Cache partitioning is only useful when cache size is
not large [50]. It is harmful in some extent for the ap-
plications exploiting locality [12], however, it is use-
ful for the application which relies on last level cache
[52]. There are other similar limitations as well.

7.2.1. LRU Replacement
LRU is considered to be the one of the best replace-
ment techniques in case of data eviction, and design-
ers opt the policy in architecture to identify the data
need to be replaced. However, studies have discussed
[48, 49, 50] and some researches proved that if LRU
policies are not optimized according to competing
resources, it can degrade performance [54]. For ex-
ample, some of LRU based replacement policies do
not work with some of cache partitioning techniques
which are designed considering full-associative cach-
es [52] and applied to set-associate caches [52].

7.2.2. Performance Overhead
Despite the advantage of cache partitioning tech-
niques there is still performance overhead due to
load-imbalance, handling of different miss latency via
same approach, bandwidth congestion due to network
traffic etc. Some of cache partitioning techniques try

to overcome these overheads, for example, miss rate
penalty, but still they lack to fully cover these issues.
Limitation of LRU policy as discussed in [69] is also
one of the reasons for performance overhead.

7.2.3. Design Choice
Cache partitioning techniques are used not only to op-
timize performance of cache but to achieve Quality of
Service (QoS), improving energy efficiency or load bal-
ancing etc. To achieve these goals, one needs to careful-
ly select parameter for cache partitioning techniques
on different architecture. Cache partitioning tech-
niques include parameters like replacement policies,
quota allocation, partitioning interval, etc. [53].

8. Conclusion
Technology is advancing at break-neck speed and
with it the requirements in terms of application pro-
cessing time and manipulation of real-time data.
This research article explores the different dynamics
in improving overall last level cache performance.
It particularly focused on various optimizing tech-
niques such as Data Replication and Cache Parti-
tioning. Energy efficiency is an important design is-
sue in multicore processors, hence the article have
comprehensively compared different mechanisms
addressing energy saving. The manuscript surveyed
different authors’ work which evaluates processors
performance in high performance applications. Fi-
nally, there are always challenges and trade-offs in
implementing any optimizing technique, which have
been discussed in detail.

References
1. Abella, J., González, A., Vera, X., O’Boyle, M. F. IAT-

AC: A Smart Predictor to Turn-Off L2 Cache Lines.
ACM Transactions on Architecture and Code Op-
timization (TACO), 2005, 2(1), 55-77. https://doi.
org/10.1145/1061267.1061271

2. Asaduzzaman, A., Mahgoub, I. Evaluation of Applica-
tion-Specific Multiprocessor Mobile System. Proceed-
ings of the 2004 Symposium on Performance Evalua-
tion of Computer Telecommunication Systems, 2004,
751-758.

3. Bandyopadhyay, D., Sen, J. Internet of Things: Applica-
tions and Challenges in Technology and Standardiza-
tion. Wireless Personal Communications, 2011, 58(1),
49-69. https://doi.org/10.1007/s11277-011-0288-5

4. Blair, E., Redwood, C., Ashrafian, H., Oliveira, M., Brox-
holme, J., Kerr, B., Salmon, A., Östman-Smith, I., Wat-
kins, H. Mutations in the 2 Subunit of AMP-Activated
Protein Kinase Cause Familial Hypertrophic Cardio-
myopathy: Evidence for the Central Role of Energy
Compromise in Disease Pathogenesis. Human Molec-

605Information Technology and Control 2018/3/47

ular Genetics, 2001, 10(11), 1215-1220. https://doi.
org/10.1093/hmg/10.11.1215

5. Bosse, T., Hoogendoorn, M., Memon, Z. A., Treur, J.,
Umair, M. An Adaptive Model for Dynamics of Desiring
and Feeling Based on Hebbian Learning. In Interna-
tional Conference on Brain Informatics, Springer, 2010,
14-28. https://doi.org/10.1007/978-3-642-15314-3_3

6. Bosse, T., Hoogendoorn, M., Memon, Z. A., Treur,
J., Umair, M. A Computational Model for Dynam-
ics of Desiring and Feeling. Cognitive Systems Re-
search, 2012, 19-20, 39-61. https://doi.org/10.1016/j.
cogsys.2012.04.002

7. Bosse, T., Memon, Z. A., Treur, J., Umair, M. An Adap-
tive Human-Aware Software Agent Supporting At-
tention-Demanding Tasks. International Conference
on Principles and Practice of Multi-Agent Systems,
Springer, 2009, 292-307. https://doi.org/10.1007/978-
3-642-11161-7_20

8. Bosse, T., Memon, Z. A., Treur, J. Emergent Storylines
Based on Autonomous Characters with Mindreading
Capabilities. IEEE/WIC/ACM International Confer-
ence on Intelligent Agent Technology, 2007 (IAT’07),
2007, 207-214. https://doi.org/10.1109/IAT.2007.61

9. Bosse, T., Memon, Z. A., Treur, J. Modelling Animal Be-
haviour Based on Interpretation of Another Animal’s Be-
haviour. ICCM’07: Proceedings of the 8th International
Conference on Cognitive Modeling, 2007, 193-198.

10. Bosse, T., Memon, Z. A., Treur, J. Adaptive Estimation
of Emotion Generation for an Ambient Agent Model.
European Conference on Ambient Intelligence, Spring-
er, 2008, 141-156. https://doi.org/10.1007/978-3-540-
89617-3_10

11. Chaichoompu, K., Kittitornkun, S., Tongsima, S. Speed-
up Bioinformatics Applications on Multicore-Based
Processor Using Vectorizing and Multithreading Strat-
egies. Bioinformation, 2007, 2(5), 182-184. https://doi.
org/10.6026/97320630002182

12. Chang, J., Sohi, G. S. Cooperative Cache Partitioning for
Chip Multiprocessors. ACM International Conference
on Supercomputing, 25th Anniversary Volume, 2014,
402-412. https://doi.org/10.1145/2591635.2667188

13. Chen, G., Huang, K., Knoll, A. Energy Optimization for
Real-Time Multiprocessor System-on-Chip with Op-
timal DVFS and DPM Combination. ACM Transac-
tions on Embedded Computing Systems (TECS), 2014,
13(3S), 111:1-111:21.

14. Chen, X., Chang, L.-W., Rodrigues, C. I., Lv, J., Wang, Z.,
Hwu, W.-M. Adaptive Cache Management for Ener-

gy-Efficient GPU Computing. 2014 47th Annual IEEE/
ACM International Symposium on Microarchitecture,
Cambridge, 2014, 343-355. https://doi.org/10.1109/MI-
CRO.2014.11

15. Chishti, Z., Powell, M. D., Vijaykumar, T. Optimizing
Replication, Communication, and Capacity Allocation
in CMPs. 32nd International Symposium on Computer
Architecture (ISCA’05), Madison, WI, USA, 2005, 357-
368. https://doi.org/10.1109/ISCA.2005.39

16. Cook, H., Moreto, M., Bird, S., Dao, K., Patterson, D. A.,
Asanovic, K. A Hardware Evaluation of Cache Parti-
tioning to Improve Utilization and Energy-Efficiency
While Preserving Responsiveness. ACM SIGARCH
Computer Architecture News, 2013, 41(3), 308-319.
https://doi.org/10.1145/2508148.2485949

17. Curtis, T., Curtis, M. High Performance Digital Signal
Processing. IOA Conference on Sonar Signal Process-
ing, 2004, 1-10.

18. Do, C. T., Kim, J., Hwang, I., Kim, S.-H., Kim, C. H. A
Novel Last-Level Cache Replacement Policy to Im-
prove the Performance of Mobile Systems. Advanced
Science and Technology Letters (Workshop on Mobile
and Wireless 2014), 2014, 46. https://doi.org/10.14257/
astl.2014.46.06

19. Faella, J. On Performance of GPU and DSP Architectures
for Computationally Intensive Applications, 2013.

20. Fernando, R. GPU Gems: Programming Techniques,
Tips and Tricks for Real-Time Graphics. Pearson High-
er Education, 2004.

21. Flautner, K., Kim, N. S., Martin, S., Blaauw, D., Mudge,
T. Drowsy Caches: Simple Techniques for Reducing
Leakage Power. IEEE Proceedings of the 29th Annual
International Symposium on Computer Architecture,
2002, 148-157.

22. Gálvez, S., Daz, D., Hernández, P., Esteban, F. J., Cabal-
lero, J. A., Dorado, G. Next-Generation Bioinformatics:
Using Many-Core Processor Architecture to Develop a
Web Service for Sequence Alignment. Bioinformatics,
2010, 26(5), 683-686. https://doi.org/10.1093/bioinfor-
matics/btq017

23. Goel, S., Buyya, R. Data Replication Strategies in
Wide-Area Distributed Systems. Enterprise Service
Computing: From Concept to Deployment, IGI Global,
2007, 211-241. https://doi.org/10.4018/978-1-59904-
180-3.ch009

24. Gracioli, G., Fröhlich, A. A., Pellizzoni, R., Fischmeis-
ter, S. Implementation and Evaluation of Global and
Partitioned Scheduling in a Real-Time OS. Real-Time

Information Technology and Control 2018/3/47606

Systems, 2013, 49(6), 669-714. https://doi.org/10.1007/
s11241-013-9183-3

25. Gracioli, G., Frohlich, A. A. An Experimental Evalu-
ation of the Cache Partitioning Impact on Multicore
Real-Time Schedulers. 2013 IEEE 19th International
Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2013, 72-81.

26. Gupta, S., Zhou, H. Spatial Locality-Aware Cache Parti-
tioning for Effective Cache Sharing. IEEE 2015 44th In-
ternational Conference on Parallel Processing (ICPP),
2015, 150-159. https://doi.org/10.1109/ICPP.2015.24

27. Hameed, H., Durrani, N. M., Hina, S., Shamsi, J. A. To-
wards Efficient Graph Traversal Using a Multi-GPU
Cluster. International Journal of Advanced Computer
Science and Applications, 2017, 8(6), 338-346. https://
doi.org/10.14569/IJACSA.2017.080644

28. Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A.
Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches. ACM SIGARCH
Computer Architecture News, 2009, 37(3), 184-195.
https://doi.org/10.1145/1555815.1555779

29. Held, J., Bautista, J., Koehl, S. From a Few Cores to
Many: A Tera-Scale Computing Research Overview.
White Paper, Intel, 2006.

30. Hoogendoorn, M., Klein, M. C., Memon, Z. A., Treur, J.
Formal Specification and Analysis of Intelligent Agents
for Model-Based Medicine Usage Management. Com-
puters in Biology and Medicine, 2013, 43(5), 444-457.
https://doi.org/10.1016/j.compbiomed.2013.01.021

31. Hoozemans, J., Wong, S., Al-Ars, Z. Using Vliw Softcore
Processors for Image Processing Applications. IEEE
2015 International Conference on Embedded Comput-
er Systems: Architectures, Modeling, and Simulation
(SAMOS), 2015, 315-318. https://doi.org/10.1109/SA-
MOS.2015.7363691

32. Hwang, K., Dongarra, J., Fox, G. C. Distributed and
Cloud Computing: From Parallel Processing to the In-
ternet of Things, Morgan Kaufmann, 2013.

33. Inam, R. An Introduction to GPGPU Programming-Cu-
da Architecture, 2010.

34. Kaxiras, S., Hu, Z., Martonosi, M. Cache Decay: Ex-
ploiting Generational Behavior to Reduce Cache
Leakage Power. ACM SIGARCH Computer Archi-
tecture News, 2001, 29(2), 240-251. https://doi.
org/10.1145/384285.379268

35. Khan, F. A., Tahir, M. A., Khelifi, F., Bouridane, A., Al-
motaeryi, R. Robust Off-Line Text Independent Writer
Identification Using Bagged Discrete Cosine Transform

Features. Expert Systems with Applications, 2017, 71,
404-415. https://doi.org/10.1016/j.eswa.2016.11.012

36. Khan, M. A., Memon, Z. A., Khan, S. Highly Available
Hadoop Namenode Architecture. In IEEE 2012 Inter-
national Conference on Advanced Computer Science
Applications and Technologies (ACSAT), 2012, 167-
172. https://doi.org/10.1109/ACSAT.2012.52

37. Kim, C., Burger, D., Keckler, S. W. An Adaptive, Non-Uni-
form Cache Structure for Wire-Delay Dominated On-
Chip Caches. ACM Sigplan Notices, 2002, 37(10), 211-
222. https://doi.org/10.1145/605432.605420

38. Kindratenko, V. V., Enos, J. J., Shi, G., Showerman, M.
T., Arnold, G. W., Stone, J. E., Phillips, J. C., Hwu, W.-
M. GPU Clusters for High-Performance Computing.
IEEE International Conference on Cluster Computing
and Workshops, CLUSTER’09, 2009, 1-8. https://doi.
org/10.1109/CLUSTR.2009.5289128

39. Kurian, G., Devadas, S., Khan, O. Locality-Aware Data
Replication in the Last-Level Cache. 2014 IEEE 20th
International Symposium on High Performance Com-
puter Architecture (HPCA), 2014, 1-12.

40. Kurian, G., Khan, O., Devadas, S. The Locality-Aware
Adaptive Cache Coherence Protocol. ACM SIGARCH
Computer Architecture News, 2013, 41(3), 523-534.
https://doi.org/10.1145/2508148.2485967

41. Li, L., Kadayif, I., Tsai, Y.-F., Vijaykrishnan, N., Kan-
demir, M., Irwin, M. J., Sivasubramaniam, A. Managing
Leakage Energy in Cache Hierarchies. Journal of In-
struction-Level Parallelism, 2003, 5, 1-24.

42. Li, Y., Skadron, K., Lee, B., Brooks, D. Quantifying Latency
and Throughput Compromises in CMP Design. Techni-
cal Report CS-2006-26, University of Virginia Depart-
ment of Computer Science, Technical Report, 2006.

43. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney,
G., Wallace, S., Reddi, V. J., Hazelwood, K. Pin: Building
Customized Program Analysis Tools with Dynamic In-
strumentation. ACM Sigplan Notices, 2005, 40(6), 190-
200. https://doi.org/10.1145/1064978.1065034

44. Lu, J., Guo, Y. Energy-Aware Fixed-Priority Multi-Core
Scheduling for Real-Time Systems. 2011 IEEE 17th In-
ternational Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2011, 1,
277-281.

45. Mattson, T. G., Van der Wijngaart, R., Frumkin, M. Pro-
gramming the Intel 80-Core Network-on-a-Chip Ter-
ascale Processor. Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, 2008, 1-11. https://doi.
org/10.1109/SC.2008.5213921

607Information Technology and Control 2018/3/47

46. Memon, Z. A., Treur, J. Modelling the Reciprocal In-
teraction Between Believing and Feeling from a Neu-
rological Perspective. International Conference on
Brain Informatics, Springer, 2009, 13-24. https://doi.
org/10.1007/978-3-642-04954-5_12

47. Memon, Z. A., Treur, J. On the Reciprocal Interaction
Between Believing and Feeling: An Adaptive Agent Mod-
elling Perspective. Cognitive Neurodynamics, 2010, 4(4),
377-394. https://doi.org/10.1007/s11571-010-9136-7

48. Memon, Z. A., Treur, J. An Agent Model for Cogni-
tive and Affective Empathic Understanding of Other
Agents. Transactions on Computational Collective In-
telligence VI, Springer, 2012, 56-83.

49. Memon, Z., Treur, J. Cognitive and Biological Agent
Models for Emotion Reading. 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and In-
telligent Agent Technology, 2008, 308-313. https://doi.
org/10.1109/WIIAT.2008.311

50. Mittal, S., Vetter, J. S. A Survey of Techniques for Ar-
chitecting DRAM Caches. IEEE Transactions on Par-
allel and Distributed Systems, 2016, 27(6), 1852-1863.
https://doi.org/10.1109/TPDS.2015.2461155

51. Mittal, S., Zhang, Z. Palette: A Cache Leakage Energy
Saving Technique for Green Computing. Transition of
HPC Towards Exascale Computing, 2013, 24, 46-61.

52. Mittal, S. A Survey of Techniques for Cache Partition-
ing in Multicore Processors. ACM Computing Surveys
(CSUR), 2017, 50(2), 27:1-27:39.

53. Moreto, M., Cazorla, F. J., Ramirez, A., Sakellar-
iou, R., Valero, M. FlexDCP: A QoS Framework
for CMP Architectures. ACM SIGOPS Operating
Systems Review, 2009, 43(2), 86-96. https://doi.
org/10.1145/1531793.1531806

54. Nikas, K. An Analysis of Cache Partitioning Techniques
for Chip Multiprocessor Systems. Ph.D. Dissertation,
University of Manchester, 2008.

55. Nvidia, C. Nvidia Cuda C Programming Guide. Nvidia
Corporation, 2011, 120(18), 8.

56. Olukotun, K., Hammond, L., Laudon, J. Chip Multipro-
cessor Architecture: Techniques to Improve Through-
put and Latency. Synthesis Lectures on Computer Ar-
chitecture, 2007, 2(1), 1-145. https://doi.org/10.2200/
S00093ED1V01Y200707CAC003

57. Powell, M., Yang, S.-H., Falsafi, B., Roy, K., Vijaykumar,
T. Gated-Vdd: A Circuit Technique to Reduce Leakage
in Deep-Submicron Cache Memories. ISLPED’00: Pro-
ceedings of the 2000 International Symposium on Low
Power Electronics and Design (Cat. No.00TH8514),

Rapallo, Italy, 2000, 90-95. https://doi.org/10.1109/
LPE.2000.155259

58. Qureshi, M. K., Patt, Y. N. Utility-Based Cache Parti-
tioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches. 39th Annual
IEEE/ACM International Symposium on Microar-
chitecture, MICRO-39, 2006, 423-432. https://doi.
org/10.1109/MICRO.2006.49

59. ROM, B. Adsp-bf531/adsp-bf532/adsp-bf533.

60. Sanchez, D., Kozyrakis, C. The Zcache: Decoupling
Ways and Associativity. 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
2010, 187-198. https://doi.org/10.1109/MICRO.2010.20

61. Sanchez, D., Kozyrakis, C. Vantage: Scalable and Effi-
cient Fine-Grain Cache Partitioning. ACM SIGARCH
Computer Architecture News, 2011, 39(3), 57-68.
https://doi.org/10.1145/2024723.2000073

62. Savera, A., Zia, A., Edhi, M. S., Tauseen, M., Shamsi, J. A.
Bumpster: A Mobile Cloud Computing System for Speed
Breakers and Ditches. IEEE 41st Conference on Local
Computer Networks Workshops (LCN Workshops),
2016, 65-71. https://doi.org/10.1109/LCN.2016.030

63. Seznec, A. A Case for Two-Way Skewed-Associative Cach-
es. In ACM SIGARCH Computer Architecture News, 1993,
21(2), 169-178. https://doi.org/10.1145/173682.165152

64. Shah, M., Barreh, J., Brooks, J., Golla, R., Grohoski, G.,
Gura, N., Hetherington, R., Jordan, P., Luttrell, M., Ol-
son, C., Saha, B., Sheahan, D., Spracklen, L., Wynn, A.
Ultrasparc T2: A Highly-Treaded, Power-Efficient,
SPARC SOC. 2007 IEEE Asian Solid-State Circuits
Conference, Jeju, 2007, 22-25. https://doi.org/10.1109/
ASSCC.2007.4425786

65. Shaikh, M. K., Lawgaly, A., Tahir, M. A., Bouridane, A.
Modality Identification for Heterogeneous Face Recog-
nition. Multimedia Tools and Applications, 2017, 76(3),
4635-4650. https://doi.org/10.1007/s11042-016-3635-4

66. Shamsi, J. A. A Laboratory Based Course on GPU Pro-
gramming: Methods, Practices, and Lessons. Parallel
and Distributed Processing Symposium Workshops
(IPDPSW), 2017 IEEE International, 2017, 367-374.
https://doi.org/10.1109/IPDPSW.2017.47

67. Shamsi, J., Brockmeyer, M. Predictable Service Overlay
Networks: Predictability Through Adaptive Monitoring
and Efficient Overlay Construction and Management.
Journal of Parallel and Distributed Computing, 2012,
72(1), 70-82. https://doi.org/10.1016/j.jpdc.2011.09.005

68. Shi, X., Su, F., Peir, J.-k., Xia, Y., Yang, Z. CMP Cache Per-
formance Projection: Accessibility vs. Capacity. ACM

