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Artificial Bee Colony (ABC) is a successful meta-heuristic algorithm that has been greatly utilised by research-
ers. Through our practical experience of ABC, we have noticed that the recommended formula ‘limit’ = ne * D 
may not be the best choice for different problems. In this work, a set of experiments using horizontal and ver-
tical approaches has been designed and executed with the aim of observing the effect of ‘limit’ on ABC. The 
results have been statistical analysed using Null Hypothesis Significance Testing (NHST) as well as the Chess 
Rating System for Evolutionary Algorithms (CRS4EAs), which is a novel approach for comparing meta-heu-
ristic algorithms. It is shown that the recommended formula is not the best setting for different problems and 
approaches. Hence, the control parameter ‘limit’ should be tuned or controlled. The other important result of 
this study is to show that CRS4EAs is comparable but also shows benefits over NHST.
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1. Introduction
Comparisons between different meta-heuristic algo-
rithms [5] are inevitably necessary within the field 
of Evolutionary Computation (EC). Although the 
scientific testing [20] approach, the aim of which is 
to learn about which kinds of problems and why one 
algorithm performs better, is preferred over the horse 
racing approach [12], [23], [45], the aim of which is to 
outperform other algorithms, the latter approach still 
prevails during current EC experimental practices. 
However, even in the scientific testing approach, sim-
ply understanding parameter interactions and plac-
ing emphasis on the analysis of robustness may not be 
enough if an algorithm under investigation performs 
badly. Hence, there is still a need for comparing the 
performances of the algorithms under investigation 
using the currently best available algorithms [9].
This paper deals with the Artificial Bee Colony (ABC) 
algorithm [25], [26], [39], which is a swarm intel-
ligence algorithm that accomplishes optimisation 
tasks through social cooperation among bees (i.e., 
individuals) – employed bees exploit food source and 
share food source information to onlooker bees; on-
looker bees probabilistically choose and exploit food 
source based on the provided information; and scout 
bees explore new food source when current ones are 
exhausted. ABC exhibits remarkable balance between 
exploitation and exploration [8] (raw data for exper-
iments presented in this paper are available in [47]). 
This balance between exploitation (employed bee 
phase and onlooker bee phase) and exploration (scout 
bee phase) is controlled by population size (SN) and 
‘limit’, respectively. The formula ‘limit’ = ne * D (‘lim-
it’ is the threshold for determining whether a scout 
bee should be introduced or not, ne is the number of 
employed bees, D is the dimension of a problem) was 
recommended in a very influential paper [26]. As 
ABC is a very successful algorithm, it has been used 
extensively over recent years [28], [29]. The suggest-
ed formula for setting the ‘limit’ control parameter is 
indeed mostly used (e.g., [2]). We came across only a 
few studies where the ‘limit’ was set at a certain fixed 
number (e.g., 10 in [38], [55], 30 in [53], 40 in [56], 50 
in [44], 100 in [22], [52], 200 in [34], [57]), or better 
where the ‘limit’ was tuned [35]. When experimenting 
using ABC we have noticed its sensitiveness to ‘limit’ 
control parameter and that its relationship between 

population size (SN = 2 * ne) and the dimension of a 
problem (D) is not straightforward. However, this was 
just our speculation driven by practical experience 
with ABC. Hence, we decided to perform extensive 
statistical analysis of ABC and support it by stronger 
conclusions, using the Null Hypothesis Significance 
Testing (NHST) [41] and Chess Rating System for 
Evolutionary Algorithms (CRS4EAs) [48]. For find-
ing the significant differences with NHST, the Wil-
coxon’s test [51] was a more appropriate test with the 
post-hoc analysis supported by the Holm’s test [19]. 
Both the Wilcoxon’s test and CRS4EAs compare the 
results pairwisely but whilst the Wilcoxon’s compar-
ison concentrates only on 1×k comparison, the com-
parison in CRS4EAs allows k×k comparison and the 
detections of significant differences amongst all algo-
rithms. Note that when attempting to apply statistical 
k×k comparison, the more appropriate test would be 
the Friedman test [13], [14]. However, as the number 
of problems is really small and the goal was to anal-
yse different ‘limit’ settings regarding different prob-
lems, the Friedman test could not be taken into con-
sideration [50]. Hence, the choice of Wilcoxon’s test 
with post-hoc Holm’s test is shown as an appropriate 
one. Even though CRS4EAs allows k×k comparison 
and Wilcoxon’s test allows only 1×k comparison, the 
analysis of CRS4EAs was applied as 1×k comparison, 
as well as assuring that both methods are applied 
equally. Our results show that ABC’s performance is 
very sensitive to a control parameter ‘limit’, which 
is often independent regarding the population size. 
Whilst the ‘limit’ depends on dimension D, it is much 
more dependent on the problem under investigation. 
Although, the characteristics of a problem might 
drastically change when changing dimension D and 
can become a completely different problem (e.g., an 
optimisation function becomes multi-modal instead 
of uni-modal or vice verse, and the fitness-distance 
correlation is changed from high to low correlation 
or vice verse [7]). Hence, dimension D can be seen as 
part of a problem as well.
The main contributions of this paper are:

 _ Sensitivity analysis is applied for the first time 
on ABC control parameters using vertical and 
horizontal approaches showing that control 
parameter SN is much more robust than control 
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parameter ‘limit’, which must be carefully set for 
the best results;

 _ An example of how from sensitivity analysis 
one might conclude that a suggested formula for 
setting control parameters is not most appropriate; 
Deep statistical investigations about setting 
ABC control parameter ‘limit’ as a full factorial 
design using NHST and CRS4EAs showing that 
the recommended formula for setting the control 
parameter ‘limit’ regarding population size SN and 
the dimension of the problem D is not the best for 
every problem and approach;

 _ For the first time, it is shown that even the 
control parameter ‘limit’ depends on the available 
maximum number of fitness evaluations, and that 
ABC convergence using the suggested formula is 
not amongst the fastest; and

 _ First application of CRS4EAs as 1×k comparison 
showing its applicability and suitability as a 
feasible replacement of NHST.

The main conclusion from this study is that ABC does 
not always perform best when under the setting ‘lim-
it’ = ne * D. Hence, the ‘limit’ control parameter should 
be tuned or controlled.
However, such a conclusion should not come as a sur-
prise in EC and confirms already established knowl-
edge within the meta-heuristic field. Namely, fixed 
formulae for setting a control parameter usually lead 
to poor performances when applying to different 
problems. However, a systematic mapping study from 
[39] shows that this formula is indeed very frequent-
ly used indicating that still many researchers believe 
that some fixed formulae can be a robust choice. Our 
speculation is that this dichotomy between theory 
and practice exists due to lack of ABC studies show-
ing that such a parameter setting is not the best. In 
this respect, our work can be seen as remedying this 
situation for ABC. There should be no excuse not to 
perform tuning on control parameter ‘limit’ anymore.
The other important conclusion from this study 
is that CRS4EAs is comparable with NHST but 
CRS4EAs also showed many benefits during exper-
imentation where a greater number of experiments 
needed to be conducted. When executing one tourna-
ment in CRS4EAs, all the necessary data for analysis 
are obtained and calculated, whilst for NHST there 
are always additional tests required. Having so many 

different situations and approaches, the results anal-
ysed by CRS4EAs are far quicker and easier than with 
NHST.
The paper is organized as follows. Section 2 describes 
the conducted experiment in detail. This section is 
divided into three major parts: in Section 2.1 the sen-
sitivity analysis is conducted for one optimisation 
problem; in Section 2.2 the results of experiment are 
analysed with NHST and the results reported regard-
ing the different approaches; in Section 2.3 the results 
of the experiment are analysed with CRS4EAs and 
results are again reported regarding the different ap-
proaches. Section 3 displays the results of tuning the 
parameters of ABC on different dimensionalities of 
one optimisation problem. Section 4 discusses other 
similar researches as presented in the past. Lastly, 
Section 5 concludes the paper. All the algorithms, fig-
ures and tables are also placed online at https://lpm.
feri.um.si/research/abc/.

2. Experiment
The amount of exploration [8] of ABC is controlled 
by the control parameter ‘limit’. ABC is exploring the 
search space more often when the ‘limit’ is set at a small 
number, and vice versa by exploiting the search space 
when the ‘limit’ is set to a higher number (Algorithm 1). 
The amount of exploration and exploitation depends 
on the problem and even on the evolution stage [8]. 
Hence, it is difficult to quantify. The formula ‘limit’ = 
ne * D [26] suggests that higher-dimensional problems 
require less exploration (higher dimension increases 
‘limit’, which in turn decreases exploration), and that 
bigger population size increases exploitation, which 
is indeed correct for ABC. However, the relationship 
between population size and the needed amount of ex-
ploration is unclear, as well as the fact that higher-di-
mensional problems might require more exploration. 
Overall, the suggested formula was not intuitive for us 
and we decided to further explore the relationships be-
tween population size SN (SN = 2 * ne), dimension D, 
and control parameter ‘limit’. Our experiment was di-
vided into two parts. In the first part, the importance of 
SN, D, and ‘limit’ to ABC was investigated by perform-
ing sensitivity analysis [33], which showed that indeed 
the most influential one amongst the aforementioned 
factors is ‘limit’. In the second part of the experiment, 
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emphasis was given to the ABC control parameter ‘lim-
it’, where different settings were statistically analysed 
by NHST and CRS4EAs.
During the experiment, we used the same benchmark 
functions as in the original ABC work [26]. Although 
this benchmark suite contained only five numerical 
benchmark functions: (1) multi-modal, non-sepa-
rable Schaffer function f1, (2) uni-modal, separable 
Sphere function f2, (3) multi-modal, non-separable 
Griewank function f3, (4) multi-modal, separable 
Rastrigin function f4, and (5) uni-modal, non-sepa-
rable Rosenbrock function f5, it was enough to arrive 
at appropriate conclusions. Even this small bench-
mark suite confirmed our hypothesis and there was 
no need to perform the experiment on more compre-
hensive benchmarks. On the other hand, whenever 
a statistical formula is suggested, it should be tested 
on comprehensive sets of benchmarks that can really 
support it on a vast number of different optimisation 
problems. For example, Piotrowski in [43] suggested 
that both the problems, minimisation and maximisa-
tion should be used on the same benchmark functions 
since a good performance of a meta-heuristic algo-
rithm on the minimisation of some function does not 
also guarantee a good performance on the maximisa-
tion of the same function, and vice versa.
We extended Karaboga’s experiment [26] by perform-
ing a full factorial design on this benchmark suite using 
the following factors and their values: SN = {24, 50, 100}, 
D = {2, 5, 10, 30, 50}, and ‘limit’ = {0, 100, 250, 500, 750, 
1000, 1250, 1500, ∞}. Hence, altogether there were 3 * 5 
* 9 = 135 different combinations tested using 100 inde-
pendent runs, whilst using both vertical and horizontal 
approaches [18] when performing the experiments.
In the first case, known also as ‘the fixed-cost approach’, 
we measured the quality of a solution reached by a 
pre-defined number of fitness evaluations (100,000 
and 250,000 fitness evaluations for each combination). 
In the second case, also known as ‘the fixed-target ap-
proach’, we measured the number of fitness evalua-
tions needed to find a (sub-)optimal solution (10-6 and 
10-12). The horizontal approach would have stopped 
the algorithm if a (sub-)optimal solution could not be 
found over 1,000,000 fitness evaluations.

2.1. Sensitivity Analysis
In this subsection, the results of the first part of the 
experiment are presented showing the importance of 
SN, D, and ‘limit’ to the performance of ABC. Sensitiv-

ity analysis [33] is shown only for f1 due to its similar-
ity of results on f2 – f5. The other reason is that the em-
phasis of this study was given to the second part of the 
experiment, where different settings of ‘limit’ were 
statistically analysed, and in the third part where the 
results were analysed using a novel method for pair-
wise comparison, CRS4EAs.
The aim of sensitivity analysis was to show the ro-
bustness of a meta-heuristic algorithm against dif-
ferent settings of control parameters. By performing 
a sensitivity analysis, we could find those control 
parameters (if any) that are very sensitive, as well of 
those (if any) which are very robust. In the former 
case, a proper setting of a control parameter is crucial 
for obtaining good performance of a meta-heuristic 
algorithm, whilst in the latter case, similar perfor-
mance can be achieved regardless of the different 
settings of such non-sensitive control parameters. An 
obvious question may arise as to why the dimension-
ality of problem D was included within our sensitivi-
ty analysis as a factor as it is not a control parameter 
but D should be considered as part of the optimisation 
problem? As the formula ‘limit’ = ne * D [26] suggested 
a particular correlation between ‘limit’ and two oth-
er variables: population size and dimensionality of a 
problem, such a correlation should probably be indi-
cated by sensitivity analysis as well. If at least one of 
these factors is insensitive, then the suggested formu-
la [26] might not capture the relationships amongst 
the factors too well. As shown in the continuation, 
this was indeed the case.
In Tables 1(a) and 1(b), the experimental results of f1 
are presented when using the vertical approach with 
100,000 and 250,000 maximum number of fitness 
evaluations (MaxFEs in the tables appeared later), 
respectively. In Tables 2(a) and 2(b), the experimen-
tal results of f1 are presented when using the horizon-
tal approach in order to find a (sub-)optimal solution 
at   10-6 and at 10-12, respectively. The best results are 
highlighted by a light grey colour.
The difference between Tables 1(a) and 1(b) shows 
that 250,000 fitness evaluations were almost always 
enough for f1 to find the exact solution; except for high 
dimensions D = 30 and D = 50, or when ‘limit’ = 0 (high 
exploration) and ‘limit’ = ∞ (no exploration). The 
Karaboga’s setting of ‘limit’ Lk was always the better 
performer regarding the mean value when 250,000 
fitness evaluations were available (Table 1(b)), whilst 
when only 100,000 were available (Table 1(a)), the 
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Algoritm 1: The pseudo-code of algorithm ABC
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Table 1 
Mean values (Mean) and standard deviation values (SD) for the vertical approach to problem f1

Table 2 
Mean values (Mean) and standard deviation values (SD) for the horizontal approach to problem f1
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other fixed ‘limit’ values performed better; in most 
cases (8 out of 15), the better performing value being 
L250. A meticulous reader may notice that those prob-
lems with higher dimensions always required more 
fitness evaluations in order to reach a sub-optimal 
solution (Tables 2(a) and 2(b)), which was an expect-
ed property. Less expectedly, the population size did 
not have a big influence on this property. For example, 
to reach 10-6, the following average numbers of fit-
ness evaluations were needed at L1000: 5.65E+03 (SN = 
100, D = 2), 5.60E+03 (SN = 50, D = 2), and 5.31E+03 
(SN = 24, D = 2), whilst 8.14E+04 (SN = 100, D = 30), 
8.17E+04 (SN = 50, D = 30), and 8.22E+04 (SN = 24, D = 
30). In order to reach 10-12, twice as many fitness eval-
uations were roughly needed compared to 10-6. Again, 
an increase in the number of fitness evaluations was 
expected, although the magnitude of the increase was 

 

hard to predict. From these tables, as well as based on 
the results for f2 to f5 (not shown in this paper), we no-
ticed that setting the ‘limit’ was a difficult task. It can 
be observed that setting the control parameter ‘lim-
it’ using the formula from [26] obtained good results 
only for the vertical approach with 250,000 fitness 
evaluations. If only one experiment were applied, the 
wrong conclusions could be drawn. In other cases, a 
clear winner was hard to discover (if it existed at all). 
However, we could not define a rule for setting ‘limit’ 
based on these results as the statistical significance 
had not yet been examined.
Figure 1 shows the sensitivity analyses for the (a) ver-
tical approach with a maximum number of 100,000 
fitness evaluations; (b) vertical approach with a max-
imum number of 250,000 fitness evaluations; (c) hor-
izontal approach with (sub-)optimal solution 10-6; (d) 

Figure 1
Sensitivity analyses of f1 using horizontal and vertical approaches
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horizontal approach with (sub-)optimal solution 10-12. 
The X-axis represents the parameter settings of SN (3 
settings: 100, 50, 24 from left to right), D (5 settings: 2, 
5, 10, 30, 50 from left to right), and ‘limit’ (9 settings: 
0, 100, 250, 500, 750, 1000, 1250, 1500, ∞ from left to 
right). The Y-axis represents the sensitivities of three 
parameters in terms of the average of better solutions 
found and the average number of fitness evaluations 
needed to reach (sub-)optimal solution amongst 100 
runs for vertical and horizontal approaches, respec-
tively.
As can be observed, SN had minimal effect. Changing 
SN amongst 24, 50, and 100 did not make too much 
difference. Conversely, ‘limit’ and D played important 
roles when determining the performance of the ABC 
algorithm. All the figures indicated that ‘limit’ was 
more sensitive than D because, in terms of the Y-axis, 
the range of ‘limit’ was longer than D. Conversely, D is 
not the ABC control parameter but the property of the 
problem. Hence, amongst ABC control parameters 
the size of the population (SN) was much more robust 
than control parameter ‘limit’, indicating that much 
more emphasis should be given to properly setting it.
All four graphs in Figure 1 show remarkable similar-
ities, and although they show that ABC is very sen-
sitive to ‘limit’, an important question is: “Are differ-
ences in setting ‘limit’ also statistically significant?” 
Hence, we performed NHST and CRS4EAs analyses 
on the obtained results. Furthermore, all four graphs 
in Figure 1 clearly indicate that there exists no linear 
relationship between ‘limit’, population size SN, and 
dimension D, as suggested by formula [26].

2.2. Null Hypothesis Significance Testing
Karaboga’s suggestion of ‘limit’ value Lk  = ne*D = 
(SN/2)*D [26] was compared to the set of fixed ‘limit’ 
values ‘limit’ = {0, 100, 250, 500, 750, 1000, 1250, 1500, 

Table 3 
Description of all four parts of the experiment

 

∞ } for SN = {24, 50, 100} and D = {2, 5, 10, 30, 50}. The 
whole experiment was divided into four sections (see 
Table 3). In the first two sections, we measured the 
quality of a solution reached by a pre-defined number 
of fitness evaluations (100,000 and 250,000), which 
is also known as the vertical or ‘the fixed-cost’ ap-
proach. In the other two sections, we measured the 
number of fitness evaluations needed to find a (sub-)
optimal solution (10-6 and 10-12), which is also known 
as the horizontal or ‘the fixed-target’ approach. The 
horizontal approach would have stopped the algo-
rithm if a (sub-)optimal solution could not be found 
over 1,000,000 fitness evaluations. The number of in-
dependent runs was in all cases n = 100. By using the 
vertical approach only the quality of the final solution 
was taken into consideration but not the convergence. 
Fast convergence is also a desirable property of me-
ta-heuristic algorithms, which can be captured using 
the horizontal approach. Convergence can also be an-
alysed by using the vertical approach and additional 
Page’s trend statistics, as shown in [10].
The obtained results (readers can find the raw data 
in [47]) were analysed using Null Hypothesis Signif-
icance Testing [41] for multiple comparisons. The 
non-parametric Wilcoxon’s test [51] was used be-
cause the distribution of the data was unknown. In 
Wilcoxon’s test, the results Lk obtained over n=100 
runs for particular settings SN, D and problem fi 
were pairwisely compared to the results of another 
fixed ‘limit’ value obtained over n = 100 runs for the 
same settings SN, D and problem fi. The differences 
between the corresponding outcomes were ranked 
and the p value was calculated regarding to the sum 
of positive ranks (whenever Lk was better) and the 
sum of negative ranks (whenever Lk was worse). As 
several multiple Wilcoxon’s tests were conducted on 
the same data and we wished to control the Type-I-
Error, the post-hoc procedure known as the Holm test 
[19] was applied to each such comparison. In Holm’s 
procedure, p values (there is k = 9 of them) obtained 
using Wilcoxon’s test were ordered from the most sig-
nificant (smallest p value, i.e., p1) to the least signifi-
cant (largest p value, i.e., pk). p1 was then compared to 
α/(k-1), and if it was smaller, the hypothesis (which 
states that Lk and ‘limit’ setting linked to p1 are equal) 
was rejected. p2 was compared to α/(k -2), p3 to α/(k 
-3) and so on, until the value j for which pj was not 
smaller than α/(k-j) was found. When such a j was 
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found, the procedure stopped and all the remaining 
hypotheses were retained. All the results from the 
presented experiments were analysed under a signif-
icance level of α = 0.05. The results of these analyses 
are presented in Tables 5-21. In each table, Karabo-
ga’s ‘limit’ value Lk is compared to other fixed values 
of ‘limit’ (L0, L100, L250, L500, L750, L1000, L1250, L1500, L∞). Lk 
was either better (>), equal (=), or worse (<) than any 
fixed value of ‘limit’. The decision whether Lk was bet-
ter or worse depended on the sums of the positive and 
negative ranks from the Wilcoxon’s test. Whenever 
the difference between the two values was significant 
under the Holm test, there is a star symbol (*) behind 
the ‘limit’ value. Whenever Karaboga’s ‘limit’ value Lk 
was worse than at least one other fixed ‘limit’ value, 
the cell in the table is highlighted in light grey colour. 
Since Lk was different for different settings of SN and 
D, its values are displayed in Table 4.

Table 4 
Values of ‘limit’ Lk = (SN/2)*D

 

2.2.1. Experiment 1: Vertical Approach with 
MaxFEs =100,00
Tables 5-9 show the differences found between Lk 
and the other 9 fixed ‘limit’ values on all 5 optimisa-

tion problems. While Lk was in most cases better than 
some fixed ‘limit’ values, there were some values for 
which Lk was worse, sometimes even significantly. 
In particular, for f1: SN = 24 and D = 5 where Lk was 
significantly worse than L100, L250, L500, L750, L1000, L1250, 
L1500, L∞; SN = 24 and D = 10 where Lk was significant-
ly worse than L250, L500, L750, L1000, L1250, L1500; SN = 100 
and D = 10 where Lk was significantly worse than L250; 
SN = 24 and D = 30 where Lk was significantly worse 
than L500, L750, L1000, L1250, L1500. For f5: SN = 24 and D = 
5 where Lk was significantly worse than L100, L250, L500, 
L750, L1000, L1250, L1500, L∞; SN = 50 and D = 5 where Lk was 
significantly worse than L500, L750, L1000, L1250, L1500; SN 
= 100 and D = 5 where Lk was significantly worse than 
L1500; SN = 24 and D = 10 where Lk was significantly 
worse than L250, L500, L750, L1000, L1250, L1500, L∞. Hence, 
Lk had significantly better alternatives for problems 
f1 and f5, whilst for f2, f3, and f4 the found differences 
were not significant. The differences between Lk and 
some other fixed ‘limit’ values for f1 were significant 
when the population size SN equaled 24, and dimen-
sion D equaled 5, 10, or 30. So for this problem and 
small population size, Lk would not be a better choice. 
For f5, Lk had significantly better alternatives whenev-
er dimension D equaled 5, and for dimension D = 10 
and small population size SN = 24. However, for all 
five problems, Lk had better alternatives (however, 
these alternatives were not significantly better) when 
dimension D was bigger (10, 30, or 50) and population 
size SN had different values.

Table 5
f1, vertical approach, MaxFEs = 100,000, NHST
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Table 6 
f2, vertical approach, MaxFEs = 100,000, NHST

Table 7
f3, vertical approach, MaxFEs = 100,000, NHST

 

 

 

Table 8 
f4, vertical approach, MaxFEs = 100,000, NHST
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Table 9 
f5, vertical approach, MaxFEs = 100,000, NHST

Table 10 
f1, vertical approach, MaxFEs = 250,000, NHST

Table 11
f2, vertical approach, MaxFEs = 250,000, NHST

 

 

 



577Information Technology and Control 2017/4/46

Table 13
f4, vertical approach, MaxFEs = 250,000, NHST

Table 14
f5, vertical approach, MaxFEs = 250,000, NHST

Table 12
f3, vertical approach, MaxFEs = 250,000, NHST
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On the other hand, for f1 and f4, Lk was never the abso-
lute best value, meaning that there was always a better 
or at least equal ‘limit’ value. For f2, f3, and f5 that was not 
the case, as Lk was in some cases better than all 9 fixed 
‘limit’ values. In particular, for f2: SN = 24 and D = 2, SN 
= 50 and D = 2, and SN = 50 and D = 5. For f3: SN = 24 and 
D = 10. For f5: SN = 24 and D = 2, and SN = 50 and D = 2. 
This, however, does not mean that the ‘limit’ values that 
could be better than Lk for these problems and settings 
do not exist; it only means that Lk was better for these 
problems and settings than these 9 fixed ‘limit’ values.

2.2.2. Experiment 2: Vertical Approach with 
MaxFEs = 250,000
In this section, there were more fitness evaluations 
available, and Lk was almost always better than or equal 
to other settings. This means that when large enough 
fitness evaluations were available, Lk was an appro-
priate choice regardless of the population size and di-
mension of a problem (for the benchmark suite under 
investigation). Only for problem f5, which is harder 
than the other four problems, Lk was in two cases worse 
than some other settings. Firstly for SN = 24 and D = 5 
and secondly for SN = 24 and D = 10. These differences, 
however, were never significant. All the differences are 
shown in Tables 10-14. These findings suggest that set-
ting a control parameter ‘limit’ depends on the avail-
able maximum number of fitness evaluations.

2.2.3. Experiment 3: Horizontal Approach – 10-6 – 
MaxFEs = 1,000,000
During the horizontal approach where we measured 
the number of function evaluations needed to reach a 
(sub-)optimal solution, Lk had the better alternatives 
in almost all cases. For f1, these better alternatives were 
available for the small population size SN = 24 and for 
the bigger population size SN = 100, whereas for SN = 
50, Lk was worse only for D = 5 and better for all other 
dimension values. For f2, Lk was worse than all the pop-
ulation sizes and dimension values, except for SN = 50 
and D = 10, SN = 100 and D = 10, SN = 100 and D = 50, 
and SN = 100 and D = 50. For f3 and f4, Lk always had a 
better alternative and was always worse than at least 
one other ‘limit’ value, regardless of the population size 
and dimension of a problem. Lastly, for f5 and small di-
mension D =2 (and any population size values), Lk had 
better alternatives, whilst for other dimensions and 
population sizes all ‘limit’ values performed the same. 
This happened due to the fact that none of these ‘limit’ 
values had found the (sub-)optimal solution 10-6 after 

1,000,000 fitness evaluations. For D = 2, some ‘lim-
it’ values found (sub-)optimal solutions during some 
runs, and therefore they performed better than Lk. 
Whilst there were a lot of differences found between Lk 
and other ‘limit’ values, these differences were rarely 
significant. There were only two problems for which 
Lk was significantly worse than some other ‘limit’ val-
ues. First was f1 when Lk was significantly worse for 
small population size SN =24 for all dimensions. The 
other was f4 when Lk was significantly worse than all 
other ‘limit’ values except L0 for small population size 
SN =24 and small dimension D = 2. These differences 
are shown in Tables 15-19.

2.2.4. Experiment 4: Horizontal Approach 10-12 – 
MaxFEs = 1,000,000
In this section, the (sub-)optimal solution was set at 
10-12, which was a harder problem than finding (sub-)
optimal solution 10-6. Again, Lk almost always had 
a better alternative. For f1 better ‘limit’ values were 
found for small population size SN = 24 regardless 
of dimension D and for the bigger population size SN 
=100 where the dimension was greater than D = 2, 
whilst for SN =50, Lk had better alternatives for small 
dimensions D = 2 and D =5 and bigger dimension D = 
50. For f2, Lk had better alternatives regardless of the 
population size and dimension values. The same went 
for f3, except when the population size was SN =50 and 
dimension D = 5, where Lk was better than the other 
fixed ‘limit’ values. For f4, Lk was better than the oth-
er fixed ‘limit’ values when dimension D = 30, whilst 
for other dimensions (regardless of population size 
value) there were better alternatives. For f5, all ‘lim-
it’ values were the same during performances, which 
was due to the fact that none of them found the (sub-)
optimal solution 10-12 after 1,000,000 fitness evalua-
tions. These differences are shown in Tables 20-24. 

2.2.5. Experiment 5: Large Dimensions
In this section,  the horizontal approach with (sub-)op-
timal solution set at 10-6 was repeated for larger dimen-
sions, D = {100, 200, 300}, since we have expected that 
the recommended formulae might perform even worse 
for large dimensions (such very large optimisation 
problems are now common for some benchmark suites 
[32]). Again, fixed ‘limit’ values, L = {0, 1000, 2000, 
3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 
11000, 12000, 13000, 14000, 15000, ∞} were compared 
to Karaboga’s setting Lk. Found differences are shown 
in Tables 25-29. As in previous four experiments, this 
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Table 16 
f2, horizontal approach, 10-6, NHST

Table 17
f3, horizontal approach, 10-6, NHST

 

 

 

Table 15 
f1, horizontal approach, 10-6, NHST
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Table 18 
f4, horizontal approach, 10-6, NHST

Table 19
f5, horizontal approach, 10-6, NHST

 

 

Table 20
f1, horizontal approach, 10-12, NHST
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Table 21
f2, horizontal approach, 10-12, NHST

Table 22 
f3, horizontal approach, 10-12, NHST

Table 23
f4, horizontal approach, 10-12, NHST

 

 

 



Information Technology and Control 2017/4/46582

Table 24 
f5, horizontal approach, 10-12, NHST

Table 25 
f1, horizontal approach, 10-6, large dimension, NHST

Table 26 
f2, horizontal approach, 10-6, large dimension, NHST
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Table 27 
f3, horizontal approach, 10-6, large dimension, NHST

Table 28 
f4, horizontal approach, 10-6, large dimension, NHST

Table 29
f5, horizontal approach, 10-6, large dimension, NHST
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experiment showed that there are other ‘limit’ values 
that perform better than Lk, for certain problems (f1) 
even significantly. In almost all D and SN settings and 
problems, at least one better performing ‘limit’ value 
was found (the only exceptions are f1, SN = 50, and D = 
200 and f2, SN = 100, and D = 300). For f5, none of the 
‘limit’ values reached optimal solution, since all set-
tings performed equally. By comparing Tables 25-29 
with Tables 15-19, it can be observed that with higher 
dimensions Lk setting becomes less appropriate.

2.2.6. Discussion
The analysis with NHST supported our concerns 
about setting a fixed ‘limit’ value regarding the sug-
gested formula Lk = ne * D = (SN/2) * D. When a small-
er number of fitness evaluations (e.g., 100,000) were 
available, Lk was the appropriate choice only for small 
dimensions (D = 2, rarely for D = 5 or D = 10) amongst 
all the five presented problems. When dimension got 
bigger, more appropriate alternatives could be cho-
sen. On the other hand, when sufficiently large enough 
numbers of fitness evaluations were available (e.g., 
250,000), Lk was a significantly better choice than 
the presented fixed ‘limit’ values for all the presented 
problems, dimensions, and values of population size. 
This does not necessarily mean that a better value 
than Lk does not exist but it was not defined in our set 
of fixed ‘limit’ values. 
When it was of interest in finding a (sub-)optimal 
solution (i.e., 10-6) and a larger number of fitness eval-
uations were available (i.e., 1,000,000), Lk has better 
alternatives for the all presented problems, dimen-
sions, and values of population size. The only time 
Lk seemed to be like an appropriate choice was for 
problem f1 (multi-modal, non-separable problem) 
when population size equaled 50 and for problem f5 
(uni-modal, non-separable problem) for which ABC 
did not reach the given (sub-)optimal solution over 
1,000,000 fitness evaluations regardless of the ‘limit’ 
value. When the value of this (sub-)optimal solution 
was even more precise (i.e., 10-12) there were better 
alternatives than Lk even for problem f1. In summary, 
it was shown that even within this small benchmark 
suite used in our study setting ‘limit’ is very problem 
dependent (e.g., see Tables 5-9 for results on f1 - f5). 
In many cases, better settings existed (even signifi-
cantly better) than setting ‘limit’ according to the 
suggested formula. The results also heavily depended 
on the number of available fitness evaluations, indi-

cating that ABC convergence with Lk is not amongst 
the fastest. The results from the horizontal approach 
further supported this claim.

2.3. Chess Rating System for Evolutionary 
Algorithms (CRS4EAs)
The Chess Rating System for Evolutionary Algo-
rithms (CRS4EAs) [48] is a novel method for the com-
paring and ranking of evolutionary algorithms. In this 
method, each participating algorithm plays the role of 
a chess player. The comparison between two players 
is treated as one game that can have only one out of 
three outcomes: win, lose, or draw. Two algorithms 
play a draw whenever the difference in their solutions 
is smaller than predefined e. Otherwise, the algorithm 
with the solution closer to the optimum of an optimi-
sation problem wins and the other loses. A pairwise 
comparison between the solutions of all participating 
algorithms on all optimisation problems over all inde-
pendent runs is treated as one tournament. After the 
tournament has been conducted, the rating R, rating 
deviation RD, and rating interval RI for each of the 
players are calculated regarding the formula from the 
Glicko-2 rating system [16], [17]. Rating is an absolute 
power of a player that is supported by rating devia-
tion. The higher the rating deviation, the less reliable 
the player’s rating. Rating interval is formed from rat-
ing and rating deviation. It can be said with 95% prob-
ability that a player’s rating R belongs to an interval 
[R-2RD, R+2RD]. Regarding these rating intervals, 
the algorithms can then be compared and if their in-
tervals do not overlap, the algorithms are considered 
significantly different. The result of one such tourna-
ment is a leaderboard from which all these data can 
be read and interpreted. When players enter a tour-
nament their rating power equals 1500, and their 
rating deviation equals 350, which is the maximum 
available rating deviation value. The more games the 
algorithms play, the smaller become the rating devi-
ation values, and the minimum value usually used in 
CRS4EAs comparisons equals 50. 
In this analysis, players were presented as ABC algo-
rithms with different ‘limit’ value settings. A tourna-
ment was executed for each combination of SN and 
D values for each optimisation problem separately to 
allow fair comparison with NHST’s Wilcoxon’s test. 
The results of both analyses (NHST’s and CRS4EAs’) 
were very similar, however, there were some differ-
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ences. Even though, both the Wilcoxon’s test and 
CRS4EAs compared all runs pairwisely, the results 
of the Wilcoxon’s test were more relative and the re-
sults of CRS4EAs’ more absolute. The Wilcoxon’s test 
took into consideration only wins and losses against 
Lk, which were reflected in the p value. CRS4EAs, on 
the other hand, conducted a tournament between 10 
players (Lk, L0, L100, L250, L500, L750, L1000, L1250, L1500, L∞) 
where runs were pairwisely compared. In regard to 
these wins, losses, and draws, a rating was calculat-
ed and not only were the games against Lk taken into 
consideration but games against all opponents. This 
is the main reason behind the differences between the 
results of both methods. However, to point out once 
again: in both approaches, the results were compared 
as 1×k comparison as CRS4EAs being appropriate 
for both types of comparisons – 1×k and k×k. There 
was also a difference in effort put into executing both 
methods. In CRS4EAs when the ratings of pairwise 
comparison were obtained, there was no need for fur-
ther calculations and testing, whilst when p values 
are calculated with a statistical test, a post-hoc test, 
such as the Holm test, is always necessary due to the 
repetitive comparisons of Lk with other settings.
The experiment was again divided into 4 parts for 
CRS4EAs analysis. Each part of the experiment took 
a different approach just as the ones shown in Table 
3. For a more straightforward comparison, the reports 
of rating deviations and rating intervals were omitted 
in the tables with results, even though they were cal-
culated and used in detecting significant differences. 
The e for determining the draw was set to 10-20 as re-
sults were compared up to 20 decimals places in the 
Wilcoxon’s test as well. A less precise e would affect 
the detected differences and there would be great-
er differences in NHST and CRS4EAs analyses. The 
minimum rating deviation value was set at 50 and 
the maximum rating deviation value at 350. Glicko-2 
also calculates some other measurements we omitted 
during this analysis, as they were unimportant in this 
analysis. The other CRS4EAs’ parameters used in for-
mulae for calculating rating and rating deviation were 
determined regarding the Glicko-2 rating system. 
Readers can find more on this topic and definitions of 
these parameters in [26].

2.3.1. Experiment 1: Vertical Approach with 
MaxFEs = 100,000
Tables 30(a) – 30(e) showed the ratings obtained for 
every setting of SN and D for all 5 minimisation prob-

lems. All the players reached the minimum rating de-
viation value of 50 rating points. The best player of 
each setting (shown in one row) is marked in light grey 
background colour. For example, from Table 30 (SN = 
24, D = 10), it can be observed that the highest rating 
of 1768 points was obtained using L250 followed by L500 
(1693 points), L1000 (1631 points), L750 (1628 points), 
L1500 (1603 points), L1250 (1597 points), L∞ (1588 points), 
Lk (1394 points), L100 (1116 points), and L0 (982 points). 
The difference in rating between the winner L250 (1768 
points) and Lk (1394 points) was more than 200 points 
(4RD) and hence statistically significant. Overall, these 
tables show that Lk was not always the more appropri-
ate value for ‘limit’ – especially for f5. However, observ-
ing the ratings and when calculating the rating inter-
vals as [R-100, R+100] where 100 is 2*RDmin = 2*50, the 
differences were rarely significant.
Tables 31-35 show more clearly the differences found 
between Lk and the other 9 fixed ‘limit’ values on all 5 
optimisation problems. Whenever the difference was 
significant, the star symbol (*) has been placed after 

Table 30
Vertical approach, MaxFEs = 100,000
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‘limit’ value, and whenever the Lk had better alterna-
tive(s) the background of table cell has been highlight-
ed in light grey colour. Similar to the NHST approach, 
CRS4EAs also found significant difference only for f1 
and f5. In particular, for f1: SN = 24 and D = 10 where Lk 
was significantly worse than L250, L500, L750, L1000, L1250, 
L1500. For f5: SN = 24 and D = 5 where Lk was signifi-
cantly worse than L250, L500, L750, L1000, L1250, L1500, L∞; SN 
= 50 and D = 5 where Lk was significantly worse than 
L1000, L1250, L1500, L∞; SN = 24 and D = 10 where Lk was 
significantly worse than L750, L∞. However, when com-
paring the detected significant differences between 
NHST and CRS4EAs (compare Tables 5-9 with Ta-
bles 31-35), CRS4EAs appears more conservative 
than NHST. Whilst the differences were presented 
for the same settings, in CRS4EAs these differences 
were hardly ever significant.
For all five problems, Lk had almost always better al-
ternatives (but not significant) when dimension D 
was greater (10, 30, or 50).

2.3.2. Experiment 2: Vertical Approach with 
MaxFEs = 250,000
Tables 36(a)-36(e) show the ratings obtained for ev-
ery setting of SN and D on all 5 minimisation prob-
lems. All players reached the minimum rating devia-
tion value of 50 rating points. The best player of each 
setting (shown in one row) is marked in light grey 
background colour. These tables show that Lk was 
almost always the more appropriate value for ‘limit’. 
f5 was the only problem for which better alternatives 
were found for some SN and D settings. Moreover, Lk 
was  just as in NHST analysis – the significantly bet-
ter choice in most cases.

 

Table 31
f1, vertical approach, MaxFEs = 100,000, CRS4EAs
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Table 33
f3, vertical approach, MaxFEs = 100,000, CRS4EAs

Table 34
f4, vertical approach, MaxFEs = 100,000, CRS4EAs

Table 32
f2, vertical approach, MaxFEs = 100,000, CRS4EAs
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Table 35
f5, vertical approach, MaxFEs = 100,000, CRS4EAs

 
Table 36
Vertical approach. MaxFEs = 250,000
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Tables 37-41 show more clearly the differences found 
between Lk and other 9 fixed ‘limit’ values on all 5 op-
timisation problems. As mentioned before, the better 
alternatives were found only for problem f5, when the 
dimensions were either 5 or 10 but the ‘limit’ values 
were not significantly better than Lk. As in NHST 
analysis, the CRS4EAs also showed that whenever 
sufficiently larger numbers of function evaluations 
were available, Karaboga’s ‘limit’ setting was an ap-
propriate choice. In this approach, both methods, 
NHST and CRS4EAs, appeared equally conservative 
(compare Tables 10-14 with Tables 37-41).

2.3.3. Experiment 3: Horizontal  
Approach – 10-6 - MaxFEs = 1,000,000
In the horizontal approach, there were fixed ‘limit’ 
values that found (sub-)optimal solutions in fewer 

fitness evaluations than Lk for all optimisation prob-
lems. Tables 42(a)-42(e) show the ratings for every 
optimisation problem and every setting of SN and D. 
All ‘limit’ values reached the minimum rating devia-
tion value of 50 rating points and the better rating val-
ues are again highlighted with light grey colour.
For f1, better alternatives than Lk were available for 
the smaller population size SN = 24 and for the greater 
population size SN = 100, whereas for SN = 50, Lk was 
only worse for D = 5 and D = 50 and better for all other 
dimension values. For f2, Lk was the worst value for all 
population sizes and dimensions, except for SN =50 and 
D =10, SN = 100 and D = 10, SN = 50 and D = 30, and SN 
= 50 and D = 50. For f3, Lk was the better value only for 
SN =24 and D =2 and SN =24 and D = 50, but for other 
settings there were better alternatives. For f4, Lk always 
had a better alternative and was always worse than at 

Table 37 
f1, vertical approach, MaxFEs = 250,000, CRS4EAs

Table 38 
f2, vertical approach, MaxFEs = 250,000, CRS4EAs
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Table 39
f3, vertical approach, MaxFEs = 250,000, CRS4EAs

Table 40
f4, vertical approach, MaxFEs = 250,000, CRS4EAs

Table 41
f5, vertical approach, MaxFEs = 250,000, CRS4EAs
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Table 42 
Horizontal approach, 10-6

least one other ‘limit’ value, regardless of the population 
size and dimension of a problem. Lastly, for f5 and small 
dimension D =2, Lk had better alternatives, whilst for 
other dimensions and population sizes values, all ‘limit’ 
values performed the same. This happened due to the 
fact that none of these ‘limit’ values found the (sub-)op-
timal solution 10-6 in 1,000,000 available fitness evalua-
tions. For D = 2, some ‘limit’ values found (sub-)optimal 
solution in some runs, and therefore performed better 
than Lk. Whilst there were a lot of differences found be-
tween Lk and other ‘limit’ values, these differences were 
hardly ever significant. There were only two problems 
for which Lk was significantly worse than some other 
‘limit’ values. The first was f1 where Lk was significantly 
worse for small population size SN = 24 and dimension 
D = 5. The other problem was f4 where Lk was signifi-
cantly worse than L∞ for small population size SN =24 
and small dimension D = 2. CRS4EAs again appeared as 
more conservative than NHST (compare Tables 15-19 
with Tables 43-47). 

2.3.4. Experiment 4: Horizontal  
Approach – 10-12 - MaxFEs = 1,000,000
In the horizontal approach with (sub-)optimal solu-
tion 10-12, Lk again had better alternatives in almost 
all cases. In this approach, Lk was the optimal solution 
50% fewer times than when the (sub-)optimal solu-
tion equaled 10-6. Tables 48(a)-48(e) show the ratings 
obtained for all five optimisation problems. 
For f1, Lk always had a better alternative, except when 
SN = 50 and D = 10, SN = 50 and D = 30, and SN = 100 
and D = 2. For f2, Lk always had a better alternative and 
was always worse than at least one other ‘limit’ value, 
regardless of the population size and dimension of a 
problem. For f3, Lk always had a better alternative and 
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was always worse than at least one other ‘limit’ value, 
except when SN = 50 and D = 5. For f4, Lk always had a 
better alternative and was always worse than at least 
one other ‘limit’ value, except when SN = 24 and D = 30 
and SN = 100 and D = 30. Lastly, for f5, all ‘limit’ values 
performed the same. This happened due to the fact that 
none of these ‘limit’ values found the (sub-)optimal solu-
tion 10-12 in 1,000,000 fitness evaluations. Whilst there 
were a lot of differences found between Lk and other 
‘limit’ values, these differences were rarely significant. 
There were only two problems for which Lk was signifi-
cantly worse than some other ‘limit’ values. The first was 
f1 where Lk was significantly worse for small population 
size SN = 24 and dimensions D = {5, 10, 30, 50}. The oth-
er was problem f4 where Lk was significantly worse for 
small population size SN = 24 and small dimension D = 
2. CRS4EAs again appeared as more conservative than 
NHST (compare Tables 20-24 with Tables 49-53).

2.3.5. Experiment 5: Large Dimensions
In this section, the horizontal approach with (sub-)
optimal solution set at 10-6 was repeated for larger 
dimensions, D = {100, 200, 300}. Again, fixed ‘limit’ 
values, L = {0, 1000, 2000, 3000, 4000, 5000, 6000, 
7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 
15000, ∞}, were compared to Karaboga’s setting Lk. 
Obtained ratings are shown in Table 54 and found 
differences are shown in Tables 55-59. As in previous 
four experiments, this experiment showed that there 
are other ‘limit’ values that perform better than Lk, for 
certain problems (f1) even significantly. In majority 
of D and SN settings and problems, at least one better 
performing ‘limit’ value was found. For f5 none of the 
‘limit’ values reached optimal solution, since all set-
tings performed equally. By comparing Tables 55-59 
with Tables 43-47, it can be observed that with higher 
dimensions Lk setting becomes less appropriate.

 

 

Table 43 
f1, horizontal approach, 10-6, CRS4EAs

Table 44
f2, horizontal approach, 10-6, CRS4EAs
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Table 45 
f3, horizontal approach, 10-6, CRS4EAs

Table 46 
f4, horizontal approach, 10-6, CRS4EAs

Table 47 
f5, horizontal approach, 10-6, CRS4EAs
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2.3.6. Discussion
The results between CRS4EAs and NHST were com-
parable. When smaller numbers of fitness evaluations 
were available, Lk was an appropriate choice only for 
small dimensions; and when sufficiently large enough 
numbers of fitness evaluations were available, Lk was 
a significantly better choice than the presented fixed 
‘limit’ values. When it was of interest to find a (sub-)
optimal solution and large numbers of fitness evalua-
tions were available, better alternatives than Lk were 
available several times. The main difference between 
NHST and CRS4EAs comparison was that CRS4EAs 
was more conservative and detected less significant 
differences than NHST, however, the conservativi-
ty/liberality can be easily controlled through rating 
deviation RD [48]. Otherwise, the methods showed 
the same trends when and for which population size 
and dimension Lk was an unsuitable choice and when 
it was a suitable choice. Hence, the main conclusion 
as presented in Section 2.2.5 is that using NHST was 
the same as using CRS4EAs. The main differences be-
tween both methods showed in the abilities to detect 
differences amongst fixed ‘limit’ values. Whilst for 
NHST only the differences between Lk and other fixed 
‘limit’ values were calculated and detected, CRS4EAs 
allowed direct comparisons between fixed ‘limit’ 
values. In order to find the differences between the 
fixed ‘limit’ values in NHST, additional tests would be 
needed, which would be both time consuming and re-
quire special care to avoid Type-I-Error.

3. ABC Parameter Tuning
In the previous section, it was shown that ABC does 
not always perform best when under the setting ‘limit’ 

Table 48 
Horizontal approach, 10-12
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= ne * D. Hence, the ‘limit’ control parameter should be 
tuned or controlled. Therefore, this section displays the 
results of ABC tuning in contrast to the suggested ‘limit’ 
setting and to the statistical analysis in Section 2.
Tuning is a process of finding those parameter values 
for which the meta-heuristic algorithm performs the 

Table 49 
f1, horizontal approach, 10-12, CRS4EAs

Table 50
f2, horizontal approach, 10-12, CRS4EAs

Table 51 
f3, horizontal approach, 10-12, CRS4EAs

best for selected sets of problems F. A combination of 
different parameter values is called configuration. One 
of the more common and easy-to-apply tuning meth-
ods is F-Race [4], which empirically evaluates a set of 
parameter values and discards the bad ones as soon 
as statistically sufficient evidence – supported by the 
Friedman test [13], [14] – is gathered against them.
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Table 52 
f4, horizontal approach, 10-12, CRS4EAs

Table 53
f5, horizontal approach, 10-12, CRS4EAs

 

 

Before the tuning procedure starts, the user has to de-
fine the initial set P of all configurations that will be 
tested, number of initial races r, significance level α 
under which the statistical tests will be applied, and 
maximum number of executions. In each iteration, all 
configurations from P will be executed on one ran-
dom problem from the set F over nf independent runs.
After that, if the number of iterations is greater than 
r, a Friedman test will be applied to see if there are 
significant differences amongst all configurations in 
P. If the Friedman test shows that there are signifi-
cant differences, a post-hoc test, such as Holm test 
[19] is applied between the best performing config-
uration (the one with the smallest Friedman rank) 
and other configurations. Those configurations that 

are significantly worse than the best performing 
configuration under significance level α are removed 
from set P. This procedure is repeated until the max-
imum number of executions is reached or only one 
configuration remains in P (Algorithm 2).  As already 
described, one execution is treated as the execution 
of one configuration on one problem from F over nf 
independent runs.
To test the suggested formula for parameter ‘lim-
it’ further, we tuned parameters SN and ‘limit’ for 
different dimensions D on problem f1 with vertical 
approach and maximum number of fitness evalua-
tions 100,000. The number of independent runs nf   

= 25, the number of initial races r = 5, significance 
level α = 0.05, and maximum number of executions 
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equaled 15,000. A goal of this experiment was to find 
the parameter values SN and ‘limit’ for which ABC 
will perform the best on f1 for different dimensions. 
Hence, some boundaries and precisions of these two 
parameters needed to be set. The values parameter 
SN could take were {10, 20, 30, ... , 100}, and the values 
parameter ‘limit’ could take were {0, 50, 100, 150, ... , 
1450, 1500, ∞}. These values are different from those 
used in the experiment in Section 2, as the goal of this 
experiment is different as well. In this experiment, 
we wanted to tune the parameters of ABC and in the 
experiment from Section 2 the goal was to make a 
pairwise comparison of pre-selected values. In other 
words, the values of SN and D were fixed in Section 
2 and the performances of different ‘limit’ settings 
compared to Karaboga’s ‘limit’ setting. In this sec-
tion, on the other hand, only the allowed values of SN 
and ‘limit’ were defined, and the best settings of SN 
and ‘limit’ for each fixed value of dimension D were 
selected with a tuning process. The size of the initial 
population P equaled 320 (10*32 combinations, 10 for 
SN and 32 for ‘limit’). The conclusions of the tuning 
process are summarised as follows.
 _ When the dimensionality of a problem was set to D = 

2, 62 configurations remained from the initial set P. 
The values of parameter SN were from 20 to 100, 
and the values of parameter ‘limit’ were from 100 
to 500. The best performing configurations (those 
with the lowest Friedman ranks) were {SN = 60, 
‘limit’ = 200}, {SN =40, ‘limit’ = 200}, and {SN =80, 
‘limit’ = 200}. Following the Karaboga’s formula, the 
ratio between ‘limit’ and SN when D =2 should be 1:1, 
meaning that ‘limit’ should have the same value as 
SN. None of the configurations found by the tuning 
process corresponded to this formula.

 _ When the dimensionality of a problem was set to 
D = 5, 19 configurations remained from the initial 
set P. The values of parameter SN were from 30 to 
50, and the values of parameter ‘limit’ were from 
300 to 700. The best performing configurations 
were {SN =30, ‘limit’ = 300}, {SN = 40, ‘limit’ = 
400}, and {SN = 40, ‘limit’ = 550}. Following the 
Karaboga’s formula, the ratio between ‘limit’ 
and SN when D = 5 should be 2.5:1, meaning that 
‘limit’ should be 2.5-times greater than SN. None 
of the configurations found by the tuning process 
corresponded to this formula.

Table 54 
Horizontal approach, 10-6, large dimension
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Table 55 
f1, horizontal approach, 10-6, large dimension, CRS4EAs

 

 

 

Table 56 
f2, horizontal approach, 10-6, large dimension, CRS4EAs

Table 57 
f3, horizontal approach, 10-6, large dimension, CRS4EAs
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 _ When the dimensionality of a problem was set 
to D = 10, four configurations remained from the 
initial set P. The values of parameter SN were 30, 
and the values of parameter ‘limit’ were from 800 
to 1000. Those four configurations were {SN =30, 
‘limit’ = 800}, {SN =30, ‘limit’ = 1000}, {SN = 30, 
‘limit’ = 950}, and {SN =30, ‘limit’ = 850}. Following 
the Karaboga’s formula, the ratio between ‘limit’ 
and SN when D = 10 should be 5:1, meaning that 
‘limit’ should be 5-times greater than SN. None 
of the configurations found by the tuning process 
corresponded to this formula.

 _ When the dimensionality of a problem was set to 
D = 30, 70 configurations remained from the initial 
set P. The values of parameter SN were from 10 to 
70, and the values of parameter ‘limit’ were from 
700 to ∞. The best performing configurations 
were {SN = 20, ‘limit’ = 1450}, {SN = 20, ‘limit’ 

Table 58
f4, horizontal approach, 10-6, large dimension, CRS4EAs

Table 59 
f5, horizontal approach, 10-6, large dimension, CRS4EAs

 

 

= 1250}, and {SN = 20, ‘limit’ = 1500}. Following 
the Karaboga’s formula, the ratio between ‘limit’ 
and SN when D = 30 should be 15:1, meaning that 
‘limit’ should be 15-times greater than SN. None 
of the configurations found by the tuning process 
corresponded to this formula.

 _ When the dimensionality of a problem was set 
to D = 50, 13 configurations remained from the 
initial set P. The values of parameter SN were 
from 20 to 40, and the values of parameter 
‘limit’ were from 1100 to ∞. The best performing 
configurations were {SN =20, ‘limit’ = ∞}, {SN = 30, 
‘limit’ = ∞}, and {SN = 40, ‘limit’ = ∞}. Following 
the Karaboga’s formula, the ratio between ‘limit’ 
and SN when D = 50 should be 25:1, meaning that 
‘limit’ should be 25-times greater than SN. None 
of the configurations found by the tuning process 
corresponded to this formula.
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One would expect that these results can be compared 
to those in Tables 5 and 31, however as Tables 5 and 31 
display the answers to different questions (as already 
explained above), the results and conclusions of these 
experiments cannot be compared directly. There are, 
however, some similarities between the conclusions 
of both sections. For example, when D = 10 it can be 
noticed that F-Race found the following best configu-
rations: SN = 30 and ‘limit’ = {800, 950, 1000}. Whilst, 
from Tables 5 and 31 it can be noticed that configura-
tions with SN = 24 and ‘limit’ = {750, 1000, 1250} are 
significantly better statistically than Lk under NHST 
and CRS4EAs. Or, when D = 30 it can be noticed that 
F-Race recommended the following best configura-
tions: SN = 20 and ‘limit’ = {1250, 1450, 1500}. Whilst, 
from Tables 5 and 31 it can be noticed that configura-
tions with SN =24 and ‘limit’ = {1000, 1250, 1500} are 
significantly better statistically than Lk under NHST 
and only better, but not statistically significant, un-
der CRS4EAs as CRS4EAs is more conservative than 
NHST in this experiment.
Overall, the results of ABC parameter tuning showed 
that the best performing configurations did not corre-
spond to the Karaboga’s formula for f1. Similar conclu-
sion can be derived from recent study [49] where for 
ABC parameter tuning F-Race, Revac, and CRS-Tun-
ing have been used. From the best performing config-
urations found by F-Race, Revac, and CRS-Tuning 
none conform to the Karaboga formula.

4. Related Work
To date there have been no deep investigations about 
setting ABC control parameter ‘limit’. The formula 
‘limit’ = ne * D was first proposed in the ABC introduc-
tory paper [29] and since then used in many papers 
(e.g., [6], [21], [24], [27], [28], [31], [54]). The effect 
of ‘limit’, as investigated by ABC inventors [29], has 
been studied on the same benchmark suite f1, … , f5 
as presented in Section 2 (actually we used the same 
benchmark suite as in [29]) using the following fac-
tors and their values: SN ={20, 40, 100}, D = {2, 5, 50}, 
and ‘limit’ ={0.1*ne*D, 0.5*ne*D, ne*D, ∞}. However, 
full factorial design has not been used since D = 2 was 
used only for f1, D = 5 for f2, and D = 50 for f3, ... , f5. Fur-
thermore, the only vertical approaches applied in [26] 
used 20,000 fitness evaluations for f1, f2, and 100,000 

fitness evaluations for f3, ... , f5. In our work, Karabo-
ga’s experiment [8] has been extended by performing 
a full factorial design on this benchmark suite using 
the following factors and their values: SN = {24, 50, 
100}, D = {2, 5, 10, 30, 50}, and ‘limit’ = {0, 100, 250, 
500, 750, 1000, 1250, 1500, ∞}, whilst using two differ-
ent horizontal and vertical approaches [18]. The other 
difference between these two studies is that 30 inde-
pendent runs were used in [8], whilst 100 in our study 
in order to enhance its reliability.
The effect of ‘limit’ on ABC was briefly studied in [1] 
on functions f1 … f5, Ackley and Weierstrass with a 
vertical approach (30,000 fitness evaluations, 30 in-
dependent runs) using the following factors and their 
values: SN = {10}, D = {10}, and ‘limit’ = {10, 200, 500, 
1000, 3000, 5000}. It was found that ‘limit’ = 200 was 
more appropriate than other values used in this study. 
Again, our study can be seen as an extension of [1].
A similar study as in [1] on the effect of ‘limit’ has 
been recently performed in [30] using a variant of 
ABC called the quick artificial bee colony (qABC) 
algorithm. The vertical approach has been applied 
with 500,000 function evaluations and 30 indepen-
dent runs on a benchmark suite containing optimi-
sation functions f2, ... , f5. The following factors and 
their values have been used: SN= {50}, D = {30}, and 
‘limit’ = {10, 50, 187, 375, 750, 1500}. It was found 
that the ‘limit’ = 750 is the more suitable value, 
which is equal to the value calculated from the for-
mula ‘limit’ = ne * D.
The Enhancing artificial bee colony (EABC) algo-
rithm has been proposed in [15] and tested on 48 
benchmark functions. The effect of ‘limit’ on EABC 
was investigated with vertical approach (150,000 
function evaluations, 30 independent runs) on seven 
functions out of 48. The following factors and their 
values were used: SN = {100}, D = {30}, and ‘limit’ = 
{50, 100, 200, 400, ∞}. It was reported that ‘limit’ = 
200 was the more appropriate than other values used 
in that study.
All the aforementioned works exhibit partial experi-
mentation and non-full factorial design on investigat-
ing the effect of ‘limit’ on ABC. However, such partial 
investigations were still better, in our opinion, than 
using a fixed setting from a study using different op-
timisation problem. The results from our study show 
that the tuning or controlling of the control parameter 
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‘limit’ is indeed needed. An example of a study where 
tuning on ‘limit’ was applied is presented in [35].
It is worth mentioning that in all of the above men-
tioned experiments, the better settings for ‘limit’ were 
chosen by visual inspection of the results and without 
any statistical testing. Our study was quite different 
to the aforementioned works due to the applications 
of NHST and CRS4EAs. In this respect, our work was 
similar to [42], where full factorial design and ANO-
VA statistical analysis were used to investigate the 
sensitivity of reactive tabu search (RTS) to its me-
ta-parameters.

5. Conclusions
As the horse racing approach is still omnipresent, 
researchers have often compared their algorithms, 
which are well tuned for (a) particular problem(s), 
with some standard versions of meta-heuristic algo-
rithms using recommended control parameter set-
tings, which might not be appropriate for some prob-
lems used in an experiment. This situation should 
be avoided. In the recently published guidelines for 
replication and comparison of experiments in EC [9], 
we promoted fair comparisons amongst algorithms 
where all the algorithms used in the comparisons, not 
only the researchers’ preferred, should be using the 
best control parameter settings. Hence, performing 
extensive parameter tuning or control [11] for all al-
gorithms involved in an experiment is a prerequisite 
for a fairer comparison.
This paper has shown that amongst ABC control pa-
rameters ‘limit’ is very sensitive, whilst population 
size (SN) is quite robust (at least for the benchmark 
suite used in this study). Hence, properly setting con-
trol parameter ‘limit’ should be of particular inter-
est to every ABC user. Furthermore, it was shown in 
this study that ABC is not always the best performing 
when ‘limit’ = (SN/2)*D, although it is a very competi-
tive setting. This formula was the best for the vertical 
approach using 250,000 fitness evaluations for the 
benchmark suite used in this study. Better settings 
for ‘limit’ exist, occasionally statistically significant, 
for the vertical approach using 100,000 fitness evalu-
ations, as well as for the both horizontal approaches 
(reaching (sub-)optimal solution at 10-6 and 10-12) for 

benchmark suite used in this study. When 100,000 
fitness evaluations were available, Lk was the appro-
priate choice only for small dimensions (D = 2, rare-
ly for D = 5 or D = 10) amongst all the five presented 
problems. When the dimension becomes bigger, more 
appropriate alternatives could be chosen. Hence, 
proper setting of ‘limit’ also depends on the available 
maximum number of fitness evaluations, indicating 
that ABC convergence with Lk is not amongst the 
fastest. Furthermore, as results from the horizontal 
approach indicate a better ABC convergence whilst 
obtaining the same accuracy can be achieved with 
‘limit’ settings other than using the recommended 
formulae. Moreover, setting ‘limit’ = (SN/2)*D has no 
theoretical explanation in [26] and is based only on 
partial experimentation on limited number of numer-
ical optimization. Hence, it is too risky to expect that 
the suggested formula in [26] would be good for other 
problems. Our recommendation is to perform tuning 
or control on ABC parameter ‘limit’. These findings 
are valid for ABC only, and no generalisations regard-
ing other meta-heuristic algorithms can be applied. 
As extensive parameter tuning using full factorial 
design [33] is often too expensive, researchers should 
use various already-available tuning approaches (e.g., 
F-Race [4], Revac [40], SPO [3], CRS-Tuning [49]) 
for setting control parameter ‘limit’ or investigate 
some parameter control approaches (e.g., driven by 
diversity [46], entropy [36], exploration and exploita-
tion measures [37]), which will be part of our future 
work. Last but not least, it is shown that CRS4EAs 
is comparable to NHST, in particular to the multiple 
pairwise Wilcoxon’s test. Both methods pairwisely 
compare the results of an optimisation problem over 
all n runs. However, in one tournament, the CRS4EAs 
compared the results obtained by all participants 
(more absolute approach), whilst the Wilcoxon’s test 
compared only results of the participants that are of 
the main interest (more relative approach). Thus, 
several Wilcoxon’s tests were applied separately for 
each and every comparison. Additionally, for a set of 
Wilcoxon’s tests made on the same data, a post-hoc 
analysis is needed to avoid inflating Type-I-Error. 
Nevertheless, the results of CRS4EAs can be com-
pared amongst all participants, whilst in NHST even 
more additional tests would be needed in this respect. 
Deeper comparison among CRS4EAs and NHST is 
presented in our recent work [50].
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Artificial Bee Colony (ABC) is a successful meta-heuristic algorithm that has been greatly utilised by research-
ers. Through our practical experience of ABC, we have noticed that the recommended formula ‘limit’ = ne * 
D may not be the best choice for different problems. In this work, a set of experiments using horizontal and 
vertical approaches has been designed and executed with the aim of observing the effect of ‘limit’ on ABC. The 
results have been statistical analysed using Null Hypothesis Significance Testing (NHST) as well as the Chess 
Rating System for Evolutionary Algorithms (CRS4EAs), which is a novel approach for comparing meta-heu-
ristic algorithms. It is shown that the recommended formula is not the best setting for different problems and 
approaches. Hence, the control parameter ‘limit’ should be tuned or controlled. The other important result of 
this study is to show that CRS4EAs is comparable but also shows benefits over NHST.

Dirbtinė bičių kolonija (ABC) yra sėkmingas, mokslininkų plačiai naudojamas metaeuristinis algoritmas. Per 
savo praktinę ABC patirtį straipsnio autoriai pastebėjo, kad rekomenduojama formulė ‘limit’ = ne * D ne visuo-
met yra geriausias pasirinkimas tam tikroms problemoms spręsti. Su tikslu įvertinti formulės elemento ‘limit’ 
poveikį ABC, straipsnio autoriai sukūrė ir atliko eksperimentus, paremtus horizontaliais ir vertikaliais meto-
dais. Gauti rezultatai statistiškai analizuoti naudojant hipotezės reikšmingumo testavimą (NHST) bei Šachma-
tų reitingų sistemą Evoliucijos algoritmui (CRS4EAs). Tai yra naujas metodas metaeuristiniams algoritmams 
palyginti. Straipsnyje įrodoma, kad rekomenduojama formulė išties nėra geriausias skirtingų problemų ir me-
todų nustatymas. Taigi, kontrolės parametras ‘limit’ turėtų būti nustatytas arba kontroliuojamas. Kitas svarbus 
šio tyrimo rezultatas – parodoma, kad CRS4EAs yra palyginamas, tačiau, palyginus su NHST, yra pranašesnis.  

Summary / Santrauka


