
5Information Technology and Control 2018/1/47

A Time-Constrained Algorithm 
for Integration Testing in a Data 
Warehouse Environment

ITC 1/47
Journal of Information Technology  
and Control
Vol. 47 / No. 1 / 2018
pp. 5-25
DOI 10.5755/j01.itc.47.1.18171   
© Kaunas University of Technology

A Time-Constrained Algorithm for Integration Testing 
in a Data Warehouse Environment

Received  2017/05/11 Accepted after revision  2018/01/22

    http://dx.doi.org/10.5755/j01.itc.47.1.18171  

Corresponding author: ljiljana.brkic@fer.hr

Ljiljana Brkić, Igor Mekterović
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia,
e-mail: ljiljana.brkic@fer.hr, igor.mekterovic@fer.hr

A data warehouse should be tested for data quality on regular basis, preferably as a part of each ETL cycle. That 
way, a certain degree of confidence in the data warehouse reports can be achieved, and it is generally more likely 
to timely correct potential data errors. In this paper, we present an algorithm primarily intended for integration 
testing in the data warehouse environment, though more widely applicable. It is a generic, time-constrained, 
metadata driven algorithm that compares large database tables in order to attain the best global overview of the 
data set’s differences in a given time frame. When there is not enough time available, the algorithm is capable of 
producing coarse, less precise estimates of all data sets differences, and if allowed enough time, the algorithm 
will pinpoint exact differences. This paper presents the algorithm in detail, presents algorithm evaluation on 
the data of a real project and TPC-H data set, and comments on its usability. The tests show that the algorithm 
outperforms the relational engine when the percentage of differences in the database is relatively small, which 
is typical for data warehouse ETL environments.
KEYWORDS: Data Warehouse Testing, ETL, Integration Testing, Data Quality.

1. Introduction
Data quality is a key factor in data warehouse (DW) 
and business intelligence solutions. Continuous test-
ing of a DW can provide a solid assessment of the data 
quality. DW testing process should be implemented at 
very early stages of DW system development, leading 
to early error detection and correction which will, in 

turn, increase DW’s credibility and decrease opera-
tional costs in the long run.
DW testing is closely related to the quality of stored 
data. Data quality issues in DW environment are 
studied in [3], [20]. Typically, quality of data delivered 
to users is described and evaluated using quality at-
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tributes [38]. These attributes are called data quality 
dimensions. Each dimension covers a specific aspect 
of quality. For quantitative assessment of quality di-
mensions, it is necessary to define metrics and mea-
surement methods. Researchers have recognized the 
importance of this issue and many research papers 
(some of which are [13], [18], [21], [30], [38]) deal with 
methods of measuring or quantifying dimensions of 
data quality. 
Apart from the source data, the quality of DW data is 
also affected by the ETL process used to integrate and 
transfer the data. Faulty ETL process, whether be-
cause of the faulty logic, inappropriate data refresh-
ment strategy or just plain programming errors, can 
cause data not to be transferred to the DW or not to be 
transferred in a timely fashion. With that in mind, it is 
important to assess how accurate and complete data 
are: whether all required data from the data sources 
are extracted, stored in the staging area, transformed 
and subsequently loaded into the DW and whether 
the data in the DW are accurate with regards to the 
source data. We adopt the accuracy definition from 
[3] “Accuracy is defined as the closeness between a 
value v and a value v’, considered as the correct rep-
resentation of the real-life phenomenon that v aims 
to represent” and completeness definition from [2]: 
“Presence of all defined content at both data element 
and data set levels.” The assessment of accuracy and 
completeness of the data in a DW imposes comparing 
large data sets which is at the core of the DW’s inte-
gration testing [24].
This paper is concerned with those very issues – we 
present an algorithm for integration testing of accu-
racy and completeness of the DW data in the sense of 
the aforementioned definitions. Integration testing 
is an approach to software testing where software 
components are combined and tested as a group, with 
the purpose of ensuring that interacting components 
or subsystems interface correctly with one another. 
Integration testing in DW environment usually only 
includes testing the ETL application, which compris-
es of numerous packages. ETL packages are tested by 
examining data at the endpoints (input and output) of 
those packages. In DW environment, we can identify 
three typical subsystems that ETL application deals 
with: data source(s), data staging area and DW pro-
duction tables (typically dimension and fact tables). 
We perform integration testing by comparing vari-

ous corresponding data sets from those three sourc-
es using the proposed TCFC (Time-Constrained 
Fragment and Compare) algorithm. The algorithm is 
generic and widely applicable, not limited to DW en-
vironment. It provides an overview of the differenc-
es between two data sets depending on the assigned 
time frame, from performing shallow comparisons 
to pinpointing exact differing tuples. We present the 
algorithm in detail, comment on its features, evaluate 
it on data of a real project as well as on mock data and 
comment on the results.

2. Motivation
The primary objective of the integration testing and 
TCFC algorithm presented in this paper is to get a 
global overview of the data quality in the DW with a 
focus on accuracy and completeness measures. These 
measures are considered with respect to the source 
systems, as we assume that the data in the source sys-
tem are accurate and complete. In this generic test in-
tegration scenario, involving source, staging and DW 
subsystems, testing should provide answers to the 
following questions:
a whether all required data from the data sources 

been extracted and transferred to the staging area 
(completeness), and whether staging area attri-
bute values are equal to corresponding values in 
source systems (accuracy);

b whether all required data from the staging area 
been transferred to the DW (completeness), and 
whether corresponding attribute values are equal 
(accuracy).

To answer the first question, the data from the data 
sources must be compared to the data stored in the 
staging area, where they are stored in the identical 
or similar schemas. To answer the second question, 
data from the staging area must be compared to the 
data in the DW, where they may be stored in different 
(though mappable) structures, e.g., dimensional mod-
el. In both cases, the problem boils down to comparing 
two sets of database tables having identical or differ-
ent but mappable schemas to find missing or excess 
tuples on either side, and/or matching tuples with dif-
ferent values of non-key attributes. 
Relational database engines are a natural solution 
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to that problem, since they are highly optimized for 
set operations on data: Two tables can be compared 
for differences with a single SQL statement. This 
approach, however, which will be referred to as ref-
erence implementation hereafter, has two serious 
drawbacks that motivated our research: 
3 It is not possible to span a single SQL query across 

heterogeneous platforms. That is a common sce-
nario in DW environment, especially between 
source systems and staging area. To compare ta-
bles from different environments, table from one 
server would have to be transferred to a (tempo-
rary) table on the other server or some sort of da-
tabase integration software would have to be used 
that would abstract that operation. Either way, the 
very operation of moving the data from one DBMS 
to another is subject to error. Transfer errors can 
occur for various reasons. For instance, IBM Infor-
mix’s DATE type has a wider DATE range than SQL 
Server’s, and rows with such dates simply cannot 
be inserted into the SQL Server table having the 
exact same schema. 

4 It is an all-or-nothing approach. It is not possible 
to perform a “shallow comparison” – a compar-
ison that would take much less time to execute 
but would not be completely accurate (i.e. detect 
all differences in all tables) and/or precise (i.e. 
pinpoint the exact tuples causing differences). 
All rows from one table are compared to all rows 
from the other table and in the case when there is 
a substantial number of rows (tens of millions and 
more), such a comparison can also take a substan-
tial resources to execute. A large table comparison 
could block all others and take up all available time. 
In other words, such queries cannot be appropri-
ately time-managed to fit into a given time frame. 
Time managing queries is very important because 
testing procedures have to fit into the ETL’s ac-
ceptable time frame. It is unacceptable to query the 
data sources at arbitrary times, inflicting addition-
al burden on the production systems.

Sometimes, when comparing two tables via a sin-
gle SQL statement, it is handy to use a hash function 
(e.g., MD5) to produce the checksum of the tuple. This 
shortens the SQL statement, but, in general, calcu-
lating checksums additionally slows the comparison 
and is not suitable for large data sets, especially if 
checksums cannot be stored (e.g., ETL has read only 

access to source systems). Checksums are applicable 
to TCFC with similar properties, as commented in 
Section 3.1.
In terms of complexity, comparing two data sets is 
O(n2) complex, where every record from the first set 
has to be compared with records from the second set. 
Another valid approach, used by some commercial 
tools (e.g., SQL Data Examiner [35]), is to fetch re-
cords sorted by the primary key from the databases 
and perform a less complex merge-sort style compari-
son; however – it must be taken into account that sort-
ing data at the sources incurs additional costs. Both 
approaches suffer from the 2nd drawback described 
above: they are prone to blocking the entire compari-
son when large tables are examined. In addition, such 
approaches rely heavily on the client’s resources (disk 
and memory) as both sets must be retrieved in their 
entirety. Time-managing testing (queries) is what 
makes this problem difficult, and, to the best of our 
knowledge, has not been addressed in the literature 
so far (see the section “Related Work” for more).
This motivated us to develop an algorithm that will 
surpass these limitations, yet remain comparable 
to the reference implementation in terms of speed. 
Since the expected number of differences between 
the tables is relatively small when compared to the to-
tal number of rows, we formulate the TCFC algorithm 
requirements as follows:
 _ When applied to large data sets with a small 

number of differences, the algorithm should be 
comparable in terms of speed with the reference 
implementation. One could argue that having 10k 
or 100k faulty tuples is “the same” because such a 
large number of errors is either a sign of systemic 
error or an unmanageable number of data errors 
that cannot be manually corrected. Therefore, 
the algorithm should work well for a manageable 
number of differing rows, hundreds or thousands 
of errors, not millions. 

 _ Must be suitable for comparing data across 
heterogeneous platforms.

 _ Must be time manageable, to fit into a configured 
time frame, at the expense of precision. In other 
words, it must be able to perform “shallow 
comparisons” and, consequently, has to be 
configurable.

The idea is to leverage the relational engine by break-
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ing down the exhausting reference query into many 
faster queries that search for potential errors in a 
greedy fashion. This is done by subsequently break-
ing data into horizontal fragments and comparing 
fragment counts (and/or other aggregated values) of 
corresponding fragments. As the algorithm progress-
es, fragmentation filters are refined, so that the frag-
ments become smaller. Fragments where inequali-
ties are detected are examined with higher priority. 
Eventually, if so configured and if time allows it, the 
comparison could be brought to the primary key level, 
thus yielding the exact missing or excess tuples.
When designing the TCFC algorithm, we were guided 
by the thought that, given a limited time, it is better to 
acquire a possibly not completely accurate overview 
of all tables rather than an accurate comparison of 
some tables, while leaving others not examined. We 
denote this approach as “good enough global over-
view”. In other words, if there is a large set of table 
pairs with only several containing differences, it is 
considered better to report that there are some differ-
ences in all of the pairs actually containing differenc-
es, than to pinpoint exact differences in just a few of 
them, and leave the rest of the tables unexamined. It 
is a position that we have attained after participating 
in few real world projects and, though it might not be 
the best strategy for all applications, we believe that it 
is the best one in the most of DW ETL scenarios.

3. TCFC Algorithm
The TCFC algorithm is designed to be as generic as 
possible and to work on heterogeneous platforms and 
with large data sets. To apply the proposed algorithm 
to a DW, the following conditions must be met:
 _ Data sources are relational databases, since the 

algorithm leverages relational engine. Other 
sources of data (text files, spreadsheets or 
other office documents, XML files, etc.) are not 
supported. As a workaround to this limitation, data 
from other sources can be processed and stored in 
a relational database (“piped through”).

 _ Each record in the destination table corresponds 
to exactly one record in the source table. This 
requirement can be worked around by adding 
an additional metadata layer to describe the 
acceptable differences. For instance, with slowly 

changing dimensions, the number of regular 
“duplicates” can be kept. Furthermore, a generic 
system of human reviewing and (dis)approving 
differences could be put in place, where an analyst 
would mark the correct differing tuples and 
they would be taken into account in the future 
comparisons. We do not describe such system in 
more detail here, though. As a side note, our real-
world project use-case required for a 100% match 
between the source and DW (students’ exams, year 
and course enrollments, etc.).

 _ Data lineage [4-5] must be established, there must 
be a way to determine the source for each tuple 
in data warehouse tables. To do so, it might be 
necessary to make minor modifications to existing 
ETL procedures. The procedure for establishing 
data lineage in existing systems, which is used in 
this paper, is described in detail in [26].

In the following two sections, we formally describe 
the table-level part of the TCFC algorithm for com-
paring tables with identical and non-identical sche-
mas, then present the overall algorithm in a pseudo 
code, provide a running example, present and discuss 
the performance testing and the associated results.

3.1. Determining Inequalities in the Content 
of Tables Having Identical Schemas.  
The algorithm works by fragmenting tables accord-
ing to a fragmentation set, then one or more aggre-
gate functions are evaluated upon each fragment, and 
finally, the results from the corresponding fragments 
are compared. Any differences, if found, indicate not 
only that the contents of � and � are different, but 
also point out to the group of tuples, i.e. fragment of 
the relation to which the problem pertains. What 
follows is a formal description of the stated. 
Let � and � be the tables (relations) having the sche-
ma �. Let � denote a relation with schema � =
{��, … , ��}. Domain for attribute � is denoted by 
���(�). Let � be a (possibly empty) subset of �. Let 
� denote a tuple. Let ���� denote an X-value of �, i.e. 
tuple � restricted to �.  
Let ℰ(�, �) denote the equivalence relation on � de-
rived from equivalency of tuple’s X-values. We say 
that tuples  ��, �� ∈ � are equivalent under ℰ(�, �) iff 
the tuples have equal X-values, i.e.  (��, ��) ∈
ℰ(�, �)  �  ����� = �����. It should be noted that if 
� = � then ����� = ����� for each (��, ��) ∈ �, ren-
dering all tuples in � equivalent under ℰ(�, �). 
Different X-values of � correspond with X-values of 
tuples in ��(�) (projection on the attributes con-
tained in �). Each tuple � ∈ ��(�) unambiguously 
identifies an equivalence class, i.e. fragment 
ℱ(�, �, �) = {� ∈ � | ���� = �}. 
Consequently, equivalence relation ℰ(�, �) partitions 
relation � into the set of fragments ℱ(�, �) =
{ℱ(�, �, �) | � ∈ ��(�)}. Because the set � deter-
mines the fragmentation strategy of the �, hereinaf-
ter we will refer to the set � as to the fragmentation 
set. In the specific case when fragmentation set � is 
empty, ��(�) produces a single-tuple zero-degree 
relation, with the effect that ℰ(�, �) partitions � into 
exactly one fragment which is equal to �. 
Let �ℱ be the set of available aggregate functions, 
where �� denotes an aggregate function (e.g., count, 
sum, max, min). Let ℬ be the set of arbitrary attribute 
names ��, ��, …, subjected to the constraint that 
none of the attribute names appears in �. Relation 
��,�  is a set of triplets  (��, �, �) which relates ag-
gregate functions from �ℱ, attributes from � � � 
and attribute names from ℬ in the following way: if 
(��, �, �) ∈ ��,�, then aggregate function �� is 
evaluated for attribute � and the result is named �. 
Henceforth, we will refer to the relation ��,�  as the 
aggregation set.  

Aggregate function �� must be applicable to the do-
main of the attribute �. More than one aggregate 
function �� can be applied upon each attribute � and 
each � ∈ ℬ appears exactly in one triplet. Formally, 
��,� = {(��, �, �) | (��, �, �) ∈ �ℱ × (� � �) × 

ℬ � �� �� ���������� �� ���(�)} 
∀(���, ��, ��), ����, ��, ���  ∈ ��,�� �� = ��  

� ��� = ��� � �� = ��  
Designated aggregate functions from ��,�  are ap-
plied upon fragment ℱ(�, �, �), the results of aggre-
gate functions are renamed and concatenated to tu-
ple �. The overall result of the operation is a single-
tuple relation ���, �, ��,�, �� with schema 
� � {��, ��, … ��}, where � = �������,��: 
���, �, ��,�, �� = � � �����(�) 

��{��(�) | (��, A, �)∈ ��,�}ℱ(�, �, �)�. 

Applying the aggregate functions upon each frag-
ment, ℱ(�, �, �) ∈ ℱ(�, �) would yield a set of rela-
tions ���, �, ��,�, ��, exactly one relation per each 
� ∈ ��(�). Union of these relations, denoted as 
���, �, ��,��, can be effectively evaluated with rela-
tional algebra grouping operator: 

���, �, ��,�� = ⋃ ���, �, ��,�, ���∈��(�) =
�����(�)� �{��(�) | (��, A, �)∈ ��,�}� ��. 

Given the relation schema �, relations �(�) and �(�), 
beforehand determined sets � and ��,�, one can eas-
ily evaluate ���, �, ��,�� and ���, �, ��,��.  
For instance, only consider the relation “exam” in the 
left part of the Figure1, and suppose that we want to 
compare it with the identical-schema relation in an-
other database. One possible fragmentation setup 
could be: 
r(R)=exam(exam_date, student_id, course_id,  

has_passed) 
s(R)=exam(exam_date, student_id, course_id, 

has_passed) 
X={exam_date,student_id,course_id} 

��,� =  �
(���, ����������, ���������),
 (���, ����������, ���������),
(�����, ����������, ��������)

�. 

Tuples �� ∈ ���, �, ��,�� and �� ∈ ���, �, ��,��, 
where ����� = ����� = � contain the results of aggre-
gate functions applied on fragments ℱ(�, �, �) and 
ℱ(�, �, �), respectively. The inequality of the tuples 
implies the difference between the corresponding 
fragments, i.e. �� ≠ �� ⇒ ℱ(�, �, �) ≠ ℱ(�, �, �), 
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.  
The algorithm works by fragmenting tables accord-
ing to a fragmentation set, then one or more aggre-
gate functions are evaluated upon each fragment, and 
finally, the results from the corresponding fragments 
are compared. Any differences, if found, indicate not 
only that the contents of � and � are different, but 
also point out to the group of tuples, i.e. fragment of 
the relation to which the problem pertains. What 
follows is a formal description of the stated. 
Let � and � be the tables (relations) having the sche-
ma �. Let � denote a relation with schema � =
{��, … , ��}. Domain for attribute � is denoted by 
���(�). Let � be a (possibly empty) subset of �. Let 
� denote a tuple. Let ���� denote an X-value of �, i.e. 
tuple � restricted to �.  
Let ℰ(�, �) denote the equivalence relation on � de-
rived from equivalency of tuple’s X-values. We say 
that tuples  ��, �� ∈ � are equivalent under ℰ(�, �) iff 
the tuples have equal X-values, i.e.  (��, ��) ∈
ℰ(�, �)  �  ����� = �����. It should be noted that if 
� = � then ����� = ����� for each (��, ��) ∈ �, ren-
dering all tuples in � equivalent under ℰ(�, �). 
Different X-values of � correspond with X-values of 
tuples in ��(�) (projection on the attributes con-
tained in �). Each tuple � ∈ ��(�) unambiguously 
identifies an equivalence class, i.e. fragment 
ℱ(�, �, �) = {� ∈ � | ���� = �}. 
Consequently, equivalence relation ℰ(�, �) partitions 
relation � into the set of fragments ℱ(�, �) =
{ℱ(�, �, �) | � ∈ ��(�)}. Because the set � deter-
mines the fragmentation strategy of the �, hereinaf-
ter we will refer to the set � as to the fragmentation 
set. In the specific case when fragmentation set � is 
empty, ��(�) produces a single-tuple zero-degree 
relation, with the effect that ℰ(�, �) partitions � into 
exactly one fragment which is equal to �. 
Let �ℱ be the set of available aggregate functions, 
where �� denotes an aggregate function (e.g., count, 
sum, max, min). Let ℬ be the set of arbitrary attribute 
names ��, ��, …, subjected to the constraint that 
none of the attribute names appears in �. Relation 
��,�  is a set of triplets  (��, �, �) which relates ag-
gregate functions from �ℱ, attributes from � � � 
and attribute names from ℬ in the following way: if 
(��, �, �) ∈ ��,�, then aggregate function �� is 
evaluated for attribute � and the result is named �. 
Henceforth, we will refer to the relation ��,�  as the 
aggregation set.  

Aggregate function �� must be applicable to the do-
main of the attribute �. More than one aggregate 
function �� can be applied upon each attribute � and 
each � ∈ ℬ appears exactly in one triplet. Formally, 
��,� = {(��, �, �) | (��, �, �) ∈ �ℱ × (� � �) × 

ℬ � �� �� ���������� �� ���(�)} 
∀(���, ��, ��), ����, ��, ���  ∈ ��,�� �� = ��  

� ��� = ��� � �� = ��  
Designated aggregate functions from ��,�  are ap-
plied upon fragment ℱ(�, �, �), the results of aggre-
gate functions are renamed and concatenated to tu-
ple �. The overall result of the operation is a single-
tuple relation ���, �, ��,�, �� with schema 
� � {��, ��, … ��}, where � = �������,��: 
���, �, ��,�, �� = � � �����(�) 

��{��(�) | (��, A, �)∈ ��,�}ℱ(�, �, �)�. 

Applying the aggregate functions upon each frag-
ment, ℱ(�, �, �) ∈ ℱ(�, �) would yield a set of rela-
tions ���, �, ��,�, ��, exactly one relation per each 
� ∈ ��(�). Union of these relations, denoted as 
���, �, ��,��, can be effectively evaluated with rela-
tional algebra grouping operator: 

���, �, ��,�� = ⋃ ���, �, ��,�, ���∈��(�) =
�����(�)� �{��(�) | (��, A, �)∈ ��,�}� ��. 

Given the relation schema �, relations �(�) and �(�), 
beforehand determined sets � and ��,�, one can eas-
ily evaluate ���, �, ��,�� and ���, �, ��,��.  
For instance, only consider the relation “exam” in the 
left part of the Figure1, and suppose that we want to 
compare it with the identical-schema relation in an-
other database. One possible fragmentation setup 
could be: 
r(R)=exam(exam_date, student_id, course_id,  

has_passed) 
s(R)=exam(exam_date, student_id, course_id, 

has_passed) 
X={exam_date,student_id,course_id} 

��,� =  �
(���, ����������, ���������),
 (���, ����������, ���������),
(�����, ����������, ��������)

�. 

Tuples �� ∈ ���, �, ��,�� and �� ∈ ���, �, ��,��, 
where ����� = ����� = � contain the results of aggre-
gate functions applied on fragments ℱ(�, �, �) and 
ℱ(�, �, �), respectively. The inequality of the tuples 
implies the difference between the corresponding 
fragments, i.e. �� ≠ �� ⇒ ℱ(�, �, �) ≠ ℱ(�, �, �), .  

The algorithm works by fragmenting tables accord-
ing to a fragmentation set, then one or more aggre-
gate functions are evaluated upon each fragment, and 
finally, the results from the corresponding fragments 
are compared. Any differences, if found, indicate not 
only that the contents of � and � are different, but 
also point out to the group of tuples, i.e. fragment of 
the relation to which the problem pertains. What 
follows is a formal description of the stated. 
Let � and � be the tables (relations) having the sche-
ma �. Let � denote a relation with schema � =
{��, … , ��}. Domain for attribute � is denoted by 
���(�). Let � be a (possibly empty) subset of �. Let 
� denote a tuple. Let ���� denote an X-value of �, i.e. 
tuple � restricted to �.  
Let ℰ(�, �) denote the equivalence relation on � de-
rived from equivalency of tuple’s X-values. We say 
that tuples  ��, �� ∈ � are equivalent under ℰ(�, �) iff 
the tuples have equal X-values, i.e.  (��, ��) ∈
ℰ(�, �)  �  ����� = �����. It should be noted that if 
� = � then ����� = ����� for each (��, ��) ∈ �, ren-
dering all tuples in � equivalent under ℰ(�, �). 
Different X-values of � correspond with X-values of 
tuples in ��(�) (projection on the attributes con-
tained in �). Each tuple � ∈ ��(�) unambiguously 
identifies an equivalence class, i.e. fragment 
ℱ(�, �, �) = {� ∈ � | ���� = �}. 
Consequently, equivalence relation ℰ(�, �) partitions 
relation � into the set of fragments ℱ(�, �) =
{ℱ(�, �, �) | � ∈ ��(�)}. Because the set � deter-
mines the fragmentation strategy of the �, hereinaf-
ter we will refer to the set � as to the fragmentation 
set. In the specific case when fragmentation set � is 
empty, ��(�) produces a single-tuple zero-degree 
relation, with the effect that ℰ(�, �) partitions � into 
exactly one fragment which is equal to �. 
Let �ℱ be the set of available aggregate functions, 
where �� denotes an aggregate function (e.g., count, 
sum, max, min). Let ℬ be the set of arbitrary attribute 
names ��, ��, …, subjected to the constraint that 
none of the attribute names appears in �. Relation 
��,�  is a set of triplets  (��, �, �) which relates ag-
gregate functions from �ℱ, attributes from � � � 
and attribute names from ℬ in the following way: if 
(��, �, �) ∈ ��,�, then aggregate function �� is 
evaluated for attribute � and the result is named �. 
Henceforth, we will refer to the relation ��,�  as the 
aggregation set.  

Aggregate function �� must be applicable to the do-
main of the attribute �. More than one aggregate 
function �� can be applied upon each attribute � and 
each � ∈ ℬ appears exactly in one triplet. Formally, 
��,� = {(��, �, �) | (��, �, �) ∈ �ℱ × (� � �) × 

ℬ � �� �� ���������� �� ���(�)} 
∀(���, ��, ��), ����, ��, ���  ∈ ��,�� �� = ��  

� ��� = ��� � �� = ��  
Designated aggregate functions from ��,�  are ap-
plied upon fragment ℱ(�, �, �), the results of aggre-
gate functions are renamed and concatenated to tu-
ple �. The overall result of the operation is a single-
tuple relation ���, �, ��,�, �� with schema 
� � {��, ��, … ��}, where � = �������,��: 
���, �, ��,�, �� = � � �����(�) 

��{��(�) | (��, A, �)∈ ��,�}ℱ(�, �, �)�. 

Applying the aggregate functions upon each frag-
ment, ℱ(�, �, �) ∈ ℱ(�, �) would yield a set of rela-
tions ���, �, ��,�, ��, exactly one relation per each 
� ∈ ��(�). Union of these relations, denoted as 
���, �, ��,��, can be effectively evaluated with rela-
tional algebra grouping operator: 

���, �, ��,�� = ⋃ ���, �, ��,�, ���∈��(�) =
�����(�)� �{��(�) | (��, A, �)∈ ��,�}� ��. 

Given the relation schema �, relations �(�) and �(�), 
beforehand determined sets � and ��,�, one can eas-
ily evaluate ���, �, ��,�� and ���, �, ��,��.  
For instance, only consider the relation “exam” in the 
left part of the Figure1, and suppose that we want to 
compare it with the identical-schema relation in an-
other database. One possible fragmentation setup 
could be: 
r(R)=exam(exam_date, student_id, course_id,  

has_passed) 
s(R)=exam(exam_date, student_id, course_id, 

has_passed) 
X={exam_date,student_id,course_id} 

��,� =  �
(���, ����������, ���������),
 (���, ����������, ���������),
(�����, ����������, ��������)

�. 

Tuples �� ∈ ���, �, ��,�� and �� ∈ ���, �, ��,��, 
where ����� = ����� = � contain the results of aggre-
gate functions applied on fragments ℱ(�, �, �) and 
ℱ(�, �, �), respectively. The inequality of the tuples 
implies the difference between the corresponding 
fragments, i.e. �� ≠ �� ⇒ ℱ(�, �, �) ≠ ℱ(�, �, �), 
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For instance, only consider the relation “exam” in the 
left part of the Figure1, and suppose that we want to 
compare it with the identical-schema relation in an-
other database. One possible fragmentation setup 
could be: 
r(R)=exam(exam_date, student_id, course_id,  

has_passed) 
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�. 

Tuples �� ∈ ���, �, ��,�� and �� ∈ ���, �, ��,��, 
where ����� = ����� = � contain the results of aggre-
gate functions applied on fragments ℱ(�, �, �) and 
ℱ(�, �, �), respectively. The inequality of the tuples 
implies the difference between the corresponding 
fragments, i.e. �� ≠ �� ⇒ ℱ(�, �, �) ≠ ℱ(�, �, �), 
which leads to the conclusion that ���� �� ����� �� �
���� �� ����� �� � � � �. 
Actually, any difference between ���� �� ����� and 
���� �� ����� implies the inequality of � and �. Unfor-
tunately, the inverse is not true, i.e. even when 
���� �� ����� = ���� �� �����, it is still possible that � 
and � are not equal. This happens in very rare cases 
when differences of attribute values cumulatively 
nullify each other during aggregate function evalua-
tion [26]. Opportunely, already low probability of 
such an event can be further reduced to the accepta-
ble level by applying larger set of aggregate functions. 
This is the reason why the equiva-
lence ���� �� ����� = ���� �� ����� � � = �, alt-
hough not strictly correct, will be considered as ade-
quate for practical purpose of comparing fragments. 
As a side note, an interesting approach that would 
also almost guarantee the equivalence would be to 
use a single aggregate function that aggregates tuple 
hashes. Such an aggregate function should be com-
mutative, because ordering tuples would incur addi-
tional costs. For instance, SQL Server provides 
CHECKSUM_AGG function (which, though undoc-
umented, we suspect is a simple XOR function) that 
can be used to that purpose. Similar remarks apply 
here as for the reference implementation – this is not 
suitable for large tables because calculating hashes 
on the fly is costly, and storing and maintaining addi-
tional hash data is often not possible, especially at 
source data systems. 
The reason why the aggregate functions are applied 
only upon attributes in � � � is straightforward. Ap-
plying aggregate functions upon an attribute from � 
would be unproductive because X-values of tuples in 
corresponding fragments of � and � are identical by 
definition, so are the results of aggregate functions. 
The number of fragments in ℱ(�� �) depends on the 
contents of the fragmentation set �. Generally, in-
creasing the cardinality of �, increases the cardinali-
ty of ��(�), which in turn increases the number of 
tuples in ���� �� �����, hence decreasing the average 
number of tuples per fragment. There is a trade-off in 
selection of attributes for the fragmentation set �. 
Using larger fragmentation set provides more precise 
determination of relation’s subset which is the 
source of differences, but simultaneously degrades 
the performance due to increased number of groups 
for which aggregate functions have to be evaluated 
and their results compared. On the other hand, the 
contents of the aggregation set ���� do not signifi-
cantly affect the performance, because the cost of 
aggregate function evaluation is negligible compared 

with the cost of grouping operation. Obviously, the 
main issue is to appropriately determine the content 
of the fragmentation set. The two extreme cases are: 
to use empty fragmentation set, which will produce 
exactly one fragment, or, to use one of the keys or 
superkeys for �, which will produce altogether 
����(�) single-tuple fragments. 
Taking into account the aforementioned trade-off 
and presuming that only a relatively small number of 
pairs of relations is expected to be actually different, 
we concluded that the process of comparing rela-
tions should start with the empty or nearly empty 
fragmentation set ��. If ���� ��� ������ =
���� ��� ������, then the pair can be left out of further 
inspection. Otherwise, in order to determine the 
group of tuples incurring differences more precisely, 
procedure can be iteratively carried out. In each step 
of the procedure, fragmentation set is augmented 
with additional attributes, thus increasing the num-
ber of fragments and decreasing the fragment’s tuple 
count. The process is repeated until maximal frag-
mentation set (with all intended attributes) has been 
inspected or allotted time frame has expired. 
In order to carry out the described procedure, the 
following information has to be defined (and stored 
in a metadata repository) for each pair of relations 
r(R) and s(R): 

1. Nonempty list of fragmentation sets, denoted as 
������: 
������ = 〈��� ��� � � ��〉,  
where �� � �� � � � �� � �. 
�� can be an empty set. Only the last fragmentation 
set in the list is allowed (but not required) to be a 
key or superkey of the relation �, because grouping 
by the key or superkey of the relation is the identity 
operator. Fragmentation sets should also fulfil the 
constraint that none of antecedent fragmentation 
sets functionally determines its descendants in the 
������, i.e. � ��� �� ∈ ������� � � �� �� � ��. The latter 
constraint is quite easy to justify: If tuples �� and �� 
pertain to the fragment ℱ(�� ��� �), then ������ =
������. If �� � ��, then ������ = ������   ������ =
������, making �� and �� members of ℱ��� ��� �� as 
well. As fragmenting sets �� and ��  produce the 
same set of fragments, either ��  or ��  is superfluous 
in ������. 

2. Nonempty list of aggregation sets, denoted as 
������, whose members correspond to the mem-
bers of ������:  

������ = 〈������ ������ � � �����〉. 
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which leads to the conclusion that ���� �� ����� �� �
���� �� ����� �� � � � �. 
Actually, any difference between ���� �� ����� and 
���� �� ����� implies the inequality of � and �. Unfor-
tunately, the inverse is not true, i.e. even when 
���� �� ����� = ���� �� �����, it is still possible that � 
and � are not equal. This happens in very rare cases 
when differences of attribute values cumulatively 
nullify each other during aggregate function evalua-
tion [26]. Opportunely, already low probability of 
such an event can be further reduced to the accepta-
ble level by applying larger set of aggregate functions. 
This is the reason why the equiva-
lence ���� �� ����� = ���� �� ����� � � = �, alt-
hough not strictly correct, will be considered as ade-
quate for practical purpose of comparing fragments. 
As a side note, an interesting approach that would 
also almost guarantee the equivalence would be to 
use a single aggregate function that aggregates tuple 
hashes. Such an aggregate function should be com-
mutative, because ordering tuples would incur addi-
tional costs. For instance, SQL Server provides 
CHECKSUM_AGG function (which, though undoc-
umented, we suspect is a simple XOR function) that 
can be used to that purpose. Similar remarks apply 
here as for the reference implementation – this is not 
suitable for large tables because calculating hashes 
on the fly is costly, and storing and maintaining addi-
tional hash data is often not possible, especially at 
source data systems. 
The reason why the aggregate functions are applied 
only upon attributes in � � � is straightforward. Ap-
plying aggregate functions upon an attribute from � 
would be unproductive because X-values of tuples in 
corresponding fragments of � and � are identical by 
definition, so are the results of aggregate functions. 
The number of fragments in ℱ(�� �) depends on the 
contents of the fragmentation set �. Generally, in-
creasing the cardinality of �, increases the cardinali-
ty of ��(�), which in turn increases the number of 
tuples in ���� �� �����, hence decreasing the average 
number of tuples per fragment. There is a trade-off in 
selection of attributes for the fragmentation set �. 
Using larger fragmentation set provides more precise 
determination of relation’s subset which is the 
source of differences, but simultaneously degrades 
the performance due to increased number of groups 
for which aggregate functions have to be evaluated 
and their results compared. On the other hand, the 
contents of the aggregation set ���� do not signifi-
cantly affect the performance, because the cost of 
aggregate function evaluation is negligible compared 
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in a metadata repository) for each pair of relations 
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with the cost of grouping operation. Obviously, the 
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ber of fragments and decreasing the fragment’s tuple 
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in a metadata repository) for each pair of relations 
r(R) and s(R): 
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where �� � �� � � � �� � �. 
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������, i.e. � ��� �� ∈ ������� � � �� �� � ��. The latter 
constraint is quite easy to justify: If tuples �� and �� 
pertain to the fragment ℱ(�� ��� �), then ������ =
������. If �� � ��, then ������ = ������   ������ =
������, making �� and �� members of ℱ��� ��� �� as 
well. As fragmenting sets �� and ��  produce the 
same set of fragments, either ��  or ��  is superfluous 
in ������. 

2. Nonempty list of aggregation sets, denoted as 
������, whose members correspond to the mem-
bers of ������:  

������ = 〈������ ������ � � �����〉. 
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Nonempty list of aggregation sets, denoted as 
������, whose members correspond to the mem-
bers of ������:  

������ = 〈��,��, ��,��, � , ��,��〉. 

Building on the previous example, these values 
could be: 
������

= �
{},

{���������},
{���������, ����������},

{���������, ����������, ���������}
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������ = 〈��,�, ��,�, ��,�, ��,�〉.  
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3.2. Determining Inequality in the Content of 
Tables Having Different Schemas

Comparing tables with different schemas typically 
occurs when comparing relational model tables and 
dimensional model [22] tables, e.g., staging area and 
DW. Dimension tables can be supported easier than 
fact tables since they mostly take over attributes 
from relational source(s). Sometimes attributes in 
the dimensional model are renamed using different 
nomenclature but different attribute names do not 
present a problem since they are described and paired 
via metadata. Fact tables, on the other hand, are more 
complex in this regard, because business keys are 
always replaced with surrogate keys from related di-
mension tables. In addition, some non-key attributes 
can be cataloged and replaced with surrogate keys. 
For instance, as shown in Figure 1, table exam is the 
source table for the fact table fExam. In table fExam, 
attribute exam_date  has been cataloged and replaced 
with the surrogate key dateID, while the actual exam 
date has been renamed and stored in the dimension 
table dDate as date. The so-called, “junk dimensions” 
are another example of similar transformations. 

To fragment and compare the contents of tables 
exam and fExam based upon the fragmentation set 
X={exam_date}, the fact table fExam has to be joined 

with the dimension table dDate before fragmenta-
tion. Effectively, it is necessary to evaluate q (exam, 
{exam_date}) and q (fExam ⊳⊲ dDate, {date}) and then 
compare the contents of the two, having in mind that 
attribute exam_date corresponds to attribute date.
In general, we compare an input set (any relation r 
in the source database or in the staging area) with an 
output set (a set of relations in the staging area or in 
the DW). For given X and  
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aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the 
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transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The 
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the 
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table). 
Note that, for identical schema, both � and ��� are the identity operators. 
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra: 
τ��(fExam, dStudent, dDate, dCourse) = 
�����(���������,����������,���������,����������) 
(�����,����������,���������,��������� 
(fExam ⊳⊲  dStudent ⊳⊲  dDate ⊳⊲  dCourse)). 
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared 
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�), 
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S) 
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate 
�(�, �). 
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in 
Figure 1: 
�(�)  =  
����(���������, ����������, ���������, ����������) 
� = {���������, ����������, ���������} 

�(�) = ������(���������,����������,���������,����������) 
(�����,����������,���������,���������� 
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))  

, the relation r will be 
fragmented and specified aggregate functions will be 
evaluated for the fragments i.e. 

 

6 
 

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a 
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified 
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the 
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation 
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation 
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse 
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The 
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the 
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table). 
Note that, for identical schema, both � and ��� are the identity operators. 
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra: 
τ��(fExam, dStudent, dDate, dCourse) = 
�����(���������,����������,���������,����������) 
(�����,����������,���������,��������� 
(fExam ⊳⊲  dStudent ⊳⊲  dDate ⊳⊲  dCourse)). 
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared 
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�), 
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S) 
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate 
�(�, �). 
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in 
Figure 1: 
�(�)  =  
����(���������, ����������, ���������, ����������) 
� = {���������, ����������, ���������} 

�(�) = ������(���������,����������,���������,����������) 
(�����,����������,���������,���������� 
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))  

 will be 
evaluated in accordance with the algorithm described 
in Section 3.1. The problem here is that the relation 
s(R) does not exist. However, relation equivalent to 
s(R) can be reconstructed from a set of relations 
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 is the result of the transforma-
tion τ over r, i.e. 
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. To compare input and out-
put sets using our algorithm it is necessary to apply 
inverse transformation τ-1 over output set, such that 
for each instance of the relation r we can state that  
r = τ –1(τ(r)). The existence of such an inverse trans-
formation is not questionable if we adhere to the 
limitations specified in the introductory part of 
Section 3 (each record in a fact table corresponds to 
exactly one record in a data source table). Note that, 
for identical schema, both τ and τ –1 are the identi-
ty operators.In this example (Figure 1), the inverse 

Figure 1 
Comparing tables with different schemas (relational and dimensional)
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_ , _ , _ , _  
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𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) = 𝜌𝜌𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚2(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑) 
(𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑  
(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎))  

𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  �
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑), 
(𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑),

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)
� 

dStudent 
studentId 
student_id 
firstName 
lastName 
… 

fExam 
dateId 
studentId 
courseId 
… 
hasPassed 

dDate 
dateId 
date 
year 
month 
… 

dCourse 
courseId 
course_id 
courseName 
… 

exam 
exam_date 
student_id 
course_id 
… 
has_passed 

= 
? 
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transformation is simply defined with the operation 
of relational algebra:

 

 
 

τ��(fExam, dStudent, dDate, dCourse) = 
�����(���������,����������,���������,����������) 
(�����,����������,���������,��������� 

(fExam ⊳⊲  dStudent ⊳⊲  dDate ⊳⊲  dCourse)). 

Performing transformation τ –1({fExam, dStudent, 
dDate, dCourse}) we acquire relation s(R) which can 
be compared to the relation r(R) using algorithm de-
scribed in Section 3.1. More precisely, it is not neces-
sary to reconstruct  s(R), it is sufficient to reconstruct 
the relation having all attributes contained in X and in

 

6 
 

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a 
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified 
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the 
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation 
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation 
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse 
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The 
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the 
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table). 
Note that, for identical schema, both � and ��� are the identity operators. 
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra: 
τ��(fExam, dStudent, dDate, dCourse) = 
�����(���������,����������,���������,����������) 
(�����,����������,���������,��������� 
(fExam ⊳⊲  dStudent ⊳⊲  dDate ⊳⊲  dCourse)). 
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared 
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�), 
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S) 
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate 
�(�, �). 
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in 
Figure 1: 
�(�)  =  
����(���������, ����������, ���������, ����������) 
� = {���������, ����������, ���������} 

�(�) = ������(���������,����������,���������,����������) 
(�����,����������,���������,���������� 
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))  

. Commonly, the relation s(S) will not be evalu-
ated. The transformation τ –1 will be incorporated into 
an SQL statement which serves to evaluate  q(s, X).
The following example illustrates the procedure of 
fragmenting two data sets having different sche-
mas, shown in Figure 1:

Table 2 
Steps in fragmenting and comparing tables having different schemas

Depth Source (RDB) Destination (DWH)

1 SELECT SUM(has_passed)   AS sumPassed,  
       AVG(has_passed)   AS avgPassed,  
       COUNT(has_passed) AS recCount 
  FROM exam

SELECT SUM(hasPassed)   AS sumPassed, 
       AVG(hasPassed)   AS avgPassed,  
       COUNT(hasPassed) AS recCount 
  FROM fExam 

2 SELECT course_id, 
       SUM(has_passed)   AS sumPassed,  
       AVG(has_passed)   AS avgPassed,  
       COUNT(has_passed) AS recCount 
  FROM exam 
 GROUP BY course_id

SELECT dCourse.course_id, 
       SUM(hasPassed)   AS sumPassed, 
       AVG(hasPassed)   AS avgPassed,  
       COUNT(hasPassed) AS recCount 
  FROM fExam  
  JOIN dCourse   
    ON fExam.courseId = dCourse.courseId 
 GROUP BY dCourse.course_id

Let’s suppose we’ve found mismatch for the course_id=101 in the previous step:

3 SELECT course_id,  
       student_id, 
       SUM(has_passed)   AS sumPassed,  
       AVG(has_passed)   AS avgPassed,  
       COUNT(has_passed) AS recCount 
  FROM exam 
 WHERE course_id = 101 
 GROUP BY course_id, 
          student_id

SELECT dCourse.course_id,  
       dStudent.student_id, 
       SUM(hasPassed)   AS sumPassed, 
       AVG(hasPassed)   AS avgPassed,  
       COUNT(hasPassed) AS recCount 
 FROM fExam  
 JOIN dCourse   
   ON fExam.courseId = dCourse.courseId 
 JOIN dStudent   
   ON fExam.studentId=dStudent.studentId 
WHERE course_id = 101 
 GROUP BY dCourse.course_id,  
          dStudent.student_id

6 
 

𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)  =  
𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑) 
𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑} 
𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) = 𝜌𝜌𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚2(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑) 
(𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑  
(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎))  

𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  �
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑), 
(𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑),

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)
� 
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𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 = �

{},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

 {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}

� 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 = 〈𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋〉. 

The algorithm produces the SQL statements shown 
in Table 2.
As it can be seen, the relation s(S) is not evaluated, we 
just used transformation τ –1 when we needed it.
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Let’s suppose we’ve found mismatch for the student_id=36 and student_id=37 in the previous step:

4 SELECT course_id, 
       student_id, 
       exam_date, 
       SUM(has_passed)   AS sumPassed,  
       AVG(has_passed)   AS avgPassed,  
       COUNT(has_passed) AS recCount 
  FROM exam 
  WHERE (course_id = 101 AND student_id = 36)  
     OR (course_id = 101 AND student_id = 37) 
GROUP BY course_id, 
         student_id, 
         exam_date

SELECT dCourse.course_id,  
       dStudent.student_id, 
       dDate.date       AS exam_date, 
       SUM(hasPassed)   AS sumPassed, 
       AVG(hasPassed)   AS avgPassed,  
       COUNT(hasPassed) AS recCount 
  FROM fExam  
  JOIN dStudent  
    ON fExam.studentId=dStudent.studentId 
  JOIN dDate  
    ON fExam.dateId = dDate.dateId 
  JOIN dCourse    
    ON fExam.courseId = dCourse.courseId 
 WHERE (course_id = 101 AND student_id = 36) 
    OR (course_id = 101 AND student_id = 37) 
GROUP BY dCourse.course_id,  
         dStudent.student_id, 
         dDate.date,

Finally, after result sets from the previous steps are compared, the algorithm produces e.g., the following results:

Missing: (101, 36, ‘2013-01-01’)
Excess:  (101, 37, ‘2012-02-02’)

Missing: (101, 37, ‘2012-02-02’)
Excess:  (101, 36, ‘2013-01-01’)

In general, a fact table schema does not have to con-
tain business keys (primary keys) of the originating 
table [26]. It is possible that the business key is com-
prised of dimension tables’ business keys; however, 
that is not always the case. When so, to positively 
identify the tuples, we employ the data lineage mech-
anism described in [26]. In short, every fact table has 
a coupled lineage table linF with relation schema:

7

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 = �

{},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

 {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}

�

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 = 〈𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋〉.
The algorithm produces the SQL statements shown in Table 2.
As it can be seen, the relation s(S) is not evaluated, we just used transformation τ-1 when we needed it.
In general, a fact table schema does not have to contain business keys (primary keys) of the originating table [26]. It 
is possible that the business key is comprised of dimension tables’ business keys; however, that is not always the case. 
When so, to positively identify the tuples, we employ the data lineage mechanism described in [26]. In short, every 
fact table has a coupled lineage table linF with relation schema: 𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿 = {𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 ,𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆1, … ,𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 , … ,𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚}, where 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹is 
the surrogate key of the fact table and 𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 are the business key attributes of the originating table. linF is simply 
incorporated into τ-1 transformation when needed.

Table 1 Steps in fragmenting and comparing tables having different schemas

Depth Source (RDB) Destination (DWH)
1 SELECT SUM(has_passed)   AS sumPassed,  

       AVG(has_passed)   AS avgPassed,  
       COUNT(has_passed) AS recCount 
  FROM exam 

SELECT SUM(hasPassed)   AS sumPassed, 
       AVG(hasPassed)   AS avgPassed,  
       COUNT(hasPassed) AS recCount 
  FROM fExam  

2 SELECT course_id, 
       SUM(has_passed)   AS sumPassed,  
       AVG(has_passed)   AS avgPassed,  
       COUNT(has_passed) AS recCount 
  FROM exam 
 GROUP BY course_id 

SELECT dCourse.course_id, 
       SUM(hasPassed)   AS sumPassed, 
       AVG(hasPassed)   AS avgPassed,  
       COUNT(hasPassed) AS recCount 
  FROM fExam  
  JOIN dCourse   
    ON fExam.courseId = dCourse.courseId 
 GROUP BY dCourse.course_id 

Let's suppose we've found mismatch for the course_id=101 in the previous step:
3 SELECT course_id,  

       student_id, 
       SUM(has_passed)   AS sumPassed,  
       AVG(has_passed)   AS avgPassed,  
       COUNT(has_passed) AS recCount 
  FROM exam 
 WHERE course_id = 101 
 GROUP BY course_id,  
          student_id 

SELECT dCourse.course_id,  
       dStudent.student_id, 
       SUM(hasPassed)   AS sumPassed, 
       AVG(hasPassed)   AS avgPassed,  
       COUNT(hasPassed) AS recCount 
 FROM fExam  
 JOIN dCourse   
   ON fExam.courseId = dCourse.courseId 
 JOIN dStudent   
   ON fExam.studentId=dStudent.studentId 
WHERE course_id = 101 
 GROUP BY dCourse.course_id,  
          dStudent.student_id 

Let's suppose we've found mismatch for the student_id=36 and student_id=37 in the previous step: 
4 SELECT course_id, 

       student_id, 
       exam_date, 
       SUM(has_passed)   AS sumPassed,  
       AVG(has_passed)   AS avgPassed,  
       COUNT(has_passed) AS recCount 
  FROM exam 
  WHERE (course_id = 101 AND student_id = 36)  
     OR (course_id = 101 AND student_id = 37) 
GROUP BY course_id,  
         student_id,  
         exam_date 

SELECT dCourse.course_id,  
       dStudent.student_id, 
       dDate.date       AS exam_date, 
       SUM(hasPassed)   AS sumPassed, 
       AVG(hasPassed)   AS avgPassed,  
       COUNT(hasPassed) AS recCount 
  FROM fExam  
  JOIN dStudent  
    ON fExam.studentId=dStudent.studentId 
  JOIN dDate  
    ON fExam.dateId = dDate.dateId 
  JOIN dCourse    
    ON fExam.courseId = dCourse.courseId 
 WHERE (course_id = 101 AND student_id = 36) 
    OR (course_id = 101 AND student_id = 37) 
GROUP BY dCourse.course_id,  
         dStudent.student_id, 
         dDate.date, 

Finally, after result sets from the previous steps are compared, the algorithm produces e.g., the following results: 
Missing: (101, 36, '2013-01-01') 
Excess:  (101, 37, '2012-02-02') 

Missing: (101, 37, '2012-02-02') 
Excess:  (101, 36, '2013-01-01') 

 where SKF is the 
surrogate key of the fact table and PKi are the business 
key attributes of the originating table. linF is simply 
incorporated into τ –1 transformation when needed.

3.3. The Overall TCFC Algorithm
In the previous two sections, we have formally de-
scribed the algorithm at table level. Using the de-
scribed algorithm, with the help of metadata, we can 
now introduce a global, time-constrained algorithm 
for providing a “global overview” of the differences 
between two sets of tables. 
The metadata needed for comparing an input 
set (relation r(R)) with an output set (set of re-
lations 
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In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a 
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified 
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the 
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation 
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation 
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse 
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The 
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the 
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table). 
Note that, for identical schema, both � and ��� are the identity operators. 
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra: 
τ��(fExam, dStudent, dDate, dCourse) = 
�����(���������,����������,���������,����������) 
(�����,����������,���������,��������� 
(fExam ⊳⊲  dStudent ⊳⊲  dDate ⊳⊲  dCourse)). 
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared 
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�), 
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S) 
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate 
�(�, �). 
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in 
Figure 1: 
�(�)  =  
����(���������, ����������, ���������, ����������) 
� = {���������, ����������, ���������} 

�(�) = ������(���������,����������,���������,����������) 
(�����,����������,���������,���������� 
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))  

) is denoted as the metadata quintuple 
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3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm, 
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global 
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as 
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has 
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the 
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and 
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of 
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by 
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set 
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the 
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further 
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the 
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and 
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly 
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table 
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority 
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29). 

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC) 
1    Input: 𝒞𝒞𝒞𝒞
2    Output: differences report and completion status
3    𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4    𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5    on event (time frame has expired):
6       cancel running job(s)
7       return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8    Begin
9       // initialization 
10       𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11       for each c ∈ 𝑟𝑟𝑟𝑟   
12          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13       // computing
14       repeat    
15          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18          𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19          𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20          for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22          for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24          for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶  𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26             if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27                𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28       until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29       return report, COMPLETED
30    end

. Since the transfor-
mation τ is the transformation that has been applied 
to relation r to produce a set of relations 
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In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a 
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified 
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the 
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation 
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation 
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse 
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The 
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the 
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table). 
Note that, for identical schema, both � and ��� are the identity operators. 
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra: 
τ��(fExam, dStudent, dDate, dCourse) = 
�����(���������,����������,���������,����������) 
(�����,����������,���������,��������� 
(fExam ⊳⊲  dStudent ⊳⊲  dDate ⊳⊲  dCourse)). 
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared 
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�), 
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S) 
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate 
�(�, �). 
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in 
Figure 1: 
�(�)  =  
����(���������, ����������, ���������, ����������) 
� = {���������, ����������, ���������} 

�(�) = ������(���������,����������,���������,����������) 
(�����,����������,���������,���������� 
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))  

,  τ –1  will re-

construct relation s(R), thus harmonizing the schema 
of the two data sets prior to comparison. The relations 
are then iteratively fragmented, aggregated and com-
pared according to the fragmentation sets from 
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3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm, 
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global 
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as 
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has 
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the 
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and 
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of 
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by 
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set 
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the 
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further 
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the 
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and 
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly 
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table 
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority 
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29). 

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC) 
1    Input: 𝒞𝒞𝒞𝒞
2    Output: differences report and completion status
3    𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4    𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5    on event (time frame has expired):
6       cancel running job(s)
7       return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8    Begin
9       // initialization 
10       𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11       for each c ∈ 𝑟𝑟𝑟𝑟   
12          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13       // computing
14       repeat    
15          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18          𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19          𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20          for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22          for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24          for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶  𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26             if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27                𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28       until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29       return report, COMPLETED
30    end

 
and aggregate sets from 
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3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm, 
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global 
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as 
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has 
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the 
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and 
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of 
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by 
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set 
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the 
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further 
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the 
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and 
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly 
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table 
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority 
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29). 

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC) 
1    Input: 𝒞𝒞𝒞𝒞
2    Output: differences report and completion status
3    𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4    𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5    on event (time frame has expired):
6       cancel running job(s)
7       return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8    Begin
9       // initialization 
10       𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11       for each c ∈ 𝑟𝑟𝑟𝑟   
12          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13       // computing
14       repeat    
15          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18          𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19          𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20          for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22          for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24          for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶  𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26             if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27                𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28       until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29       return report, COMPLETED
30    end

. With 
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3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm, 
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global 
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as 
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has 
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the 
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and 
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of 
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by 
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set 
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the 
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further 
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the 
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and 
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly 
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table 
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority 
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29). 

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC) 
1    Input: 𝒞𝒞𝒞𝒞
2    Output: differences report and completion status
3    𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4    𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5    on event (time frame has expired):
6       cancel running job(s)
7       return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8    Begin
9       // initialization 
10       𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11       for each c ∈ 𝑟𝑟𝑟𝑟   
12          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13       // computing
14       repeat    
15          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18          𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19          𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20          for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22          for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24          for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶  𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26             if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27                𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28       until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29       return report, COMPLETED
30    end

 we denote a 
set of all metadata quintuples needed for comparing 
a pair of databases.
A comparison of two data sets, according to a meta-
data quintuple 
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3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm, 
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global 
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as 
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has 
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the 
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and 
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of 
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by 
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set 
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the 
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further 
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the 
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and 
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly 
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table 
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority 
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29). 

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC) 
1    Input: 𝒞𝒞𝒞𝒞
2    Output: differences report and completion status
3    𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4    𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5    on event (time frame has expired):
6       cancel running job(s)
7       return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8    Begin
9       // initialization 
10       𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11       for each c ∈ 𝑟𝑟𝑟𝑟   
12          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13       // computing
14       repeat    
15          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18          𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19          𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20          for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22          for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24          for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶  𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26             if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27                𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28       until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29       return report, COMPLETED
30    end

, is an iterative process that can be il-
lustrated by an unbalanced tree where each node rep-
resents a fragment based on the aggregation set and 
the fragmentation set defined for that level (Figure 
2). This means that comparing r and s according to X1 
and A1 is represented with the root of the tree. If the 
comparison at the root level results with differences 
in fragments F1, F2, ..., Fn, the further comparison of 
fragments F1, F2, ..., Fn will be carried out according to  
X2 and A2 and will produce the root’s children, etc.
In accordance with a request to examine as many ta-
bles as possible, perhaps at the expense of the com-
pleteness of the result, the algorithm should perform 
the comparison operations at the first level for all ta-
bles, then all assigned (and necessary) comparison of 
the fragments on the second level and so on.
This can be ensured by traversing tree according to 
the breadth-first order, which can be straightforward-
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ly implemented using a queue.
Comparison of two data sets (databases) is comprised 
of a number of individual table comparisons. Each ta-
ble comparison is a job to be performed. The idea of 

the TCFC algorithm (Algorithm 1) is to put all jobs 
in a priority (sorted) queue, and execute them one by 
one until the time runs out (lines 5 to 7), or all jobs get 
executed (line 29).

8 
 

 
 Algorithm 1: Time-Constrained Fragment and Compare (TCFC) 
1    Input:  𝒞𝒞𝒞𝒞 
2    Output:  differences report and completion status 
3    𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡         // list of differences 
4    𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡            // compare jobs queue 
5    on event (time frame has expired): 
6       cancel running job(s) 
7       return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡, UNCOMPLETED 
8    Begin 
9       // initialization 
10       𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
11       for each c ∈ 𝑟𝑟𝑟𝑟    
12          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) 
13       // computing  
14       repeat     
15          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) 
16          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)  
17          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)  
18          𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) 
19          𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) 
20          for each 𝑡𝑡𝑡𝑡 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�  
21             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡.add(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡, MISSING)   // meaning: for input set r, t is missing from output set 
22          for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�  
23             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡.add(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡, EXCESS)        // meaning: for input set r, t is excessive in output set 
24          for each 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶  𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 ≠ 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 
25             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡.add(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF)     //meaning: for input set r, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set 
26             if 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 
27                𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎]) 
28       until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 
29       return report, COMPLETED 
30    nd E

To achieve a global overview, tables are compared 
with an increasing level of detail in a round robin 
fashion. We use a list (
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To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use 
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare 
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of 
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3 
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of 
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as 
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from 
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined 
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅  (line 
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema 
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list 
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way 
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed 
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as 
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates 
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates 
1    Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2    Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3    Begin
4       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5       𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6       if 𝑎𝑎𝑎𝑎 is empty tuple 
7          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true 
8       else 
9          T← schema of tuple 𝑎𝑎𝑎𝑎 
10          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀  A = t[A]
11       𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12       execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13       return resulting tuples 
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying 
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is 
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is 
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the 
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm 
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the 
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three 
parameters, in the following order: 

1. Error depth, the algorithm will first pursue the branches in which errors are spotted. 
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the 

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.). 
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same 

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the 

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata. 

Full depth is used only when an error has been pursued. 
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

) as an appropriate data 
structure for storing and managing the jobs. If, for ex-
ample, we have to compare 10 pairs of tables, this list 
will initially contain 10 elements ( jobs). The content 
of 
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To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use 
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare 
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of 
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3 
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of 
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as 
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from 
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined 
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅  (line 
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema 
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list 
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way 
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed 
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as 
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates 
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates 
1    Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2    Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3    Begin
4       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5       𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6       if 𝑎𝑎𝑎𝑎 is empty tuple 
7          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true 
8       else 
9          T← schema of tuple 𝑎𝑎𝑎𝑎 
10          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀  A = t[A]
11       𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12       execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13       return resulting tuples 
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying 
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is 
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is 
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the 
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm 
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the 
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three 
parameters, in the following order: 

1. Error depth, the algorithm will first pursue the branches in which errors are spotted. 
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the 

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.). 
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same 

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the 

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata. 

Full depth is used only when an error has been pursued. 
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 is based on the set of metadata – quintu-
ples 
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3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm, 
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global 
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as 
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has 
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the 
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and 
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of 
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by 
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set 
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the 
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further 
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the 
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and 
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly 
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table 
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority 
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29). 

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC) 
1    Input: 𝒞𝒞𝒞𝒞
2    Output: differences report and completion status
3    𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4    𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5    on event (time frame has expired):
6       cancel running job(s)
7       return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8    Begin
9       // initialization 
10       𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11       for each c ∈ 𝑟𝑟𝑟𝑟   
12          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13       // computing
14       repeat    
15          𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17          𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18          𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19          𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20          for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22          for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24          for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶  𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25             𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26             if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27                𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28       until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29       return report, COMPLETED
30    end

 (line 1). The lists 
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To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use 
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare 
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of 
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3 
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of 
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as 
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from 
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined 
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅  (line 
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema 
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list 
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way 
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed 
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as 
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates 
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates 
1    Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2    Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3    Begin
4       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5       𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6       if 𝑎𝑎𝑎𝑎 is empty tuple 
7          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true 
8       else 
9          T← schema of tuple 𝑎𝑎𝑎𝑎 
10          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀  A = t[A]
11       𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12       execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13       return resulting tuples 
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying 
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is 
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is 
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the 
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm 
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the 
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three 
parameters, in the following order: 

1. Error depth, the algorithm will first pursue the branches in which errors are spotted. 
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the 

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.). 
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same 

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the 

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata. 

Full depth is used only when an error has been pursued. 
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 and report, initialized 
at the beginning of the algorithm (lines 3 and 4), are 
used to store the metadata for the tables to be com-
pared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a da-

tabase that serves as a repository for this algorithm, 
include: schema of the relation r; transformation τ –1 
used to obtain relation s from the set of relations 
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In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a 
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified 
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the 
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation 
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation 
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse 
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The 
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the 
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table). 
Note that, for identical schema, both � and ��� are the identity operators. 
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra: 
τ��(fExam, dStudent, dDate, dCourse) = 
�����(���������,����������,���������,����������) 
(�����,����������,���������,��������� 
(fExam ⊳⊲  dStudent ⊳⊲  dDate ⊳⊲  dCourse)). 
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared 
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�), 
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S) 
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate 
�(�, �). 
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in 
Figure 1: 
�(�)  =  
����(���������, ����������, ���������, ����������) 
� = {���������, ����������, ���������} 

�(�) = ������(���������,����������,���������,����������) 
(�����,����������,���������,���������� 
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))  

; 
nonempty list 
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To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use 
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare 
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of 
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3 
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of 
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as 
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from 
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined 
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅  (line 
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema 
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list 
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way 
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed 
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as 
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates 
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates 
1    Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2    Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3    Begin
4       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5       𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6       if 𝑎𝑎𝑎𝑎 is empty tuple 
7          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true 
8       else 
9          T← schema of tuple 𝑎𝑎𝑎𝑎 
10          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀  A = t[A]
11       𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12       execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13       return resulting tuples 
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying 
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is 
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is 
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the 
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm 
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the 
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three 
parameters, in the following order: 

1. Error depth, the algorithm will first pursue the branches in which errors are spotted. 
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the 

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.). 
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same 

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the 

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata. 

Full depth is used only when an error has been pursued. 
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 of fragmentation sets; nonempty 
list 
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To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use 
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare 
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of 
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3 
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of 
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as 
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from 
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined 
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅  (line 
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema 
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list 
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way 
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed 
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as 
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates 
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates 
1    Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2    Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3    Begin
4       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5       𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6       if 𝑎𝑎𝑎𝑎 is empty tuple 
7          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true 
8       else 
9          T← schema of tuple 𝑎𝑎𝑎𝑎 
10          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀  A = t[A]
11       𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12       execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13       return resulting tuples 
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying 
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is 
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is 
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the 
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm 
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the 
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three 
parameters, in the following order: 

1. Error depth, the algorithm will first pursue the branches in which errors are spotted. 
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the 

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.). 
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same 

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the 

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata. 

Full depth is used only when an error has been pursued. 
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 of aggregation sets.
Each element of the 
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To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use 
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare 
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of 
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3 
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of 
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as 
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from 
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined 
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅  (line 
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema 
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list 
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way 
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed 
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as 
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates 
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates 
1    Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2    Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3    Begin
4       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5       𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6       if 𝑎𝑎𝑎𝑎 is empty tuple 
7          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true 
8       else 
9          T← schema of tuple 𝑎𝑎𝑎𝑎 
10          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀  A = t[A]
11       𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12       execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13       return resulting tuples 
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying 
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is 
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is 
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the 
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm 
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the 
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three 
parameters, in the following order: 

1. Error depth, the algorithm will first pursue the branches in which errors are spotted. 
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the 

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.). 
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same 

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the 

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata. 

Full depth is used only when an error has been pursued. 
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 list contains elements 
listXR and listAR being lists as well. Since we use 
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To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use 
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare 
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of 
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3 
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of 
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as 
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from 
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined 
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅  (line 
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema 
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list 
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way 
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed 
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as 
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates 
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates 
1    Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2    Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3    Begin
4       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5       𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6       if 𝑎𝑎𝑎𝑎 is empty tuple 
7          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true 
8       else 
9          T← schema of tuple 𝑎𝑎𝑎𝑎 
10          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀  A = t[A]
11       𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12       execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13       return resulting tuples 
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying 
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is 
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is 
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the 
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm 
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the 
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three 
parameters, in the following order: 

1. Error depth, the algorithm will first pursue the branches in which errors are spotted. 
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the 

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.). 
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same 

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the 

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata. 

Full depth is used only when an error has been pursued. 
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 list as a priority queue, the first element rep-
resents the job with the highest priority that will be 
next to be pulled out from the queue (line 15) and pro-
cessed. One job may include a comparison on a num-
ber of levels (that number is determined by the num-
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ber of listXR elements). Thus, the next step is to pull 
first elements from 
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To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use 
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare 
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of 
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3 
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of 
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as 
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from 
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined 
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅  (line 
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema 
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list 
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way 
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed 
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as 
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates 
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates 
1    Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2    Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3    Begin
4       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5       𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6       if 𝑎𝑎𝑎𝑎 is empty tuple 
7          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true 
8       else 
9          T← schema of tuple 𝑎𝑎𝑎𝑎 
10          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀  A = t[A]
11       𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12       execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13       return resulting tuples 
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying 
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is 
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is 
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the 
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm 
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the 
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three 
parameters, in the following order: 

1. Error depth, the algorithm will first pursue the branches in which errors are spotted. 
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the 

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.). 
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same 

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the 

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata. 

Full depth is used only when an error has been pursued. 
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 (line 16) and 

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use 
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare 
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of 
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3 
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata, 
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of 
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as 
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from 
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined 
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅  (line 
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema 
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list 
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way 
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed 
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as 
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates 
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates 
1    Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2    Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3    Begin
4       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5       𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6       if 𝑎𝑎𝑎𝑎 is empty tuple 
7          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true 
8       else 
9          T← schema of tuple 𝑎𝑎𝑎𝑎 
10          𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀  A = t[A]
11       𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12       execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13       return resulting tuples 
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying 
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is 
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is 
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the 
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm 
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the 
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three 
parameters, in the following order: 

1. Error depth, the algorithm will first pursue the branches in which errors are spotted. 
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the 

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.). 
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same 

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the 

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata. 

Full depth is used only when an error has been pursued. 
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 (line 
17) using function head. Based on the metadata, frag-
mentation and aggregate calculation is performed for 
relations r (line 18) and s (line 19). The result of the 
Compute Agregates algorithm (Algorithm 2) is a set of 
tuples whose schema is determined by the attributes 
contained in fragmentation set and aggregation set. 
The resulting sets of tuples qr and qs are being com-
pared (lines 20 through 25) to find differences. Each 
tuple difference is added to the resulting list report 

(lines 21, 23 and 25). Instantly processed job will be 
removed from the list cQueue (lines 26 and 27). This 
way processed elements ( jobs) are removed from the 
priority queue while elements ( jobs) relating to un-
processed comparisons remain in the list. Differences 
tr revealed between compared data sets are added to 
the priority queue as new jobs for further inspections. 
It is evident that this algorithm can generate children 
jobs – each tuple tr generates a new job.
The Compute Agregates algorithm constructs an SQL 
statement similar to the statements from Table 2.

The SELECT clause contains all attributes from the X 
list, and a list of aggregate functions with accompa-
nying arguments and associated names (line 4). The 
WHERE part contains specific conditions, but only when 
input tuple t is not an empty tuple. It is not empty when 
difference between compared tables is detected and 
further fragmentation is done in order to find more de-
tailed information. The join conditions (lines 9 and 10) 
are being built according to the metadata from men-
tioned repository which takes into account the attri-
butes contained in X. The output of the algorithm is a 
relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details 
are omitted in the pseudo-code. They will be de-
scribed in the remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is de-
fined by the ordering of jobs. Jobs are ordered accord-
ing to three parameters, in the following order: 
1 Error depth, the algorithm will first pursue the 

branches in which errors are spotted. 

 

 Algorithm 2: Compute Aggregates 
1    Input:  (�, �, �, �)  // r is an relation or relational algebra expression 
2    Output:  ��� �� ������ 
3    Begin 
4       ������������ ←attributes from � and list of aggregate functions from �, renamed accordingly 
5       ���������� ← r   
6       if � is empty tuple 
7          �������������� ←true 
8       else 
9          T← schema of tuple � 
10          �������������� ← � � ��  A � t[A] 
11       ����������� ← list of attributes from X 
12       execute sql statement for ������������, ����������, ��������������, ����������� 
13       return resulting tuples 
14    ndE

2 Depth: if there are no errors, the algorithm will 
consider job depth (level) and thus uniformly 
spread the execution over all tables (compare jobs 
with depth 1 for all tables, then jobs with depth 2 
for all tables, etc.). 

3 Priority: users can set priority for each table. Ta-
bles with higher priority are inspected sooner 
within the same (error) depth.

Seek depths: algorithm considers two depths for a 
single job (comparison) that are defined and stored in 
the metadata repository:
1 Full depth is implicitly defined with the number of 

levels (and according attribute sets) defined in the 
metadata. Full depth is used only when an error has 
been pursued. 

2 Healthy job depth: the other, smaller depth, is 
defined for the jobs where no errors were found 
(“healthy jobs”).

Defining two depths allows us to find precise differing 
rows, while abandoning the search sooner for tables 
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which show no differences in the early part of the algo-
rithm. Comparing huge tables with no differences all the 
way to the primary key would be too slow and inefficient.
Figure 2 shows the fragmentation of the yearEnroll 
table that pertains to the year enrolment process at a 
HEI (High(er) Education Institution): a student (stu‐
dent_id) enrolls in a year of study (yearOfStudy) in an 
academic year (acdmYear). The left-hand side shows 
a yearEnroll table in the source system, and the right-
hand side shows its copy – yearEnroll table in the stag-
ing area. The primary key is KyearEnroll= {HEI_id, acdm‐
Year, yearOfStudy, student_id}. At the first level, the 
fragmentation is carried out according to HEI_id, then 
by acdmYear and so forth. For the sake of simplicity, 
we show only the count aggregate function in green 

colour (on the left side) and in green and red (where 
they differ) on the right side. Healthy job depth is set 
to the second level. Had there been no errors, the com-
parison would have been carried out and stopped on 
{HEI_id, acdmYear} fragment/depth. In this example 
though, the difference in counts is found at the first 
level, for the HEI1 (10<>9). Following on that, the 
algorithm focuses on the HEI1 and continues to frag-
ment that branch. At the second level, the difference 
is narrowed to (HE1, 09/10), then to the (HE1, 09/10, 
1st), and, finally, the exact tuples are found. The algo-
rithm steps (ordered path) are denoted with numbers 
in circles. Note that, in accordance with the job order-
ing strategy described above, the algorithm primarily 
explores the erroneous branches.

Figure 2
A tree representation of TCFC algorithm’s execution
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The algorithm will not further explore healthy branch-
es if it finds an erroneous branch. Healthy children 
jobs are loaded only if there are no errors. This means 
that algorithm will not further explore branch (HEI1, 
10/11) in Figure 2. This behaviour could be easi-
ly modified by loading the healthy branches into the 
queue with the lowest priority (to be executed last, if 
there is any time left). However, this would be subop-
timal, since there could be a great number of healthy 
branches. Imagine we have additional 50 years (be-
sides 2009 and 2010) in Figure 2 – this would spawn 
another 50 queries. In general, it would be better to 
execute one larger query (with all 51 years) and then 
ignore the already processed erroneous branches. 
This functionality implies a more significant change 
to the algorithm and is not presented here.
Another feature of the algorithm that was omitted 
from the formal description is the ability to reuse the 
results from the previous run. If we accept the assump-
tion that most of the errors between two ETL refresh 
cycles remain the same, especially when incremental 
loading of DW is employed, it is prudent to store results 
in the metadata repository and examine them first in 
the next run. These “narrow” queries are much faster 
than queries at the ground levels that are targeting the 
whole table. The results of those queries can be used 
to prune the execution tree as soon as the difference is 
accounted for. For instance, say we add one row to the 
(HEI3, 10/11, 5th) branch and run the algorithm again: 
what were steps 1 and 4 would now be carried out in the 
first step at level one. But the difference is now in frag-
ments HEI1 and HEI3. The difference (one row) found 
in the leaf job (HEI1, 09/10, 1st) would account for 
the HE1 branch and it would be pruned. The algorithm 
would continue to drill down on HEI3 branch only, to 
find the newly added difference. In general: a branch 
can be pruned if there is a leaf job with matching prefix 
fragment values ((HEI1) matches (HEI1, 09/10, 1st)) 
and error counts. This feature of the TCFC algorithm 
gives the ability to benefit from previous runs (learn 
from the data, in a way) and drastically reduce the ex-
ecution time. Note that, this way, it is possible to refine 
search results after being interrupted (because of the 
limited time) – a job that was interrupted today might 
finish tomorrow, or the day after. This feature was not 
included in the comparison with the reference imple-
mentation in Section 3.1. because it would give us an 
unfair advantage.

3.4. Fragmentation Strategy 
Recommendations 
For any non-trivial table, a number of fragmenta-
tion paths is huge. For instance, for just four possible 
fragmentation attributes (e.g., Figure 2) there are 148 
different fragmenting strategies: 1 for zero level (no 
grouping), 14 one level strategies, 49 two level strate-
gies, 60 three level and 24 four level strategies. Based 
on our experience, we provide the following recom-
mendations: 
 _ Fragmentation strategy should be determined with 

the help of a domain expert – a person who has a 
good knowledge of the data semantics and business 
processes. 

 _ Healthy job depth should be set for all relations, 
except for low-cardinality relations where only one 
level should be used, i.e. where primary key is used 
at the first level.

 _ Higher fragmentation levels must not include 
attributes that are functionally dependent on the 
attributes from lower fragmentation levels.

 _ The number of tuples in children fragments should 
be for at least an order of magnitude less than the 
number of tuples in the parenting fragment. This is 
particularly important for the first fragmentation 
level – this is where a huge table is reduced to N 
smaller “tables” (fragments). Hopefully, if the 
data are relatively uniformly distributed over the 
first fragmentation attribute set (usually, data 
are uniformly distributed at least over the time 
attribute), then the number of tuples can be reduced 
by the chosen order of magnitude by creating tens 
or hundreds of fragments. On the other hand, the 
number of fragments should not be too big because 
this would facilitate error scattering over different 
fragments. The best-case scenario is if all the errors 
are in the same fragment, so that a single branch is 
pursued.

 _ The total number of fragmentation levels should 
not be too big or too small. Based on tests conducted 
in this paper, for the relations of 100 million tuples, 
we consider two to four to be the optimal number 
of levels.

 _ If possible, build a composite index on the 
corresponding attributes of the last level of 
fragmentation.
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In the case where DBMS keeps accurate statistics on 
the row count of tables, it is suitable to start compar-
ing data sets with empty fragmentation set (at first 
level) with just one aggregate function – COUNT, 
since the result of the SELECT COUNT(attributeN-
ame) will be instantaneous. If statistics are not kept, 
such a statement would cause a full table scan and 
then it is better to perform the fragmentation with 
nonempty fragmentation set and multiple aggregate 
functions.

3.5. Algorithm Evaluation
The TCFC algorithm was tested in terms of speed and 
accuracy. It is implemented in C# programming lan-
guage. Testing was executed on a PC with Intel ® Core 
™ i7-4770 CPU processor with 16 GB of RAM and Mic-
rosoft Windows 8 operating system. For database serv-
ers, two virtual machines with equal configurations 
were used, namely, Intel ® Xeon ® processor E7540 
(2.00 GHz clock speed), 8 GB of RAM, Windows Serv-
er Standard operating system and SQL Server 2014 

DBMS (with auto update statistic option).
Testing was carried out on data sets with cardinality 
between 50 million and 400 million tuples which we 
consider comparable to cardinality in a real-world 
data warehousing systems (at least for the incremen-
tal daily load) and for variable number of the differ-
ences between compared data sets. 
Figure 3 shows schemas of two data sets from differ-
ent domains used for algorithm evaluation:
a Real world data from the field of higher educa-

tion [25] (relation exam in Figure 3(a)) that was 
extrapolated (from initial 10 million) to relations 
exam100M, exam200M and exam400M with 100, 
200 and 400 million tuples i.e. 8GB, 15GB and 
30GB data, respectively.

b Well-known TPC Benchmark ™ H (TPC-H) pro-
grammatically generated data set [37] (relations 
orders and lineItem in Figure 3(b), containing 50 
and 180 million tuples, i.e. 5GB and 25GB data, re-
spectively).

Figure 3 
Schemas of data sets used for algorithm evaluation

 (b) TCP-H data set, 50M and 180M rows
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where pArtKey is the article key. 
TCFC’s speed is compared to the execution speed of the referent SELECT statements, shown below whose execution 
time is referred to as referent execution time in the rest of the paper. In this experiment, we have deliberately used the 
same DBMS on both servers, because SQL Server provides the execution of queries involving tables stored on remote 
servers (via the linked server feature). The SQL statement used to find the differences between the two instances of 
exam100M tables (and analogous statements were used for the remaining exam*M table pairs) is shown below. To 
connect to the staging area we used linked server named “SASrv.ZPR.FER.HR”: 

 
SELECT *  
  FROM HEISsrc.dbo.exam100M src  
  FULL OUTER JOIN [SASrv.ZPR.FER.HR].HEISsa.dbo.exam100M dest  
    ON src.student_id = dest.student_id 
   AND src.course_id = dest.course_id 
   AND src.exam_date = dest.exam_date 
 WHERE src.student_id IS NULL 
    OR dest.student_id IS NULL 
    -- OR (dest.NonKeyAttrib <> src.NonKeyAttrib) , for each remaining Non-Key attribute 

Similar statements were used to compare orders and lineItem pairs: 
SELECT * 
  FROM TPCHsrc.dbo.orders src  
  FULL OUTER JOIN  
  [SASrv.ZPR.FER.HR].TPCHsa.dbo.orders dest 
    ON src.orderKey = dest.orderKey 
 WHERE src.orderKey IS NULL 
    OR dest.orderKey IS NULL 
-- OR (dest.NonKeyAttrib <> 
--  src.NonKeyAttrib) , for each remaining 
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SELECT *   
  FROM TPCHsrc.dbo.lineitem src  
  FULL OUTER JOIN 
  [SASrv.ZPR.FER.HR].TPCHsa.dbo.lineitem dest  
    ON src.orderKey = dest.orderKey  
   AND src.partKey  = dest.partKey  
   AND src.suppKey  = dest.suppKey 
 WHERE src.orderKey  IS NULL  
    OR dest.orderKey IS NULL     
-- OR (dest.NonKeyAttrib <> 
--  src.NonKeyAttrib) , for each remaining 
--                       Non-Key attribute 

For the sake of brevity, the above SQL statements do not list all OR statements that check the potential differences in 
non-key attributes; that part is represented as a comment. 
The fragmentation presented in Table 2 was used. The last fragmentation level for each relation includes all primary 
key attributes and consequently the comparison will pinpoint the exact missing/excess tuples. Differences between 
the tables were generated by deleting tuples from the source table. Both, number and dispersion on differences across 
fragments were varied, since error dispersion significantly affects the performance. For instance, if a pair of 
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where pArtKey is the article key.
TCFC’s speed is compared to the execution speed of the 
referent SELECT statements, shown below whose ex-
ecution time is referred to as referent execution time in 

the rest of the paper. In this experiment, we have deliber-
ately used the same DBMS on both servers, because SQL 
Server provides the execution of queries involving tables 
stored on remote servers (via the linked server feature). 
The SQL statement used to find the differences between 
the two instances of exam100M tables (and analogous 
statements were used for the remaining exam*M table 
pairs) is shown below. To connect to the staging area 
we used linked server named “SASrv.ZPR.FER.HR”:
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SELECT * 

  FROM HEISsrc.dbo.exam100M src 

  FULL OUTER JOIN [SASrv.ZPR.FER.HR].HEISsa.dbo.exam100M dest 

    ON src.student_id = dest.student_id

   AND src.course_id = dest.course_id

   AND src.exam_date = dest.exam_date

 WHERE src.student_id IS NULL

    OR dest.student_id IS NULL

    -- OR (dest.NonKeyAttrib <> src.NonKeyAttrib) , for each remaining Non-Key attribute

Similar statements were used to compare orders and lineItem pairs:

SELECT *

  FROM TPCHsrc.dbo.orders src 

  FULL OUTER JOIN 

  [SASrv.ZPR.FER.HR].TPCHsa.dbo.orders dest

    ON src.orderKey = dest.orderKey

 WHERE src.orderKey IS NULL

    OR dest.orderKey IS NULL 
-- OR (dest.NonKeyAttrib <> 
--  src.NonKeyAttrib) , for each remaining

--                       Non-Key attribute 

SELECT *  

  FROM TPCHsrc.dbo.lineitem src 

  FULL OUTER JOIN

  [SASrv.ZPR.FER.HR].TPCHsa.dbo.lineitem dest 

    ON src.orderKey = dest.orderKey 

   AND src.partKey  = dest.partKey 

   AND src.suppKey  = dest.suppKey

 WHERE src.orderKey  IS NULL 

    OR dest.orderKey IS NULL    
-- OR (dest.NonKeyAttrib <> 
--  src.NonKeyAttrib) , for each remaining

--                       Non-Key attribute

For the sake of brevity, the above SQL statements do 
not list all OR statements that check the potential dif-
ferences in non-key attributes; that part is represent-
ed as a comment.
The fragmentation presented in Table 1 was used. 
The last fragmentation level for each relation in-
cludes all primary key attributes and consequent-
ly the comparison will pinpoint the exact missing/
excess tuples. Differences between the tables were 
generated by deleting tuples from the source table. 
Both, number and dispersion on differences across 
fragments were varied, since error dispersion sig-
nificantly affects the performance. For instance, if 
a pair of exam100M relations differs in 1‰, i.e., 
100.000 tuples, in the worst case, at the last level, an 
equal number of queries would be generated (though 
it is very unlikely errors would align with the frag-
mentation set in such way at the penultimate level) 
and in the best case a single query would detect all 

Table 1 
HEIS and TPC-H fragmentation strategy
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same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the 
differences are scattered in 20% of the total fragments in the penultimate fragmentation level. 
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Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations, 
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in 
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the 
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT 
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the 
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors 
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100% 
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from 
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only 
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate. 
Testing was conducted in two different modes:  

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d), 
and  

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and 
Figure 4(c). 

Graphs show a few common characteristics for all experiments:  
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the 

SELECT statement spanning tables from remote servers. 
• Indices that follows a fragmentation strategy improve the performance of TCFC.  
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance. 
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows 
worse results than the relational engine. However, the following applies: 
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that 

we were targeting. 
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds 

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of 
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors. 
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify 
between two ETL cycles. 

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the 
threshold can be set to match the referent implementation time.  

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use 
previous results.  
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same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the 
differences are scattered in 20% of the total fragments in the penultimate fragmentation level. 
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previous results.  
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same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the 
differences are scattered in 20% of the total fragments in the penultimate fragmentation level. 
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𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

 
Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations, 
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in 
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the 
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT 
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the 
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors 
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100% 
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from 
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only 
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate. 
Testing was conducted in two different modes:  

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d), 
and  

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and 
Figure 4(c). 

Graphs show a few common characteristics for all experiments:  
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the 

SELECT statement spanning tables from remote servers. 
• Indices that follows a fragmentation strategy improve the performance of TCFC.  
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance. 
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows 
worse results than the relational engine. However, the following applies: 
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that 

we were targeting. 
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds 

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of 
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors. 
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify 
between two ETL cycles. 

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the 
threshold can be set to match the referent implementation time.  

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use 
previous results.  
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same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the 
differences are scattered in 20% of the total fragments in the penultimate fragmentation level. 
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𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

 
Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations, 
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in 
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the 
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT 
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the 
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors 
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100% 
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from 
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only 
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate. 
Testing was conducted in two different modes:  

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d), 
and  

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and 
Figure 4(c). 

Graphs show a few common characteristics for all experiments:  
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the 

SELECT statement spanning tables from remote servers. 
• Indices that follows a fragmentation strategy improve the performance of TCFC.  
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance. 
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows 
worse results than the relational engine. However, the following applies: 
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that 

we were targeting. 
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds 

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of 
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors. 
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify 
between two ETL cycles. 

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the 
threshold can be set to match the referent implementation time.  

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use 
previous results.  

13 
 

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the 
differences are scattered in 20% of the total fragments in the penultimate fragmentation level. 

 

Table 2 HEIS and TPC-H fragmentation strategy 

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

 
Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations, 
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in 
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the 
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT 
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the 
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors 
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100% 
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from 
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only 
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate. 
Testing was conducted in two different modes:  

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d), 
and  

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and 
Figure 4(c). 

Graphs show a few common characteristics for all experiments:  
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the 

SELECT statement spanning tables from remote servers. 
• Indices that follows a fragmentation strategy improve the performance of TCFC.  
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance. 
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows 
worse results than the relational engine. However, the following applies: 
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that 

we were targeting. 
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds 

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of 
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors. 
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify 
between two ETL cycles. 

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the 
threshold can be set to match the referent implementation time.  

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use 
previous results.  
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same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the 
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• Indices that follows a fragmentation strategy improve the performance of TCFC.  
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The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows 
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systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors. 
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify 
between two ETL cycles. 

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the 
threshold can be set to match the referent implementation time.  

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use 
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differences are scattered in 20% of the total fragments in the penultimate fragmentation level. 
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𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

 
Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations, 
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in 
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the 
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT 
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the 
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors 
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100% 
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from 
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only 
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate. 
Testing was conducted in two different modes:  

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d), 
and  

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and 
Figure 4(c). 

Graphs show a few common characteristics for all experiments:  
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the 

SELECT statement spanning tables from remote servers. 
• Indices that follows a fragmentation strategy improve the performance of TCFC.  
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance. 
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows 
worse results than the relational engine. However, the following applies: 
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that 

we were targeting. 
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds 

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of 
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors. 
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify 
between two ETL cycles. 

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the 
threshold can be set to match the referent implementation time.  

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use 
previous results.  

13 
 

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the 
differences are scattered in 20% of the total fragments in the penultimate fragmentation level. 

 

Table 2 HEIS and TPC-H fragmentation strategy 

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} 
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 =  {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)} 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} � 

 
Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations, 
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in 
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the 
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT 
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the 
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors 
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100% 
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from 
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only 
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate. 
Testing was conducted in two different modes:  

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d), 
and  

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and 
Figure 4(c). 

Graphs show a few common characteristics for all experiments:  
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the 

SELECT statement spanning tables from remote servers. 
• Indices that follows a fragmentation strategy improve the performance of TCFC.  
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance. 
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows 
worse results than the relational engine. However, the following applies: 
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that 

we were targeting. 
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds 

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of 
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors. 
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify 
between two ETL cycles. 

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the 
threshold can be set to match the referent implementation time.  

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use 
previous results.  
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100k differences, as they would all be in the same 
fragment. Dispersion was varied using 20%, 50% 
and 100% dispersion. Dispersion of 20% means that 
the differences are scattered in 20% of the total frag-
ments in the penultimate fragmentation level.
Figure 4 presents evaluation results for the two stat-
ed data sets. Legend items indicate the names of re-
lations, cardinality and the error dispersion. In all 
graphs in Figure 4, the x-coordinate represents the 
number of differences in per mills of the relation 
cardinality, while the y-coordinate shows the time 
spent finding differences relative to the reference 
implementation time, meaning that TCFC algorithm 
finds differences faster than the referent SELECT 
statement for all scenarios where parts of the graphs 
are below a 100% line. For instance, at the top left 
graph, the point where the graph exam100M-20% 
reaches 100% of the referent execution time is for 
the number of errors between 12 and 13 ‰ (i.e. be-
tween 1.2 million and 1.3 million differences), while 
the graph named ispit100M-100% reaches the ref-
erent execution time for approximately 2.5 ‰ (i.e., 
250.000 differences). Increasing dispersion from 
20% to 100% reduces the speed of the process by 
80% (approximately). In the same time frame, TCFC 
finds only 20% differences dispersed with the 100% 
rate compared to finding differences dispersed with 
the 20% rate.
Testing was conducted in two different modes: 
1 non-indexed: both tables without indexes (even 

primary key constraints), shown in Figure 4(b) and 
Figure 4(d), and 

2 indexed, with indices appropriate to the chosen 
fragmentation strategy/primary key, shown in Fig-
ure 4(a) and Figure 4(c).

Graphs show a few common characteristics for all ex-
periments: 
 _ For a sufficiently small number of differences, 

TCFC outperforms the relational engine, i.e. it is 
faster than the SELECT statement spanning tables 
from remote servers.

 _ Indices that follows a fragmentation strategy 
improve the performance of TCFC. 

 _ Error dispersion, which is closely related to the 
fragmentation strategy, significantly affects the 
performance.

The first observation can also be stated as the follows: 

after a certain point of differences, the TCFC algo-
rithm shows worse results than the relational engine. 
However, the following applies:
 _ In DW environment, it is reasonable to expect the 

number of differences to be small, and that is the 
scenario that we were targeting.

 _ Differences of several per mills (where the TCFC 
outperforms the reference implementation) 
relative to hundreds of millions of rows amount to 
hundreds of thousands or even millions of errors: 
that is either an evidence of systemic error that 
will eliminate most of the erroneous rows once 
corrected, or an unmanageable amount of errors. 
Either way, with such large row counts, errors in 
per mills present more than enough work for a 
person to rectify between two ETL cycles.

 _ Even when the number of differences is not small, 
the TCFC algorithm is time-constrained. For 
instance, the threshold can be set to match the 
referent implementation time. 

 _ If the assumption that errors remain between ELT 
cycles holds, the TCFC will improve over time as it 
will use previous results. 

Finally, one must have in mind that it is often not even 
possible to write (execute) SQL statements that com-
pare tables from different databases when different 
vendor’s DBMSs are used.
For all the reasons stated above, we believe that the 
TCFC algorithm is a perfect fit for ETL integration 
testing, and is potentially a very useful method for 
large set comparison in general. 
While carrying out the experiments, different frag-
mentation strategies were used and it was proved that 
poor fragmentation strategy can deteriorate the per-
formance of the algorithm. Finding the optimal frag-
mentation strategy is therefore a task that should be 
performed with care as it requires knowledge of the 
data (trends) and fair knowledge of SQL and query 
optimization techniques. This is somewhat similar 
to index creation in the relational databases where 
poorly chosen index can have a negative impact on the 
performance.
In terms of accuracy, the algorithm has proven to be 
accurate – all differences were found in each run (as 
mentioned before, there is a miniscule chance of er-
rors being ignored when numbers nullify each other).
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(a) Indexed data, exec time relative to SQL-outer-join (b) Non-Indexed data, exec time relative to SQL-outer-join

(c) Indexed data, exec time relative to SQL-outer-join (d) Non-Indexed data, exec time relative to SQL-outer-join

Figure 4 
Evaluation results for different data sets and indexing strategies. Legend items indicate the names of the relations, 
cardinality and the error dispersion

4. Related Work
The literature on software testing is vast and compre-
hensive, but DW and ETL testing has gained far less 
attention. Though fundamental principles and tech-
niques apply, DW testing differs significantly from the 
software testing, mainly because DW testing is pri-
marily data oriented (as opposed to program code), and 

data volume tends to be large. A thorough overview of 
DW testing differences can be found in [11], [15-17].  
Mookerjea and Malisetty [27] described the main 
phases of DW testing, outline main challenges in DW 
testing and propose a set of best practices in ETL and 
DW testing, as well as Singh [33], while Singh and 



Information Technology and Control 2018/1/4722

Kawaljeet [34] gave a descriptive classification of 
data quality problems at all phases of DW project: data 
sources, data integration, data staging/ETL and DW 
design. Singh [33] also considered ideal to perform 
integration testing on real production data, while in 
Mookerjea and Malisetty [27] authors proposed to 
base part of the testing activities (those related to 
incremental load) on mock data. We started our eval-
uation process with real project data (Information 
System of Higher Education Institutions in Republic 
of Croatia – ISVU) [19], but in order to test on large 
data sets (over 100 million tuples), we proceeded with 
testing on mock (extrapolated real) data [37]. 
A number of papers deal with particular aspects of 
DW testing. For instance, in Thomsen and Pedersen 
[36] a semi-automatic regression testing framework 
used to compare data between ETL runs is proposed 
with the purpose of catching new errors when soft-
ware is updated. Rodić and Baranović [32] proposed 
generation of data quality rules and their integration 
into ETL process. In Santos et al. [28-29], authors at-
tempted to automate the selection and execution of 
previously identified test cases for loading procedures 
in BI environments based on a DW. To validate the ap-
proach, the authors have developed a unit test frame-
work and conducted an experiment showing reduced 
test effort when compared with manual execution of 
test cases or generic framework, such as DBUnit [10]. 
In Dakrory et al. [6], authors proposed a framework for 
automating ETL testing for data quality which deliv-
ers a wide coverage for data quality testing by framing 
testing activities within a modular methodology that 
can be customized according to ETL specificities, 
business rules, and constraints. In Williams [39], the 
author employed Data Vault-based Enterprise Data 
Warehouse and concluded that such an architecture 
can simplify and enhance various aspects of testing, 
and curtail delays that are common in DW projects.
In a more generic and exhaustive sense, two contribu-
tions stand out. 
Firstly, Golfarelli and Rizzi [14-16] provided a com-
prehensive view of DW testing addressing the prob-
lem from various perspectives. The authors identify 
the following components to be tested: Conceptual 
schema, Logical Schema, ETL procedures, Database 
and Front-end, and introduce the classification of 
testing activities in terms of “what” is tested (address-
ing data quality) and “how” it is tested (addressing 

test type, e.g., performance test). They define a com-
prehensive methodological framework for data mart 
testing which includes eight phases: Requirement 
analysis, Analysis and Reconciliation, Conceptual de-
sign, Workload refinement, Logical design, Data stag-
ing design, Physical design and Implementation. 
Secondly, ElGamal et al [11-12] brought an extensive 
overview of DW testing approaches, divided in four 
categories: software based testing approaches, ETL 
based, Multi-perspective and CASE-tool based. The 
authors define a three-dimensional DW testing ma-
trix with regards to where, what and when is tested, 
and conclude that none of the previous approaches 
address the entire matrix. Unlike previous approach-
es, the authors take into consideration different DW 
architectures and provide a much more detailed and 
comprehensive description of all test routines to be 
administered in a DW project. With all that in mind, a 
generic testing framework based on the generic Kim-
mon DW architecture including aforementioned 
routines is proposed. Interestingly, the proposed rou-
tines feature overall “record counts” comparisons 
and “random record comparisons”, probably con-
sidering that the overall comparison of records is a 
very challenging task in a realistic DW environment, 
where huge amounts of data and heterogeneous da-
tabase engines are typically found. Moreover, all the 
aforementioned research envisions record (count) 
comparison in various stages of ETL/DW project, but 
none of them comment on how to conduct the com-
parison. This is where our work nicely fits in, as it 
provides a detailed algorithmic instruction on how to 
perform this comparison that is at the foundation of 
any DW testing system.
Krawatzeck et al. [23] identified a gap between scien-
tific approach and the actual implementation in the 
real-world scenarios and performed an evaluation of 
open-source DW unit testing tools (e.g., DBUnit [10]) 
to address that issue, concluding that some promising 
tools for the DW testing exist, with a preference for the 
DBFit tool [9] as the only vendor-independent tool.
Understandably, ETL/DW testing is also a major top-
ic in the industry. Major vendors provide some sort of 
testing integrated with their data integration and data 
quality tools. For instance, Informatica [1] features 
a “Data Validation Option” tool [7] used to compare 
two data sets, though no information is provided as to 
how it is done. Furthermore, there are companies and 
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tools developed solely for the purpose of testing a DW. 
The QuerySurge [31] and ETL Validator [8] are com-
mercial CASE tools developed by RTTS and Datagaps 
companies, respectively, to automate the testing and 
validation in the Big Data and DW systems. Under 
ETL process testing, QuerySurge CASE tool offers 
column-level comparison, table-level comparison and 
row count comparison. Each of these testing types 
comes down to automatic generation of SQL queries 
for comparing pairs of data sets based on row counts 
or the values of attributes. Row count comparison only 
determines the number of tuples in comparing pairs 
of tables and does not indicate tuple(s) that caused the 
difference. Table-level testing type produces two data 
sets and subsequently compares them. The only differ-
ence between column and table-level testing is that at 
the column-level only certain attributes can be chosen 
and compared. Both types of tests can be performed 
using approach presented in this paper. The advantage 
of our approach is in speed – a consequence of TCFC 
algorithm’s feature that only table fragments that may 
contain differences are inspected. In addition, to the 
best of our knowledge, none of the available commer-
cial solutions provide a time-constraint feature, which 
is essential in a DW testing scenario.

5. Conclusion
In this paper, we describe an integration testing pro-
cedure for a DW environment, with an emphasis on 
the generic time-constrained algorithm for compar-
ing two tables. The goal of the algorithm is to provide 
the “global overview” of the data set’s differences in a 
given time frame. By global overview, we mean that 
the largest possible set of tables should be examined, 
at the expense of the completeness of results for any 

single table. Metadata are used to describe data sets, 
and to configure and steer the algorithm. Both rela-
tional and dimensional data models are supported, so 
that the algorithm can be used to compare data from 
the various stages of the ETL cycle. The algorithm 
can use the results from the previous runs to execute 
more effectively. Parts of the algorithm are formally 
described, and the overall algorithm is presented in 
pseudo-code.  Evaluation of the algorithm on the re-
al-world data of the project and on TPC-H data set has 
shown that it outperforms the SQL Server relational 
engine SELECT statement when the percentage of 
missing or excess tuples is relatively small, which is 
a scenario typical of a DW environment. Although we 
state that the algorithm competes with the relational 
engine, it actually uses the relational engine and the 
whole process can be viewed as a query optimization 
technique: the exhaustive SELECT statement is “bro-
ken down” into a set of smaller statements that are 
trying to pinpoint the unequal fragments. Performing 
the search with many “small” queries provides addi-
tional benefits: the whole process can be gracefully 
time-constrained and more tables can be inspected to 
achieve the desired global view of the data, in contrast 
to a single exhaustive SELECT statement that might 
spend the entire available time on a single table.
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