
5Information Technology and Control 2018/1/47

A Time-Constrained Algorithm
for Integration Testing in a Data
Warehouse Environment

ITC 1/47
Journal of Information Technology
and Control
Vol. 47 / No. 1 / 2018
pp. 5-25
DOI 10.5755/j01.itc.47.1.18171
© Kaunas University of Technology

A Time-Constrained Algorithm for Integration Testing
in a Data Warehouse Environment

Received 2017/05/11 Accepted after revision 2018/01/22

 http://dx.doi.org/10.5755/j01.itc.47.1.18171

Corresponding author: ljiljana.brkic@fer.hr

Ljiljana Brkić, Igor Mekterović
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia,
e-mail: ljiljana.brkic@fer.hr, igor.mekterovic@fer.hr

A data warehouse should be tested for data quality on regular basis, preferably as a part of each ETL cycle. That
way, a certain degree of confidence in the data warehouse reports can be achieved, and it is generally more likely
to timely correct potential data errors. In this paper, we present an algorithm primarily intended for integration
testing in the data warehouse environment, though more widely applicable. It is a generic, time-constrained,
metadata driven algorithm that compares large database tables in order to attain the best global overview of the
data set’s differences in a given time frame. When there is not enough time available, the algorithm is capable of
producing coarse, less precise estimates of all data sets differences, and if allowed enough time, the algorithm
will pinpoint exact differences. This paper presents the algorithm in detail, presents algorithm evaluation on
the data of a real project and TPC-H data set, and comments on its usability. The tests show that the algorithm
outperforms the relational engine when the percentage of differences in the database is relatively small, which
is typical for data warehouse ETL environments.
KEYWORDS: Data Warehouse Testing, ETL, Integration Testing, Data Quality.

1. Introduction
Data quality is a key factor in data warehouse (DW)
and business intelligence solutions. Continuous test-
ing of a DW can provide a solid assessment of the data
quality. DW testing process should be implemented at
very early stages of DW system development, leading
to early error detection and correction which will, in

turn, increase DW’s credibility and decrease opera-
tional costs in the long run.
DW testing is closely related to the quality of stored
data. Data quality issues in DW environment are
studied in [3], [20]. Typically, quality of data delivered
to users is described and evaluated using quality at-

Information Technology and Control 2018/1/476

tributes [38]. These attributes are called data quality
dimensions. Each dimension covers a specific aspect
of quality. For quantitative assessment of quality di-
mensions, it is necessary to define metrics and mea-
surement methods. Researchers have recognized the
importance of this issue and many research papers
(some of which are [13], [18], [21], [30], [38]) deal with
methods of measuring or quantifying dimensions of
data quality.
Apart from the source data, the quality of DW data is
also affected by the ETL process used to integrate and
transfer the data. Faulty ETL process, whether be-
cause of the faulty logic, inappropriate data refresh-
ment strategy or just plain programming errors, can
cause data not to be transferred to the DW or not to be
transferred in a timely fashion. With that in mind, it is
important to assess how accurate and complete data
are: whether all required data from the data sources
are extracted, stored in the staging area, transformed
and subsequently loaded into the DW and whether
the data in the DW are accurate with regards to the
source data. We adopt the accuracy definition from
[3] “Accuracy is defined as the closeness between a
value v and a value v’, considered as the correct rep-
resentation of the real-life phenomenon that v aims
to represent” and completeness definition from [2]:
“Presence of all defined content at both data element
and data set levels.” The assessment of accuracy and
completeness of the data in a DW imposes comparing
large data sets which is at the core of the DW’s inte-
gration testing [24].
This paper is concerned with those very issues – we
present an algorithm for integration testing of accu-
racy and completeness of the DW data in the sense of
the aforementioned definitions. Integration testing
is an approach to software testing where software
components are combined and tested as a group, with
the purpose of ensuring that interacting components
or subsystems interface correctly with one another.
Integration testing in DW environment usually only
includes testing the ETL application, which compris-
es of numerous packages. ETL packages are tested by
examining data at the endpoints (input and output) of
those packages. In DW environment, we can identify
three typical subsystems that ETL application deals
with: data source(s), data staging area and DW pro-
duction tables (typically dimension and fact tables).
We perform integration testing by comparing vari-

ous corresponding data sets from those three sourc-
es using the proposed TCFC (Time-Constrained
Fragment and Compare) algorithm. The algorithm is
generic and widely applicable, not limited to DW en-
vironment. It provides an overview of the differenc-
es between two data sets depending on the assigned
time frame, from performing shallow comparisons
to pinpointing exact differing tuples. We present the
algorithm in detail, comment on its features, evaluate
it on data of a real project as well as on mock data and
comment on the results.

2. Motivation
The primary objective of the integration testing and
TCFC algorithm presented in this paper is to get a
global overview of the data quality in the DW with a
focus on accuracy and completeness measures. These
measures are considered with respect to the source
systems, as we assume that the data in the source sys-
tem are accurate and complete. In this generic test in-
tegration scenario, involving source, staging and DW
subsystems, testing should provide answers to the
following questions:
a whether all required data from the data sources

been extracted and transferred to the staging area
(completeness), and whether staging area attri-
bute values are equal to corresponding values in
source systems (accuracy);

b whether all required data from the staging area
been transferred to the DW (completeness), and
whether corresponding attribute values are equal
(accuracy).

To answer the first question, the data from the data
sources must be compared to the data stored in the
staging area, where they are stored in the identical
or similar schemas. To answer the second question,
data from the staging area must be compared to the
data in the DW, where they may be stored in different
(though mappable) structures, e.g., dimensional mod-
el. In both cases, the problem boils down to comparing
two sets of database tables having identical or differ-
ent but mappable schemas to find missing or excess
tuples on either side, and/or matching tuples with dif-
ferent values of non-key attributes.
Relational database engines are a natural solution

7Information Technology and Control 2018/1/47

to that problem, since they are highly optimized for
set operations on data: Two tables can be compared
for differences with a single SQL statement. This
approach, however, which will be referred to as ref-
erence implementation hereafter, has two serious
drawbacks that motivated our research:
3 It is not possible to span a single SQL query across

heterogeneous platforms. That is a common sce-
nario in DW environment, especially between
source systems and staging area. To compare ta-
bles from different environments, table from one
server would have to be transferred to a (tempo-
rary) table on the other server or some sort of da-
tabase integration software would have to be used
that would abstract that operation. Either way, the
very operation of moving the data from one DBMS
to another is subject to error. Transfer errors can
occur for various reasons. For instance, IBM Infor-
mix’s DATE type has a wider DATE range than SQL
Server’s, and rows with such dates simply cannot
be inserted into the SQL Server table having the
exact same schema.

4 It is an all-or-nothing approach. It is not possible
to perform a “shallow comparison” – a compar-
ison that would take much less time to execute
but would not be completely accurate (i.e. detect
all differences in all tables) and/or precise (i.e.
pinpoint the exact tuples causing differences).
All rows from one table are compared to all rows
from the other table and in the case when there is
a substantial number of rows (tens of millions and
more), such a comparison can also take a substan-
tial resources to execute. A large table comparison
could block all others and take up all available time.
In other words, such queries cannot be appropri-
ately time-managed to fit into a given time frame.
Time managing queries is very important because
testing procedures have to fit into the ETL’s ac-
ceptable time frame. It is unacceptable to query the
data sources at arbitrary times, inflicting addition-
al burden on the production systems.

Sometimes, when comparing two tables via a sin-
gle SQL statement, it is handy to use a hash function
(e.g., MD5) to produce the checksum of the tuple. This
shortens the SQL statement, but, in general, calcu-
lating checksums additionally slows the comparison
and is not suitable for large data sets, especially if
checksums cannot be stored (e.g., ETL has read only

access to source systems). Checksums are applicable
to TCFC with similar properties, as commented in
Section 3.1.
In terms of complexity, comparing two data sets is
O(n2) complex, where every record from the first set
has to be compared with records from the second set.
Another valid approach, used by some commercial
tools (e.g., SQL Data Examiner [35]), is to fetch re-
cords sorted by the primary key from the databases
and perform a less complex merge-sort style compari-
son; however – it must be taken into account that sort-
ing data at the sources incurs additional costs. Both
approaches suffer from the 2nd drawback described
above: they are prone to blocking the entire compari-
son when large tables are examined. In addition, such
approaches rely heavily on the client’s resources (disk
and memory) as both sets must be retrieved in their
entirety. Time-managing testing (queries) is what
makes this problem difficult, and, to the best of our
knowledge, has not been addressed in the literature
so far (see the section “Related Work” for more).
This motivated us to develop an algorithm that will
surpass these limitations, yet remain comparable
to the reference implementation in terms of speed.
Since the expected number of differences between
the tables is relatively small when compared to the to-
tal number of rows, we formulate the TCFC algorithm
requirements as follows:
 _ When applied to large data sets with a small

number of differences, the algorithm should be
comparable in terms of speed with the reference
implementation. One could argue that having 10k
or 100k faulty tuples is “the same” because such a
large number of errors is either a sign of systemic
error or an unmanageable number of data errors
that cannot be manually corrected. Therefore,
the algorithm should work well for a manageable
number of differing rows, hundreds or thousands
of errors, not millions.

 _ Must be suitable for comparing data across
heterogeneous platforms.

 _ Must be time manageable, to fit into a configured
time frame, at the expense of precision. In other
words, it must be able to perform “shallow
comparisons” and, consequently, has to be
configurable.

The idea is to leverage the relational engine by break-

Information Technology and Control 2018/1/478

ing down the exhausting reference query into many
faster queries that search for potential errors in a
greedy fashion. This is done by subsequently break-
ing data into horizontal fragments and comparing
fragment counts (and/or other aggregated values) of
corresponding fragments. As the algorithm progress-
es, fragmentation filters are refined, so that the frag-
ments become smaller. Fragments where inequali-
ties are detected are examined with higher priority.
Eventually, if so configured and if time allows it, the
comparison could be brought to the primary key level,
thus yielding the exact missing or excess tuples.
When designing the TCFC algorithm, we were guided
by the thought that, given a limited time, it is better to
acquire a possibly not completely accurate overview
of all tables rather than an accurate comparison of
some tables, while leaving others not examined. We
denote this approach as “good enough global over-
view”. In other words, if there is a large set of table
pairs with only several containing differences, it is
considered better to report that there are some differ-
ences in all of the pairs actually containing differenc-
es, than to pinpoint exact differences in just a few of
them, and leave the rest of the tables unexamined. It
is a position that we have attained after participating
in few real world projects and, though it might not be
the best strategy for all applications, we believe that it
is the best one in the most of DW ETL scenarios.

3. TCFC Algorithm
The TCFC algorithm is designed to be as generic as
possible and to work on heterogeneous platforms and
with large data sets. To apply the proposed algorithm
to a DW, the following conditions must be met:
 _ Data sources are relational databases, since the

algorithm leverages relational engine. Other
sources of data (text files, spreadsheets or
other office documents, XML files, etc.) are not
supported. As a workaround to this limitation, data
from other sources can be processed and stored in
a relational database (“piped through”).

 _ Each record in the destination table corresponds
to exactly one record in the source table. This
requirement can be worked around by adding
an additional metadata layer to describe the
acceptable differences. For instance, with slowly

changing dimensions, the number of regular
“duplicates” can be kept. Furthermore, a generic
system of human reviewing and (dis)approving
differences could be put in place, where an analyst
would mark the correct differing tuples and
they would be taken into account in the future
comparisons. We do not describe such system in
more detail here, though. As a side note, our real-
world project use-case required for a 100% match
between the source and DW (students’ exams, year
and course enrollments, etc.).

 _ Data lineage [4-5] must be established, there must
be a way to determine the source for each tuple
in data warehouse tables. To do so, it might be
necessary to make minor modifications to existing
ETL procedures. The procedure for establishing
data lineage in existing systems, which is used in
this paper, is described in detail in [26].

In the following two sections, we formally describe
the table-level part of the TCFC algorithm for com-
paring tables with identical and non-identical sche-
mas, then present the overall algorithm in a pseudo
code, provide a running example, present and discuss
the performance testing and the associated results.

3.1. Determining Inequalities in the Content
of Tables Having Identical Schemas.
The algorithm works by fragmenting tables accord-
ing to a fragmentation set, then one or more aggre-
gate functions are evaluated upon each fragment, and
finally, the results from the corresponding fragments
are compared. Any differences, if found, indicate not
only that the contents of � and � are different, but
also point out to the group of tuples, i.e. fragment of
the relation to which the problem pertains. What
follows is a formal description of the stated.
Let � and � be the tables (relations) having the sche-
ma �. Let � denote a relation with schema � =
{��, … , ��}. Domain for attribute � is denoted by
���(�). Let � be a (possibly empty) subset of �. Let
� denote a tuple. Let ���� denote an X-value of �, i.e.
tuple � restricted to �.
Let ℰ(�, �) denote the equivalence relation on � de-
rived from equivalency of tuple’s X-values. We say
that tuples ��, �� ∈ � are equivalent under ℰ(�, �) iff
the tuples have equal X-values, i.e. (��, ��) ∈
ℰ(�, �) � ����� = �����. It should be noted that if
� = � then ����� = ����� for each (��, ��) ∈ �, ren-
dering all tuples in � equivalent under ℰ(�, �).
Different X-values of � correspond with X-values of
tuples in ��(�) (projection on the attributes con-
tained in �). Each tuple � ∈ ��(�) unambiguously
identifies an equivalence class, i.e. fragment
ℱ(�, �, �) = {� ∈ � | ���� = �}.
Consequently, equivalence relation ℰ(�, �) partitions
relation � into the set of fragments ℱ(�, �) =
{ℱ(�, �, �) | � ∈ ��(�)}. Because the set � deter-
mines the fragmentation strategy of the �, hereinaf-
ter we will refer to the set � as to the fragmentation
set. In the specific case when fragmentation set � is
empty, ��(�) produces a single-tuple zero-degree
relation, with the effect that ℰ(�, �) partitions � into
exactly one fragment which is equal to �.
Let �ℱ be the set of available aggregate functions,
where �� denotes an aggregate function (e.g., count,
sum, max, min). Let ℬ be the set of arbitrary attribute
names ��, ��, …, subjected to the constraint that
none of the attribute names appears in �. Relation
��,� is a set of triplets (��, �, �) which relates ag-
gregate functions from �ℱ, attributes from � � �
and attribute names from ℬ in the following way: if
(��, �, �) ∈ ��,�, then aggregate function �� is
evaluated for attribute � and the result is named �.
Henceforth, we will refer to the relation ��,� as the
aggregation set.

Aggregate function �� must be applicable to the do-
main of the attribute �. More than one aggregate
function �� can be applied upon each attribute � and
each � ∈ ℬ appears exactly in one triplet. Formally,
��,� = {(��, �, �) | (��, �, �) ∈ �ℱ × (� � �) ×

ℬ � �� �� ���������� �� ���(�)}
∀(���, ��, ��), ����, ��, ��� ∈ ��,�� �� = ��

� ��� = ��� � �� = ��
Designated aggregate functions from ��,� are ap-
plied upon fragment ℱ(�, �, �), the results of aggre-
gate functions are renamed and concatenated to tu-
ple �. The overall result of the operation is a single-
tuple relation ���, �, ��,�, �� with schema
� � {��, ��, … ��}, where � = �������,��:
���, �, ��,�, �� = � � �����(�)

��{��(�) | (��, A, �)∈ ��,�}ℱ(�, �, �)�.

Applying the aggregate functions upon each frag-
ment, ℱ(�, �, �) ∈ ℱ(�, �) would yield a set of rela-
tions ���, �, ��,�, ��, exactly one relation per each
� ∈ ��(�). Union of these relations, denoted as
���, �, ��,��, can be effectively evaluated with rela-
tional algebra grouping operator:

���, �, ��,�� = ⋃ ���, �, ��,�, ���∈��(�) =
�����(�)� �{��(�) | (��, A, �)∈ ��,�}� ��.

Given the relation schema �, relations �(�) and �(�),
beforehand determined sets � and ��,�, one can eas-
ily evaluate ���, �, ��,�� and ���, �, ��,��.
For instance, only consider the relation “exam” in the
left part of the Figure1, and suppose that we want to
compare it with the identical-schema relation in an-
other database. One possible fragmentation setup
could be:
r(R)=exam(exam_date, student_id, course_id,

has_passed)
s(R)=exam(exam_date, student_id, course_id,

has_passed)
X={exam_date,student_id,course_id}

��,� = �
(���, ����������, ���������),
 (���, ����������, ���������),
(�����, ����������, ��������)

�.

Tuples �� ∈ ���, �, ��,�� and �� ∈ ���, �, ��,��,
where ����� = ����� = � contain the results of aggre-
gate functions applied on fragments ℱ(�, �, �) and
ℱ(�, �, �), respectively. The inequality of the tuples
implies the difference between the corresponding
fragments, i.e. �� ≠ �� ⇒ ℱ(�, �, �) ≠ ℱ(�, �, �),

9Information Technology and Control 2018/1/47

.
The algorithm works by fragmenting tables accord-
ing to a fragmentation set, then one or more aggre-
gate functions are evaluated upon each fragment, and
finally, the results from the corresponding fragments
are compared. Any differences, if found, indicate not
only that the contents of � and � are different, but
also point out to the group of tuples, i.e. fragment of
the relation to which the problem pertains. What
follows is a formal description of the stated.
Let � and � be the tables (relations) having the sche-
ma �. Let � denote a relation with schema � =
{��, … , ��}. Domain for attribute � is denoted by
���(�). Let � be a (possibly empty) subset of �. Let
� denote a tuple. Let ���� denote an X-value of �, i.e.
tuple � restricted to �.
Let ℰ(�, �) denote the equivalence relation on � de-
rived from equivalency of tuple’s X-values. We say
that tuples ��, �� ∈ � are equivalent under ℰ(�, �) iff
the tuples have equal X-values, i.e. (��, ��) ∈
ℰ(�, �) � ����� = �����. It should be noted that if
� = � then ����� = ����� for each (��, ��) ∈ �, ren-
dering all tuples in � equivalent under ℰ(�, �).
Different X-values of � correspond with X-values of
tuples in ��(�) (projection on the attributes con-
tained in �). Each tuple � ∈ ��(�) unambiguously
identifies an equivalence class, i.e. fragment
ℱ(�, �, �) = {� ∈ � | ���� = �}.
Consequently, equivalence relation ℰ(�, �) partitions
relation � into the set of fragments ℱ(�, �) =
{ℱ(�, �, �) | � ∈ ��(�)}. Because the set � deter-
mines the fragmentation strategy of the �, hereinaf-
ter we will refer to the set � as to the fragmentation
set. In the specific case when fragmentation set � is
empty, ��(�) produces a single-tuple zero-degree
relation, with the effect that ℰ(�, �) partitions � into
exactly one fragment which is equal to �.
Let �ℱ be the set of available aggregate functions,
where �� denotes an aggregate function (e.g., count,
sum, max, min). Let ℬ be the set of arbitrary attribute
names ��, ��, …, subjected to the constraint that
none of the attribute names appears in �. Relation
��,� is a set of triplets (��, �, �) which relates ag-
gregate functions from �ℱ, attributes from � � �
and attribute names from ℬ in the following way: if
(��, �, �) ∈ ��,�, then aggregate function �� is
evaluated for attribute � and the result is named �.
Henceforth, we will refer to the relation ��,� as the
aggregation set.

Aggregate function �� must be applicable to the do-
main of the attribute �. More than one aggregate
function �� can be applied upon each attribute � and
each � ∈ ℬ appears exactly in one triplet. Formally,
��,� = {(��, �, �) | (��, �, �) ∈ �ℱ × (� � �) ×

ℬ � �� �� ���������� �� ���(�)}
∀(���, ��, ��), ����, ��, ��� ∈ ��,�� �� = ��

� ��� = ��� � �� = ��
Designated aggregate functions from ��,� are ap-
plied upon fragment ℱ(�, �, �), the results of aggre-
gate functions are renamed and concatenated to tu-
ple �. The overall result of the operation is a single-
tuple relation ���, �, ��,�, �� with schema
� � {��, ��, … ��}, where � = �������,��:
���, �, ��,�, �� = � � �����(�)

��{��(�) | (��, A, �)∈ ��,�}ℱ(�, �, �)�.

Applying the aggregate functions upon each frag-
ment, ℱ(�, �, �) ∈ ℱ(�, �) would yield a set of rela-
tions ���, �, ��,�, ��, exactly one relation per each
� ∈ ��(�). Union of these relations, denoted as
���, �, ��,��, can be effectively evaluated with rela-
tional algebra grouping operator:

���, �, ��,�� = ⋃ ���, �, ��,�, ���∈��(�) =
�����(�)� �{��(�) | (��, A, �)∈ ��,�}� ��.

Given the relation schema �, relations �(�) and �(�),
beforehand determined sets � and ��,�, one can eas-
ily evaluate ���, �, ��,�� and ���, �, ��,��.
For instance, only consider the relation “exam” in the
left part of the Figure1, and suppose that we want to
compare it with the identical-schema relation in an-
other database. One possible fragmentation setup
could be:
r(R)=exam(exam_date, student_id, course_id,

has_passed)
s(R)=exam(exam_date, student_id, course_id,

has_passed)
X={exam_date,student_id,course_id}

��,� = �
(���, ����������, ���������),
 (���, ����������, ���������),
(�����, ����������, ��������)

�.

Tuples �� ∈ ���, �, ��,�� and �� ∈ ���, �, ��,��,
where ����� = ����� = � contain the results of aggre-
gate functions applied on fragments ℱ(�, �, �) and
ℱ(�, �, �), respectively. The inequality of the tuples
implies the difference between the corresponding
fragments, i.e. �� ≠ �� ⇒ ℱ(�, �, �) ≠ ℱ(�, �, �), .

The algorithm works by fragmenting tables accord-
ing to a fragmentation set, then one or more aggre-
gate functions are evaluated upon each fragment, and
finally, the results from the corresponding fragments
are compared. Any differences, if found, indicate not
only that the contents of � and � are different, but
also point out to the group of tuples, i.e. fragment of
the relation to which the problem pertains. What
follows is a formal description of the stated.
Let � and � be the tables (relations) having the sche-
ma �. Let � denote a relation with schema � =
{��, … , ��}. Domain for attribute � is denoted by
���(�). Let � be a (possibly empty) subset of �. Let
� denote a tuple. Let ���� denote an X-value of �, i.e.
tuple � restricted to �.
Let ℰ(�, �) denote the equivalence relation on � de-
rived from equivalency of tuple’s X-values. We say
that tuples ��, �� ∈ � are equivalent under ℰ(�, �) iff
the tuples have equal X-values, i.e. (��, ��) ∈
ℰ(�, �) � ����� = �����. It should be noted that if
� = � then ����� = ����� for each (��, ��) ∈ �, ren-
dering all tuples in � equivalent under ℰ(�, �).
Different X-values of � correspond with X-values of
tuples in ��(�) (projection on the attributes con-
tained in �). Each tuple � ∈ ��(�) unambiguously
identifies an equivalence class, i.e. fragment
ℱ(�, �, �) = {� ∈ � | ���� = �}.
Consequently, equivalence relation ℰ(�, �) partitions
relation � into the set of fragments ℱ(�, �) =
{ℱ(�, �, �) | � ∈ ��(�)}. Because the set � deter-
mines the fragmentation strategy of the �, hereinaf-
ter we will refer to the set � as to the fragmentation
set. In the specific case when fragmentation set � is
empty, ��(�) produces a single-tuple zero-degree
relation, with the effect that ℰ(�, �) partitions � into
exactly one fragment which is equal to �.
Let �ℱ be the set of available aggregate functions,
where �� denotes an aggregate function (e.g., count,
sum, max, min). Let ℬ be the set of arbitrary attribute
names ��, ��, …, subjected to the constraint that
none of the attribute names appears in �. Relation
��,� is a set of triplets (��, �, �) which relates ag-
gregate functions from �ℱ, attributes from � � �
and attribute names from ℬ in the following way: if
(��, �, �) ∈ ��,�, then aggregate function �� is
evaluated for attribute � and the result is named �.
Henceforth, we will refer to the relation ��,� as the
aggregation set.

Aggregate function �� must be applicable to the do-
main of the attribute �. More than one aggregate
function �� can be applied upon each attribute � and
each � ∈ ℬ appears exactly in one triplet. Formally,
��,� = {(��, �, �) | (��, �, �) ∈ �ℱ × (� � �) ×

ℬ � �� �� ���������� �� ���(�)}
∀(���, ��, ��), ����, ��, ��� ∈ ��,�� �� = ��

� ��� = ��� � �� = ��
Designated aggregate functions from ��,� are ap-
plied upon fragment ℱ(�, �, �), the results of aggre-
gate functions are renamed and concatenated to tu-
ple �. The overall result of the operation is a single-
tuple relation ���, �, ��,�, �� with schema
� � {��, ��, … ��}, where � = �������,��:
���, �, ��,�, �� = � � �����(�)

��{��(�) | (��, A, �)∈ ��,�}ℱ(�, �, �)�.

Applying the aggregate functions upon each frag-
ment, ℱ(�, �, �) ∈ ℱ(�, �) would yield a set of rela-
tions ���, �, ��,�, ��, exactly one relation per each
� ∈ ��(�). Union of these relations, denoted as
���, �, ��,��, can be effectively evaluated with rela-
tional algebra grouping operator:

���, �, ��,�� = ⋃ ���, �, ��,�, ���∈��(�) =
�����(�)� �{��(�) | (��, A, �)∈ ��,�}� ��.

Given the relation schema �, relations �(�) and �(�),
beforehand determined sets � and ��,�, one can eas-
ily evaluate ���, �, ��,�� and ���, �, ��,��.
For instance, only consider the relation “exam” in the
left part of the Figure1, and suppose that we want to
compare it with the identical-schema relation in an-
other database. One possible fragmentation setup
could be:
r(R)=exam(exam_date, student_id, course_id,

has_passed)
s(R)=exam(exam_date, student_id, course_id,

has_passed)
X={exam_date,student_id,course_id}

��,� = �
(���, ����������, ���������),
 (���, ����������, ���������),
(�����, ����������, ��������)

�.

Tuples �� ∈ ���, �, ��,�� and �� ∈ ���, �, ��,��,
where ����� = ����� = � contain the results of aggre-
gate functions applied on fragments ℱ(�, �, �) and
ℱ(�, �, �), respectively. The inequality of the tuples
implies the difference between the corresponding
fragments, i.e. �� ≠ �� ⇒ ℱ(�, �, �) ≠ ℱ(�, �, �),

.
The algorithm works by fragmenting tables accord-
ing to a fragmentation set, then one or more aggre-
gate functions are evaluated upon each fragment, and
finally, the results from the corresponding fragments
are compared. Any differences, if found, indicate not
only that the contents of � and � are different, but
also point out to the group of tuples, i.e. fragment of
the relation to which the problem pertains. What
follows is a formal description of the stated.
Let � and � be the tables (relations) having the sche-
ma �. Let � denote a relation with schema � =
{��, … , ��}. Domain for attribute � is denoted by
���(�). Let � be a (possibly empty) subset of �. Let
� denote a tuple. Let ���� denote an X-value of �, i.e.
tuple � restricted to �.
Let ℰ(�, �) denote the equivalence relation on � de-
rived from equivalency of tuple’s X-values. We say
that tuples ��, �� ∈ � are equivalent under ℰ(�, �) iff
the tuples have equal X-values, i.e. (��, ��) ∈
ℰ(�, �) � ����� = �����. It should be noted that if
� = � then ����� = ����� for each (��, ��) ∈ �, ren-
dering all tuples in � equivalent under ℰ(�, �).
Different X-values of � correspond with X-values of
tuples in ��(�) (projection on the attributes con-
tained in �). Each tuple � ∈ ��(�) unambiguously
identifies an equivalence class, i.e. fragment
ℱ(�, �, �) = {� ∈ � | ���� = �}.
Consequently, equivalence relation ℰ(�, �) partitions
relation � into the set of fragments ℱ(�, �) =
{ℱ(�, �, �) | � ∈ ��(�)}. Because the set � deter-
mines the fragmentation strategy of the �, hereinaf-
ter we will refer to the set � as to the fragmentation
set. In the specific case when fragmentation set � is
empty, ��(�) produces a single-tuple zero-degree
relation, with the effect that ℰ(�, �) partitions � into
exactly one fragment which is equal to �.
Let �ℱ be the set of available aggregate functions,
where �� denotes an aggregate function (e.g., count,
sum, max, min). Let ℬ be the set of arbitrary attribute
names ��, ��, …, subjected to the constraint that
none of the attribute names appears in �. Relation
��,� is a set of triplets (��, �, �) which relates ag-
gregate functions from �ℱ, attributes from � � �
and attribute names from ℬ in the following way: if
(��, �, �) ∈ ��,�, then aggregate function �� is
evaluated for attribute � and the result is named �.
Henceforth, we will refer to the relation ��,� as the
aggregation set.

Aggregate function �� must be applicable to the do-
main of the attribute �. More than one aggregate
function �� can be applied upon each attribute � and
each � ∈ ℬ appears exactly in one triplet. Formally,
��,� = {(��, �, �) | (��, �, �) ∈ �ℱ × (� � �) ×

ℬ � �� �� ���������� �� ���(�)}
∀(���, ��, ��), ����, ��, ��� ∈ ��,�� �� = ��

� ��� = ��� � �� = ��
Designated aggregate functions from ��,� are ap-
plied upon fragment ℱ(�, �, �), the results of aggre-
gate functions are renamed and concatenated to tu-
ple �. The overall result of the operation is a single-
tuple relation ���, �, ��,�, �� with schema
� � {��, ��, … ��}, where � = �������,��:
���, �, ��,�, �� = � � �����(�)

��{��(�) | (��, A, �)∈ ��,�}ℱ(�, �, �)�.

Applying the aggregate functions upon each frag-
ment, ℱ(�, �, �) ∈ ℱ(�, �) would yield a set of rela-
tions ���, �, ��,�, ��, exactly one relation per each
� ∈ ��(�). Union of these relations, denoted as
���, �, ��,��, can be effectively evaluated with rela-
tional algebra grouping operator:

���, �, ��,�� = ⋃ ���, �, ��,�, ���∈��(�) =
�����(�)� �{��(�) | (��, A, �)∈ ��,�}� ��.

Given the relation schema �, relations �(�) and �(�),
beforehand determined sets � and ��,�, one can eas-
ily evaluate ���, �, ��,�� and ���, �, ��,��.
For instance, only consider the relation “exam” in the
left part of the Figure1, and suppose that we want to
compare it with the identical-schema relation in an-
other database. One possible fragmentation setup
could be:
r(R)=exam(exam_date, student_id, course_id,

has_passed)
s(R)=exam(exam_date, student_id, course_id,

has_passed)
X={exam_date,student_id,course_id}

��,� = �
(���, ����������, ���������),
 (���, ����������, ���������),
(�����, ����������, ��������)

�.

Tuples �� ∈ ���, �, ��,�� and �� ∈ ���, �, ��,��,
where ����� = ����� = � contain the results of aggre-
gate functions applied on fragments ℱ(�, �, �) and
ℱ(�, �, �), respectively. The inequality of the tuples
implies the difference between the corresponding
fragments, i.e. �� ≠ �� ⇒ ℱ(�, �, �) ≠ ℱ(�, �, �),
which leads to the conclusion that ���� �� ����� �� �
���� �� ����� �� � � � �.
Actually, any difference between ���� �� ����� and
���� �� ����� implies the inequality of � and �. Unfor-
tunately, the inverse is not true, i.e. even when
���� �� ����� = ���� �� �����, it is still possible that �
and � are not equal. This happens in very rare cases
when differences of attribute values cumulatively
nullify each other during aggregate function evalua-
tion [26]. Opportunely, already low probability of
such an event can be further reduced to the accepta-
ble level by applying larger set of aggregate functions.
This is the reason why the equiva-
lence ���� �� ����� = ���� �� ����� � � = �, alt-
hough not strictly correct, will be considered as ade-
quate for practical purpose of comparing fragments.
As a side note, an interesting approach that would
also almost guarantee the equivalence would be to
use a single aggregate function that aggregates tuple
hashes. Such an aggregate function should be com-
mutative, because ordering tuples would incur addi-
tional costs. For instance, SQL Server provides
CHECKSUM_AGG function (which, though undoc-
umented, we suspect is a simple XOR function) that
can be used to that purpose. Similar remarks apply
here as for the reference implementation – this is not
suitable for large tables because calculating hashes
on the fly is costly, and storing and maintaining addi-
tional hash data is often not possible, especially at
source data systems.
The reason why the aggregate functions are applied
only upon attributes in � � � is straightforward. Ap-
plying aggregate functions upon an attribute from �
would be unproductive because X-values of tuples in
corresponding fragments of � and � are identical by
definition, so are the results of aggregate functions.
The number of fragments in ℱ(�� �) depends on the
contents of the fragmentation set �. Generally, in-
creasing the cardinality of �, increases the cardinali-
ty of ��(�), which in turn increases the number of
tuples in ���� �� �����, hence decreasing the average
number of tuples per fragment. There is a trade-off in
selection of attributes for the fragmentation set �.
Using larger fragmentation set provides more precise
determination of relation’s subset which is the
source of differences, but simultaneously degrades
the performance due to increased number of groups
for which aggregate functions have to be evaluated
and their results compared. On the other hand, the
contents of the aggregation set ���� do not signifi-
cantly affect the performance, because the cost of
aggregate function evaluation is negligible compared

with the cost of grouping operation. Obviously, the
main issue is to appropriately determine the content
of the fragmentation set. The two extreme cases are:
to use empty fragmentation set, which will produce
exactly one fragment, or, to use one of the keys or
superkeys for �, which will produce altogether
����(�) single-tuple fragments.
Taking into account the aforementioned trade-off
and presuming that only a relatively small number of
pairs of relations is expected to be actually different,
we concluded that the process of comparing rela-
tions should start with the empty or nearly empty
fragmentation set ��. If ���� ��� ������ =
���� ��� ������, then the pair can be left out of further
inspection. Otherwise, in order to determine the
group of tuples incurring differences more precisely,
procedure can be iteratively carried out. In each step
of the procedure, fragmentation set is augmented
with additional attributes, thus increasing the num-
ber of fragments and decreasing the fragment’s tuple
count. The process is repeated until maximal frag-
mentation set (with all intended attributes) has been
inspected or allotted time frame has expired.
In order to carry out the described procedure, the
following information has to be defined (and stored
in a metadata repository) for each pair of relations
r(R) and s(R):

1. Nonempty list of fragmentation sets, denoted as
������:
������ = 〈��� ��� � � ��〉,
where �� � �� � � � �� � �.
�� can be an empty set. Only the last fragmentation
set in the list is allowed (but not required) to be a
key or superkey of the relation �, because grouping
by the key or superkey of the relation is the identity
operator. Fragmentation sets should also fulfil the
constraint that none of antecedent fragmentation
sets functionally determines its descendants in the
������, i.e. � ��� �� ∈ ������� � � �� �� � ��. The latter
constraint is quite easy to justify: If tuples �� and ��
pertain to the fragment ℱ(�� ��� �), then ������ =
������. If �� � ��, then ������ = ������ ������ =
������, making �� and �� members of ℱ��� ��� �� as
well. As fragmenting sets �� and �� produce the
same set of fragments, either �� or �� is superfluous
in ������.

2. Nonempty list of aggregation sets, denoted as
������, whose members correspond to the mem-
bers of ������:

������ = 〈������ ������ � � �����〉.

Information Technology and Control 2018/1/4710

which leads to the conclusion that ���� �� ����� �� �
���� �� ����� �� � � � �.
Actually, any difference between ���� �� ����� and
���� �� ����� implies the inequality of � and �. Unfor-
tunately, the inverse is not true, i.e. even when
���� �� ����� = ���� �� �����, it is still possible that �
and � are not equal. This happens in very rare cases
when differences of attribute values cumulatively
nullify each other during aggregate function evalua-
tion [26]. Opportunely, already low probability of
such an event can be further reduced to the accepta-
ble level by applying larger set of aggregate functions.
This is the reason why the equiva-
lence ���� �� ����� = ���� �� ����� � � = �, alt-
hough not strictly correct, will be considered as ade-
quate for practical purpose of comparing fragments.
As a side note, an interesting approach that would
also almost guarantee the equivalence would be to
use a single aggregate function that aggregates tuple
hashes. Such an aggregate function should be com-
mutative, because ordering tuples would incur addi-
tional costs. For instance, SQL Server provides
CHECKSUM_AGG function (which, though undoc-
umented, we suspect is a simple XOR function) that
can be used to that purpose. Similar remarks apply
here as for the reference implementation – this is not
suitable for large tables because calculating hashes
on the fly is costly, and storing and maintaining addi-
tional hash data is often not possible, especially at
source data systems.
The reason why the aggregate functions are applied
only upon attributes in � � � is straightforward. Ap-
plying aggregate functions upon an attribute from �
would be unproductive because X-values of tuples in
corresponding fragments of � and � are identical by
definition, so are the results of aggregate functions.
The number of fragments in ℱ(�� �) depends on the
contents of the fragmentation set �. Generally, in-
creasing the cardinality of �, increases the cardinali-
ty of ��(�), which in turn increases the number of
tuples in ���� �� �����, hence decreasing the average
number of tuples per fragment. There is a trade-off in
selection of attributes for the fragmentation set �.
Using larger fragmentation set provides more precise
determination of relation’s subset which is the
source of differences, but simultaneously degrades
the performance due to increased number of groups
for which aggregate functions have to be evaluated
and their results compared. On the other hand, the
contents of the aggregation set ���� do not signifi-
cantly affect the performance, because the cost of
aggregate function evaluation is negligible compared

with the cost of grouping operation. Obviously, the
main issue is to appropriately determine the content
of the fragmentation set. The two extreme cases are:
to use empty fragmentation set, which will produce
exactly one fragment, or, to use one of the keys or
superkeys for �, which will produce altogether
����(�) single-tuple fragments.
Taking into account the aforementioned trade-off
and presuming that only a relatively small number of
pairs of relations is expected to be actually different,
we concluded that the process of comparing rela-
tions should start with the empty or nearly empty
fragmentation set ��. If ���� ��� ������ =
���� ��� ������, then the pair can be left out of further
inspection. Otherwise, in order to determine the
group of tuples incurring differences more precisely,
procedure can be iteratively carried out. In each step
of the procedure, fragmentation set is augmented
with additional attributes, thus increasing the num-
ber of fragments and decreasing the fragment’s tuple
count. The process is repeated until maximal frag-
mentation set (with all intended attributes) has been
inspected or allotted time frame has expired.
In order to carry out the described procedure, the
following information has to be defined (and stored
in a metadata repository) for each pair of relations
r(R) and s(R):

1. Nonempty list of fragmentation sets, denoted as
������:
������ = 〈��� ��� � � ��〉,
where �� � �� � � � �� � �.
�� can be an empty set. Only the last fragmentation
set in the list is allowed (but not required) to be a
key or superkey of the relation �, because grouping
by the key or superkey of the relation is the identity
operator. Fragmentation sets should also fulfil the
constraint that none of antecedent fragmentation
sets functionally determines its descendants in the
������, i.e. � ��� �� ∈ ������� � � �� �� � ��. The latter
constraint is quite easy to justify: If tuples �� and ��
pertain to the fragment ℱ(�� ��� �), then ������ =
������. If �� � ��, then ������ = ������ ������ =
������, making �� and �� members of ℱ��� ��� �� as
well. As fragmenting sets �� and �� produce the
same set of fragments, either �� or �� is superfluous
in ������.

2. Nonempty list of aggregation sets, denoted as
������, whose members correspond to the mem-
bers of ������:

������ = 〈������ ������ � � �����〉.

which leads to the conclusion that ���� �� ����� �� �
���� �� ����� �� � � � �.
Actually, any difference between ���� �� ����� and
���� �� ����� implies the inequality of � and �. Unfor-
tunately, the inverse is not true, i.e. even when
���� �� ����� = ���� �� �����, it is still possible that �
and � are not equal. This happens in very rare cases
when differences of attribute values cumulatively
nullify each other during aggregate function evalua-
tion [26]. Opportunely, already low probability of
such an event can be further reduced to the accepta-
ble level by applying larger set of aggregate functions.
This is the reason why the equiva-
lence ���� �� ����� = ���� �� ����� � � = �, alt-
hough not strictly correct, will be considered as ade-
quate for practical purpose of comparing fragments.
As a side note, an interesting approach that would
also almost guarantee the equivalence would be to
use a single aggregate function that aggregates tuple
hashes. Such an aggregate function should be com-
mutative, because ordering tuples would incur addi-
tional costs. For instance, SQL Server provides
CHECKSUM_AGG function (which, though undoc-
umented, we suspect is a simple XOR function) that
can be used to that purpose. Similar remarks apply
here as for the reference implementation – this is not
suitable for large tables because calculating hashes
on the fly is costly, and storing and maintaining addi-
tional hash data is often not possible, especially at
source data systems.
The reason why the aggregate functions are applied
only upon attributes in � � � is straightforward. Ap-
plying aggregate functions upon an attribute from �
would be unproductive because X-values of tuples in
corresponding fragments of � and � are identical by
definition, so are the results of aggregate functions.
The number of fragments in ℱ(�� �) depends on the
contents of the fragmentation set �. Generally, in-
creasing the cardinality of �, increases the cardinali-
ty of ��(�), which in turn increases the number of
tuples in ���� �� �����, hence decreasing the average
number of tuples per fragment. There is a trade-off in
selection of attributes for the fragmentation set �.
Using larger fragmentation set provides more precise
determination of relation’s subset which is the
source of differences, but simultaneously degrades
the performance due to increased number of groups
for which aggregate functions have to be evaluated
and their results compared. On the other hand, the
contents of the aggregation set ���� do not signifi-
cantly affect the performance, because the cost of
aggregate function evaluation is negligible compared

with the cost of grouping operation. Obviously, the
main issue is to appropriately determine the content
of the fragmentation set. The two extreme cases are:
to use empty fragmentation set, which will produce
exactly one fragment, or, to use one of the keys or
superkeys for �, which will produce altogether
����(�) single-tuple fragments.
Taking into account the aforementioned trade-off
and presuming that only a relatively small number of
pairs of relations is expected to be actually different,
we concluded that the process of comparing rela-
tions should start with the empty or nearly empty
fragmentation set ��. If ���� ��� ������ =
���� ��� ������, then the pair can be left out of further
inspection. Otherwise, in order to determine the
group of tuples incurring differences more precisely,
procedure can be iteratively carried out. In each step
of the procedure, fragmentation set is augmented
with additional attributes, thus increasing the num-
ber of fragments and decreasing the fragment’s tuple
count. The process is repeated until maximal frag-
mentation set (with all intended attributes) has been
inspected or allotted time frame has expired.
In order to carry out the described procedure, the
following information has to be defined (and stored
in a metadata repository) for each pair of relations
r(R) and s(R):

1. Nonempty list of fragmentation sets, denoted as
������:
������ = 〈��� ��� � � ��〉,
where �� � �� � � � �� � �.
�� can be an empty set. Only the last fragmentation
set in the list is allowed (but not required) to be a
key or superkey of the relation �, because grouping
by the key or superkey of the relation is the identity
operator. Fragmentation sets should also fulfil the
constraint that none of antecedent fragmentation
sets functionally determines its descendants in the
������, i.e. � ��� �� ∈ ������� � � �� �� � ��. The latter
constraint is quite easy to justify: If tuples �� and ��
pertain to the fragment ℱ(�� ��� �), then ������ =
������. If �� � ��, then ������ = ������ ������ =
������, making �� and �� members of ℱ��� ��� �� as
well. As fragmenting sets �� and �� produce the
same set of fragments, either �� or �� is superfluous
in ������.

2. Nonempty list of aggregation sets, denoted as
������, whose members correspond to the mem-
bers of ������:

������ = 〈������ ������ � � �����〉.

which leads to the conclusion that ���� �� ����� �� �
���� �� ����� �� � � � �.
Actually, any difference between ���� �� ����� and
���� �� ����� implies the inequality of � and �. Unfor-
tunately, the inverse is not true, i.e. even when
���� �� ����� = ���� �� �����, it is still possible that �
and � are not equal. This happens in very rare cases
when differences of attribute values cumulatively
nullify each other during aggregate function evalua-
tion [26]. Opportunely, already low probability of
such an event can be further reduced to the accepta-
ble level by applying larger set of aggregate functions.
This is the reason why the equiva-
lence ���� �� ����� = ���� �� ����� � � = �, alt-
hough not strictly correct, will be considered as ade-
quate for practical purpose of comparing fragments.
As a side note, an interesting approach that would
also almost guarantee the equivalence would be to
use a single aggregate function that aggregates tuple
hashes. Such an aggregate function should be com-
mutative, because ordering tuples would incur addi-
tional costs. For instance, SQL Server provides
CHECKSUM_AGG function (which, though undoc-
umented, we suspect is a simple XOR function) that
can be used to that purpose. Similar remarks apply
here as for the reference implementation – this is not
suitable for large tables because calculating hashes
on the fly is costly, and storing and maintaining addi-
tional hash data is often not possible, especially at
source data systems.
The reason why the aggregate functions are applied
only upon attributes in � � � is straightforward. Ap-
plying aggregate functions upon an attribute from �
would be unproductive because X-values of tuples in
corresponding fragments of � and � are identical by
definition, so are the results of aggregate functions.
The number of fragments in ℱ(�� �) depends on the
contents of the fragmentation set �. Generally, in-
creasing the cardinality of �, increases the cardinali-
ty of ��(�), which in turn increases the number of
tuples in ���� �� �����, hence decreasing the average
number of tuples per fragment. There is a trade-off in
selection of attributes for the fragmentation set �.
Using larger fragmentation set provides more precise
determination of relation’s subset which is the
source of differences, but simultaneously degrades
the performance due to increased number of groups
for which aggregate functions have to be evaluated
and their results compared. On the other hand, the
contents of the aggregation set ���� do not signifi-
cantly affect the performance, because the cost of
aggregate function evaluation is negligible compared

with the cost of grouping operation. Obviously, the
main issue is to appropriately determine the content
of the fragmentation set. The two extreme cases are:
to use empty fragmentation set, which will produce
exactly one fragment, or, to use one of the keys or
superkeys for �, which will produce altogether
����(�) single-tuple fragments.
Taking into account the aforementioned trade-off
and presuming that only a relatively small number of
pairs of relations is expected to be actually different,
we concluded that the process of comparing rela-
tions should start with the empty or nearly empty
fragmentation set ��. If ���� ��� ������ =
���� ��� ������, then the pair can be left out of further
inspection. Otherwise, in order to determine the
group of tuples incurring differences more precisely,
procedure can be iteratively carried out. In each step
of the procedure, fragmentation set is augmented
with additional attributes, thus increasing the num-
ber of fragments and decreasing the fragment’s tuple
count. The process is repeated until maximal frag-
mentation set (with all intended attributes) has been
inspected or allotted time frame has expired.
In order to carry out the described procedure, the
following information has to be defined (and stored
in a metadata repository) for each pair of relations
r(R) and s(R):

1. Nonempty list of fragmentation sets, denoted as
������:
������ = 〈��� ��� � � ��〉,
where �� � �� � � � �� � �.
�� can be an empty set. Only the last fragmentation
set in the list is allowed (but not required) to be a
key or superkey of the relation �, because grouping
by the key or superkey of the relation is the identity
operator. Fragmentation sets should also fulfil the
constraint that none of antecedent fragmentation
sets functionally determines its descendants in the
������, i.e. � ��� �� ∈ ������� � � �� �� � ��. The latter
constraint is quite easy to justify: If tuples �� and ��
pertain to the fragment ℱ(�� ��� �), then ������ =
������. If �� � ��, then ������ = ������ ������ =
������, making �� and �� members of ℱ��� ��� �� as
well. As fragmenting sets �� and �� produce the
same set of fragments, either �� or �� is superfluous
in ������.

2. Nonempty list of aggregation sets, denoted as
������, whose members correspond to the mem-
bers of ������:

������ = 〈������ ������ � � �����〉.

Nonempty list of fragmentation sets, denoted as
������:
������ = 〈��, ��, � , ��〉,
where �� � �� � � � �� � �.
�� can be an empty set. Only the last fragmenta-
tion set in the list is allowed (but not required) to
be a key or superkey of the relation �, because
grouping by the key or superkey of the relation is
the identity operator. Fragmentation sets should
also fulfil the constraint that none of antecedent
fragmentation sets functionally determines its de-
scendants in the ������, i.e. � ��, �� ∈ ������, � �
�� �� � ��. The latter constraint is quite easy to
justify: If tuples �� and �� pertain to the fragment
ℱ��, ��, ��, then ������ = ������. If �� � ��, then
������ = ������ ������ = ������, making �� and ��
members of ℱ��, ��, �� as well. As fragmenting
sets �� and �� produce the same set of fragments,
either �� or �� is superfluous in ������.
Nonempty list of aggregation sets, denoted as
������, whose members correspond to the mem-
bers of ������:

������ = 〈��,��, ��,��, � , ��,��〉.

Building on the previous example, these values
could be:
������

= �
{},

{���������},
{���������, ����������},

{���������, ����������, ���������}
�

������ = 〈��,�, ��,�, ��,�, ��,�〉.

1

2

11Information Technology and Control 2018/1/47

3.2. Determining Inequality in the Content of
Tables Having Different Schemas

Comparing tables with different schemas typically
occurs when comparing relational model tables and
dimensional model [22] tables, e.g., staging area and
DW. Dimension tables can be supported easier than
fact tables since they mostly take over attributes
from relational source(s). Sometimes attributes in
the dimensional model are renamed using different
nomenclature but different attribute names do not
present a problem since they are described and paired
via metadata. Fact tables, on the other hand, are more
complex in this regard, because business keys are
always replaced with surrogate keys from related di-
mension tables. In addition, some non-key attributes
can be cataloged and replaced with surrogate keys.
For instance, as shown in Figure 1, table exam is the
source table for the fact table fExam. In table fExam,
attribute exam_date has been cataloged and replaced
with the surrogate key dateID, while the actual exam
date has been renamed and stored in the dimension
table dDate as date. The so-called, “junk dimensions”
are another example of similar transformations.

To fragment and compare the contents of tables
exam and fExam based upon the fragmentation set
X={exam_date}, the fact table fExam has to be joined

with the dimension table dDate before fragmenta-
tion. Effectively, it is necessary to evaluate q (exam,
{exam_date}) and q (fExam ⊳⊲ dDate, {date}) and then
compare the contents of the two, having in mind that
attribute exam_date corresponds to attribute date.
In general, we compare an input set (any relation r
in the source database or in the staging area) with an
output set (a set of relations in the staging area or in
the DW). For given X and

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

, the relation r will be
fragmented and specified aggregate functions will be
evaluated for the fragments i.e.

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

 will be
evaluated in accordance with the algorithm described
in Section 3.1. The problem here is that the relation
s(R) does not exist. However, relation equivalent to
s(R) can be reconstructed from a set of relations

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

.
The set of relations

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

 is the result of the transforma-
tion τ over r, i.e.

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

 =

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�) . To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

. To compare input and out-
put sets using our algorithm it is necessary to apply
inverse transformation τ-1 over output set, such that
for each instance of the relation r we can state that
r = τ –1(τ(r)). The existence of such an inverse trans-
formation is not questionable if we adhere to the
limitations specified in the introductory part of
Section 3 (each record in a fact table corresponds to
exactly one record in a data source table). Note that,
for identical schema, both τ and τ –1 are the identi-
ty operators.In this example (Figure 1), the inverse

Figure 1
Comparing tables with different schemas (relational and dimensional)

6

_ , _ , _ , _
𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑}

𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) = 𝜌𝜌𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚2(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑)
(𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑
(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎))

𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = �
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑),
(𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑),

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)
�

dStudent
studentId
student_id
firstName
lastName
…

fExam
dateId
studentId
courseId
…
hasPassed

dDate
dateId
date
year
month
…

dCourse
courseId
course_id
courseName
…

exam
exam_date
student_id
course_id
…
has_passed

=
?

Information Technology and Control 2018/1/4712

transformation is simply defined with the operation
of relational algebra:

τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������

(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).

Performing transformation τ –1({fExam, dStudent,
dDate, dCourse}) we acquire relation s(R) which can
be compared to the relation r(R) using algorithm de-
scribed in Section 3.1. More precisely, it is not neces-
sary to reconstruct s(R), it is sufficient to reconstruct
the relation having all attributes contained in X and in

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

. Commonly, the relation s(S) will not be evalu-
ated. The transformation τ –1 will be incorporated into
an SQL statement which serves to evaluate q(s, X).
The following example illustrates the procedure of
fragmenting two data sets having different sche-
mas, shown in Figure 1:

Table 2
Steps in fragmenting and comparing tables having different schemas

Depth Source (RDB) Destination (DWH)

1 SELECT SUM(has_passed) AS sumPassed,
 AVG(has_passed) AS avgPassed,
 COUNT(has_passed) AS recCount
 FROM exam

SELECT SUM(hasPassed) AS sumPassed,
 AVG(hasPassed) AS avgPassed,
 COUNT(hasPassed) AS recCount
 FROM fExam

2 SELECT course_id,
 SUM(has_passed) AS sumPassed,
 AVG(has_passed) AS avgPassed,
 COUNT(has_passed) AS recCount
 FROM exam
 GROUP BY course_id

SELECT dCourse.course_id,
 SUM(hasPassed) AS sumPassed,
 AVG(hasPassed) AS avgPassed,
 COUNT(hasPassed) AS recCount
 FROM fExam
 JOIN dCourse
 ON fExam.courseId = dCourse.courseId
 GROUP BY dCourse.course_id

Let’s suppose we’ve found mismatch for the course_id=101 in the previous step:

3 SELECT course_id,
 student_id,
 SUM(has_passed) AS sumPassed,
 AVG(has_passed) AS avgPassed,
 COUNT(has_passed) AS recCount
 FROM exam
 WHERE course_id = 101
 GROUP BY course_id,
 student_id

SELECT dCourse.course_id,
 dStudent.student_id,
 SUM(hasPassed) AS sumPassed,
 AVG(hasPassed) AS avgPassed,
 COUNT(hasPassed) AS recCount
 FROM fExam
 JOIN dCourse
 ON fExam.courseId = dCourse.courseId
 JOIN dStudent
 ON fExam.studentId=dStudent.studentId
WHERE course_id = 101
 GROUP BY dCourse.course_id,
 dStudent.student_id

6

𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅) =
𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑)
𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑}
𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅) = 𝜌𝜌𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚2(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑)
(𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑,ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑
(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⊳⊲ 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎))

𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = �
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑),
(𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑),

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)
�

7

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 = �

{},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

 {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}

�

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 = 〈𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋〉.

The algorithm produces the SQL statements shown
in Table 2.
As it can be seen, the relation s(S) is not evaluated, we
just used transformation τ –1 when we needed it.

13Information Technology and Control 2018/1/47

Depth Source (RDB) Destination (DWH)

Let’s suppose we’ve found mismatch for the student_id=36 and student_id=37 in the previous step:

4 SELECT course_id,
 student_id,
 exam_date,
 SUM(has_passed) AS sumPassed,
 AVG(has_passed) AS avgPassed,
 COUNT(has_passed) AS recCount
 FROM exam
 WHERE (course_id = 101 AND student_id = 36)
 OR (course_id = 101 AND student_id = 37)
GROUP BY course_id,
 student_id,
 exam_date

SELECT dCourse.course_id,
 dStudent.student_id,
 dDate.date AS exam_date,
 SUM(hasPassed) AS sumPassed,
 AVG(hasPassed) AS avgPassed,
 COUNT(hasPassed) AS recCount
 FROM fExam
 JOIN dStudent
 ON fExam.studentId=dStudent.studentId
 JOIN dDate
 ON fExam.dateId = dDate.dateId
 JOIN dCourse
 ON fExam.courseId = dCourse.courseId
 WHERE (course_id = 101 AND student_id = 36)
 OR (course_id = 101 AND student_id = 37)
GROUP BY dCourse.course_id,
 dStudent.student_id,
 dDate.date,

Finally, after result sets from the previous steps are compared, the algorithm produces e.g., the following results:

Missing: (101, 36, ‘2013-01-01’)
Excess: (101, 37, ‘2012-02-02’)

Missing: (101, 37, ‘2012-02-02’)
Excess: (101, 36, ‘2013-01-01’)

In general, a fact table schema does not have to con-
tain business keys (primary keys) of the originating
table [26]. It is possible that the business key is com-
prised of dimension tables’ business keys; however,
that is not always the case. When so, to positively
identify the tuples, we employ the data lineage mech-
anism described in [26]. In short, every fact table has
a coupled lineage table linF with relation schema:

7

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 = �

{},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

 {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}

�

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 = 〈𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋〉.
The algorithm produces the SQL statements shown in Table 2.
As it can be seen, the relation s(S) is not evaluated, we just used transformation τ-1 when we needed it.
In general, a fact table schema does not have to contain business keys (primary keys) of the originating table [26]. It
is possible that the business key is comprised of dimension tables’ business keys; however, that is not always the case.
When so, to positively identify the tuples, we employ the data lineage mechanism described in [26]. In short, every
fact table has a coupled lineage table linF with relation schema: 𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿 = {𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 ,𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆1, … ,𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 , … ,𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚}, where 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹is
the surrogate key of the fact table and 𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 are the business key attributes of the originating table. linF is simply
incorporated into τ-1 transformation when needed.

Table 1 Steps in fragmenting and comparing tables having different schemas

Depth Source (RDB) Destination (DWH)
1 SELECT SUM(has_passed) AS sumPassed,

 AVG(has_passed) AS avgPassed,
 COUNT(has_passed) AS recCount
 FROM exam

SELECT SUM(hasPassed) AS sumPassed,
 AVG(hasPassed) AS avgPassed,
 COUNT(hasPassed) AS recCount
 FROM fExam

2 SELECT course_id,
 SUM(has_passed) AS sumPassed,
 AVG(has_passed) AS avgPassed,
 COUNT(has_passed) AS recCount
 FROM exam
 GROUP BY course_id

SELECT dCourse.course_id,
 SUM(hasPassed) AS sumPassed,
 AVG(hasPassed) AS avgPassed,
 COUNT(hasPassed) AS recCount
 FROM fExam
 JOIN dCourse
 ON fExam.courseId = dCourse.courseId
 GROUP BY dCourse.course_id

Let's suppose we've found mismatch for the course_id=101 in the previous step:
3 SELECT course_id,

 student_id,
 SUM(has_passed) AS sumPassed,
 AVG(has_passed) AS avgPassed,
 COUNT(has_passed) AS recCount
 FROM exam
 WHERE course_id = 101
 GROUP BY course_id,
 student_id

SELECT dCourse.course_id,
 dStudent.student_id,
 SUM(hasPassed) AS sumPassed,
 AVG(hasPassed) AS avgPassed,
 COUNT(hasPassed) AS recCount
 FROM fExam
 JOIN dCourse
 ON fExam.courseId = dCourse.courseId
 JOIN dStudent
 ON fExam.studentId=dStudent.studentId
WHERE course_id = 101
 GROUP BY dCourse.course_id,
 dStudent.student_id

Let's suppose we've found mismatch for the student_id=36 and student_id=37 in the previous step:
4 SELECT course_id,

 student_id,
 exam_date,
 SUM(has_passed) AS sumPassed,
 AVG(has_passed) AS avgPassed,
 COUNT(has_passed) AS recCount
 FROM exam
 WHERE (course_id = 101 AND student_id = 36)
 OR (course_id = 101 AND student_id = 37)
GROUP BY course_id,
 student_id,
 exam_date

SELECT dCourse.course_id,
 dStudent.student_id,
 dDate.date AS exam_date,
 SUM(hasPassed) AS sumPassed,
 AVG(hasPassed) AS avgPassed,
 COUNT(hasPassed) AS recCount
 FROM fExam
 JOIN dStudent
 ON fExam.studentId=dStudent.studentId
 JOIN dDate
 ON fExam.dateId = dDate.dateId
 JOIN dCourse
 ON fExam.courseId = dCourse.courseId
 WHERE (course_id = 101 AND student_id = 36)
 OR (course_id = 101 AND student_id = 37)
GROUP BY dCourse.course_id,
 dStudent.student_id,
 dDate.date,

Finally, after result sets from the previous steps are compared, the algorithm produces e.g., the following results:
Missing: (101, 36, '2013-01-01')
Excess: (101, 37, '2012-02-02')

Missing: (101, 37, '2012-02-02')
Excess: (101, 36, '2013-01-01')

 where SKF is the
surrogate key of the fact table and PKi are the business
key attributes of the originating table. linF is simply
incorporated into τ –1 transformation when needed.

3.3. The Overall TCFC Algorithm
In the previous two sections, we have formally de-
scribed the algorithm at table level. Using the de-
scribed algorithm, with the help of metadata, we can
now introduce a global, time-constrained algorithm
for providing a “global overview” of the differences
between two sets of tables.
The metadata needed for comparing an input
set (relation r(R)) with an output set (set of re-
lations

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

) is denoted as the metadata quintuple

8

3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm,
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29).

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC)
1 Input: 𝒞𝒞𝒞𝒞
2 Output: differences report and completion status
3 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5 on event (time frame has expired):
6 cancel running job(s)
7 return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8 Begin
9 // initialization
10 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11 for each c ∈ 𝑟𝑟𝑟𝑟
12 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13 // computing
14 repeat
15 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20 for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22 for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24 for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26 if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28 until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29 return report, COMPLETED
30 end

. Since the transfor-
mation τ is the transformation that has been applied
to relation r to produce a set of relations

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

, τ –1 will re-

construct relation s(R), thus harmonizing the schema
of the two data sets prior to comparison. The relations
are then iteratively fragmented, aggregated and com-
pared according to the fragmentation sets from

8

3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm,
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29).

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC)
1 Input: 𝒞𝒞𝒞𝒞
2 Output: differences report and completion status
3 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5 on event (time frame has expired):
6 cancel running job(s)
7 return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8 Begin
9 // initialization
10 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11 for each c ∈ 𝑟𝑟𝑟𝑟
12 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13 // computing
14 repeat
15 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20 for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22 for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24 for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26 if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28 until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29 return report, COMPLETED
30 end

and aggregate sets from

8

3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm,
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29).

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC)
1 Input: 𝒞𝒞𝒞𝒞
2 Output: differences report and completion status
3 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5 on event (time frame has expired):
6 cancel running job(s)
7 return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8 Begin
9 // initialization
10 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11 for each c ∈ 𝑟𝑟𝑟𝑟
12 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13 // computing
14 repeat
15 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20 for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22 for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24 for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26 if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28 until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29 return report, COMPLETED
30 end

. With

8

3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm,
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29).

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC)
1 Input: 𝒞𝒞𝒞𝒞
2 Output: differences report and completion status
3 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5 on event (time frame has expired):
6 cancel running job(s)
7 return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8 Begin
9 // initialization
10 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11 for each c ∈ 𝑟𝑟𝑟𝑟
12 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13 // computing
14 repeat
15 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20 for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22 for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24 for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26 if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28 until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29 return report, COMPLETED
30 end

 we denote a
set of all metadata quintuples needed for comparing
a pair of databases.
A comparison of two data sets, according to a meta-
data quintuple

8

3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm,
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29).

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC)
1 Input: 𝒞𝒞𝒞𝒞
2 Output: differences report and completion status
3 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5 on event (time frame has expired):
6 cancel running job(s)
7 return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8 Begin
9 // initialization
10 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11 for each c ∈ 𝑟𝑟𝑟𝑟
12 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13 // computing
14 repeat
15 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20 for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22 for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24 for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26 if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28 until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29 return report, COMPLETED
30 end

, is an iterative process that can be il-
lustrated by an unbalanced tree where each node rep-
resents a fragment based on the aggregation set and
the fragmentation set defined for that level (Figure
2). This means that comparing r and s according to X1
and A1 is represented with the root of the tree. If the
comparison at the root level results with differences
in fragments F1, F2, ..., Fn, the further comparison of
fragments F1, F2, ..., Fn will be carried out according to
X2 and A2 and will produce the root’s children, etc.
In accordance with a request to examine as many ta-
bles as possible, perhaps at the expense of the com-
pleteness of the result, the algorithm should perform
the comparison operations at the first level for all ta-
bles, then all assigned (and necessary) comparison of
the fragments on the second level and so on.
This can be ensured by traversing tree according to
the breadth-first order, which can be straightforward-

Information Technology and Control 2018/1/4714

ly implemented using a queue.
Comparison of two data sets (databases) is comprised
of a number of individual table comparisons. Each ta-
ble comparison is a job to be performed. The idea of

the TCFC algorithm (Algorithm 1) is to put all jobs
in a priority (sorted) queue, and execute them one by
one until the time runs out (lines 5 to 7), or all jobs get
executed (line 29).

8

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC)
1 Input: 𝒞𝒞𝒞𝒞
2 Output: differences report and completion status
3 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 // list of differences
4 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 // compare jobs queue
5 on event (time frame has expired):
6 cancel running job(s)
7 return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡, UNCOMPLETED
8 Begin
9 // initialization
10 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11 for each c ∈ 𝑟𝑟𝑟𝑟
12 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒)
13 // computing
14 repeat
15 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒)
16 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒)
19 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒)
20 for each 𝑡𝑡𝑡𝑡 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡.add(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡, MISSING) // meaning: for input set r, t is missing from output set
22 for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡.add(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡, EXCESS) // meaning: for input set r, t is excessive in output set
24 for each 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶ 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 ≠ 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠
25 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡.add(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26 if 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒
27 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28 until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒
29 return report, COMPLETED
30 nd E

To achieve a global overview, tables are compared
with an increasing level of detail in a round robin
fashion. We use a list (

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 (line
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates
1 Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2 Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3 Begin
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6 if 𝑎𝑎𝑎𝑎 is empty tuple
7 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true
8 else
9 T← schema of tuple 𝑎𝑎𝑎𝑎
10 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀ A = t[A]
11 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12 execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13 return resulting tuples
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three
parameters, in the following order:

1. Error depth, the algorithm will first pursue the branches in which errors are spotted.
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.).
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata.

Full depth is used only when an error has been pursued.
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

) as an appropriate data
structure for storing and managing the jobs. If, for ex-
ample, we have to compare 10 pairs of tables, this list
will initially contain 10 elements (jobs). The content
of

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 (line
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates
1 Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2 Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3 Begin
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6 if 𝑎𝑎𝑎𝑎 is empty tuple
7 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true
8 else
9 T← schema of tuple 𝑎𝑎𝑎𝑎
10 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀ A = t[A]
11 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12 execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13 return resulting tuples
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three
parameters, in the following order:

1. Error depth, the algorithm will first pursue the branches in which errors are spotted.
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.).
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata.

Full depth is used only when an error has been pursued.
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 is based on the set of metadata – quintu-
ples

8

3.3. The Overall TCFC Algorithm

In the previous two sections, we have formally described the algorithm at table level. Using the described algorithm,
with the help of metadata, we can now introduce a global, time-constrained algorithm for providing a “global
overview” of the differences between two sets of tables.
The metadata needed for comparing an input set (relation 𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅)) with an output set (set of relations 𝕤𝕤𝕤𝕤) is denoted as
the metadata quintuple 𝒞𝒞𝒞𝒞 = (𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅), 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅). Since the transformation 𝜏𝜏𝜏𝜏 is the transformation that has
been applied to relation 𝑟𝑟𝑟𝑟 to produce a set of relations 𝕤𝕤𝕤𝕤, 𝜏𝜏𝜏𝜏−1 will reconstruct relation s(R), thus harmonizing the
schema of the two data sets prior to comparison. The relations are then iteratively fragmented, aggregated and
compared according to the fragmentation sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 and aggregate sets from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅. With 𝒞𝒞𝒞𝒞 we denote a set of
all metadata quintuples needed for comparing a pair of databases.
A comparison of two data sets, according to a metadata quintuple 𝒞𝒞𝒞𝒞, is an iterative process that can be illustrated by
an unbalanced tree where each node represents a fragment based on the aggregation set and the fragmentation set
defined for that level (Figure 2). This means that comparing 𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑎𝑎 according to 𝑎𝑎𝑎𝑎1 and A1 is represented with the
root of the tree. If the comparison at the root level results with differences in fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛, the further
comparison of fragments 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2,…, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 will be carried out according to 𝑎𝑎𝑎𝑎2 and 𝐴𝐴𝐴𝐴2 and will produce the root’s children,
etc.
In accordance with a request to examine as many tables as possible, perhaps at the expense of the completeness of the
result, the algorithm should perform the comparison operations at the first level for all tables, then all assigned (and
necessary) comparison of the fragments on the second level and so on.
This can be ensured by traversing tree according to the breadth-first order, which can be straightforwardly
implemented using a queue.
Comparison of two data sets (databases) is comprised of a number of individual table comparisons. Each table
comparison is a job to be performed. The idea of the TCFC algorithm (Algorithm 1) is to put all jobs in a priority
(sorted) queue, and execute them one by one until the time runs out (lines 5 to 7), or all jobs get executed (line 29).

 Algorithm 1: Time-Constrained Fragment and Compare (TCFC)
1 Input: 𝒞𝒞𝒞𝒞
2 Output: differences report and completion status
3 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // list of differences
4 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 // compare jobs queue
5 on event (time frame has expired):
6 cancel running job(s)
7 return 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎, UNCOMPLETED
8 Begin
9 // initialization
10 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
11 for each c ∈ 𝑟𝑟𝑟𝑟
12 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟, 𝜏𝜏𝜏𝜏−1(𝕤𝕤𝕤𝕤), 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
13 // computing
14 repeat
15 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.dequeue into(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
16 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
17 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ← ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅)
18 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 ← Compute Aggregates(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
19 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ← Compute Aggregates(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 ,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒)
20 for each 𝑎𝑎𝑎𝑎 ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠)�
21 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, MISSING) // meaning: for input set r, t is missing from output set
22 for each t ∈ �𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠) ∖ 𝜋𝜋𝜋𝜋𝑋𝑋𝑋𝑋(𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)�
23 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, EXCESS) // meaning: for input set r, t is excessive in output set
24 for each 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ∈ 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∈ 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 ∶ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠[𝑎𝑎𝑎𝑎] ⋀ 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 ≠ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
25 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎.add(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎], DIFF) //meaning: for input set r, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎] is excessive in the output set
26 if 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
27 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎.enqueue(𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅), 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟[𝑎𝑎𝑎𝑎])
28 until 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒
29 return report, COMPLETED
30 end

 (line 1). The lists

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 (line
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates
1 Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2 Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3 Begin
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6 if 𝑎𝑎𝑎𝑎 is empty tuple
7 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true
8 else
9 T← schema of tuple 𝑎𝑎𝑎𝑎
10 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀ A = t[A]
11 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12 execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13 return resulting tuples
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three
parameters, in the following order:

1. Error depth, the algorithm will first pursue the branches in which errors are spotted.
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.).
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata.

Full depth is used only when an error has been pursued.
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 and report, initialized
at the beginning of the algorithm (lines 3 and 4), are
used to store the metadata for the tables to be com-
pared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a da-

tabase that serves as a repository for this algorithm,
include: schema of the relation r; transformation τ –1
used to obtain relation s from the set of relations

6

In general, we compare an input set (any relation r in the source database or in the staging area) with an output set (a
set of relations in the staging area or in the DW). For given � and ��,�, the relation � will be fragmented and specified
aggregate functions will be evaluated for the fragments i.e. ���, �, ��,�� will be evaluated in accordance with the
algorithm described in Section 3.1. The problem here is that the relation �(�) does not exist. However, relation
equivalent to �(�) can be reconstructed from a set of relations �. The set of relations � is the result of the transformation
τ over �, i.e. � = �(�). To compare input and output sets using our algorithm it is necessary to apply inverse
transformation τ-1 over output set, such that for each instance of the relation � we can state that � = �����(�)�. The
existence of such an inverse transformation is not questionable if we adhere to the limitations specified in the
introductory part of Section 3 (each record in a fact table corresponds to exactly one record in a data source table).
Note that, for identical schema, both � and ��� are the identity operators.
In this example (Figure 1), the inverse transformation is simply defined with the operation of relational algebra:
τ��(fExam, dStudent, dDate, dCourse) =
�����(���������,����������,���������,����������)
(�����,����������,���������,���������
(fExam ⊳⊲ dStudent ⊳⊲ dDate ⊳⊲ dCourse)).
Performing transformation τ-1({fExam, dStudent, dDate, dCourse}) we acquire relation �(�) which can be compared
to the relation �(�) using algorithm described in Section 3.1. More precisely, it is not necessary to reconstruct �(�),
it is sufficient to reconstruct the relation having all attributes contained in X and in ��,�. Commonly, the relation s(S)
will not be evaluated. The transformation τ-1 will be incorporated into an SQL statement which serves to evaluate
�(�, �).
The following example illustrates the procedure of fragmenting two data sets having different schemas, shown in
Figure 1:
�(�) =
����(���������, ����������, ���������, ����������)
� = {���������, ����������, ���������}

�(�) = ������(���������,����������,���������,����������)
(�����,����������,���������,����������
(����� ⊳⊲ �������� ⊳⊲ ����� ⊳⊲ �������))

;
nonempty list

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 (line
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates
1 Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2 Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3 Begin
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6 if 𝑎𝑎𝑎𝑎 is empty tuple
7 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true
8 else
9 T← schema of tuple 𝑎𝑎𝑎𝑎
10 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀ A = t[A]
11 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12 execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13 return resulting tuples
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three
parameters, in the following order:

1. Error depth, the algorithm will first pursue the branches in which errors are spotted.
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.).
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata.

Full depth is used only when an error has been pursued.
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 of fragmentation sets; nonempty
list

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 (line
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates
1 Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2 Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3 Begin
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6 if 𝑎𝑎𝑎𝑎 is empty tuple
7 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true
8 else
9 T← schema of tuple 𝑎𝑎𝑎𝑎
10 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀ A = t[A]
11 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12 execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13 return resulting tuples
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three
parameters, in the following order:

1. Error depth, the algorithm will first pursue the branches in which errors are spotted.
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.).
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata.

Full depth is used only when an error has been pursued.
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 of aggregation sets.
Each element of the

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 (line
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates
1 Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2 Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3 Begin
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6 if 𝑎𝑎𝑎𝑎 is empty tuple
7 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true
8 else
9 T← schema of tuple 𝑎𝑎𝑎𝑎
10 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀ A = t[A]
11 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12 execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13 return resulting tuples
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three
parameters, in the following order:

1. Error depth, the algorithm will first pursue the branches in which errors are spotted.
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.).
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata.

Full depth is used only when an error has been pursued.
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 list contains elements
listXR and listAR being lists as well. Since we use

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 (line
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates
1 Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2 Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3 Begin
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6 if 𝑎𝑎𝑎𝑎 is empty tuple
7 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true
8 else
9 T← schema of tuple 𝑎𝑎𝑎𝑎
10 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀ A = t[A]
11 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12 execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13 return resulting tuples
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three
parameters, in the following order:

1. Error depth, the algorithm will first pursue the branches in which errors are spotted.
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.).
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata.

Full depth is used only when an error has been pursued.
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 list as a priority queue, the first element rep-
resents the job with the highest priority that will be
next to be pulled out from the queue (line 15) and pro-
cessed. One job may include a comparison on a num-
ber of levels (that number is determined by the num-

15Information Technology and Control 2018/1/47

ber of listXR elements). Thus, the next step is to pull
first elements from

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 (line
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates
1 Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2 Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3 Begin
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6 if 𝑎𝑎𝑎𝑎 is empty tuple
7 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true
8 else
9 T← schema of tuple 𝑎𝑎𝑎𝑎
10 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀ A = t[A]
11 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12 execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13 return resulting tuples
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three
parameters, in the following order:

1. Error depth, the algorithm will first pursue the branches in which errors are spotted.
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.).
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata.

Full depth is used only when an error has been pursued.
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 (line 16) and

9

To achieve a global overview, tables are compared with an increasing level of detail in a round robin fashion. We use
a list (𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as an appropriate data structure for storing and managing the jobs. If, for example, we have to compare
10 pairs of tables, this list will initially contain 10 elements (jobs). The content of 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is based on the set of
metadata – quintuples 𝒞𝒞𝒞𝒞 (line 1). The lists 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and report, initialized at the beginning of the algorithm (lines 3
and 4), are used to store the metadata for the tables to be compared (line 12) and to store output data. Metadata,
required to compare two data sets and stored in a database that serves as a repository for this algorithm, include:
schema of the relation 𝑟𝑟𝑟𝑟; transformation 𝜏𝜏𝜏𝜏−1 used to obtain relation 𝑠𝑠𝑠𝑠 from the set of relations 𝕤𝕤𝕤𝕤; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅of
fragmentation sets; nonempty list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 of aggregation sets.
Each element of the 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list contains elements listXR and listAR being lists as well. Since we use 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 list as
a priority queue, the first element represents the job with the highest priority that will be next to be pulled out from
the queue (line 15) and processed. One job may include a comparison on a number of levels (that number is determined
by the number of listXR elements). Thus, the next step is to pull first elements from 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 (line 16) and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅 (line
17) using function head. Based on the metadata, fragmentation and aggregate calculation is performed for relations 𝑟𝑟𝑟𝑟
(line 18) and 𝑠𝑠𝑠𝑠 (line 19). The result of the Compute Agregates algorithm (Algorithm 2) is a set of tuples whose schema
is determined by the attributes contained in fragmentation set and aggregation set. The resulting sets of tuples 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 and
𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 are being compared (lines 20 through 25) to find differences. Each tuple difference is added to the resulting list
report (lines 21, 23 and 25). Instantly processed job will be removed from the list cQueue (lines 26 and 27). This way
processed elements (jobs) are removed from the priority queue while elements (jobs) relating to unprocessed
comparisons remain in the list. Differences 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 revealed between compared data sets are added to the priority queue as
new jobs for further inspections. It is evident that this algorithm can generate children jobs – each tuple 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 generates
a new job.
The Compute Agregates algorithm constructs an SQL statement similar to the statements from Table 2.

Algorithm 2: Compute Aggregates
1 Input: (𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎,𝒜𝒜𝒜𝒜, 𝑎𝑎𝑎𝑎) // r is an relation or relational algebra expression
2 Output: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3 Begin
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←attributes from 𝑎𝑎𝑎𝑎 and list of aggregate functions from 𝒜𝒜𝒜𝒜, renamed accordingly
5 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← r
6 if 𝑎𝑎𝑎𝑎 is empty tuple
7 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ←true
8 else
9 T← schema of tuple 𝑎𝑎𝑎𝑎
10 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 ← 𝐴𝐴𝐴𝐴 ∈ 𝑇𝑇𝑇𝑇⋀ A = t[A]
11 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← list of attributes from X
12 execute sql statement for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
13 return resulting tuples
14 end.

The SELECT clause contains all attributes from the X list, and a list of aggregate functions with accompanying
arguments and associated names (line 4). The WHERE part contains specific conditions, but only when input tuple t is
not an empty tuple. It is not empty when difference between compared tables is detected and further fragmentation is
done in order to find more detailed information. The join conditions (lines 9 and 10) are being built according to the
metadata from mentioned repository which takes into account the attributes contained in X. The output of the algorithm
is a relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details are omitted in the pseudo-code. They will be described in the
remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is defined by the ordering of jobs. Jobs are ordered according to three
parameters, in the following order:

1. Error depth, the algorithm will first pursue the branches in which errors are spotted.
2. Depth: if there are no errors, the algorithm will consider job depth (level) and thus uniformly spread the

execution over all tables (compare jobs with depth 1 for all tables, then jobs with depth 2 for all tables, etc.).
3. Priority: users can set priority for each table. Tables with higher priority are inspected sooner within the same

(error) depth.
Seek depths: algorithm considers two depths for a single job (comparison) that are defined and stored in the

metadata repository:
1. Full depth is implicitly defined with the number of levels (and according attribute sets) defined in the metadata.

Full depth is used only when an error has been pursued.
2. Healthy job depth: the other, smaller depth, is defined for the jobs where no errors were found (“healthy jobs”).

 (line
17) using function head. Based on the metadata, frag-
mentation and aggregate calculation is performed for
relations r (line 18) and s (line 19). The result of the
Compute Agregates algorithm (Algorithm 2) is a set of
tuples whose schema is determined by the attributes
contained in fragmentation set and aggregation set.
The resulting sets of tuples qr and qs are being com-
pared (lines 20 through 25) to find differences. Each
tuple difference is added to the resulting list report

(lines 21, 23 and 25). Instantly processed job will be
removed from the list cQueue (lines 26 and 27). This
way processed elements (jobs) are removed from the
priority queue while elements (jobs) relating to un-
processed comparisons remain in the list. Differences
tr revealed between compared data sets are added to
the priority queue as new jobs for further inspections.
It is evident that this algorithm can generate children
jobs – each tuple tr generates a new job.
The Compute Agregates algorithm constructs an SQL
statement similar to the statements from Table 2.

The SELECT clause contains all attributes from the X
list, and a list of aggregate functions with accompa-
nying arguments and associated names (line 4). The
WHERE part contains specific conditions, but only when
input tuple t is not an empty tuple. It is not empty when
difference between compared tables is detected and
further fragmentation is done in order to find more de-
tailed information. The join conditions (lines 9 and 10)
are being built according to the metadata from men-
tioned repository which takes into account the attri-
butes contained in X. The output of the algorithm is a
relation – a set of tuples with a known schema (line 2).
For the sake of clarity, some implementation details
are omitted in the pseudo-code. They will be de-
scribed in the remainder of this section.
Job order: execution path (tree, e.g., Figure 2) is de-
fined by the ordering of jobs. Jobs are ordered accord-
ing to three parameters, in the following order:
1 Error depth, the algorithm will first pursue the

branches in which errors are spotted.

 Algorithm 2: Compute Aggregates
1 Input: (�, �, �, �) // r is an relation or relational algebra expression
2 Output: ��� �� ������
3 Begin
4 ������������ ←attributes from � and list of aggregate functions from �, renamed accordingly
5 ���������� ← r
6 if � is empty tuple
7 �������������� ←true
8 else
9 T← schema of tuple �
10 �������������� ← � � �� A � t[A]
11 ����������� ← list of attributes from X
12 execute sql statement for ������������, ����������, ��������������, �����������
13 return resulting tuples
14 ndE

2 Depth: if there are no errors, the algorithm will
consider job depth (level) and thus uniformly
spread the execution over all tables (compare jobs
with depth 1 for all tables, then jobs with depth 2
for all tables, etc.).

3 Priority: users can set priority for each table. Ta-
bles with higher priority are inspected sooner
within the same (error) depth.

Seek depths: algorithm considers two depths for a
single job (comparison) that are defined and stored in
the metadata repository:
1 Full depth is implicitly defined with the number of

levels (and according attribute sets) defined in the
metadata. Full depth is used only when an error has
been pursued.

2 Healthy job depth: the other, smaller depth, is
defined for the jobs where no errors were found
(“healthy jobs”).

Defining two depths allows us to find precise differing
rows, while abandoning the search sooner for tables

Information Technology and Control 2018/1/4716

which show no differences in the early part of the algo-
rithm. Comparing huge tables with no differences all the
way to the primary key would be too slow and inefficient.
Figure 2 shows the fragmentation of the yearEnroll
table that pertains to the year enrolment process at a
HEI (High(er) Education Institution): a student (stu‐
dent_id) enrolls in a year of study (yearOfStudy) in an
academic year (acdmYear). The left-hand side shows
a yearEnroll table in the source system, and the right-
hand side shows its copy – yearEnroll table in the stag-
ing area. The primary key is KyearEnroll= {HEI_id, acdm‐
Year, yearOfStudy, student_id}. At the first level, the
fragmentation is carried out according to HEI_id, then
by acdmYear and so forth. For the sake of simplicity,
we show only the count aggregate function in green

colour (on the left side) and in green and red (where
they differ) on the right side. Healthy job depth is set
to the second level. Had there been no errors, the com-
parison would have been carried out and stopped on
{HEI_id, acdmYear} fragment/depth. In this example
though, the difference in counts is found at the first
level, for the HEI1 (10<>9). Following on that, the
algorithm focuses on the HEI1 and continues to frag-
ment that branch. At the second level, the difference
is narrowed to (HE1, 09/10), then to the (HE1, 09/10,
1st), and, finally, the exact tuples are found. The algo-
rithm steps (ordered path) are denoted with numbers
in circles. Note that, in accordance with the job order-
ing strategy described above, the algorithm primarily
explores the erroneous branches.

Figure 2
A tree representation of TCFC algorithm’s execution

17Information Technology and Control 2018/1/47

The algorithm will not further explore healthy branch-
es if it finds an erroneous branch. Healthy children
jobs are loaded only if there are no errors. This means
that algorithm will not further explore branch (HEI1,
10/11) in Figure 2. This behaviour could be easi-
ly modified by loading the healthy branches into the
queue with the lowest priority (to be executed last, if
there is any time left). However, this would be subop-
timal, since there could be a great number of healthy
branches. Imagine we have additional 50 years (be-
sides 2009 and 2010) in Figure 2 – this would spawn
another 50 queries. In general, it would be better to
execute one larger query (with all 51 years) and then
ignore the already processed erroneous branches.
This functionality implies a more significant change
to the algorithm and is not presented here.
Another feature of the algorithm that was omitted
from the formal description is the ability to reuse the
results from the previous run. If we accept the assump-
tion that most of the errors between two ETL refresh
cycles remain the same, especially when incremental
loading of DW is employed, it is prudent to store results
in the metadata repository and examine them first in
the next run. These “narrow” queries are much faster
than queries at the ground levels that are targeting the
whole table. The results of those queries can be used
to prune the execution tree as soon as the difference is
accounted for. For instance, say we add one row to the
(HEI3, 10/11, 5th) branch and run the algorithm again:
what were steps 1 and 4 would now be carried out in the
first step at level one. But the difference is now in frag-
ments HEI1 and HEI3. The difference (one row) found
in the leaf job (HEI1, 09/10, 1st) would account for
the HE1 branch and it would be pruned. The algorithm
would continue to drill down on HEI3 branch only, to
find the newly added difference. In general: a branch
can be pruned if there is a leaf job with matching prefix
fragment values ((HEI1) matches (HEI1, 09/10, 1st))
and error counts. This feature of the TCFC algorithm
gives the ability to benefit from previous runs (learn
from the data, in a way) and drastically reduce the ex-
ecution time. Note that, this way, it is possible to refine
search results after being interrupted (because of the
limited time) – a job that was interrupted today might
finish tomorrow, or the day after. This feature was not
included in the comparison with the reference imple-
mentation in Section 3.1. because it would give us an
unfair advantage.

3.4. Fragmentation Strategy
Recommendations
For any non-trivial table, a number of fragmenta-
tion paths is huge. For instance, for just four possible
fragmentation attributes (e.g., Figure 2) there are 148
different fragmenting strategies: 1 for zero level (no
grouping), 14 one level strategies, 49 two level strate-
gies, 60 three level and 24 four level strategies. Based
on our experience, we provide the following recom-
mendations:
 _ Fragmentation strategy should be determined with

the help of a domain expert – a person who has a
good knowledge of the data semantics and business
processes.

 _ Healthy job depth should be set for all relations,
except for low-cardinality relations where only one
level should be used, i.e. where primary key is used
at the first level.

 _ Higher fragmentation levels must not include
attributes that are functionally dependent on the
attributes from lower fragmentation levels.

 _ The number of tuples in children fragments should
be for at least an order of magnitude less than the
number of tuples in the parenting fragment. This is
particularly important for the first fragmentation
level – this is where a huge table is reduced to N
smaller “tables” (fragments). Hopefully, if the
data are relatively uniformly distributed over the
first fragmentation attribute set (usually, data
are uniformly distributed at least over the time
attribute), then the number of tuples can be reduced
by the chosen order of magnitude by creating tens
or hundreds of fragments. On the other hand, the
number of fragments should not be too big because
this would facilitate error scattering over different
fragments. The best-case scenario is if all the errors
are in the same fragment, so that a single branch is
pursued.

 _ The total number of fragmentation levels should
not be too big or too small. Based on tests conducted
in this paper, for the relations of 100 million tuples,
we consider two to four to be the optimal number
of levels.

 _ If possible, build a composite index on the
corresponding attributes of the last level of
fragmentation.

Information Technology and Control 2018/1/4718

In the case where DBMS keeps accurate statistics on
the row count of tables, it is suitable to start compar-
ing data sets with empty fragmentation set (at first
level) with just one aggregate function – COUNT,
since the result of the SELECT COUNT(attributeN-
ame) will be instantaneous. If statistics are not kept,
such a statement would cause a full table scan and
then it is better to perform the fragmentation with
nonempty fragmentation set and multiple aggregate
functions.

3.5. Algorithm Evaluation
The TCFC algorithm was tested in terms of speed and
accuracy. It is implemented in C# programming lan-
guage. Testing was executed on a PC with Intel ® Core
™ i7-4770 CPU processor with 16 GB of RAM and Mic-
rosoft Windows 8 operating system. For database serv-
ers, two virtual machines with equal configurations
were used, namely, Intel ® Xeon ® processor E7540
(2.00 GHz clock speed), 8 GB of RAM, Windows Serv-
er Standard operating system and SQL Server 2014

DBMS (with auto update statistic option).
Testing was carried out on data sets with cardinality
between 50 million and 400 million tuples which we
consider comparable to cardinality in a real-world
data warehousing systems (at least for the incremen-
tal daily load) and for variable number of the differ-
ences between compared data sets.
Figure 3 shows schemas of two data sets from differ-
ent domains used for algorithm evaluation:
a Real world data from the field of higher educa-

tion [25] (relation exam in Figure 3(a)) that was
extrapolated (from initial 10 million) to relations
exam100M, exam200M and exam400M with 100,
200 and 400 million tuples i.e. 8GB, 15GB and
30GB data, respectively.

b Well-known TPC Benchmark ™ H (TPC-H) pro-
grammatically generated data set [37] (relations
orders and lineItem in Figure 3(b), containing 50
and 180 million tuples, i.e. 5GB and 25GB data, re-
spectively).

Figure 3
Schemas of data sets used for algorithm evaluation

 (b) TCP-H data set, 50M and 180M rows

12

Figure 3 Schemas of data sets used for algorithm evaluation

Primary keys are as follows:
����� = {����������� ���������� ���������}
������� = {��������}
��������� = {��������� �������� �������},
where pArtKey is the article key.
TCFC’s speed is compared to the execution speed of the referent SELECT statements, shown below whose execution
time is referred to as referent execution time in the rest of the paper. In this experiment, we have deliberately used the
same DBMS on both servers, because SQL Server provides the execution of queries involving tables stored on remote
servers (via the linked server feature). The SQL statement used to find the differences between the two instances of
exam100M tables (and analogous statements were used for the remaining exam*M table pairs) is shown below. To
connect to the staging area we used linked server named “SASrv.ZPR.FER.HR”:

SELECT *
 FROM HEISsrc.dbo.exam100M src
 FULL OUTER JOIN [SASrv.ZPR.FER.HR].HEISsa.dbo.exam100M dest
 ON src.student_id = dest.student_id
 AND src.course_id = dest.course_id
 AND src.exam_date = dest.exam_date
 WHERE src.student_id IS NULL
 OR dest.student_id IS NULL
 -- OR (dest.NonKeyAttrib <> src.NonKeyAttrib) , for each remaining Non-Key attribute

Similar statements were used to compare orders and lineItem pairs:
SELECT *
 FROM TPCHsrc.dbo.orders src
 FULL OUTER JOIN
 [SASrv.ZPR.FER.HR].TPCHsa.dbo.orders dest
 ON src.orderKey = dest.orderKey
 WHERE src.orderKey IS NULL
 OR dest.orderKey IS NULL
-- OR (dest.NonKeyAttrib <>
-- src.NonKeyAttrib) , for each remaining
-- Non-Key attribute

SELECT *
 FROM TPCHsrc.dbo.lineitem src
 FULL OUTER JOIN
 [SASrv.ZPR.FER.HR].TPCHsa.dbo.lineitem dest
 ON src.orderKey = dest.orderKey
 AND src.partKey = dest.partKey
 AND src.suppKey = dest.suppKey
 WHERE src.orderKey IS NULL
 OR dest.orderKey IS NULL
-- OR (dest.NonKeyAttrib <>
-- src.NonKeyAttrib) , for each remaining
-- Non-Key attribute

For the sake of brevity, the above SQL statements do not list all OR statements that check the potential differences in
non-key attributes; that part is represented as a comment.
The fragmentation presented in Table 2 was used. The last fragmentation level for each relation includes all primary
key attributes and consequently the comparison will pinpoint the exact missing/excess tuples. Differences between
the tables were generated by deleting tuples from the source table. Both, number and dispersion on differences across
fragments were varied, since error dispersion significantly affects the performance. For instance, if a pair of

has_passed

exam
exam_date
student_id
course_id

…

orders

orderKey

customerKey

orderDate

totalPrice

…

lineItem
lineNumber
orderKey
partKey
suppKey
quantity
…

(a) HEIS data set, 100M-400M rows (b) TCP-H data set, 50M and 180M rows
(a) HEIS data set, 100M-400M rows

Primary keys are as follows:

12

Figure 3 Schemas of data sets used for algorithm evaluation

Primary keys are as follows:
����� = {����������� ���������� ���������}
������� = {��������}
��������� = {��������� �������� �������},
where pArtKey is the article key.
TCFC’s speed is compared to the execution speed of the referent SELECT statements, shown below whose execution
time is referred to as referent execution time in the rest of the paper. In this experiment, we have deliberately used the
same DBMS on both servers, because SQL Server provides the execution of queries involving tables stored on remote
servers (via the linked server feature). The SQL statement used to find the differences between the two instances of
exam100M tables (and analogous statements were used for the remaining exam*M table pairs) is shown below. To
connect to the staging area we used linked server named “SASrv.ZPR.FER.HR”:

SELECT *
 FROM HEISsrc.dbo.exam100M src
 FULL OUTER JOIN [SASrv.ZPR.FER.HR].HEISsa.dbo.exam100M dest
 ON src.student_id = dest.student_id
 AND src.course_id = dest.course_id
 AND src.exam_date = dest.exam_date
 WHERE src.student_id IS NULL
 OR dest.student_id IS NULL
 -- OR (dest.NonKeyAttrib <> src.NonKeyAttrib) , for each remaining Non-Key attribute

Similar statements were used to compare orders and lineItem pairs:
SELECT *
 FROM TPCHsrc.dbo.orders src
 FULL OUTER JOIN
 [SASrv.ZPR.FER.HR].TPCHsa.dbo.orders dest
 ON src.orderKey = dest.orderKey
 WHERE src.orderKey IS NULL
 OR dest.orderKey IS NULL
-- OR (dest.NonKeyAttrib <>
-- src.NonKeyAttrib) , for each remaining
-- Non-Key attribute

SELECT *
 FROM TPCHsrc.dbo.lineitem src
 FULL OUTER JOIN
 [SASrv.ZPR.FER.HR].TPCHsa.dbo.lineitem dest
 ON src.orderKey = dest.orderKey
 AND src.partKey = dest.partKey
 AND src.suppKey = dest.suppKey
 WHERE src.orderKey IS NULL
 OR dest.orderKey IS NULL
-- OR (dest.NonKeyAttrib <>
-- src.NonKeyAttrib) , for each remaining
-- Non-Key attribute

For the sake of brevity, the above SQL statements do not list all OR statements that check the potential differences in
non-key attributes; that part is represented as a comment.
The fragmentation presented in Table 2 was used. The last fragmentation level for each relation includes all primary
key attributes and consequently the comparison will pinpoint the exact missing/excess tuples. Differences between
the tables were generated by deleting tuples from the source table. Both, number and dispersion on differences across
fragments were varied, since error dispersion significantly affects the performance. For instance, if a pair of

has_passed

exam
exam_date
student_id
course_id

…

orders

orderKey

customerKey

orderDate

totalPrice

…

lineItem
lineNumber
orderKey
partKey
suppKey
quantity
…

(a) HEIS data set, 100M-400M rows (b) TCP-H data set, 50M and 180M rows

where pArtKey is the article key.
TCFC’s speed is compared to the execution speed of the
referent SELECT statements, shown below whose ex-
ecution time is referred to as referent execution time in

the rest of the paper. In this experiment, we have deliber-
ately used the same DBMS on both servers, because SQL
Server provides the execution of queries involving tables
stored on remote servers (via the linked server feature).
The SQL statement used to find the differences between
the two instances of exam100M tables (and analogous
statements were used for the remaining exam*M table
pairs) is shown below. To connect to the staging area
we used linked server named “SASrv.ZPR.FER.HR”:

19Information Technology and Control 2018/1/47

SELECT *

 FROM HEISsrc.dbo.exam100M src

 FULL OUTER JOIN [SASrv.ZPR.FER.HR].HEISsa.dbo.exam100M dest

 ON src.student_id = dest.student_id

 AND src.course_id = dest.course_id

 AND src.exam_date = dest.exam_date

 WHERE src.student_id IS NULL

 OR dest.student_id IS NULL

 -- OR (dest.NonKeyAttrib <> src.NonKeyAttrib) , for each remaining Non-Key attribute

Similar statements were used to compare orders and lineItem pairs:

SELECT *

 FROM TPCHsrc.dbo.orders src

 FULL OUTER JOIN

 [SASrv.ZPR.FER.HR].TPCHsa.dbo.orders dest

 ON src.orderKey = dest.orderKey

 WHERE src.orderKey IS NULL

 OR dest.orderKey IS NULL
-- OR (dest.NonKeyAttrib <>
-- src.NonKeyAttrib) , for each remaining

-- Non-Key attribute

SELECT *

 FROM TPCHsrc.dbo.lineitem src

 FULL OUTER JOIN

 [SASrv.ZPR.FER.HR].TPCHsa.dbo.lineitem dest

 ON src.orderKey = dest.orderKey

 AND src.partKey = dest.partKey

 AND src.suppKey = dest.suppKey

 WHERE src.orderKey IS NULL

 OR dest.orderKey IS NULL
-- OR (dest.NonKeyAttrib <>
-- src.NonKeyAttrib) , for each remaining

-- Non-Key attribute

For the sake of brevity, the above SQL statements do
not list all OR statements that check the potential dif-
ferences in non-key attributes; that part is represent-
ed as a comment.
The fragmentation presented in Table 1 was used.
The last fragmentation level for each relation in-
cludes all primary key attributes and consequent-
ly the comparison will pinpoint the exact missing/
excess tuples. Differences between the tables were
generated by deleting tuples from the source table.
Both, number and dispersion on differences across
fragments were varied, since error dispersion sig-
nificantly affects the performance. For instance, if
a pair of exam100M relations differs in 1‰, i.e.,
100.000 tuples, in the worst case, at the last level, an
equal number of queries would be generated (though
it is very unlikely errors would align with the frag-
mentation set in such way at the penultimate level)
and in the best case a single query would detect all

Table 1
HEIS and TPC-H fragmentation strategy

13

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the
differences are scattered in 20% of the total fragments in the penultimate fragmentation level.

Table 2 HEIS and TPC-H fragmentation strategy

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations,
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100%
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate.
Testing was conducted in two different modes:

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d),
and

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and
Figure 4(c).

Graphs show a few common characteristics for all experiments:
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the

SELECT statement spanning tables from remote servers.
• Indices that follows a fragmentation strategy improve the performance of TCFC.
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance.
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows
worse results than the relational engine. However, the following applies:
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that

we were targeting.
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors.
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify
between two ETL cycles.

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the
threshold can be set to match the referent implementation time.

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use
previous results.

13

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the
differences are scattered in 20% of the total fragments in the penultimate fragmentation level.

Table 2 HEIS and TPC-H fragmentation strategy

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations,
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100%
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate.
Testing was conducted in two different modes:

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d),
and

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and
Figure 4(c).

Graphs show a few common characteristics for all experiments:
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the

SELECT statement spanning tables from remote servers.
• Indices that follows a fragmentation strategy improve the performance of TCFC.
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance.
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows
worse results than the relational engine. However, the following applies:
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that

we were targeting.
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors.
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify
between two ETL cycles.

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the
threshold can be set to match the referent implementation time.

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use
previous results.

13

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the
differences are scattered in 20% of the total fragments in the penultimate fragmentation level.

Table 2 HEIS and TPC-H fragmentation strategy

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations,
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100%
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate.
Testing was conducted in two different modes:

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d),
and

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and
Figure 4(c).

Graphs show a few common characteristics for all experiments:
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the

SELECT statement spanning tables from remote servers.
• Indices that follows a fragmentation strategy improve the performance of TCFC.
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance.
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows
worse results than the relational engine. However, the following applies:
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that

we were targeting.
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors.
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify
between two ETL cycles.

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the
threshold can be set to match the referent implementation time.

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use
previous results.

13

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the
differences are scattered in 20% of the total fragments in the penultimate fragmentation level.

Table 2 HEIS and TPC-H fragmentation strategy

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations,
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100%
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate.
Testing was conducted in two different modes:

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d),
and

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and
Figure 4(c).

Graphs show a few common characteristics for all experiments:
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the

SELECT statement spanning tables from remote servers.
• Indices that follows a fragmentation strategy improve the performance of TCFC.
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance.
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows
worse results than the relational engine. However, the following applies:
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that

we were targeting.
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors.
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify
between two ETL cycles.

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the
threshold can be set to match the referent implementation time.

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use
previous results.

13

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the
differences are scattered in 20% of the total fragments in the penultimate fragmentation level.

Table 2 HEIS and TPC-H fragmentation strategy

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations,
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100%
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate.
Testing was conducted in two different modes:

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d),
and

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and
Figure 4(c).

Graphs show a few common characteristics for all experiments:
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the

SELECT statement spanning tables from remote servers.
• Indices that follows a fragmentation strategy improve the performance of TCFC.
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance.
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows
worse results than the relational engine. However, the following applies:
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that

we were targeting.
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors.
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify
between two ETL cycles.

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the
threshold can be set to match the referent implementation time.

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use
previous results.

13

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the
differences are scattered in 20% of the total fragments in the penultimate fragmentation level.

Table 2 HEIS and TPC-H fragmentation strategy

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations,
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100%
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate.
Testing was conducted in two different modes:

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d),
and

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and
Figure 4(c).

Graphs show a few common characteristics for all experiments:
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the

SELECT statement spanning tables from remote servers.
• Indices that follows a fragmentation strategy improve the performance of TCFC.
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance.
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows
worse results than the relational engine. However, the following applies:
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that

we were targeting.
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors.
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify
between two ETL cycles.

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the
threshold can be set to match the referent implementation time.

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use
previous results.

13

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the
differences are scattered in 20% of the total fragments in the penultimate fragmentation level.

Table 2 HEIS and TPC-H fragmentation strategy

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations,
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100%
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate.
Testing was conducted in two different modes:

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d),
and

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and
Figure 4(c).

Graphs show a few common characteristics for all experiments:
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the

SELECT statement spanning tables from remote servers.
• Indices that follows a fragmentation strategy improve the performance of TCFC.
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance.
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows
worse results than the relational engine. However, the following applies:
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that

we were targeting.
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors.
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify
between two ETL cycles.

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the
threshold can be set to match the referent implementation time.

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use
previous results.

13

same fragment. Dispersion was varied using 20%, 50% and 100% dispersion. Dispersion of 20% means that the
differences are scattered in 20% of the total fragments in the penultimate fragmentation level.

Table 2 HEIS and TPC-H fragmentation strategy

𝑟𝑟𝑟𝑟 𝑋𝑋𝑋𝑋, 𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = �
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑},

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑋𝑋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}
𝒜𝒜𝒜𝒜𝑅𝑅𝑅𝑅,𝑋𝑋𝑋𝑋 = {(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎)}

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋𝑅𝑅𝑅𝑅 = � {𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎},
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} �

Figure 4 presents evaluation results for the two stated data sets. Legend items indicate the names of relations,
cardinality and the error dispersion. In all graphs in Figure 4, the x-coordinate represents the number of differences in
per mills of the relation cardinality, while the y-coordinate shows the time spent finding differences relative to the
reference implementation time, meaning that TCFC algorithm finds differences faster than the referent SELECT
statement for all scenarios where parts of the graphs are below a 100% line. For instance, at the top left graph, the
point where the graph exam100M-20% reaches 100% of the referent execution time is for the number of errors
between 12 and 13 ‰ (i.e. between 1.2 million and 1.3 million differences), while the graph named ispit100M-100%
reaches the referent execution time for approximately 2.5 ‰ (i.e., 250.000 differences). Increasing dispersion from
20% to 100% reduces the speed of the process by 80% (approximately). In the same time frame, TCFC finds only
20% differences dispersed with the 100% rate compared to finding differences dispersed with the 20% rate.
Testing was conducted in two different modes:

1. non-indexed: both tables without indexes (even primary key constraints), shown in Figure 4(b) and Figure 4(d),
and

2. indexed, with indices appropriate to the chosen fragmentation strategy/primary key, shown in Figure 4(a) and
Figure 4(c).

Graphs show a few common characteristics for all experiments:
• For a sufficiently small number of differences, TCFC outperforms the relational engine, i.e. it is faster than the

SELECT statement spanning tables from remote servers.
• Indices that follows a fragmentation strategy improve the performance of TCFC.
• Error dispersion, which is closely related to the fragmentation strategy, significantly affects the performance.
The first observation can also be stated as the follows: after a certain point of differences, the TCFC algorithm shows
worse results than the relational engine. However, the following applies:
• In DW environment, it is reasonable to expect the number of differences to be small, and that is the scenario that

we were targeting.
• Differences of several per mills (where the TCFC outperforms the reference implementation) relative to hundreds

of millions of rows amount to hundreds of thousands or even millions of errors: that is either an evidence of
systemic error that will eliminate most of the erroneous rows once corrected, or an unmanageable amount of errors.
Either way, with such large row counts, errors in per mills present more than enough work for a person to rectify
between two ETL cycles.

• Even when the number of differences is not small, the TCFC algorithm is time-constrained. For instance, the
threshold can be set to match the referent implementation time.

• If the assumption that errors remain between ELT cycles holds, the TCFC will improve over time as it will use
previous results.

Information Technology and Control 2018/1/4720

100k differences, as they would all be in the same
fragment. Dispersion was varied using 20%, 50%
and 100% dispersion. Dispersion of 20% means that
the differences are scattered in 20% of the total frag-
ments in the penultimate fragmentation level.
Figure 4 presents evaluation results for the two stat-
ed data sets. Legend items indicate the names of re-
lations, cardinality and the error dispersion. In all
graphs in Figure 4, the x-coordinate represents the
number of differences in per mills of the relation
cardinality, while the y-coordinate shows the time
spent finding differences relative to the reference
implementation time, meaning that TCFC algorithm
finds differences faster than the referent SELECT
statement for all scenarios where parts of the graphs
are below a 100% line. For instance, at the top left
graph, the point where the graph exam100M-20%
reaches 100% of the referent execution time is for
the number of errors between 12 and 13 ‰ (i.e. be-
tween 1.2 million and 1.3 million differences), while
the graph named ispit100M-100% reaches the ref-
erent execution time for approximately 2.5 ‰ (i.e.,
250.000 differences). Increasing dispersion from
20% to 100% reduces the speed of the process by
80% (approximately). In the same time frame, TCFC
finds only 20% differences dispersed with the 100%
rate compared to finding differences dispersed with
the 20% rate.
Testing was conducted in two different modes:
1 non-indexed: both tables without indexes (even

primary key constraints), shown in Figure 4(b) and
Figure 4(d), and

2 indexed, with indices appropriate to the chosen
fragmentation strategy/primary key, shown in Fig-
ure 4(a) and Figure 4(c).

Graphs show a few common characteristics for all ex-
periments:
 _ For a sufficiently small number of differences,

TCFC outperforms the relational engine, i.e. it is
faster than the SELECT statement spanning tables
from remote servers.

 _ Indices that follows a fragmentation strategy
improve the performance of TCFC.

 _ Error dispersion, which is closely related to the
fragmentation strategy, significantly affects the
performance.

The first observation can also be stated as the follows:

after a certain point of differences, the TCFC algo-
rithm shows worse results than the relational engine.
However, the following applies:
 _ In DW environment, it is reasonable to expect the

number of differences to be small, and that is the
scenario that we were targeting.

 _ Differences of several per mills (where the TCFC
outperforms the reference implementation)
relative to hundreds of millions of rows amount to
hundreds of thousands or even millions of errors:
that is either an evidence of systemic error that
will eliminate most of the erroneous rows once
corrected, or an unmanageable amount of errors.
Either way, with such large row counts, errors in
per mills present more than enough work for a
person to rectify between two ETL cycles.

 _ Even when the number of differences is not small,
the TCFC algorithm is time-constrained. For
instance, the threshold can be set to match the
referent implementation time.

 _ If the assumption that errors remain between ELT
cycles holds, the TCFC will improve over time as it
will use previous results.

Finally, one must have in mind that it is often not even
possible to write (execute) SQL statements that com-
pare tables from different databases when different
vendor’s DBMSs are used.
For all the reasons stated above, we believe that the
TCFC algorithm is a perfect fit for ETL integration
testing, and is potentially a very useful method for
large set comparison in general.
While carrying out the experiments, different frag-
mentation strategies were used and it was proved that
poor fragmentation strategy can deteriorate the per-
formance of the algorithm. Finding the optimal frag-
mentation strategy is therefore a task that should be
performed with care as it requires knowledge of the
data (trends) and fair knowledge of SQL and query
optimization techniques. This is somewhat similar
to index creation in the relational databases where
poorly chosen index can have a negative impact on the
performance.
In terms of accuracy, the algorithm has proven to be
accurate – all differences were found in each run (as
mentioned before, there is a miniscule chance of er-
rors being ignored when numbers nullify each other).

21Information Technology and Control 2018/1/47

(a) Indexed data, exec time relative to SQL-outer-join (b) Non-Indexed data, exec time relative to SQL-outer-join

(c) Indexed data, exec time relative to SQL-outer-join (d) Non-Indexed data, exec time relative to SQL-outer-join

Figure 4
Evaluation results for different data sets and indexing strategies. Legend items indicate the names of the relations,
cardinality and the error dispersion

4. Related Work
The literature on software testing is vast and compre-
hensive, but DW and ETL testing has gained far less
attention. Though fundamental principles and tech-
niques apply, DW testing differs significantly from the
software testing, mainly because DW testing is pri-
marily data oriented (as opposed to program code), and

data volume tends to be large. A thorough overview of
DW testing differences can be found in [11], [15-17].
Mookerjea and Malisetty [27] described the main
phases of DW testing, outline main challenges in DW
testing and propose a set of best practices in ETL and
DW testing, as well as Singh [33], while Singh and

Information Technology and Control 2018/1/4722

Kawaljeet [34] gave a descriptive classification of
data quality problems at all phases of DW project: data
sources, data integration, data staging/ETL and DW
design. Singh [33] also considered ideal to perform
integration testing on real production data, while in
Mookerjea and Malisetty [27] authors proposed to
base part of the testing activities (those related to
incremental load) on mock data. We started our eval-
uation process with real project data (Information
System of Higher Education Institutions in Republic
of Croatia – ISVU) [19], but in order to test on large
data sets (over 100 million tuples), we proceeded with
testing on mock (extrapolated real) data [37].
A number of papers deal with particular aspects of
DW testing. For instance, in Thomsen and Pedersen
[36] a semi-automatic regression testing framework
used to compare data between ETL runs is proposed
with the purpose of catching new errors when soft-
ware is updated. Rodić and Baranović [32] proposed
generation of data quality rules and their integration
into ETL process. In Santos et al. [28-29], authors at-
tempted to automate the selection and execution of
previously identified test cases for loading procedures
in BI environments based on a DW. To validate the ap-
proach, the authors have developed a unit test frame-
work and conducted an experiment showing reduced
test effort when compared with manual execution of
test cases or generic framework, such as DBUnit [10].
In Dakrory et al. [6], authors proposed a framework for
automating ETL testing for data quality which deliv-
ers a wide coverage for data quality testing by framing
testing activities within a modular methodology that
can be customized according to ETL specificities,
business rules, and constraints. In Williams [39], the
author employed Data Vault-based Enterprise Data
Warehouse and concluded that such an architecture
can simplify and enhance various aspects of testing,
and curtail delays that are common in DW projects.
In a more generic and exhaustive sense, two contribu-
tions stand out.
Firstly, Golfarelli and Rizzi [14-16] provided a com-
prehensive view of DW testing addressing the prob-
lem from various perspectives. The authors identify
the following components to be tested: Conceptual
schema, Logical Schema, ETL procedures, Database
and Front-end, and introduce the classification of
testing activities in terms of “what” is tested (address-
ing data quality) and “how” it is tested (addressing

test type, e.g., performance test). They define a com-
prehensive methodological framework for data mart
testing which includes eight phases: Requirement
analysis, Analysis and Reconciliation, Conceptual de-
sign, Workload refinement, Logical design, Data stag-
ing design, Physical design and Implementation.
Secondly, ElGamal et al [11-12] brought an extensive
overview of DW testing approaches, divided in four
categories: software based testing approaches, ETL
based, Multi-perspective and CASE-tool based. The
authors define a three-dimensional DW testing ma-
trix with regards to where, what and when is tested,
and conclude that none of the previous approaches
address the entire matrix. Unlike previous approach-
es, the authors take into consideration different DW
architectures and provide a much more detailed and
comprehensive description of all test routines to be
administered in a DW project. With all that in mind, a
generic testing framework based on the generic Kim-
mon DW architecture including aforementioned
routines is proposed. Interestingly, the proposed rou-
tines feature overall “record counts” comparisons
and “random record comparisons”, probably con-
sidering that the overall comparison of records is a
very challenging task in a realistic DW environment,
where huge amounts of data and heterogeneous da-
tabase engines are typically found. Moreover, all the
aforementioned research envisions record (count)
comparison in various stages of ETL/DW project, but
none of them comment on how to conduct the com-
parison. This is where our work nicely fits in, as it
provides a detailed algorithmic instruction on how to
perform this comparison that is at the foundation of
any DW testing system.
Krawatzeck et al. [23] identified a gap between scien-
tific approach and the actual implementation in the
real-world scenarios and performed an evaluation of
open-source DW unit testing tools (e.g., DBUnit [10])
to address that issue, concluding that some promising
tools for the DW testing exist, with a preference for the
DBFit tool [9] as the only vendor-independent tool.
Understandably, ETL/DW testing is also a major top-
ic in the industry. Major vendors provide some sort of
testing integrated with their data integration and data
quality tools. For instance, Informatica [1] features
a “Data Validation Option” tool [7] used to compare
two data sets, though no information is provided as to
how it is done. Furthermore, there are companies and

23Information Technology and Control 2018/1/47

tools developed solely for the purpose of testing a DW.
The QuerySurge [31] and ETL Validator [8] are com-
mercial CASE tools developed by RTTS and Datagaps
companies, respectively, to automate the testing and
validation in the Big Data and DW systems. Under
ETL process testing, QuerySurge CASE tool offers
column-level comparison, table-level comparison and
row count comparison. Each of these testing types
comes down to automatic generation of SQL queries
for comparing pairs of data sets based on row counts
or the values of attributes. Row count comparison only
determines the number of tuples in comparing pairs
of tables and does not indicate tuple(s) that caused the
difference. Table-level testing type produces two data
sets and subsequently compares them. The only differ-
ence between column and table-level testing is that at
the column-level only certain attributes can be chosen
and compared. Both types of tests can be performed
using approach presented in this paper. The advantage
of our approach is in speed – a consequence of TCFC
algorithm’s feature that only table fragments that may
contain differences are inspected. In addition, to the
best of our knowledge, none of the available commer-
cial solutions provide a time-constraint feature, which
is essential in a DW testing scenario.

5. Conclusion
In this paper, we describe an integration testing pro-
cedure for a DW environment, with an emphasis on
the generic time-constrained algorithm for compar-
ing two tables. The goal of the algorithm is to provide
the “global overview” of the data set’s differences in a
given time frame. By global overview, we mean that
the largest possible set of tables should be examined,
at the expense of the completeness of results for any

single table. Metadata are used to describe data sets,
and to configure and steer the algorithm. Both rela-
tional and dimensional data models are supported, so
that the algorithm can be used to compare data from
the various stages of the ETL cycle. The algorithm
can use the results from the previous runs to execute
more effectively. Parts of the algorithm are formally
described, and the overall algorithm is presented in
pseudo-code. Evaluation of the algorithm on the re-
al-world data of the project and on TPC-H data set has
shown that it outperforms the SQL Server relational
engine SELECT statement when the percentage of
missing or excess tuples is relatively small, which is
a scenario typical of a DW environment. Although we
state that the algorithm competes with the relational
engine, it actually uses the relational engine and the
whole process can be viewed as a query optimization
technique: the exhaustive SELECT statement is “bro-
ken down” into a set of smaller statements that are
trying to pinpoint the unequal fragments. Performing
the search with many “small” queries provides addi-
tional benefits: the whole process can be gracefully
time-constrained and more tables can be inspected to
achieve the desired global view of the data, in contrast
to a single exhaustive SELECT statement that might
spend the entire available time on a single table.

Acknowledgment
This work was supported by the Croatian Science
Foundation under the project “PROSPER – Process
and Business Intelligence for Business Performance”
(IP-2014-09-3729) and by the project “Advanced
methods and technologies for data science and coop-
erative systems – DATACROSS” funded from the Eu-
ropean Structural and Investment Funds through the
Operational Programme Competitiveness and Cohe-
sion 2014-2020, contract no. KK.01.1.1.01.0009.

References
1. 2017 Gartner Magic Quadrant for Data Integration

Tools [Online], Gartner. Accessed 15.9.2017. Available:
https://www.informatica.com/data-integration-mag-
ic-quadrant.html.

2. Ballou, D. P., Pazer, H. L. Modelling Completeness
Versus Consistency Tradeoffs in Information De-
cision Contexts. IEEE Transactions on Knowl-

edge and Data Engineering, 2003, 15(1), 240-243.
https://doi.org/10.1109/TKDE.2003.1161595

3. Batini, C., Scannapieca, M. Data Quality Concepts,
Methodologies and Techniques. Heidelberg, Berlin,
Springer-Verlag, 2006.

4. Cui, Y., Widom, J., Wiener, J. L. Tracing the Lineage of
View Data in a Warehousing Environment. ACM Trans-

Information Technology and Control 2018/1/4724

actions on Database Systems (TODS), 2000, 25(2), 179-
227. https://doi.org/10.1145/357775.357777

5. Cui, Y., Widom, J. Lineage Tracing for General Data Ware-
house Transformations. The VLDB Journal, 2003, 12(1),
41-58. https://doi.org/10.1007/s00778-002-0083-8

6. Dakrory, S. B, Mahmoud, T. M., Ali, A. A. Automated
ETL Testing on the Data Quality of a Data Warehouse.
International Journal of Computer Applications, 2015,
131(16), 9-16.

7. Data Validation Option for PowerCenter (DVO) [On-
line]. Informatica. Accessed 15.9.2017. Available:
https://www.informatica.com/services-and-training/
informatica-university/find-training/data-valida-
tion-option-for-powercenter-dvo/ondemand.html.

8. Datagaps ETL Validator [Online]. Datagaps. Accessed
15.9.2017, Available: http://www.datagaps.com/etl-test-
ing-tools/etl-validator.

9. DbFit Test-Driven Database Development [Online].
DbFit. Accessed 15.9.2017, Available: http://dbfit.github.
io/dbfit/index.html.

10. DBUnit [Online]. Accessed 15.9.2017. Available: http://
dbunit.sourceforge.net/.

11. ElGamal, N. Data Warehouse Testing. PhD Disserta-
tion, Cairo University, Faculty of Computers and Infor-
mation, Information Systems Department, 2015.

12. ElGamal, N., El-Bastawissy, A., Galal-Edeen G. An
Architecture-Oriented Data Warehouse Testing Ap-
proach. 21st International Conference on Management
of Data (COMAD), Pune, India, 2016, 24-34.

13. Even, A., Shankaranarayanan, G. Utility-Driven As-
sessment of Data Quality. The DATA BASE for Advanc-
es in Information Systems, 2007, 75-93. https://doi.
org/10.1145/1240616.1240623

14. Golfarelli M., Rizzi S. A Comprehensive Approach to
Data Warehouse Testing. DOLAP'09 Proceedings of the
ACM 12th International Workshop on Data Warehous-
ing and OLAP, Hong Kong, China, 2009, 17-24. https://
doi.org/10.1145/1651291.1651295

15. Golfarelli, M., Rizzi, M. Data Warehouse Testing: A
Prototype-Based Methodology. Information and Soft-
ware Technology, 2011, 53(11), 1183-1198. https://doi.
org/10.1016/j.infsof.2011.04.002

16. Golfarelli, M., Rizzi, S. Data Warehouse Testing. Devel-
opments in Data Extraction, Management, and Analy-
sis, 2013, 91-108. https://doi.org/10.4018/978-1-4666-
2148-0.ch005

17. Gupta, S. L., Pahwa, P., Mathur, S. Classification of Data

Warehouse Testing Approaches. International Journal
of Computers & Technology, 2012, 3(3), 381-386.

18. Heinrich, B., Klier, M. A Novel Data Quality Metric for
Timeliness Considering Supplemental Data. 17th Eu-
ropean Conference on Information Systems (ECIS),
Verona, 2009.

19. Information System of Higher Education Institutions
in Republic of Croatia – ISVU, [Online]. University of
Zagreb Faculty of Electrical Engineering and Comput-
ing. Accessed 15.9.2017. Available: http://www.isvu.hr

20. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P. Fun-
damentals of Data Warehouses. Berlin, Springer-Verlag,
2000. https://doi.org/10.1007/978-3-662-04138-3

21. Kaiser, M. A Conceptional Approach to Unify Com-
pleteness, Consistency and Accuracy as Quality Di-
mensions of Data Values. European and Mediterranean
Conference on Information Systems, Abu Dhabi, UAE,
2010, 1-17.

22. Kimball, R., Ross, M. The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modelling (Second
Edition), John Wiley & Sons, 2002.

23. Krawatzeck, R., Tetzner, A., Dinter, B. An Evaluation
of Open Source Unit Testing Tools Suitable for Data
Warehouse Testing. PACIS, 2015.

24. Mathen, M. Data Warehouse Testing. DeveloperIQ
Magazine, 2010.

25. Mekterović, I., Brkić, Lj., Baranović, M. Improving the
ETL Process and Maintenance of Higher Education In-
formation System Data Warehouse. WSEAS Transac-
tions on Computers, 2009, 8(10), 1681-1690.

26. Mekterović, I., Brkić, Lj., Baranović, M. A Generic Pro-
cedure for Integration Testing of ETL Procedures. Au-
tomatika, 2011, 52(2), 169-178.

27. Mookerjea, A., Malisetty, P. Data Warehouse/ETL
testing: Best Practices [Online]. Accessed 15.9.2017.
Available: http://test2008.in/Test2008/pdf/Anandi-
ya%20et%20al%20-%20Best%20Practices%20in%20
data%20warehouse%20testing.pdf, 2008.

28. Santos, I., Nascimento, A., Costa, J., Júnior, M. Experi-
mentation in the Industry for Automation of Unit Test-
ing in a Business Intelligence Environment. The 28th
International Conference on Software Engineering and
Knowledge Engineering (SEKE), Redwood City, USA,
2016, 466-469. https://doi.org/10.18293/SEKE2016-182

29. Santos, I., Costa, J., Júnior, M., Nascimento, A. Exper-
imental Evaluation of Automatic Tests Cases in Data
Analytics Applications Loading Procedures. Proceed-
ings of the 19th International Conference on Enterprise
Information Systems (ICEIS), 2017, 1, 304-311. https://

25Information Technology and Control 2018/1/47

doi.org/10.5220/0006337503040311

30. Pipino, L. L., Lee, Y. W., Wang, R. Y. Data Quality Assess-
ment. Communications of the ACM, 2002, 45(4), 211-
218. https://doi.org/10.1145/505248.506010

31. QuerySurge: Automate Your Big Data & Data Ware-
house Testing and Reap the Benefits [Online]. Query-
Surge. Accessed 15.9.2017. Available: http://www.que-
rysurge.com/.

32. Rodić, J., Baranović, M. Generating Data Quality Eules
and Integration into ETL Process. Proceedings of the
12th International Workshop on Data Warehousing and
OLAP (DOLAP 2009), Hong Kong, 2009, 65-72.

33. Singh, A. ETL Testing: Best Practices. Software Testing
Conference, Bangalore, India, 2010.

34. Singh, R., Kawaljeet, S. A Descriptive Classification of
Causes of Data Quality Problems in Data Warehous-
ing. International Journal of Computer Science Issues,
2010, 7(3), 41-50.

35. SQL Data Examiner [Online]. TulaSoft. Accessed
15.9.2017. Available: http://www.sqlaccessories.com/
sql-data-examiner/.

36. Thomsen, C., Pedersen, T. B. ETLDiff: A Semi-Auto-
matic Framework for Regression Test of ETL Software.
International Conference on Data Warehousing and
Knowledge Discovery, DaWaK 2006, Krakow, Poland,
2006, 4081, 1-12. https://doi.org/10.1007/11823728_1

37. TPC-H [Online]. TPC. Accessed 15.9.2017. Available:
http://www.tpc.org/tpch/default.asp.

38. Wang, R. Y., Reddy, M. P., Kon, H. B. Toward Quality
Data: An Attribute-based Approach. Decision Sup-
port Systems, 1995, 13(3-4), 349-372. https://doi.
org/10.1016/0167-9236(93)E0050-N

39. Williams, C. Experimentation with Raw Data Vault
Data Warehouse Loading. Proceedings of the Southern
Association for Information Systems Conference, St.
Augustine, FL, USA, March 18-19, 2016, 1-6.

