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The choice of initial solutions when fitting with a phase-type distribution (PH), using the expectation maximi-
zation method (EM) is investigated. It is known that the EM method can converge to a local solution, especially 
when fitting with a general structure. The problem of how to choose an initial solution for which the EM meth-
od would converge to a global solution is still open. We contribute to the research of this problem by studying 
the use of structures for initial solution generation. The proposed approach is tested by fitting with four state 
phase-type distributions (PH(4)). Numerical results show that the EM method converges faster from initial 
solutions of various structures.
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1. Introduction
Phase-type distributions are analytically tractable 
and can be used to simplify the analysis of various 
models, to mention a few: queuing [2, 9, 18], calcula-
tion methods in risk theory [3], telecommunication 
[13, 20] and others. Any positive distribution can be 
arbitrary precisely approximated by PH distribu-

tion when a number of states n tends to infinity [17]. 
However, when n increases, the complexity of fitting 
rapidly grows to the extent it becomes impractical. 
The number of states necessary to achieve a certain 
approximation precision depends on the properties of 
the target distribution, for example, on the coefficient 
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of variation [1]. The question of how to approximate 
with PH efficiently is still an open problem.
The general structure of PH distribution represen-
tation is over-parameterized. It can be shown that 
2n–1  parameters are sufficient to describe any PH 
distribution. However, canonical forms of phase-
type distribution representations are only known for  
n = 2,3 [7, 8, 10]. Analytical analysis of the represen-
tation structures, even for n = 4, is quite complex [5], 
partly due to the fact that explicit expression for eigen-
values is unknown. Another option, which is not much 
explored in the scientific literature, is to investigate the 
representation structures numerically.
The expectation maximization method (EM) is wide-
ly used for phase-type fitting and its procedure for 
general representation structure is presented in [2]. 
The method aims to maximize the likelihood that an 
observed sample is generated by a phase-type distri-
bution, in which, parameters are to be found. Fitting 
with a general representation structure, using the EM 
method is not effective [16], because, depending on 
the choice of the initial solution, a local solution can 
be reached. Therefore, an undefined number of initial 
solutions have to be tested and the best resulting PH 
distribution parameters would have to be picked.
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. 
For example, an EM method procedure for fitting 
by hyper-exponential distributions is given in [11], 
which was extended for fitting with hyper-Erlang in 
[22]. However, one specific structure may not cover 
the whole class of PH distributions [5], even though 
its usage is more practical.
Our contribution is an attempt to generate a set of 
PH(4) representation structures, and then, use it for 
the initial solutions generation. The generation of 
representation structures is based on the canonical 
forms of PH distribution with two [7, 8] and three 
[16] states, non-stationary Markov arrival process 
(NMAP) with two states [14] and other observations. 
The randomly generated initial PH representations of 
those structures will be used as the initial solutions for 
the EM procedure.  It is expected that the EM meth-
od would be more effective when fitting by a number 
of different PH sub-classes, rather than by the gener-
al representation structure. This assumption will be 
checked numerically by performing phase-type fit-
ting the benchmark distributions [4]. 

The rest of the paper is organized as follows. The ba-
sic theory is given in Section 2; an algorithm to gen-
erate the PH representation structures is discussed 
in Section 3; the results of phase-type fitting are pre-
sented in Section 4 and the conclusions are given in 
Section 5.

2. Basic Theory

2.1. Phase-Type Distributions
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with n transient 
states and one absorbing state, is PH distributed.
The continuous time Markov chain (CTMC) used in 
the Definition 1 has n transient states and one absorb-
ing state described with parameters 

  

[16], because, depending on the choice of the initial 
solution, a local solution can be reached. Therefore, an 
undefined number of initial solutions have to be tested 
and the best resulting PH distribution parameters would 
have to be picked. 
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. For 
example, an EM method procedure for fitting by hyper-
exponential distributions is given in [11], which was 
extended for fitting with hyper-Erlang in [22]. However, 
one specific structure may not cover the whole class of 
PH distributions [5], even though its usage is more 
practical. 
Our contribution is an attempt to generate a set of PH(4) 
representation structures, and then, use it for the initial 
solutions generation. The generation of representation 
structures is based on the canonical forms of PH 
distribution with two [7, 8] and three [16] states, non-
stationary Markov arrival process (NMAP) with two 
states [14] and other observations. The randomly 
generated initial PH representations of those structures 
will be used as the initial solutions for the EM procedure.  
It is expected that the EM method would be more 
effective when fitting by a number of different PH sub-
classes, rather than by the general representation 
structure. This assumption will be checked numerically 
by performing phase-type fitting the benchmark 
distributions [4].  
The rest of the paper is organized as follows. The basic 
theory is given in Section 2; an algorithm to generate the 
PH representation structures is discussed in Section 3; 
the results of phase-type fitting are presented in Section 
4 and the conclusions are given in Section 5. 
2. Basic Theory 
2.1 Phase-Type Distributions 
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑛𝑛𝑛𝑛 transient 
states and one absorbing state, is PH distributed. 
The continuous time Markov chain (CTMC) used in the 
Definition 1 has 𝑛𝑛𝑛𝑛 transient states and one absorbing 
state described with parameters  

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛], 𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =  �

𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 … 𝑎𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎2,1 𝑎𝑎𝑎𝑎2,2 … 𝑎𝑎𝑎𝑎2,𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� ,

where 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 is a probability that the process will start in 
state 𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes the rate at which the absorbing state is 
reached from state 𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is the transition 
rate from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗. 
PH distribution is defined via a continuous time Markov 
chain, therefore the sum of rates for state 𝑖𝑖𝑖𝑖 is zero 

                       �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

= 0.                                      (2) 

From (2) the definition of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 follows, that is  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

= − � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

.                                             (3) 

The vector 𝛼𝛼𝛼𝛼 can be expressed as 𝛼𝛼𝛼𝛼 = −𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 
because, from (2) we have  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

,                                      (4) 

where 𝑨𝑨𝑨𝑨 is a column vector of ones of appropriate 
size. Thus, the CTMC can be uniquely specified by 
a pair �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, which represents a specific PH 
distribution. 

Definition 2. A representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is Markovian 
if 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛; 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≥ 0 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛; and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 < 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛. 
Otherwise, the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is non-
Markovian. 
PH distribution [19] probability density function 
(PDF) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎                    (5) 
and cumulative distribution function (CDF) is 

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎.                                  (6) 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨=1. Then, any 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� can be transformed into 
another representation �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 by  

𝛽𝛽𝛽𝛽 = 𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻,𝑩𝑩𝑩𝑩 = 𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻.                             (7) 

Both �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� and �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 represent the same PH 
distribution, because 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑩𝑩𝑩𝑩𝑡𝑡𝑡𝑡𝑩𝑩𝑩𝑩𝑨𝑨𝑨𝑨 = −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑒𝑒𝑒𝑒𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨

= −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨 =  −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨.
    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 can be found, 
also including the non-Markovian ones [15]. 
Proposition 1. Phase-type distribution 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛) can 
be uniquely specified with 2𝑛𝑛𝑛𝑛 − 1 parameters. 
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will 
be used later. The Laplace transform of (5) is  

𝑓𝑓𝑓𝑓∗(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
∞

0

= 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)−1𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼
�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨) 𝑎𝑎𝑎𝑎

=
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐0
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + ⋯+ 𝑑𝑑𝑑𝑑1𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑0

,

     (8) 

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is an adjunct of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 
element at 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗. The adjunct  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is found by 

(1)

where αi is a probability that the process will start in 
state i, ai denotes the rate at which the absorbing state 
is reached from state i and ai,j for i ≠ j is the transition 
rate from state i to state j.
PH distribution is defined via a continuous time Mar-
kov chain, therefore the sum of rates for state i is zero

  

[16], because, depending on the choice of the initial 
solution, a local solution can be reached. Therefore, an 
undefined number of initial solutions have to be tested 
and the best resulting PH distribution parameters would 
have to be picked. 
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. For 
example, an EM method procedure for fitting by hyper-
exponential distributions is given in [11], which was 
extended for fitting with hyper-Erlang in [22]. However, 
one specific structure may not cover the whole class of 
PH distributions [5], even though its usage is more 
practical. 
Our contribution is an attempt to generate a set of PH(4) 
representation structures, and then, use it for the initial 
solutions generation. The generation of representation 
structures is based on the canonical forms of PH 
distribution with two [7, 8] and three [16] states, non-
stationary Markov arrival process (NMAP) with two 
states [14] and other observations. The randomly 
generated initial PH representations of those structures 
will be used as the initial solutions for the EM procedure.  
It is expected that the EM method would be more 
effective when fitting by a number of different PH sub-
classes, rather than by the general representation 
structure. This assumption will be checked numerically 
by performing phase-type fitting the benchmark 
distributions [4].  
The rest of the paper is organized as follows. The basic 
theory is given in Section 2; an algorithm to generate the 
PH representation structures is discussed in Section 3; 
the results of phase-type fitting are presented in Section 
4 and the conclusions are given in Section 5. 
2. Basic Theory 
2.1 Phase-Type Distributions 
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑛𝑛𝑛𝑛 transient 
states and one absorbing state, is PH distributed. 
The continuous time Markov chain (CTMC) used in the 
Definition 1 has 𝑛𝑛𝑛𝑛 transient states and one absorbing 
state described with parameters  

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛], 𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =  �

𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 … 𝑎𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎2,1 𝑎𝑎𝑎𝑎2,2 … 𝑎𝑎𝑎𝑎2,𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� ,

where 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 is a probability that the process will start in 
state 𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes the rate at which the absorbing state is 
reached from state 𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is the transition 
rate from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗. 
PH distribution is defined via a continuous time Markov 
chain, therefore the sum of rates for state 𝑖𝑖𝑖𝑖 is zero 

                       �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

= 0.                                      (2) 

From (2) the definition of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 follows, that is  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

= − � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

.                                             (3) 

The vector 𝛼𝛼𝛼𝛼 can be expressed as 𝛼𝛼𝛼𝛼 = −𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 
because, from (2) we have  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

,                                      (4) 

where 𝑨𝑨𝑨𝑨 is a column vector of ones of appropriate 
size. Thus, the CTMC can be uniquely specified by 
a pair �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, which represents a specific PH 
distribution. 

Definition 2. A representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is Markovian 
if 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛; 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≥ 0 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛; and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 < 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛. 
Otherwise, the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is non-
Markovian. 
PH distribution [19] probability density function 
(PDF) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎                    (5) 
and cumulative distribution function (CDF) is 

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎.                                  (6) 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨=1. Then, any 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� can be transformed into 
another representation �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 by  

𝛽𝛽𝛽𝛽 = 𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻,𝑩𝑩𝑩𝑩 = 𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻.                             (7) 

Both �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� and �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 represent the same PH 
distribution, because 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑩𝑩𝑩𝑩𝑡𝑡𝑡𝑡𝑩𝑩𝑩𝑩𝑨𝑨𝑨𝑨 = −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑒𝑒𝑒𝑒𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨

= −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨 =  −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨.
    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 can be found, 
also including the non-Markovian ones [15]. 
Proposition 1. Phase-type distribution 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛) can 
be uniquely specified with 2𝑛𝑛𝑛𝑛 − 1 parameters. 
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will 
be used later. The Laplace transform of (5) is  

𝑓𝑓𝑓𝑓∗(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
∞

0

= 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)−1𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼
�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨) 𝑎𝑎𝑎𝑎

=
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐0
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + ⋯+ 𝑑𝑑𝑑𝑑1𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑0

,

     (8) 

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is an adjunct of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 
element at 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗. The adjunct  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is found by 

(2)

From (2) the definition of ai,i follows, that is 

  

[16], because, depending on the choice of the initial 
solution, a local solution can be reached. Therefore, an 
undefined number of initial solutions have to be tested 
and the best resulting PH distribution parameters would 
have to be picked. 
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. For 
example, an EM method procedure for fitting by hyper-
exponential distributions is given in [11], which was 
extended for fitting with hyper-Erlang in [22]. However, 
one specific structure may not cover the whole class of 
PH distributions [5], even though its usage is more 
practical. 
Our contribution is an attempt to generate a set of PH(4) 
representation structures, and then, use it for the initial 
solutions generation. The generation of representation 
structures is based on the canonical forms of PH 
distribution with two [7, 8] and three [16] states, non-
stationary Markov arrival process (NMAP) with two 
states [14] and other observations. The randomly 
generated initial PH representations of those structures 
will be used as the initial solutions for the EM procedure.  
It is expected that the EM method would be more 
effective when fitting by a number of different PH sub-
classes, rather than by the general representation 
structure. This assumption will be checked numerically 
by performing phase-type fitting the benchmark 
distributions [4].  
The rest of the paper is organized as follows. The basic 
theory is given in Section 2; an algorithm to generate the 
PH representation structures is discussed in Section 3; 
the results of phase-type fitting are presented in Section 
4 and the conclusions are given in Section 5. 
2. Basic Theory 
2.1 Phase-Type Distributions 
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑛𝑛𝑛𝑛 transient 
states and one absorbing state, is PH distributed. 
The continuous time Markov chain (CTMC) used in the 
Definition 1 has 𝑛𝑛𝑛𝑛 transient states and one absorbing 
state described with parameters  

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛], 𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =  �

𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 … 𝑎𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎2,1 𝑎𝑎𝑎𝑎2,2 … 𝑎𝑎𝑎𝑎2,𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� ,

where 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 is a probability that the process will start in 
state 𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes the rate at which the absorbing state is 
reached from state 𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is the transition 
rate from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗. 
PH distribution is defined via a continuous time Markov 
chain, therefore the sum of rates for state 𝑖𝑖𝑖𝑖 is zero 

                       �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

= 0.                                      (2) 

From (2) the definition of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 follows, that is  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖, = − � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

.                                             (3) 

The vector 𝛼𝛼𝛼𝛼 can be expressed as 𝛼𝛼𝛼𝛼 = −𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 
because, from (2) we have  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

,                                      (4) 

where 𝑨𝑨𝑨𝑨 is a column vector of ones of appropriate 
size. Thus, the CTMC can be uniquely specified by 
a pair �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, which represents a specific PH 
distribution. 

Definition 2. A representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is Markovian 
if 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛; 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≥ 0 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛; and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 < 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛. 
Otherwise, the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is non-
Markovian. 
PH distribution [19] probability density function 
(PDF) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎                    (5) 
and cumulative distribution function (CDF) is 

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎.                                  (6) 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨=1. Then, any 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� can be transformed into 
another representation �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 by  

𝛽𝛽𝛽𝛽 = 𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻,𝑩𝑩𝑩𝑩 = 𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻.                             (7) 

Both �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� and �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 represent the same PH 
distribution, because 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑩𝑩𝑩𝑩𝑡𝑡𝑡𝑡𝑩𝑩𝑩𝑩𝑨𝑨𝑨𝑨 = −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑒𝑒𝑒𝑒𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨

= −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨 =  −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨.
    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 can be found, 
also including the non-Markovian ones [15]. 
Proposition 1. Phase-type distribution 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛) can 
be uniquely specified with 2𝑛𝑛𝑛𝑛 − 1 parameters. 
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will 
be used later. The Laplace transform of (5) is  

𝑓𝑓𝑓𝑓∗(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
∞

0

= 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)−1𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼
�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨) 𝑎𝑎𝑎𝑎

=
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐0
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + ⋯+ 𝑑𝑑𝑑𝑑1𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑0

,

     (8) 

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is an adjunct of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 
element at 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗. The adjunct  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is found by 

𝑖𝑖𝑖𝑖 (3)

The vector 𝛼𝛼 can be expressed as 𝛼𝛼 = −𝑨𝑨𝑨𝑨, because, from 
(2) we have  

where 𝑨𝑨 is a column vector of ones of appropriate size. 
Thus, the CTMC can be uniquely specified by a pair 
�𝛼𝛼𝑖 𝑨𝑨�, which represents a specific PH distribution. 

Definition 2. A representation �𝛼𝛼𝑖 𝑨𝑨� is Markovian if 
𝛼𝛼𝑨𝑨 = 𝟙, 𝛼𝛼� ≥ 0 for 𝑖𝑖 = 𝟙𝑖 𝑖𝑖; 𝑎𝑎�𝑖� ≥ 0 for 𝑖𝑖 𝑖 𝑖𝑖 and 𝑖𝑖𝑖 𝑖𝑖 = 𝟙𝑖 𝑖𝑖; 
and 𝑎𝑎�𝑖� < 0 for 𝑖𝑖 = 𝟙𝑖 𝑖𝑖. Otherwise, the representation 
�𝛼𝛼𝑖 𝑨𝑨� is non-Markovian. 

PH distribution [19] probability density function (PDF) 
is 

𝑓𝑓(𝑡𝑡) = −𝛼𝛼𝑒𝑒𝑨𝑨�𝑨𝑨𝑨𝑨 = 𝛼𝛼𝑒𝑒𝑨𝑨�𝑎𝑎                    (5) 

and cumulative distribution function (CDF) is 

𝐹𝐹(𝑡𝑡) = 𝟙 − 𝛼𝛼𝑒𝑒𝑨𝑨�𝑎𝑎.                                  (6) 

In general, the PH distribution has many representations 
[18, 19]. Let 𝑇𝑇 be a non-singular matrix with unit row 
sums, i.e., 𝑻𝑻𝑨𝑨=1. Then, any representation �𝛼𝛼𝑖 𝑨𝑨� can be 
transformed into another representation �𝛽𝛽𝑖 𝑻𝑻� by  

𝛽𝛽 = 𝛼𝛼𝑻𝑻𝑖 𝑻𝑻 = 𝑻𝑻��𝑨𝑨𝑻𝑻.                             (𝑨) 
Both �𝛼𝛼𝑖 𝑨𝑨� and �𝛽𝛽𝑖 𝑻𝑻� represent the same PH 
distribution, because 

𝑓𝑓(𝑡𝑡) = −𝛽𝛽𝑒𝑒𝑻𝑻�𝑻𝑻𝑨𝑨 = −𝛼𝛼𝑻𝑻𝑒𝑒𝑻𝑻��𝑨𝑨𝑻𝑻�𝑨𝑨𝑻𝑻𝑨𝑨
= −𝛼𝛼𝑻𝑻𝑻𝑻��𝑒𝑒𝑨𝑨�𝑻𝑻𝑻𝑻��𝑨𝑨𝑻𝑻𝑨𝑨 =  −𝛼𝛼𝑒𝑒𝑨𝑨�𝑨𝑨𝑨𝑨.    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝑖 𝑻𝑻� can be found, also 
including the non-Markovian ones [15]. 

 

 

  

[16], because, depending on the choice of the initial 
solution, a local solution can be reached. Therefore, an 
undefined number of initial solutions have to be tested 
and the best resulting PH distribution parameters would 
have to be picked. 
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. For 
example, an EM method procedure for fitting by hyper-
exponential distributions is given in [11], which was 
extended for fitting with hyper-Erlang in [22]. However, 
one specific structure may not cover the whole class of 
PH distributions [5], even though its usage is more 
practical. 
Our contribution is an attempt to generate a set of PH(4) 
representation structures, and then, use it for the initial 
solutions generation. The generation of representation 
structures is based on the canonical forms of PH 
distribution with two [7, 8] and three [16] states, non-
stationary Markov arrival process (NMAP) with two 
states [14] and other observations. The randomly 
generated initial PH representations of those structures 
will be used as the initial solutions for the EM procedure.  
It is expected that the EM method would be more 
effective when fitting by a number of different PH sub-
classes, rather than by the general representation 
structure. This assumption will be checked numerically 
by performing phase-type fitting the benchmark 
distributions [4].  
The rest of the paper is organized as follows. The basic 
theory is given in Section 2; an algorithm to generate the 
PH representation structures is discussed in Section 3; 
the results of phase-type fitting are presented in Section 
4 and the conclusions are given in Section 5. 
2. Basic Theory 
2.1 Phase-Type Distributions 
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑛𝑛𝑛𝑛 transient 
states and one absorbing state, is PH distributed. 
The continuous time Markov chain (CTMC) used in the 
Definition 1 has 𝑛𝑛𝑛𝑛 transient states and one absorbing 
state described with parameters  

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛], 𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =  �

𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 … 𝑎𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎2,1 𝑎𝑎𝑎𝑎2,2 … 𝑎𝑎𝑎𝑎2,𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� ,

where 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 is a probability that the process will start in 
state 𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes the rate at which the absorbing state is 
reached from state 𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is the transition 
rate from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗. 
PH distribution is defined via a continuous time Markov 
chain, therefore the sum of rates for state 𝑖𝑖𝑖𝑖 is zero 

                       �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

= 0.                                      (2) 

From (2) the definition of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 follows, that is  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = − � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

.                                             (3) 

The vector 𝛼𝛼𝛼𝛼 can be expressed as 𝛼𝛼𝛼𝛼 = −𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 
because, from (2) we have  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

,                                      (4) 

where 𝑨𝑨𝑨𝑨 is a column vector of ones of appropriate 
size. Thus, the CTMC can be uniquely specified by 
a pair �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, which represents a specific PH 
distribution. 

Definition 2. A representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is Markovian 
if 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛; 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≥ 0 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛; and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 < 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛. 
Otherwise, the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is non-
Markovian. 
PH distribution [19] probability density function 
(PDF) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎                    (5) 
and cumulative distribution function (CDF) is 

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎.                                  (6) 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨=1. Then, any 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� can be transformed into 
another representation �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 by  

𝛽𝛽𝛽𝛽 = 𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻,𝑩𝑩𝑩𝑩 = 𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻.                             (7) 

Both �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� and �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 represent the same PH 
distribution, because 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑩𝑩𝑩𝑩𝑡𝑡𝑡𝑡𝑩𝑩𝑩𝑩𝑨𝑨𝑨𝑨 = −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑒𝑒𝑒𝑒𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨

= −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨 =  −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨.
    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 can be found, 
also including the non-Markovian ones [15]. 
Proposition 1. Phase-type distribution 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛) can 
be uniquely specified with 2𝑛𝑛𝑛𝑛 − 1 parameters. 
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will 
be used later. The Laplace transform of (5) is  

𝑓𝑓𝑓𝑓∗(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
∞

0

= 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)−1𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼
�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨) 𝑎𝑎𝑎𝑎

=
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐0
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + ⋯+ 𝑑𝑑𝑑𝑑1𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑0

,

     (8) 

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is an adjunct of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 
element at 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗. The adjunct  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is found by 

(4)
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PH distribution [19] probability density function (PDF) is

  

[16], because, depending on the choice of the initial 
solution, a local solution can be reached. Therefore, an 
undefined number of initial solutions have to be tested 
and the best resulting PH distribution parameters would 
have to be picked. 
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. For 
example, an EM method procedure for fitting by hyper-
exponential distributions is given in [11], which was 
extended for fitting with hyper-Erlang in [22]. However, 
one specific structure may not cover the whole class of 
PH distributions [5], even though its usage is more 
practical. 
Our contribution is an attempt to generate a set of PH(4) 
representation structures, and then, use it for the initial 
solutions generation. The generation of representation 
structures is based on the canonical forms of PH 
distribution with two [7, 8] and three [16] states, non-
stationary Markov arrival process (NMAP) with two 
states [14] and other observations. The randomly 
generated initial PH representations of those structures 
will be used as the initial solutions for the EM procedure.  
It is expected that the EM method would be more 
effective when fitting by a number of different PH sub-
classes, rather than by the general representation 
structure. This assumption will be checked numerically 
by performing phase-type fitting the benchmark 
distributions [4].  
The rest of the paper is organized as follows. The basic 
theory is given in Section 2; an algorithm to generate the 
PH representation structures is discussed in Section 3; 
the results of phase-type fitting are presented in Section 
4 and the conclusions are given in Section 5. 
2. Basic Theory 
2.1 Phase-Type Distributions 
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑛𝑛𝑛𝑛 transient 
states and one absorbing state, is PH distributed. 
The continuous time Markov chain (CTMC) used in the 
Definition 1 has 𝑛𝑛𝑛𝑛 transient states and one absorbing 
state described with parameters  

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛], 𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =  �

𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 … 𝑎𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎2,1 𝑎𝑎𝑎𝑎2,2 … 𝑎𝑎𝑎𝑎2,𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� ,

where 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 is a probability that the process will start in 
state 𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes the rate at which the absorbing state is 
reached from state 𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is the transition 
rate from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗. 
PH distribution is defined via a continuous time Markov 
chain, therefore the sum of rates for state 𝑖𝑖𝑖𝑖 is zero 

                       �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

= 0.                                      (2) 

From (2) the definition of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 follows, that is  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = − � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

.                                             (3) 

The vector 𝛼𝛼𝛼𝛼 can be expressed as 𝛼𝛼𝛼𝛼 = −𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 
because, from (2) we have  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

,                                      (4) 

where 𝑨𝑨𝑨𝑨 is a column vector of ones of appropriate 
size. Thus, the CTMC can be uniquely specified by 
a pair �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, which represents a specific PH 
distribution. 

Definition 2. A representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is Markovian 
if 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛; 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≥ 0 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛; and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 < 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛. 
Otherwise, the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is non-
Markovian. 
PH distribution [19] probability density function 
(PDF) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎                    (5) 
and cumulative distribution function (CDF) is 

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎.                                  (6) 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨=1. Then, any 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� can be transformed into 
another representation �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 by  

𝛽𝛽𝛽𝛽 = 𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻,𝑩𝑩𝑩𝑩 = 𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻.                             (7) 

Both �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� and �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 represent the same PH 
distribution, because 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑩𝑩𝑩𝑩𝑡𝑡𝑡𝑡𝑩𝑩𝑩𝑩𝑨𝑨𝑨𝑨 = −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑒𝑒𝑒𝑒𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨

= −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨 =  −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨.
    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 can be found, 
also including the non-Markovian ones [15]. 
Proposition 1. Phase-type distribution 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛) can 
be uniquely specified with 2𝑛𝑛𝑛𝑛 − 1 parameters. 
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will 
be used later. The Laplace transform of (5) is  

𝑓𝑓𝑓𝑓∗(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
∞

0

= 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)−1𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼
�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨) 𝑎𝑎𝑎𝑎

=
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐0
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + ⋯+ 𝑑𝑑𝑑𝑑1𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑0

,

     (8) 

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is an adjunct of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 
element at 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗. The adjunct  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is found by 

(5)

and cumulative distribution function (CDF) is

  

[16], because, depending on the choice of the initial 
solution, a local solution can be reached. Therefore, an 
undefined number of initial solutions have to be tested 
and the best resulting PH distribution parameters would 
have to be picked. 
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. For 
example, an EM method procedure for fitting by hyper-
exponential distributions is given in [11], which was 
extended for fitting with hyper-Erlang in [22]. However, 
one specific structure may not cover the whole class of 
PH distributions [5], even though its usage is more 
practical. 
Our contribution is an attempt to generate a set of PH(4) 
representation structures, and then, use it for the initial 
solutions generation. The generation of representation 
structures is based on the canonical forms of PH 
distribution with two [7, 8] and three [16] states, non-
stationary Markov arrival process (NMAP) with two 
states [14] and other observations. The randomly 
generated initial PH representations of those structures 
will be used as the initial solutions for the EM procedure.  
It is expected that the EM method would be more 
effective when fitting by a number of different PH sub-
classes, rather than by the general representation 
structure. This assumption will be checked numerically 
by performing phase-type fitting the benchmark 
distributions [4].  
The rest of the paper is organized as follows. The basic 
theory is given in Section 2; an algorithm to generate the 
PH representation structures is discussed in Section 3; 
the results of phase-type fitting are presented in Section 
4 and the conclusions are given in Section 5. 
2. Basic Theory 
2.1 Phase-Type Distributions 
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑛𝑛𝑛𝑛 transient 
states and one absorbing state, is PH distributed. 
The continuous time Markov chain (CTMC) used in the 
Definition 1 has 𝑛𝑛𝑛𝑛 transient states and one absorbing 
state described with parameters  

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛], 𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =  �

𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 … 𝑎𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎2,1 𝑎𝑎𝑎𝑎2,2 … 𝑎𝑎𝑎𝑎2,𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� ,

where 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 is a probability that the process will start in 
state 𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes the rate at which the absorbing state is 
reached from state 𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is the transition 
rate from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗. 
PH distribution is defined via a continuous time Markov 
chain, therefore the sum of rates for state 𝑖𝑖𝑖𝑖 is zero 

                       �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

= 0.                                      (2) 

From (2) the definition of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 follows, that is  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = − � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

.                                             (3) 

The vector 𝛼𝛼𝛼𝛼 can be expressed as 𝛼𝛼𝛼𝛼 = −𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 
because, from (2) we have  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

,                                      (4) 

where 𝑨𝑨𝑨𝑨 is a column vector of ones of appropriate 
size. Thus, the CTMC can be uniquely specified by 
a pair �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, which represents a specific PH 
distribution. 

Definition 2. A representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is Markovian 
if 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛; 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≥ 0 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛; and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 < 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛. 
Otherwise, the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is non-
Markovian. 
PH distribution [19] probability density function 
(PDF) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎                    (5) 
and cumulative distribution function (CDF) is 

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎.                                  (6) 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨=1. Then, any 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� can be transformed into 
another representation �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 by  

𝛽𝛽𝛽𝛽 = 𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻,𝑩𝑩𝑩𝑩 = 𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻.                             (7) 

Both �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� and �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 represent the same PH 
distribution, because 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑩𝑩𝑩𝑩𝑡𝑡𝑡𝑡𝑩𝑩𝑩𝑩𝑨𝑨𝑨𝑨 = −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑒𝑒𝑒𝑒𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨

= −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨 =  −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨.
    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 can be found, 
also including the non-Markovian ones [15]. 
Proposition 1. Phase-type distribution 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛) can 
be uniquely specified with 2𝑛𝑛𝑛𝑛 − 1 parameters. 
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will 
be used later. The Laplace transform of (5) is  

𝑓𝑓𝑓𝑓∗(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
∞

0

= 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)−1𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼
�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨) 𝑎𝑎𝑎𝑎

=
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐0
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + ⋯+ 𝑑𝑑𝑑𝑑1𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑0

,

     (8) 

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is an adjunct of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 
element at 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗. The adjunct  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is found by 

(6)

where 𝟙𝟙 is a column vector of ones of appropriate size. 
Thus, the CTMC can be uniquely specified by a pair 
�𝛼𝛼𝑖 ��, which represents a specific PH distribution. 

Definition 2. A representation �𝛼𝛼𝑖 �� is Markovian if 
𝛼𝛼𝟙𝟙 𝟙 𝟙, 𝛼𝛼� ≥ 0  for 𝑖𝑖 𝟙 𝟙𝑖 𝑖𝑖; 𝑎𝑎�𝑖� ≥ 0  for 𝑖𝑖 𝑖 𝑖𝑖  and 
𝑖𝑖𝑖 𝑖𝑖 𝟙 𝟙𝑖 𝑖𝑖; and 𝑎𝑎�𝑖� < 0 for 𝑖𝑖 𝟙 𝟙𝑖 𝑖𝑖. Otherwise,

 the representation �𝛼𝛼𝑖 �� is non-Markovian. 

PH distribution [19] probability density function 
(PDF) is 

and cumulative distribution function (CDF) is 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝟙𝟙=1. Then, any 
representation �𝛼𝛼𝑖 �� can be transformed into another 
representation ��𝑖 �� by  

Both �𝛼𝛼𝑖 �� and ��𝑖 �� represent the same PH 
distribution, because 

    
By applying transformation (7) infinitely, many 
equivalent representations ��𝑖 �� can be found, also 
including the non-Markovian ones [15]. 

 

Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑖𝑖 transient 
states and one absorbing state, is PH distributed. 

The continuous time Markov chain (CTMC) used in 
the Definition 1 has 𝑖𝑖 transient states and one 
absorbing state described with parameters  
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matrix with unit row sums, i.e., 𝑻𝑻𝟙𝟙=1. Then, any 
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[16], because, depending on the choice of the initial 
solution, a local solution can be reached. Therefore, an 
undefined number of initial solutions have to be tested 
and the best resulting PH distribution parameters would 
have to be picked. 
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. For 
example, an EM method procedure for fitting by hyper-
exponential distributions is given in [11], which was 
extended for fitting with hyper-Erlang in [22]. However, 
one specific structure may not cover the whole class of 
PH distributions [5], even though its usage is more 
practical. 
Our contribution is an attempt to generate a set of PH(4) 
representation structures, and then, use it for the initial 
solutions generation. The generation of representation 
structures is based on the canonical forms of PH 
distribution with two [7, 8] and three [16] states, non-
stationary Markov arrival process (NMAP) with two 
states [14] and other observations. The randomly 
generated initial PH representations of those structures 
will be used as the initial solutions for the EM procedure.  
It is expected that the EM method would be more 
effective when fitting by a number of different PH sub-
classes, rather than by the general representation 
structure. This assumption will be checked numerically 
by performing phase-type fitting the benchmark 
distributions [4].  
The rest of the paper is organized as follows. The basic 
theory is given in Section 2; an algorithm to generate the 
PH representation structures is discussed in Section 3; 
the results of phase-type fitting are presented in Section 
4 and the conclusions are given in Section 5. 
2. Basic Theory 
2.1 Phase-Type Distributions 
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑛𝑛𝑛𝑛 transient 
states and one absorbing state, is PH distributed. 
The continuous time Markov chain (CTMC) used in the 
Definition 1 has 𝑛𝑛𝑛𝑛 transient states and one absorbing 
state described with parameters  

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛], 𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =  �

𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 … 𝑎𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎2,1 𝑎𝑎𝑎𝑎2,2 … 𝑎𝑎𝑎𝑎2,𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� ,

where 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 is a probability that the process will start in 
state 𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes the rate at which the absorbing state is 
reached from state 𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is the transition 
rate from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗. 
PH distribution is defined via a continuous time Markov 
chain, therefore the sum of rates for state 𝑖𝑖𝑖𝑖 is zero 

                       �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

= 0.                                      (2) 

From (2) the definition of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 follows, that is  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = − � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

.                                             (3) 

The vector 𝛼𝛼𝛼𝛼 can be expressed as 𝛼𝛼𝛼𝛼 = −𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 
because, from (2) we have  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

,                                      (4) 

where 𝑨𝑨𝑨𝑨 is a column vector of ones of appropriate 
size. Thus, the CTMC can be uniquely specified by 
a pair �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, which represents a specific PH 
distribution. 

Definition 2. A representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is Markovian 
if 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛; 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≥ 0 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛; and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 < 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛. 
Otherwise, the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is non-
Markovian. 
PH distribution [19] probability density function 
(PDF) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎                    (5) 
and cumulative distribution function (CDF) is 

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎.                                  (6) 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨=1. Then, any 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� can be transformed into 
another representation �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 by  

𝛽𝛽𝛽𝛽 = 𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻,𝑩𝑩𝑩𝑩 = 𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻.                             (7) 

Both �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� and �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 represent the same PH 
distribution, because 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑩𝑩𝑩𝑩𝑡𝑡𝑡𝑡𝑩𝑩𝑩𝑩𝑨𝑨𝑨𝑨 = −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑒𝑒𝑒𝑒𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨

= −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨 =  −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨.
    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 can be found, 
also including the non-Markovian ones [15]. 
Proposition 1. Phase-type distribution 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛) can 
be uniquely specified with 2𝑛𝑛𝑛𝑛 − 1 parameters. 
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will 
be used later. The Laplace transform of (5) is  

𝑓𝑓𝑓𝑓∗(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
∞

0

= 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)−1𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼
�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨) 𝑎𝑎𝑎𝑎

=
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐0
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + ⋯+ 𝑑𝑑𝑑𝑑1𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑0

,

     (8) 

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is an adjunct of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 
element at 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗. The adjunct  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is found by 

(7)

where 𝟙𝟙 is a column vector of ones of appropriate size. 
Thus, the CTMC can be uniquely specified by a pair 
�𝛼𝛼𝑖 ��, which represents a specific PH distribution. 

Definition 2. A representation �𝛼𝛼𝑖 �� is Markovian if 
𝛼𝛼𝟙𝟙 𝟙 𝟙, 𝛼𝛼� ≥ 0  for 𝑖𝑖 𝟙 𝟙𝑖 𝑖𝑖; 𝑎𝑎�𝑖� ≥ 0  for 𝑖𝑖 𝑖 𝑖𝑖  and 
𝑖𝑖𝑖 𝑖𝑖 𝟙 𝟙𝑖 𝑖𝑖; and 𝑎𝑎�𝑖� < 0 for 𝑖𝑖 𝟙 𝟙𝑖 𝑖𝑖. Otherwise,

 the representation �𝛼𝛼𝑖 �� is non-Markovian. 

PH distribution [19] probability density function 
(PDF) is 

and cumulative distribution function (CDF) is 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝟙𝟙=1. Then, any 
representation �𝛼𝛼𝑖 �� can be transformed into another 
representation ��𝑖 �� by  

Both �𝛼𝛼𝑖 �� and ��𝑖 �� represent the same PH 
distribution, because 

    
By applying transformation (7) infinitely, many 
equivalent representations ��𝑖 �� can be found, also 
including the non-Markovian ones [15]. 

 

Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑖𝑖 transient 
states and one absorbing state, is PH distributed. 

The continuous time Markov chain (CTMC) used in 
the Definition 1 has 𝑖𝑖 transient states and one 
absorbing state described with parameters  

 

 

where 𝟙𝟙 is a column vector of ones of appropriate size. 
Thus, the CTMC can be uniquely specified by a pair 
�𝛼𝛼𝑖 ��, which represents a specific PH distribution. 

Definition 2. A representation �𝛼𝛼𝑖 �� is Markovian if 
𝛼𝛼𝟙𝟙 𝟙 𝟙, 𝛼𝛼� ≥ 0  for 𝑖𝑖 𝟙 𝟙𝑖 𝑖𝑖; 𝑎𝑎�𝑖� ≥ 0  for 𝑖𝑖 𝑖 𝑖𝑖  and 
𝑖𝑖𝑖 𝑖𝑖 𝟙 𝟙𝑖 𝑖𝑖; and 𝑎𝑎�𝑖� < 0 for 𝑖𝑖 𝟙 𝟙𝑖 𝑖𝑖. Otherwise,

 the representation �𝛼𝛼𝑖 �� is non-Markovian. 

PH distribution [19] probability density function 
(PDF) is 

and cumulative distribution function (CDF) is 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝟙𝟙=1. Then, any 
representation �𝛼𝛼𝑖 �� can be transformed into another 
representation ��𝑖 �� by  

Both �𝛼𝛼𝑖 �� and ��𝑖 �� represent the same PH 
distribution, because 

    
By applying transformation (7) infinitely, many 
equivalent representations ��𝑖 �� can be found, also 
including the non-Markovian ones [15]. 

 

Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑖𝑖 transient 
states and one absorbing state, is PH distributed. 

The continuous time Markov chain (CTMC) used in 
the Definition 1 has 𝑖𝑖 transient states and one 
absorbing state described with parameters  

 

 

  

[16], because, depending on the choice of the initial 
solution, a local solution can be reached. Therefore, an 
undefined number of initial solutions have to be tested 
and the best resulting PH distribution parameters would 
have to be picked. 
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. For 
example, an EM method procedure for fitting by hyper-
exponential distributions is given in [11], which was 
extended for fitting with hyper-Erlang in [22]. However, 
one specific structure may not cover the whole class of 
PH distributions [5], even though its usage is more 
practical. 
Our contribution is an attempt to generate a set of PH(4) 
representation structures, and then, use it for the initial 
solutions generation. The generation of representation 
structures is based on the canonical forms of PH 
distribution with two [7, 8] and three [16] states, non-
stationary Markov arrival process (NMAP) with two 
states [14] and other observations. The randomly 
generated initial PH representations of those structures 
will be used as the initial solutions for the EM procedure.  
It is expected that the EM method would be more 
effective when fitting by a number of different PH sub-
classes, rather than by the general representation 
structure. This assumption will be checked numerically 
by performing phase-type fitting the benchmark 
distributions [4].  
The rest of the paper is organized as follows. The basic 
theory is given in Section 2; an algorithm to generate the 
PH representation structures is discussed in Section 3; 
the results of phase-type fitting are presented in Section 
4 and the conclusions are given in Section 5. 
2. Basic Theory 
2.1 Phase-Type Distributions 
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑛𝑛𝑛𝑛 transient 
states and one absorbing state, is PH distributed. 
The continuous time Markov chain (CTMC) used in the 
Definition 1 has 𝑛𝑛𝑛𝑛 transient states and one absorbing 
state described with parameters  

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛], 𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =  �

𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 … 𝑎𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎2,1 𝑎𝑎𝑎𝑎2,2 … 𝑎𝑎𝑎𝑎2,𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� ,

where 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 is a probability that the process will start in 
state 𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes the rate at which the absorbing state is 
reached from state 𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is the transition 
rate from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗. 
PH distribution is defined via a continuous time Markov 
chain, therefore the sum of rates for state 𝑖𝑖𝑖𝑖 is zero 

                       �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

= 0.                                      (2) 

From (2) the definition of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 follows, that is  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = − � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

.                                             (3) 

The vector 𝛼𝛼𝛼𝛼 can be expressed as 𝛼𝛼𝛼𝛼 = −𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 
because, from (2) we have  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

,                                      (4) 

where 𝑨𝑨𝑨𝑨 is a column vector of ones of appropriate 
size. Thus, the CTMC can be uniquely specified by 
a pair �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, which represents a specific PH 
distribution. 

Definition 2. A representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is Markovian 
if 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛; 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≥ 0 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛; and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 < 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛. 
Otherwise, the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is non-
Markovian. 
PH distribution [19] probability density function 
(PDF) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎                    (5) 
and cumulative distribution function (CDF) is 

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎.                                  (6) 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨=1. Then, any 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� can be transformed into 
another representation �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 by  

𝛽𝛽𝛽𝛽 = 𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻,𝑩𝑩𝑩𝑩 = 𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻.                             (7) 

Both �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� and �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 represent the same PH 
distribution, because 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑩𝑩𝑩𝑩𝑡𝑡𝑡𝑡𝑩𝑩𝑩𝑩𝑨𝑨𝑨𝑨 = −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑒𝑒𝑒𝑒𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨

= −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨 =  −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨.
    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 can be found, 
also including the non-Markovian ones [15]. 
Proposition 1. Phase-type distribution 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛) can 
be uniquely specified with 2𝑛𝑛𝑛𝑛 − 1 parameters. 
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will 
be used later. The Laplace transform of (5) is  

𝑓𝑓𝑓𝑓∗(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
∞

0

= 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)−1𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼
�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨) 𝑎𝑎𝑎𝑎

=
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐0
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + ⋯+ 𝑑𝑑𝑑𝑑1𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑0

,

     (8) 

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is an adjunct of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 
element at 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗. The adjunct  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is found by 

Proposition 1. Phase-type distribution PH(n) can be 
uniquely specified with 2n–1 parameters.
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will be 
used later. The Laplace transform of (5) is 

  

[16], because, depending on the choice of the initial 
solution, a local solution can be reached. Therefore, an 
undefined number of initial solutions have to be tested 
and the best resulting PH distribution parameters would 
have to be picked. 
It was observed that EM method can be more robust 
when fitting with a restricted class PH distributions. For 
example, an EM method procedure for fitting by hyper-
exponential distributions is given in [11], which was 
extended for fitting with hyper-Erlang in [22]. However, 
one specific structure may not cover the whole class of 
PH distributions [5], even though its usage is more 
practical. 
Our contribution is an attempt to generate a set of PH(4) 
representation structures, and then, use it for the initial 
solutions generation. The generation of representation 
structures is based on the canonical forms of PH 
distribution with two [7, 8] and three [16] states, non-
stationary Markov arrival process (NMAP) with two 
states [14] and other observations. The randomly 
generated initial PH representations of those structures 
will be used as the initial solutions for the EM procedure.  
It is expected that the EM method would be more 
effective when fitting by a number of different PH sub-
classes, rather than by the general representation 
structure. This assumption will be checked numerically 
by performing phase-type fitting the benchmark 
distributions [4].  
The rest of the paper is organized as follows. The basic 
theory is given in Section 2; an algorithm to generate the 
PH representation structures is discussed in Section 3; 
the results of phase-type fitting are presented in Section 
4 and the conclusions are given in Section 5. 
2. Basic Theory 
2.1 Phase-Type Distributions 
Definition 1. [19] The time to reach an absorbing state 
in a continuous time Markov chain, with 𝑛𝑛𝑛𝑛 transient 
states and one absorbing state, is PH distributed. 
The continuous time Markov chain (CTMC) used in the 
Definition 1 has 𝑛𝑛𝑛𝑛 transient states and one absorbing 
state described with parameters  

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛], 𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =  �

𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 … 𝑎𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎2,1 𝑎𝑎𝑎𝑎2,2 … 𝑎𝑎𝑎𝑎2,𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� ,

where 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 is a probability that the process will start in 
state 𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes the rate at which the absorbing state is 
reached from state 𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is the transition 
rate from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗. 
PH distribution is defined via a continuous time Markov 
chain, therefore the sum of rates for state 𝑖𝑖𝑖𝑖 is zero 

                       �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

= 0.                                      (2) 

From (2) the definition of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 follows, that is  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = − � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

.                                             (3) 

The vector 𝛼𝛼𝛼𝛼 can be expressed as 𝛼𝛼𝛼𝛼 = −𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 
because, from (2) we have  

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1

,                                      (4) 

where 𝑨𝑨𝑨𝑨 is a column vector of ones of appropriate 
size. Thus, the CTMC can be uniquely specified by 
a pair �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, which represents a specific PH 
distribution. 

Definition 2. A representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is Markovian 
if 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛; 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≥ 0 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛; and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 < 0 for 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛. 
Otherwise, the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� is non-
Markovian. 
PH distribution [19] probability density function 
(PDF) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎                    (5) 
and cumulative distribution function (CDF) is 

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎.                                  (6) 

In general, the PH distribution has many 
representations [18, 19]. Let 𝑇𝑇𝑇𝑇 be a non-singular 
matrix with unit row sums, i.e., 𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨=1. Then, any 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� can be transformed into 
another representation �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 by  

𝛽𝛽𝛽𝛽 = 𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻,𝑩𝑩𝑩𝑩 = 𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻.                             (7) 

Both �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� and �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 represent the same PH 
distribution, because 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = −𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑩𝑩𝑩𝑩𝑡𝑡𝑡𝑡𝑩𝑩𝑩𝑩𝑨𝑨𝑨𝑨 = −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑒𝑒𝑒𝑒𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨

= −𝛼𝛼𝛼𝛼𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻−1𝑨𝑨𝑨𝑨𝑻𝑻𝑻𝑻𝑨𝑨𝑨𝑨 =  −𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑨𝑨𝑨𝑨𝑡𝑡𝑡𝑡𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨.
    

By applying transformation (7) infinitely, many 
equivalent representations �𝛽𝛽𝛽𝛽,𝑩𝑩𝑩𝑩𝑩 can be found, 
also including the non-Markovian ones [15]. 
Proposition 1. Phase-type distribution 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛) can 
be uniquely specified with 2𝑛𝑛𝑛𝑛 − 1 parameters. 
Proof. The proof of Proposition 1, using Laplace 
transform, is of particular interest, because it will 
be used later. The Laplace transform of (5) is  

𝑓𝑓𝑓𝑓∗(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
∞

0

= 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)−1𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼
�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨) 𝑎𝑎𝑎𝑎

=
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐0
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + ⋯+ 𝑑𝑑𝑑𝑑1𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑0

,

     (8) 

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is an adjunct of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 
element at 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗. The adjunct  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) is found by 

(8)

where γi, j(s) is an adjunct of the matrix sI–A element 
at i, j. The adjunct γi,j (s) is found by calculating a de-
terminant of a sub-matrix, which is obtained by re-
moving the row i and column j from the matrix sI–A. 
Notice that the matrix sI–A has terms with s only in 
the diagonal elements. Therefore, adjunct γi, i(s) is a 
polynomial in s of order n–1 at most, because, in the 
calculation of sub-matrix determinant, only one diag-
onal element of the matrix sI–A is removed. Similarly, 
the adjunct γi, j(s) for i ≠ j is a polynomial in s of order 
n–2 at most, because two diagonal elements with term 
s are removed. Thus, the degree of polynomial in the 
numerator of (9) can be n–1 at most, and the degree 
of denominator is n at most, when the rank of matrix 
A is n. Therefore, there are 2n+1 coefficients cn–1, … ,c0,  
dn, …, d0 in Laplace transform expression (8). Without 
the loss of generality, the coefficient dn can be set to 
one by dividing the numerator and the denominator 
by dn ≠ 0. 

From the observation that lim����𝐹𝐹�𝑡𝑡� = 1, we have that 
𝑓𝑓∗�0� = � 𝑓𝑓�𝑡𝑡�𝑑𝑑𝑡𝑡 = 𝑑𝑑� 𝑑𝑑�⁄�

� = 1, from which 𝑑𝑑� = 𝑑𝑑�. 
Thus, the Laplace transform of the PH distribution is 
uniquely specified by 2𝑛𝑛 𝑛 1 free coefficients.  
 
2.2. Markov Arrival Processes
Markov arrival process (MAP) is a generalization of 
the PH distribution, and is able to model the depen-
dent inter-arrival times. MAP is a process of {N(t), 
J(t)}, where N(t)∈{0, 1, ...} is a level and  J(t)∈{0, 1, ... 
n} is an index of an active state within level. MAP is 
characterized by the initial probability vector
α = [α1  α2  αn] and two matrices D0, D1 of size n × n. The 
entry αi denotes a probability that process will start in 
state i at zero level; the matrix D0 is a transient gen-
erator for the states within the level and {D1}i, j for  
i, j = 1, n denotes the transition rate from the current 
level state i  to the next level state j.
The stationary distribution π of a phase process J(t) 
can be found by solving the following system of equa-
tions

calculating a determinant of a sub-matrix, which is 
obtained by removing the row 𝑖𝑖𝑖𝑖 and column 𝑗𝑗𝑗𝑗 from the 
matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨. Notice that the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 has terms 
with 𝑠𝑠𝑠𝑠 only in the diagonal elements. Therefore, adjunct
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠) is a polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 1 at most, 
because, in the calculation of sub-matrix determinant, 
only one diagonal element of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 is 
removed. Similarly, the adjunct 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is a
polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 2 at most, because two 
diagonal elements with term 𝑠𝑠𝑠𝑠 are removed. Thus, the 
degree of polynomial in the numerator of (9) can be 𝑛𝑛𝑛𝑛 −
1 at most, and the degree of denominator is 𝑛𝑛𝑛𝑛 at most, 
when the rank of matrix 𝑨𝑨𝑨𝑨 is 𝑛𝑛𝑛𝑛. Therefore, there are 2𝑛𝑛𝑛𝑛 +
1 coefficients 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1, … , 𝑐𝑐𝑐𝑐0,𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 , … ,𝑑𝑑𝑑𝑑0 in Laplace 
transform expression (8). Without the loss of generality, 
the coefficient 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 can be set to one by dividing the 
numerator and the denominator by 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 ≠ 0.
From the observation that lim

𝑡𝑡𝑡𝑡→+∞
𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1, we have that

𝑓𝑓𝑓𝑓∗(0) = ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑐𝑐0 𝑑𝑑𝑑𝑑0⁄∞
0 = 1, from which 𝑐𝑐𝑐𝑐0 = 𝑑𝑑𝑑𝑑0.

Thus, the Laplace transform of the PH distribution is 
uniquely specified by 2𝑛𝑛𝑛𝑛 − 1 free coefficients. 

2.2. Markov Arrival Processes
Markov arrival process (MAP) is a generalization of the 
PH distribution, and is able to model the dependent inter-
arrival times. MAP is a process of {𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡), 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)}, where 
𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) ∈ {0,1, … } is a level and 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) ∈ {1,2, … ,𝑛𝑛𝑛𝑛} is an 
index of an active state within level. MAP is
characterized by the initial probability vector 𝛼𝛼𝛼𝛼 =
[𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] and two matrices 𝑫𝑫𝑫𝑫0, 𝑫𝑫𝑫𝑫1 of size 𝑛𝑛𝑛𝑛 ×
𝑛𝑛𝑛𝑛. The entry 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 denotes a probability that process will 
start in state 𝑖𝑖𝑖𝑖 at zero level; the matrix 𝑫𝑫𝑫𝑫0 is a transient 
generator for the states within the level and {𝑫𝑫𝑫𝑫1}𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 
𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 denotes the transition rate from the current 
level state 𝑖𝑖𝑖𝑖 to the next level state 𝑗𝑗𝑗𝑗.
The stationary distribution 𝜋𝜋𝜋𝜋 of a phase process 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) can 
be found by solving the following system of equations

�
𝜋𝜋𝜋𝜋(𝑫𝑫𝑫𝑫0 + 𝑫𝑫𝑫𝑫1) = 0,

𝜋𝜋𝜋𝜋𝑨𝑨𝑨𝑨 = 1.                                 (9)

Definition 3. MAP process is stationary if 𝛼𝛼𝛼𝛼 ≡ 𝜋𝜋𝜋𝜋,
otherwise, such process is non-stationary (NMAP).
The probability density function of NMAP is

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑫𝑫𝑫𝑫0𝑡𝑡𝑡𝑡𝑫𝑫𝑫𝑫1𝑨𝑨𝑨𝑨.                              (10)
The canonical form of NMAP(2) has two structures [16], 
the first one is

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1 0

(1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2
� ,

                (11)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 < 1, 0 < 𝑏𝑏𝑏𝑏 < 1, 𝑏𝑏𝑏𝑏 ≥ 𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.
And the second form is given by

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
0 𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2 (1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2

� ,
            (12)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 ≤ 1, 0 < 𝑏𝑏𝑏𝑏 ≤ 1, 𝑏𝑏𝑏𝑏 ≥
𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.

2.3. Phase-Type Structures

The structure of a PH representation is denoted by 
a triple ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, which describes the distribution 
of non-zero elements in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, where �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ∈ {0,1},
�̇�𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈ {0,1}, �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1} for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 are defined 
as

�̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 > 0,
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �
1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 > 0 𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗,

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 < 0,
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

           (13)

The values of �̇�𝛼𝛼𝛼 indicate non-zero elements of the
initial probability vector 𝛼𝛼𝛼𝛼. The matrix �̇�𝑨𝑨𝑨 denotes 
the positive transition rates between the transient 
states. Note that �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 is always equal to zero 
because �̇�𝑨𝑨𝑨 accounts only for the transitions 
between the transient states.

Definition 4. An independent structural element is 
a variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� that does not depend on any 
other variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�.

The number of independent structural elements in
�𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, with structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, is equal to
∑ �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 1 + ∑ ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1
𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 , where the 

term −1 is necessary, because the initial 
probability vector has one dependent element, 
which can be found from the condition 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1.

Example 1. The structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� with

�̇�𝛼𝛼𝛼 = [1 0 1], �̇�𝑨𝑨𝑨 = �
0 0 1
1 0 0
0 1 0

� , �̇�𝑎𝑎𝑎 = �
1
1
0
�

stands for all the PH representations �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� which 
can be expressed in the following form

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 0 (1 − 𝛼𝛼𝛼𝛼1 )], 𝑎𝑎𝑎𝑎 = �
𝑎𝑎𝑎𝑎1
𝑎𝑎𝑎𝑎2
0
� ,

𝑨𝑨𝑨𝑨 = �
−�𝑎𝑎𝑎𝑎1,3 + 𝑎𝑎𝑎𝑎1� 0 𝑎𝑎𝑎𝑎1,3

𝑎𝑎𝑎𝑎2,1 −�𝑎𝑎𝑎𝑎2,1 + 𝑎𝑎𝑎𝑎2� 0
0 𝑎𝑎𝑎𝑎3,2 −𝑎𝑎𝑎𝑎3,2

� ,
 

(9)

Definition 3. MAP process is stationary if α ≡  π, oth-
erwise, such process is non-stationary (NMAP).
The probability density function of NMAP is
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calculating a determinant of a sub-matrix, which is 
obtained by removing the row 𝑖𝑖𝑖𝑖 and column 𝑗𝑗𝑗𝑗 from the 
matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨. Notice that the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 has terms 
with 𝑠𝑠𝑠𝑠 only in the diagonal elements. Therefore, adjunct
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠) is a polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 1 at most, 
because, in the calculation of sub-matrix determinant, 
only one diagonal element of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 is 
removed. Similarly, the adjunct 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is a
polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 2 at most, because two 
diagonal elements with term 𝑠𝑠𝑠𝑠 are removed. Thus, the 
degree of polynomial in the numerator of (9) can be 𝑛𝑛𝑛𝑛 −
1 at most, and the degree of denominator is 𝑛𝑛𝑛𝑛 at most, 
when the rank of matrix 𝑨𝑨𝑨𝑨 is 𝑛𝑛𝑛𝑛. Therefore, there are 2𝑛𝑛𝑛𝑛 +
1 coefficients 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1, … , 𝑐𝑐𝑐𝑐0,𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 , … ,𝑑𝑑𝑑𝑑0 in Laplace 
transform expression (8). Without the loss of generality, 
the coefficient 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 can be set to one by dividing the 
numerator and the denominator by 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 ≠ 0.
From the observation that lim

𝑡𝑡𝑡𝑡→+∞
𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1, we have that

𝑓𝑓𝑓𝑓∗(0) = ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑐𝑐0 𝑑𝑑𝑑𝑑0⁄∞
0 = 1, from which 𝑐𝑐𝑐𝑐0 = 𝑑𝑑𝑑𝑑0.

Thus, the Laplace transform of the PH distribution is 
uniquely specified by 2𝑛𝑛𝑛𝑛 − 1 free coefficients. 

2.2. Markov Arrival Processes
Markov arrival process (MAP) is a generalization of the 
PH distribution, and is able to model the dependent inter-
arrival times. MAP is a process of {𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡), 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)}, where 
𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) ∈ {0,1, … } is a level and 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) ∈ {1,2, … ,𝑛𝑛𝑛𝑛} is an 
index of an active state within level. MAP is
characterized by the initial probability vector 𝛼𝛼𝛼𝛼 =
[𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] and two matrices 𝑫𝑫𝑫𝑫0, 𝑫𝑫𝑫𝑫1 of size 𝑛𝑛𝑛𝑛 ×
𝑛𝑛𝑛𝑛. The entry 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 denotes a probability that process will 
start in state 𝑖𝑖𝑖𝑖 at zero level; the matrix 𝑫𝑫𝑫𝑫0 is a transient 
generator for the states within the level and {𝑫𝑫𝑫𝑫1}𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 
𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 denotes the transition rate from the current 
level state 𝑖𝑖𝑖𝑖 to the next level state 𝑗𝑗𝑗𝑗.
The stationary distribution 𝜋𝜋𝜋𝜋 of a phase process 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) can 
be found by solving the following system of equations

�
𝜋𝜋𝜋𝜋(𝑫𝑫𝑫𝑫0 + 𝑫𝑫𝑫𝑫1) = 0,

𝜋𝜋𝜋𝜋𝑨𝑨𝑨𝑨 = 1.                                 (9)

Definition 3. MAP process is stationary if 𝛼𝛼𝛼𝛼 ≡ 𝜋𝜋𝜋𝜋,
otherwise, such process is non-stationary (NMAP).
The probability density function of NMAP is

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑫𝑫𝑫𝑫0𝑡𝑡𝑡𝑡𝑫𝑫𝑫𝑫1𝑨𝑨𝑨𝑨.                              (10)
The canonical form of NMAP(2) has two structures [16], 
the first one is

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1 0

(1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2
� ,

                (11)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 < 1, 0 < 𝑏𝑏𝑏𝑏 < 1, 𝑏𝑏𝑏𝑏 ≥ 𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.
And the second form is given by

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
0 𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2 (1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2

� ,
            (12)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 ≤ 1, 0 < 𝑏𝑏𝑏𝑏 ≤ 1, 𝑏𝑏𝑏𝑏 ≥
𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.

2.3. Phase-Type Structures

The structure of a PH representation is denoted by 
a triple ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, which describes the distribution 
of non-zero elements in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, where �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ∈ {0,1},
�̇�𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈ {0,1}, �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1} for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 are defined 
as

�̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 > 0,
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �
1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 > 0 𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗,

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 < 0,
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

           (13)

The values of �̇�𝛼𝛼𝛼 indicate non-zero elements of the
initial probability vector 𝛼𝛼𝛼𝛼. The matrix �̇�𝑨𝑨𝑨 denotes 
the positive transition rates between the transient 
states. Note that �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 is always equal to zero 
because �̇�𝑨𝑨𝑨 accounts only for the transitions 
between the transient states.

Definition 4. An independent structural element is 
a variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� that does not depend on any 
other variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�.

The number of independent structural elements in
�𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, with structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, is equal to
∑ �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 1 + ∑ ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1
𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 , where the 

term −1 is necessary, because the initial 
probability vector has one dependent element, 
which can be found from the condition 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1.

Example 1. The structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� with

�̇�𝛼𝛼𝛼 = [1 0 1], �̇�𝑨𝑨𝑨 = �
0 0 1
1 0 0
0 1 0

� , �̇�𝑎𝑎𝑎 = �
1
1
0
�

stands for all the PH representations �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� which 
can be expressed in the following form

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 0 (1 − 𝛼𝛼𝛼𝛼1 )], 𝑎𝑎𝑎𝑎 = �
𝑎𝑎𝑎𝑎1
𝑎𝑎𝑎𝑎2
0
� ,

𝑨𝑨𝑨𝑨 = �
−�𝑎𝑎𝑎𝑎1,3 + 𝑎𝑎𝑎𝑎1� 0 𝑎𝑎𝑎𝑎1,3

𝑎𝑎𝑎𝑎2,1 −�𝑎𝑎𝑎𝑎2,1 + 𝑎𝑎𝑎𝑎2� 0
0 𝑎𝑎𝑎𝑎3,2 −𝑎𝑎𝑎𝑎3,2

� ,
 

(10)

The canonical form of NMAP(2) has two structures 
[16], the first one is

calculating a determinant of a sub-matrix, which is 
obtained by removing the row 𝑖𝑖𝑖𝑖 and column 𝑗𝑗𝑗𝑗 from the 
matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨. Notice that the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 has terms 
with 𝑠𝑠𝑠𝑠 only in the diagonal elements. Therefore, adjunct
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠) is a polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 1 at most, 
because, in the calculation of sub-matrix determinant, 
only one diagonal element of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 is 
removed. Similarly, the adjunct 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is a
polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 2 at most, because two 
diagonal elements with term 𝑠𝑠𝑠𝑠 are removed. Thus, the 
degree of polynomial in the numerator of (9) can be 𝑛𝑛𝑛𝑛 −
1 at most, and the degree of denominator is 𝑛𝑛𝑛𝑛 at most, 
when the rank of matrix 𝑨𝑨𝑨𝑨 is 𝑛𝑛𝑛𝑛. Therefore, there are 2𝑛𝑛𝑛𝑛 +
1 coefficients 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1, … , 𝑐𝑐𝑐𝑐0,𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 , … ,𝑑𝑑𝑑𝑑0 in Laplace 
transform expression (8). Without the loss of generality, 
the coefficient 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 can be set to one by dividing the 
numerator and the denominator by 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 ≠ 0.
From the observation that lim

𝑡𝑡𝑡𝑡→+∞
𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1, we have that

𝑓𝑓𝑓𝑓∗(0) = ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑐𝑐0 𝑑𝑑𝑑𝑑0⁄∞
0 = 1, from which 𝑐𝑐𝑐𝑐0 = 𝑑𝑑𝑑𝑑0.

Thus, the Laplace transform of the PH distribution is 
uniquely specified by 2𝑛𝑛𝑛𝑛 − 1 free coefficients. 

2.2. Markov Arrival Processes
Markov arrival process (MAP) is a generalization of the 
PH distribution, and is able to model the dependent inter-
arrival times. MAP is a process of {𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡), 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)}, where 
𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) ∈ {0,1, … } is a level and 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) ∈ {1,2, … ,𝑛𝑛𝑛𝑛} is an 
index of an active state within level. MAP is
characterized by the initial probability vector 𝛼𝛼𝛼𝛼 =
[𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] and two matrices 𝑫𝑫𝑫𝑫0, 𝑫𝑫𝑫𝑫1 of size 𝑛𝑛𝑛𝑛 ×
𝑛𝑛𝑛𝑛. The entry 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 denotes a probability that process will 
start in state 𝑖𝑖𝑖𝑖 at zero level; the matrix 𝑫𝑫𝑫𝑫0 is a transient 
generator for the states within the level and {𝑫𝑫𝑫𝑫1}𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 
𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 denotes the transition rate from the current 
level state 𝑖𝑖𝑖𝑖 to the next level state 𝑗𝑗𝑗𝑗.
The stationary distribution 𝜋𝜋𝜋𝜋 of a phase process 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) can 
be found by solving the following system of equations

�
𝜋𝜋𝜋𝜋(𝑫𝑫𝑫𝑫0 + 𝑫𝑫𝑫𝑫1) = 0,

𝜋𝜋𝜋𝜋𝑨𝑨𝑨𝑨 = 1.                                 (9)

Definition 3. MAP process is stationary if 𝛼𝛼𝛼𝛼 ≡ 𝜋𝜋𝜋𝜋,
otherwise, such process is non-stationary (NMAP).
The probability density function of NMAP is

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑫𝑫𝑫𝑫0𝑡𝑡𝑡𝑡𝑫𝑫𝑫𝑫1𝑨𝑨𝑨𝑨.                              (10)
The canonical form of NMAP(2) has two structures [16], 
the first one is

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1 0

(1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2
� ,

                (11)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 < 1, 0 < 𝑏𝑏𝑏𝑏 < 1, 𝑏𝑏𝑏𝑏 ≥ 𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.
And the second form is given by

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
0 𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2 (1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2

� ,
            (12)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 ≤ 1, 0 < 𝑏𝑏𝑏𝑏 ≤ 1, 𝑏𝑏𝑏𝑏 ≥
𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.

2.3. Phase-Type Structures

The structure of a PH representation is denoted by 
a triple ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, which describes the distribution 
of non-zero elements in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, where �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ∈ {0,1},
�̇�𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈ {0,1}, �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1} for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 are defined 
as

�̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 > 0,
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �
1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 > 0 𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗,

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 < 0,
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

           (13)

The values of �̇�𝛼𝛼𝛼 indicate non-zero elements of the
initial probability vector 𝛼𝛼𝛼𝛼. The matrix �̇�𝑨𝑨𝑨 denotes 
the positive transition rates between the transient 
states. Note that �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 is always equal to zero 
because �̇�𝑨𝑨𝑨 accounts only for the transitions 
between the transient states.

Definition 4. An independent structural element is 
a variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� that does not depend on any 
other variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�.

The number of independent structural elements in
�𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, with structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, is equal to
∑ �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 1 + ∑ ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1
𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 , where the 

term −1 is necessary, because the initial 
probability vector has one dependent element, 
which can be found from the condition 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1.

Example 1. The structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� with

�̇�𝛼𝛼𝛼 = [1 0 1], �̇�𝑨𝑨𝑨 = �
0 0 1
1 0 0
0 1 0

� , �̇�𝑎𝑎𝑎 = �
1
1
0
�

stands for all the PH representations �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� which 
can be expressed in the following form

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 0 (1 − 𝛼𝛼𝛼𝛼1 )], 𝑎𝑎𝑎𝑎 = �
𝑎𝑎𝑎𝑎1
𝑎𝑎𝑎𝑎2
0
� ,

𝑨𝑨𝑨𝑨 = �
−�𝑎𝑎𝑎𝑎1,3 + 𝑎𝑎𝑎𝑎1� 0 𝑎𝑎𝑎𝑎1,3

𝑎𝑎𝑎𝑎2,1 −�𝑎𝑎𝑎𝑎2,1 + 𝑎𝑎𝑎𝑎2� 0
0 𝑎𝑎𝑎𝑎3,2 −𝑎𝑎𝑎𝑎3,2

� ,
 

(11)

where 0 < λ1 ≤ λ2, 0 < a < 1,  0 < b < 1, b ≥ a λ1

λ2
 . And the 

second form is given by

calculating a determinant of a sub-matrix, which is 
obtained by removing the row 𝑖𝑖𝑖𝑖 and column 𝑗𝑗𝑗𝑗 from the 
matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨. Notice that the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 has terms 
with 𝑠𝑠𝑠𝑠 only in the diagonal elements. Therefore, adjunct
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠) is a polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 1 at most, 
because, in the calculation of sub-matrix determinant, 
only one diagonal element of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 is 
removed. Similarly, the adjunct 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is a
polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 2 at most, because two 
diagonal elements with term 𝑠𝑠𝑠𝑠 are removed. Thus, the 
degree of polynomial in the numerator of (9) can be 𝑛𝑛𝑛𝑛 −
1 at most, and the degree of denominator is 𝑛𝑛𝑛𝑛 at most, 
when the rank of matrix 𝑨𝑨𝑨𝑨 is 𝑛𝑛𝑛𝑛. Therefore, there are 2𝑛𝑛𝑛𝑛 +
1 coefficients 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1, … , 𝑐𝑐𝑐𝑐0,𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 , … ,𝑑𝑑𝑑𝑑0 in Laplace 
transform expression (8). Without the loss of generality, 
the coefficient 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 can be set to one by dividing the 
numerator and the denominator by 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 ≠ 0.
From the observation that lim

𝑡𝑡𝑡𝑡→+∞
𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1, we have that

𝑓𝑓𝑓𝑓∗(0) = ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑐𝑐0 𝑑𝑑𝑑𝑑0⁄∞
0 = 1, from which 𝑐𝑐𝑐𝑐0 = 𝑑𝑑𝑑𝑑0.

Thus, the Laplace transform of the PH distribution is 
uniquely specified by 2𝑛𝑛𝑛𝑛 − 1 free coefficients. 

2.2. Markov Arrival Processes
Markov arrival process (MAP) is a generalization of the 
PH distribution, and is able to model the dependent inter-
arrival times. MAP is a process of {𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡), 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)}, where 
𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) ∈ {0,1, … } is a level and 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) ∈ {1,2, … ,𝑛𝑛𝑛𝑛} is an 
index of an active state within level. MAP is
characterized by the initial probability vector 𝛼𝛼𝛼𝛼 =
[𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] and two matrices 𝑫𝑫𝑫𝑫0, 𝑫𝑫𝑫𝑫1 of size 𝑛𝑛𝑛𝑛 ×
𝑛𝑛𝑛𝑛. The entry 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 denotes a probability that process will 
start in state 𝑖𝑖𝑖𝑖 at zero level; the matrix 𝑫𝑫𝑫𝑫0 is a transient 
generator for the states within the level and {𝑫𝑫𝑫𝑫1}𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 
𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 denotes the transition rate from the current 
level state 𝑖𝑖𝑖𝑖 to the next level state 𝑗𝑗𝑗𝑗.
The stationary distribution 𝜋𝜋𝜋𝜋 of a phase process 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) can 
be found by solving the following system of equations

�
𝜋𝜋𝜋𝜋(𝑫𝑫𝑫𝑫0 + 𝑫𝑫𝑫𝑫1) = 0,

𝜋𝜋𝜋𝜋𝑨𝑨𝑨𝑨 = 1.                                 (9)

Definition 3. MAP process is stationary if 𝛼𝛼𝛼𝛼 ≡ 𝜋𝜋𝜋𝜋,
otherwise, such process is non-stationary (NMAP).
The probability density function of NMAP is

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑫𝑫𝑫𝑫0𝑡𝑡𝑡𝑡𝑫𝑫𝑫𝑫1𝑨𝑨𝑨𝑨.                              (10)
The canonical form of NMAP(2) has two structures [16], 
the first one is

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1 0

(1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2
� ,

                (11)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 < 1, 0 < 𝑏𝑏𝑏𝑏 < 1, 𝑏𝑏𝑏𝑏 ≥ 𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.
And the second form is given by

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
0 𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2 (1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2

� ,
            (12)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 ≤ 1, 0 < 𝑏𝑏𝑏𝑏 ≤ 1, 𝑏𝑏𝑏𝑏 ≥
𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.

2.3. Phase-Type Structures

The structure of a PH representation is denoted by 
a triple ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, which describes the distribution 
of non-zero elements in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, where �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ∈ {0,1},
�̇�𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈ {0,1}, �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1} for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 are defined 
as

�̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 > 0,
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �
1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 > 0 𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗,

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 < 0,
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

           (13)

The values of �̇�𝛼𝛼𝛼 indicate non-zero elements of the
initial probability vector 𝛼𝛼𝛼𝛼. The matrix �̇�𝑨𝑨𝑨 denotes 
the positive transition rates between the transient 
states. Note that �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 is always equal to zero 
because �̇�𝑨𝑨𝑨 accounts only for the transitions 
between the transient states.

Definition 4. An independent structural element is 
a variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� that does not depend on any 
other variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�.

The number of independent structural elements in
�𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, with structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, is equal to
∑ �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 1 + ∑ ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1
𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 , where the 

term −1 is necessary, because the initial 
probability vector has one dependent element, 
which can be found from the condition 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1.

Example 1. The structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� with

�̇�𝛼𝛼𝛼 = [1 0 1], �̇�𝑨𝑨𝑨 = �
0 0 1
1 0 0
0 1 0

� , �̇�𝑎𝑎𝑎 = �
1
1
0
�

stands for all the PH representations �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� which 
can be expressed in the following form

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 0 (1 − 𝛼𝛼𝛼𝛼1 )], 𝑎𝑎𝑎𝑎 = �
𝑎𝑎𝑎𝑎1
𝑎𝑎𝑎𝑎2
0
� ,

𝑨𝑨𝑨𝑨 = �
−�𝑎𝑎𝑎𝑎1,3 + 𝑎𝑎𝑎𝑎1� 0 𝑎𝑎𝑎𝑎1,3

𝑎𝑎𝑎𝑎2,1 −�𝑎𝑎𝑎𝑎2,1 + 𝑎𝑎𝑎𝑎2� 0
0 𝑎𝑎𝑎𝑎3,2 −𝑎𝑎𝑎𝑎3,2

� ,
 

(12)

where 0 < λ1 ≤ λ2, 0 < a ≤ 1,  0 < b ≤ 1, b ≥ a λ1

λ2
 .

2.3. Phase-Type Structures

�̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 > 0,
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗= �
1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 > 0 𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗,

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 < 0,
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒,

(13)

The structure of a PH representation is denoted by a 
triple �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �, which describes the distribution of 
non-zero elements in �𝛼𝛼, 𝑨𝑨�, where 𝛼𝛼� � ∈ �0,1�, 𝐴𝐴��,� ∈
�0,1�, 𝑎𝑎� � ∈ �0,1� for 𝑖𝑖, 𝑖𝑖 𝑖 1, 𝑖𝑖 are defined as 

 

 

The values of 𝛼𝛼�  indicate non-zero elements of the 
initial probability vector 𝛼𝛼. The matrix 𝑨𝑨�  denotes the 
positive transition rates between the transient states. 
Note that 𝑎𝑎� �,�  is always equal to zero because 𝑨𝑨�  
accounts only for the transitions between the 
transient states. 

Definition 4. An independent structural element is a 
variable in �𝛼𝛼, 𝑨𝑨� that does not depend on any other 
variable in �𝛼𝛼, 𝑨𝑨�. 

The number of independent structural elements in 
�𝛼𝛼, 𝑨𝑨�, with structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �, is equal to ∑ 𝛼𝛼� � − 1 +�

���
∑ ∑ 𝑎𝑎� �,� + ∑ 𝑎𝑎� ������������� , where the term −1 is 
necessary, because the initial probability vector has 
one dependent element, which can be found from the 
condition 𝛼𝛼𝟙𝟙 𝑖 1. 
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Definition 4. An independent structural element is a 
variable in �𝛼𝛼, 𝑨𝑨� that does not depend on any other 
variable in �𝛼𝛼, 𝑨𝑨�. 

The number of independent structural elements in 
�𝛼𝛼, 𝑨𝑨�, with structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �, is equal to ∑ 𝛼𝛼� � − 1 +�

���
∑ ∑ 𝑎𝑎� �,� + ∑ 𝑎𝑎� ������������� , where the term −1 is 
necessary, because the initial probability vector has 
one dependent element, which can be found from the 
condition 𝛼𝛼𝟙𝟙 𝑖 1. 
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�0,1�, 𝑎𝑎� � ∈ �0,1� for 𝑖𝑖, 𝑖𝑖 𝑖 1, 𝑖𝑖 are defined as 
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initial probability vector 𝛼𝛼. The matrix 𝑨𝑨�  denotes the 
positive transition rates between the transient states. 
Note that 𝑎𝑎� �,�  is always equal to zero because 𝑨𝑨�  
accounts only for the transitions between the 
transient states. 

Definition 4. An independent structural element is a 
variable in �𝛼𝛼, 𝑨𝑨� that does not depend on any other 
variable in �𝛼𝛼, 𝑨𝑨�. 

The number of independent structural elements in 
�𝛼𝛼, 𝑨𝑨�, with structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �, is equal to ∑ 𝛼𝛼� � − 1 +�

���
∑ ∑ 𝑎𝑎� �,� + ∑ 𝑎𝑎� ������������� , where the term −1 is 
necessary, because the initial probability vector has 
one dependent element, which can be found from the 
condition 𝛼𝛼𝟙𝟙 𝑖 1. 
 

Definition 4. 

calculating a determinant of a sub-matrix, which is 
obtained by removing the row 𝑖𝑖𝑖𝑖 and column 𝑗𝑗𝑗𝑗 from the 
matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨. Notice that the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 has terms 
with 𝑠𝑠𝑠𝑠 only in the diagonal elements. Therefore, adjunct
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠) is a polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 1 at most, 
because, in the calculation of sub-matrix determinant, 
only one diagonal element of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 is 
removed. Similarly, the adjunct 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is a
polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 2 at most, because two 
diagonal elements with term 𝑠𝑠𝑠𝑠 are removed. Thus, the 
degree of polynomial in the numerator of (9) can be 𝑛𝑛𝑛𝑛 −
1 at most, and the degree of denominator is 𝑛𝑛𝑛𝑛 at most, 
when the rank of matrix 𝑨𝑨𝑨𝑨 is 𝑛𝑛𝑛𝑛. Therefore, there are 2𝑛𝑛𝑛𝑛 +
1 coefficients 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1, … , 𝑐𝑐𝑐𝑐0,𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 , … ,𝑑𝑑𝑑𝑑0 in Laplace 
transform expression (8). Without the loss of generality, 
the coefficient 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 can be set to one by dividing the 
numerator and the denominator by 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 ≠ 0.
From the observation that lim

𝑡𝑡𝑡𝑡→+∞
𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1, we have that

𝑓𝑓𝑓𝑓∗(0) = ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑐𝑐0 𝑑𝑑𝑑𝑑0⁄∞
0 = 1, from which 𝑐𝑐𝑐𝑐0 = 𝑑𝑑𝑑𝑑0.

Thus, the Laplace transform of the PH distribution is 
uniquely specified by 2𝑛𝑛𝑛𝑛 − 1 free coefficients. 

2.2. Markov Arrival Processes
Markov arrival process (MAP) is a generalization of the 
PH distribution, and is able to model the dependent inter-
arrival times. MAP is a process of {𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡), 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)}, where 
𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) ∈ {0,1, … } is a level and 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) ∈ {1,2, … ,𝑛𝑛𝑛𝑛} is an 
index of an active state within level. MAP is
characterized by the initial probability vector 𝛼𝛼𝛼𝛼 =
[𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] and two matrices 𝑫𝑫𝑫𝑫0, 𝑫𝑫𝑫𝑫1 of size 𝑛𝑛𝑛𝑛 ×
𝑛𝑛𝑛𝑛. The entry 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 denotes a probability that process will 
start in state 𝑖𝑖𝑖𝑖 at zero level; the matrix 𝑫𝑫𝑫𝑫0 is a transient 
generator for the states within the level and {𝑫𝑫𝑫𝑫1}𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 
𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 denotes the transition rate from the current 
level state 𝑖𝑖𝑖𝑖 to the next level state 𝑗𝑗𝑗𝑗.
The stationary distribution 𝜋𝜋𝜋𝜋 of a phase process 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) can 
be found by solving the following system of equations

�
𝜋𝜋𝜋𝜋(𝑫𝑫𝑫𝑫0 + 𝑫𝑫𝑫𝑫1) = 0,

𝜋𝜋𝜋𝜋𝑨𝑨𝑨𝑨 = 1.                                 (9)

Definition 3. MAP process is stationary if 𝛼𝛼𝛼𝛼 ≡ 𝜋𝜋𝜋𝜋,
otherwise, such process is non-stationary (NMAP).
The probability density function of NMAP is

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑫𝑫𝑫𝑫0𝑡𝑡𝑡𝑡𝑫𝑫𝑫𝑫1𝑨𝑨𝑨𝑨.                              (10)
The canonical form of NMAP(2) has two structures [16], 
the first one is

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1 0

(1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2
� ,

                (11)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 < 1, 0 < 𝑏𝑏𝑏𝑏 < 1, 𝑏𝑏𝑏𝑏 ≥ 𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.
And the second form is given by

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
0 𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2 (1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2

� ,
            (12)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 ≤ 1, 0 < 𝑏𝑏𝑏𝑏 ≤ 1, 𝑏𝑏𝑏𝑏 ≥
𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.

2.3. Phase-Type Structures

The structure of a PH representation is denoted by 
a triple ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, which describes the distribution 
of non-zero elements in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, where �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ∈ {0,1},
�̇�𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈ {0,1}, �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1} for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 are defined 
as

�̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 > 0,
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �
1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 > 0 𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗,

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 < 0,
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

           (13)

The values of �̇�𝛼𝛼𝛼 indicate non-zero elements of the
initial probability vector 𝛼𝛼𝛼𝛼. The matrix �̇�𝑨𝑨𝑨 denotes 
the positive transition rates between the transient 
states. Note that �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 is always equal to zero 
because �̇�𝑨𝑨𝑨 accounts only for the transitions 
between the transient states.

Definition 4. An independent structural element is 
a variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� that does not depend on any 
other variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�.

The number of independent structural elements in
�𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, with structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, is equal to
∑ �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 1 + ∑ ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1
𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 , where the 

term −1 is necessary, because the initial 
probability vector has one dependent element, 
which can be found from the condition 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1.

Example 1. The structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� with

�̇�𝛼𝛼𝛼 = [1 0 1], �̇�𝑨𝑨𝑨 = �
0 0 1
1 0 0
0 1 0

� , �̇�𝑎𝑎𝑎 = �
1
1
0
�

stands for all the PH representations �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� which 
can be expressed in the following form

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 0 (1 − 𝛼𝛼𝛼𝛼1 )], 𝑎𝑎𝑎𝑎 = �
𝑎𝑎𝑎𝑎1
𝑎𝑎𝑎𝑎2
0
� ,

𝑨𝑨𝑨𝑨 = �
−�𝑎𝑎𝑎𝑎1,3 + 𝑎𝑎𝑎𝑎1� 0 𝑎𝑎𝑎𝑎1,3

𝑎𝑎𝑎𝑎2,1 −�𝑎𝑎𝑎𝑎2,1 + 𝑎𝑎𝑎𝑎2� 0
0 𝑎𝑎𝑎𝑎3,2 −𝑎𝑎𝑎𝑎3,2

� ,
 

stands for all the PH representations (α, A) which can 
be expressed in the following form

calculating a determinant of a sub-matrix, which is 
obtained by removing the row 𝑖𝑖𝑖𝑖 and column 𝑗𝑗𝑗𝑗 from the 
matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨. Notice that the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 has terms 
with 𝑠𝑠𝑠𝑠 only in the diagonal elements. Therefore, adjunct
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠) is a polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 1 at most, 
because, in the calculation of sub-matrix determinant, 
only one diagonal element of the matrix 𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨 is 
removed. Similarly, the adjunct 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(𝑠𝑠𝑠𝑠) for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 is a
polynomial in 𝑠𝑠𝑠𝑠 of order 𝑛𝑛𝑛𝑛 − 2 at most, because two 
diagonal elements with term 𝑠𝑠𝑠𝑠 are removed. Thus, the 
degree of polynomial in the numerator of (9) can be 𝑛𝑛𝑛𝑛 −
1 at most, and the degree of denominator is 𝑛𝑛𝑛𝑛 at most, 
when the rank of matrix 𝑨𝑨𝑨𝑨 is 𝑛𝑛𝑛𝑛. Therefore, there are 2𝑛𝑛𝑛𝑛 +
1 coefficients 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1, … , 𝑐𝑐𝑐𝑐0,𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 , … ,𝑑𝑑𝑑𝑑0 in Laplace 
transform expression (8). Without the loss of generality, 
the coefficient 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 can be set to one by dividing the 
numerator and the denominator by 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 ≠ 0.
From the observation that lim

𝑡𝑡𝑡𝑡→+∞
𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1, we have that

𝑓𝑓𝑓𝑓∗(0) = ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑐𝑐0 𝑑𝑑𝑑𝑑0⁄∞
0 = 1, from which 𝑐𝑐𝑐𝑐0 = 𝑑𝑑𝑑𝑑0.

Thus, the Laplace transform of the PH distribution is 
uniquely specified by 2𝑛𝑛𝑛𝑛 − 1 free coefficients. 

2.2. Markov Arrival Processes
Markov arrival process (MAP) is a generalization of the 
PH distribution, and is able to model the dependent inter-
arrival times. MAP is a process of {𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡), 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)}, where 
𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) ∈ {0,1, … } is a level and 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) ∈ {1,2, … ,𝑛𝑛𝑛𝑛} is an 
index of an active state within level. MAP is
characterized by the initial probability vector 𝛼𝛼𝛼𝛼 =
[𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] and two matrices 𝑫𝑫𝑫𝑫0, 𝑫𝑫𝑫𝑫1 of size 𝑛𝑛𝑛𝑛 ×
𝑛𝑛𝑛𝑛. The entry 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 denotes a probability that process will 
start in state 𝑖𝑖𝑖𝑖 at zero level; the matrix 𝑫𝑫𝑫𝑫0 is a transient 
generator for the states within the level and {𝑫𝑫𝑫𝑫1}𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for 
𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 denotes the transition rate from the current 
level state 𝑖𝑖𝑖𝑖 to the next level state 𝑗𝑗𝑗𝑗.
The stationary distribution 𝜋𝜋𝜋𝜋 of a phase process 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) can 
be found by solving the following system of equations

�
𝜋𝜋𝜋𝜋(𝑫𝑫𝑫𝑫0 + 𝑫𝑫𝑫𝑫1) = 0,

𝜋𝜋𝜋𝜋𝑨𝑨𝑨𝑨 = 1.                                 (9)

Definition 3. MAP process is stationary if 𝛼𝛼𝛼𝛼 ≡ 𝜋𝜋𝜋𝜋,
otherwise, such process is non-stationary (NMAP).
The probability density function of NMAP is

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑫𝑫𝑫𝑫0𝑡𝑡𝑡𝑡𝑫𝑫𝑫𝑫1𝑨𝑨𝑨𝑨.                              (10)
The canonical form of NMAP(2) has two structures [16], 
the first one is

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1 0

(1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2
� ,

                (11)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 < 1, 0 < 𝑏𝑏𝑏𝑏 < 1, 𝑏𝑏𝑏𝑏 ≥ 𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.
And the second form is given by

𝑫𝑫𝑫𝑫0 = �−𝜆𝜆𝜆𝜆1 (1 − 𝑎𝑎𝑎𝑎)𝜆𝜆𝜆𝜆1
0 −𝜆𝜆𝜆𝜆2

� ,

𝑫𝑫𝑫𝑫1 = �
0 𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆1
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆2 (1 − 𝑏𝑏𝑏𝑏)𝜆𝜆𝜆𝜆2

� ,
            (12)

where 0 < 𝜆𝜆𝜆𝜆1 ≤ 𝜆𝜆𝜆𝜆2, 0 < 𝑎𝑎𝑎𝑎 ≤ 1, 0 < 𝑏𝑏𝑏𝑏 ≤ 1, 𝑏𝑏𝑏𝑏 ≥
𝑎𝑎𝑎𝑎 𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆2

.

2.3. Phase-Type Structures

The structure of a PH representation is denoted by 
a triple ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, which describes the distribution 
of non-zero elements in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, where �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ∈ {0,1},
�̇�𝐴𝐴𝐴𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈ {0,1}, �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1} for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛 are defined 
as

�̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 > 0,
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �
1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 > 0 𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗,

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 < 0,
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒,

           (13)

The values of �̇�𝛼𝛼𝛼 indicate non-zero elements of the
initial probability vector 𝛼𝛼𝛼𝛼. The matrix �̇�𝑨𝑨𝑨 denotes 
the positive transition rates between the transient 
states. Note that �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 is always equal to zero 
because �̇�𝑨𝑨𝑨 accounts only for the transitions 
between the transient states.

Definition 4. An independent structural element is 
a variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� that does not depend on any 
other variable in �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�.

The number of independent structural elements in
�𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨�, with structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, is equal to
∑ �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 1 + ∑ ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1
𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 , where the 

term −1 is necessary, because the initial 
probability vector has one dependent element, 
which can be found from the condition 𝛼𝛼𝛼𝛼𝑨𝑨𝑨𝑨 = 1.

Example 1. The structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� with

�̇�𝛼𝛼𝛼 = [1 0 1], �̇�𝑨𝑨𝑨 = �
0 0 1
1 0 0
0 1 0

� , �̇�𝑎𝑎𝑎 = �
1
1
0
�

stands for all the PH representations �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� which 
can be expressed in the following form

𝛼𝛼𝛼𝛼 = [𝛼𝛼𝛼𝛼1 0 (1 − 𝛼𝛼𝛼𝛼1 )], 𝑎𝑎𝑎𝑎 = �
𝑎𝑎𝑎𝑎1
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0
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where α1, α1,3, α2,1, α3,2, α1, α2 are positive and real num-
bers. The initial probability vector α has two non-zero 
elements, the one at position (1, 1) is independent. The 
transition matrix A has three independent non-zero el-
ements at positions (2, 1), (3, 1) and (1, 3). The exit rate 
vector α has two independent non-zero elements at po-
sitions (1, 1) and (2, 1). In total, there are 6 independent 
structural elements. Note that (by Proposition 1) any 
PH distribution can be specified with 2n –1 parame-
ters, therefore, this structure is over-parameterized.
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Figure 1 
Graphical representation of the PH(3) structure given in 
Example 1
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numbers. The initial probability vector 𝛼𝛼𝛼𝛼 has two non-
zero elements, the one at position (1,1) is independent. 
The transition matrix 𝑨𝑨𝑨𝑨 has three independent non-zero 
elements at positions (2,1), (3,1) and (1,3). The exit 
rate vector 𝛼𝛼𝛼𝛼 has two independent non-zero elements at 
positions (1,1) and (2,1). In total, there are 6 
independent structural elements. Note that (by 
Proposition 1) any PH distribution can be specified with
2𝑛𝑛𝑛𝑛 − 1 parameters, therefore, this structure is over-
parameterized.

Figure 1. Graphical representation of the PH(3) 
structure given in Example 1.

The structure given in Example 1 is graphically depicted 
in Figure 1. The diagonally placed circles represent the 
transient states. The arrows between the circles show the 
possible transitions. The horizontal arrows on the left 
indicate the states for which the initial probability is non-
zero. Similarly, the horizontal arrows on the right 
indicate the states from which there is a transition to the 
absorbing state.

3. Phase-Type Structure Generation

In this section, we present an algorithm to generate a set 
of PH representation structures with the specified 
number of independent structural elements.

Input: the number of states 𝑛𝑛𝑛𝑛, the number of 
independent structural elements 𝑚𝑚𝑚𝑚.
Output: the set of PH structures.
Step 1. Generate a set of all possible valid structures with  
𝑚𝑚𝑚𝑚 independent structural elements (Sub-section 3.1).
Step 2. Remove structures until the resulting set does not 
contain at least two trivially equivalent structures (Sub-
section 3.2).
Step 3. Remove all the structures which can be trivially 
transformed into a structure with acyclic generator (Sub-
section 3.3).
Step 4. If 𝑚𝑚𝑚𝑚 = 2𝑛𝑛𝑛𝑛 − 1, then add a Coxian structure (Sub-
section 3.3).
Step 5. Remove the constrained structures, i.e., which 
stand for the PH distributions with 2𝑛𝑛𝑛𝑛 − 2 parameters at 
most (Sub-section 3.4).
Step 6. Remove the structures which have not obviously 
constrained and non-canonical lower order PH sub-
structures (Sub-section 3.6 and 3.7).
Step 7. Remove structures which have not obviously 
constrained and non-canonical NMAP(2) sub-structures
(Sub-section 3.8).

Definition 5. The structure of PH distribution (or 
NMAP process) representation is obviously 
constrained if it has less structurally independent 
elements than the number of parameters necessary 
to fully specify the distribution/process.

A structure containing a lower order PH or NMAP 
sub-structure, that is not obviously constrained and 
of non-canonical form, is not preferred and 
therefore is not considered, as such a structure 
duplicates the other similar structure which has a 
canonical form sub-structure.

3.1. Generation of All Valid Structures

Basically, from a set of all possible structures, the 
ones with 𝑚𝑚𝑚𝑚 independent structural elements are 
taken for further consideration. Let 𝑣𝑣𝑣𝑣� be a set of all 
possible binary vectors of size 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛

𝑣𝑣𝑣𝑣� = �[𝑣𝑣𝑣𝑣1̇ … �̇�𝑣𝑣𝑣𝑛𝑛𝑛𝑛]�𝑣𝑣𝑣𝑣�̇�𝚤𝚤𝚤 ∈ {0,1}, 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛�.

Similarly, let �̃�𝐴𝐴𝐴 be a set of all possible binary 
matrices of size 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛
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Then the initial set of all structures, with 𝑚𝑚𝑚𝑚
independent structural elements, is
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𝑖𝑖𝑖𝑖=1 = 𝑚𝑚𝑚𝑚�

Definition 6. A structure is considered to be valid 
if the following conditions are met: a) there exists 
a path to visit every transient state, b) there exists a 
path to reach an absorbing state from every 
transient state.

This set may contain many structures which do not 
define a valid CTMC. All such invalid structures 
are removed from the initial set. The resulting set 
still contains many equivalent structures, which are 
investigated in the following sections.

3.2. Trivial Structure Equivalence

We are interested in a set of PH distributions that 
contain all the distributions which have at least one 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� with the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�.
Such a set is denoted as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎�.

Two structures ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� and ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� are 
equivalent if

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎� ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛽𝛽𝛽,�̇�𝑩𝑩𝑩,�̇�𝑏𝑏𝑏� 

The structure given in Example 1 is graphically de-
picted in Figure 1. The diagonally placed circles rep-
resent the transient states. The arrows between the 
circles show the possible transitions. The horizontal 
arrows on the left indicate the states for which the 
initial probability is non-zero. Similarly, the horizon-
tal arrows on the right indicate the states from which 
there is a transition to the absorbing state.
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3. Phase-Type Structure Generation
In this section, we present an algorithm to generate a 
set of PH representation structures with the specified 
number of independent structural elements.
Input: the number of states n, the number of indepen-
dent structural elements m. 
Output: the set of PH structures.
Step 1. Generate a set of all possible valid structures 
with m independent structural elements (Sub-sec-
tion 3.1).
Step 2. Remove structures until the resulting set does 
not contain at least two trivially equivalent structures 
(Sub-section 3.2).
Step 3. Remove all the structures which can be trivi-
ally transformed into a structure with acyclic genera-
tor (Sub-section 3.3).

Step 4. If m = 2n – 1, then add a Coxian structure 
(Sub-section 3.3).
Step 5. Remove the constrained structures, i.e., which 
stand for the PH distributions with 2n – 2  parameters 
at most (Sub-section 3.4).
Step 6. Remove the structures which have not obvi-
ously constrained and non-canonical lower order PH 
sub-structures (Sub-section 3.6 and 3.7). 
Step 7. Remove structures which have not obviously 
constrained and non-canonical NMAP(2) sub-struc-
tures (Sub-section 3.8). 
Definition 5. The structure of PH distribution (or 
NMAP process) representation is obviously con-
strained if it has less structurally independent ele-
ments than the number of parameters necessary to 
fully specify the distribution/process.
A structure containing a lower order PH or NMAP 
sub-structure, that is not obviously constrained and 
of non-canonical form, is not preferred and therefore 
is not considered, as such a structure duplicates the 
other similar structure which has a canonical form 
sub-structure.

3.1. Generation of All Valid Structures
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elements than the number   of parameters necessary 
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Then the initial set of all structures, with 𝑚𝑚𝑚𝑚 
independent structural elements, is 
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Definition 6. A structure is considered to be valid 
if the following conditions are met: a) there exists 
a path to visit every transient state, b) there exists a 
path to reach an absorbing state from every 
transient state. 

This set may contain many structures which do not 
define a valid CTMC. All such invalid structures 
are removed from the initial set. The resulting set 
still contains many equivalent structures, which are 
investigated in the following sections. 
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Definition 5. The structure of PH distribution (or 
NMAP process) representation is obviously 
constrained if it has less structurally independent 
elements than the number   of parameters necessary 
to fully specify the distribution/process. 

A structure containing a lower order PH or NMAP 
sub-structure, that is not obviously constrained and 
of non-canonical form, is not preferred and 
therefore is not considered, as such a structure 
duplicates the other similar structure which has a 
canonical form sub-structure. 

3.1. Generation of All Valid Structures 
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a path to visit every transient state, b) there exists a 
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are removed from the initial set. The resulting set 
still contains many equivalent structures, which are 
investigated in the following sections. 
 
3.2. Trivial Structure Equivalence 

We are interested in a set of PH distributions that 
contain all the distributions which have at least one 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� with the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�. 
Such a set is denoted as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎�. 

Two structures ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� and ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� are 
equivalent if 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎� ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛽𝛽𝛽,�̇�𝑩𝑩𝑩,�̇�𝑏𝑏𝑏�  

Then the initial set of all structures, with m  indepen-
dent structural elements, is

 

-  

 
Definition 5. The structure of PH distribution (or 
NMAP process) representation is obviously 
constrained if it has less structurally independent 
elements than the number   of parameters necessary 
to fully specify the distribution/process. 

A structure containing a lower order PH or NMAP 
sub-structure, that is not obviously constrained and 
of non-canonical form, is not preferred and 
therefore is not considered, as such a structure 
duplicates the other similar structure which has a 
canonical form sub-structure. 

3.1. Generation of All Valid Structures 

Basically, from a set of all possible structures, the 
ones with 𝑚𝑚𝑚𝑚 independent structural elements are 
taken for further consideration. Let 𝑣𝑣𝑣𝑣� be a set of all 
possible binary vectors of size 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 

𝑣𝑣𝑣𝑣� = �[𝑣𝑣𝑣𝑣1̇ … �̇�𝑣𝑣𝑣𝑛𝑛𝑛𝑛]�𝑣𝑣𝑣𝑣�̇�𝚤𝚤𝚤 ∈ {0,1}, 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛�. 

Similarly, let �̃�𝐴𝐴𝐴 be a set of all possible binary 
matrices of size 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 

�̃�𝐴𝐴𝐴 = ��
�̇�𝑎𝑎𝑎1,1 ⋯ �̇�𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
⋮ ⋱ ⋮

�̇�𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 ⋯ �̇�𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� �
�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈ {0,1}, �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = 0
𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛

�. 

Then the initial set of all structures, with 𝑚𝑚𝑚𝑚 
independent structural elements, is 

���̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎��
�̇�𝛼𝛼𝛼 ∈ 𝑣𝑣𝑣𝑣�, �̇�𝑨𝑨𝑨 ∈ �̃�𝐴𝐴𝐴, �̇�𝑎𝑎𝑎 ∈ 𝑣𝑣𝑣𝑣� ,

∑ �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 1∑ ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 + ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1 = 𝑚𝑚𝑚𝑚� 

Definition 6. A structure is considered to be valid 
if the following conditions are met: a) there exists 
a path to visit every transient state, b) there exists a 
path to reach an absorbing state from every 
transient state. 

This set may contain many structures which do not 
define a valid CTMC. All such invalid structures 
are removed from the initial set. The resulting set 
still contains many equivalent structures, which are 
investigated in the following sections. 
 
3.2. Trivial Structure Equivalence 

We are interested in a set of PH distributions that 
contain all the distributions which have at least one 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� with the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�. 
Such a set is denoted as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎�. 

Two structures ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� and ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� are 
equivalent if 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎� ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛽𝛽𝛽,�̇�𝑩𝑩𝑩,�̇�𝑏𝑏𝑏�  

Definition 6. A structure is considered to be valid if 
the following conditions are met: a) there exists a path 
to visit every transient state, b) there exists a path to 
reach an absorbing state from every transient state.
This set may contain many structures which do not 
define a valid CTMC. All such invalid structures are 
removed from the initial set. The resulting set still 
contains many equivalent structures, which are in-
vestigated in the following sections.

3.2. Trivial Structure Equivalence
We are interested in a set of PH distributions that 
contain all the distributions which have at least one 
representation �𝛼𝛼, 𝑨𝑨� with the structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �. 
Such a set is denoted as 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� �. 

Two structures �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � and �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � are equivalent if 

𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� �  
and  

𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � . 
The structure with reordered states stands for the 
same set of PH distributions. This comes from the fact 
that renumbering states of a certain representation 
results in another representation, which represents 
the same PH distribution. Formally, given a list of 
unique new states indices�𝑙𝑙�, 𝑙𝑙�, … , 𝑙𝑙�� the equivalent 
structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � obtained from �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � by 
renumbering is defined as 

𝛽𝛽�� = 𝛼𝛼� �� , 𝑏𝑏��,� = 𝑎𝑎� ��,�� , 𝑏𝑏� � = 𝑎𝑎� ��    𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Similarly, the time-reversed structure has the same 
set of PH distributions, as time-reversed 
representation represents the same PH distribution. 
Formally, given a structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �, the equivalent 
time-reversed structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � is obtained by 

𝛽𝛽�� = 𝛼𝛼� �, 𝑏𝑏��,� = 𝑎𝑎��,� , 𝑏𝑏�� = 𝑎𝑎� �   𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Definition 7. A trivial transformation of a structure or 
a representation is such transformation which 
involves the state reordering and/or time reversal. 

In addition, if a structure or a representation was 
obtained by the trivial transformation, those are said 
to be trivially equivalent. 

3.3. Structures with Acyclic Generator and Coxian 
Structure 

Definition 8. The structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � represents the 
acyclic PH distribution if it can be trivially 
transformed into the structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � with an upper 
triangular matrix 𝑩𝑩� . 
 

 

-  

 
Definition 5. The structure of PH distribution (or 
NMAP process) representation is obviously 
constrained if it has less structurally independent 
elements than the number   of parameters necessary 
to fully specify the distribution/process. 

A structure containing a lower order PH or NMAP 
sub-structure, that is not obviously constrained and 
of non-canonical form, is not preferred and 
therefore is not considered, as such a structure 
duplicates the other similar structure which has a 
canonical form sub-structure. 

3.1. Generation of All Valid Structures 

Basically, from a set of all possible structures, the 
ones with 𝑚𝑚𝑚𝑚 independent structural elements are 
taken for further consideration. Let 𝑣𝑣𝑣𝑣� be a set of all 
possible binary vectors of size 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 

𝑣𝑣𝑣𝑣� = �[𝑣𝑣𝑣𝑣1̇ … �̇�𝑣𝑣𝑣𝑛𝑛𝑛𝑛]�𝑣𝑣𝑣𝑣�̇�𝚤𝚤𝚤 ∈ {0,1}, 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛�. 

Similarly, let �̃�𝐴𝐴𝐴 be a set of all possible binary 
matrices of size 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 

�̃�𝐴𝐴𝐴 = ��
�̇�𝑎𝑎𝑎1,1 ⋯ �̇�𝑎𝑎𝑎1,𝑛𝑛𝑛𝑛
⋮ ⋱ ⋮

�̇�𝑎𝑎𝑎𝑛𝑛𝑛𝑛,1 ⋯ �̇�𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

� �
�̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈ {0,1}, �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = 0
𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛

�. 

Then the initial set of all structures, with 𝑚𝑚𝑚𝑚 
independent structural elements, is 

���̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎��
�̇�𝛼𝛼𝛼 ∈ 𝑣𝑣𝑣𝑣�, �̇�𝑨𝑨𝑨 ∈ �̃�𝐴𝐴𝐴, �̇�𝑎𝑎𝑎 ∈ 𝑣𝑣𝑣𝑣� ,

∑ �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 − 1∑ ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 + ∑ �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1 = 𝑚𝑚𝑚𝑚� 

Definition 6. A structure is considered to be valid 
if the following conditions are met: a) there exists 
a path to visit every transient state, b) there exists a 
path to reach an absorbing state from every 
transient state. 

This set may contain many structures which do not 
define a valid CTMC. All such invalid structures 
are removed from the initial set. The resulting set 
still contains many equivalent structures, which are 
investigated in the following sections. 
 
3.2. Trivial Structure Equivalence 

We are interested in a set of PH distributions that 
contain all the distributions which have at least one 
representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� with the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�. 
Such a set is denoted as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎�. 

Two structures ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� and ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� are 
equivalent if 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎� ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛽𝛽𝛽,�̇�𝑩𝑩𝑩,�̇�𝑏𝑏𝑏�  

and 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛽𝛽𝛽,�̇�𝑩𝑩𝑩,�̇�𝑏𝑏𝑏� ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎� . 

We are interested in a set of PH distributions that 
contain all the distributions which have at least one 
representation �𝛼𝛼, 𝑨𝑨� with the structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �. 
Such a set is denoted as 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� �. 

Two structures �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � and �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � are equivalent if 

𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� �  
and  

𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � . 
The structure with reordered states stands for the 
same set of PH distributions. This comes from the fact 
that renumbering states of a certain representation 
results in another representation, which represents 
the same PH distribution. Formally, given a list of 
unique new states indices�𝑙𝑙�, 𝑙𝑙�, … , 𝑙𝑙�� the equivalent 
structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � obtained from �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � by 
renumbering is defined as 

𝛽𝛽�� = 𝛼𝛼� �� , 𝑏𝑏��,� = 𝑎𝑎� ��,�� , 𝑏𝑏� � = 𝑎𝑎� ��    𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Similarly, the time-reversed structure has the same 
set of PH distributions, as time-reversed 
representation represents the same PH distribution. 
Formally, given a structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �, the equivalent 
time-reversed structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � is obtained by 

𝛽𝛽�� = 𝛼𝛼� �, 𝑏𝑏��,� = 𝑎𝑎��,� , 𝑏𝑏�� = 𝑎𝑎� �   𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Definition 7. A trivial transformation of a structure or 
a representation is such transformation which 
involves the state reordering and/or time reversal. 

In addition, if a structure or a representation was 
obtained by the trivial transformation, those are said 
to be trivially equivalent. 

3.3. Structures with Acyclic Generator and Coxian 
Structure 

Definition 8. The structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � represents the 
acyclic PH distribution if it can be trivially 
transformed into the structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � with an upper 
triangular matrix 𝑩𝑩� . 
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and  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛽𝛽𝛽,�̇�𝑩𝑩𝑩,�̇�𝑏𝑏𝑏� ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎� .

The structure with reordered states stands for the same 
set of PH distributions. This comes from the fact that 
renumbering states of a certain representation results in 
another representation, which represents the same PH 
distribution. Formally, given a list of unique new states 
indices(𝑙𝑙𝑙𝑙1, 𝑙𝑙𝑙𝑙2, … , 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛) the equivalent structure ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏�
obtained from ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� by renumbering is defined as

�̇�𝛽𝛽𝛽𝑖𝑖𝑖𝑖 = �̇�𝛼𝛼𝛼𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �̇�𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = �̇�𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖    𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛.

Similarly, the time-reversed structure has the same set of 
PH distributions, as time-reversed representation 
represents the same PH distribution. Formally, given a 
structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, the equivalent time-reversed 
structure ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� is obtained by

�̇�𝛽𝛽𝛽𝑖𝑖𝑖𝑖 = �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �̇�𝑎𝑎𝑎𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖    𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛.

Definition 7. A trivial transformation of a structure or a 
representation is such transformation which involves the 
state reordering and/or time reversal.

In addition, if a structure or a representation was 
obtained by the trivial transformation, those are said to 
be trivially equivalent.

3.3. Structures with Acyclic Generator and Coxian 
Structure

Definition 8. The structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� represents the 
acyclic PH distribution if it can be trivially transformed 
into the structure ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� with an upper triangular 
matrix �̇�𝑩𝑩𝑩.

Any PH distribution representation with a triangular 
generator matrix can be transformed into an ordered 
Coxian representation structure [8]. The ordered Coxian 
representation structure has the following form [7]

𝛼𝛼𝛼𝛼 = [1 0 … 0],
𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡
𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 0 … 0

0 𝑎𝑎𝑎𝑎2,2 𝑎𝑎𝑎𝑎2,3 … 0
⋮ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 … 0 0 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎥
⎤

,

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖� and 𝑎𝑎𝑎𝑎1,1 ≤ ⋯ ≤ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 for 𝑖𝑖𝑖𝑖 =
1,𝑛𝑛𝑛𝑛.

3.4. Structurally Induced Zero Density of PH 
Distribution at Zero

Proposition 2. If the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� of the 
structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is such that there is no immediate exit 

from the states for which the initial probability is 
non-zero, i.e., for all 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛 ∶  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 0, the 
represented PH distribution is defined by 2𝑛𝑛𝑛𝑛 − 2
parameters at most.

Proof. From (8) we have that

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)𝑓𝑓𝑓𝑓∗(𝑒𝑒𝑒𝑒) = 𝛼𝛼𝛼𝛼�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�𝑎𝑎𝑎𝑎

= [𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] �
𝛾𝛾𝛾𝛾1,1(𝑠𝑠𝑠𝑠) … 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,1(𝑠𝑠𝑠𝑠)
⋮ ⋱ ⋮

𝛾𝛾𝛾𝛾1,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠) … 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)
� �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛
�

= 𝛼𝛼𝛼𝛼1�𝛾𝛾𝛾𝛾1,1(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎1 + ⋯+ 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,1(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛� + ⋯
+𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛�𝛾𝛾𝛾𝛾1,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎1 + ⋯+ 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛�.

From the condition of Proposition 1 it follows that 
adjuncts 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠) are multiplied by zero. Since these 
are the only adjuncts that are polynomials in 𝑠𝑠𝑠𝑠 of 
𝑛𝑛𝑛𝑛 − 1 degree, the numerator in (8) does not contain 
term 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1, i.e., the coefficient 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1 is equal to zero.
Consequently, the Laplace transform (and the 
corresponding PH) is defined by 2𝑛𝑛𝑛𝑛 − 2
parameters.

3.5. The Sub-chains

Recall that PH distribution is defined via a CTMC.
Choose a few transient states for analysis. Partition 
the whole original CTMC into two chains. The first 
one contains the chosen transient states and is 
called a sub-chain. The second one contains all the 
remaining states and is called a complimentary 
chain.

A particular sub-chain with 𝑝𝑝𝑝𝑝 states is given by a 
list of unique state indices �𝑙𝑙𝑙𝑙1, … 𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝�. There are the 
remaining 𝑞𝑞𝑞𝑞 = 𝑛𝑛𝑛𝑛 + 2 − 𝑝𝑝𝑝𝑝 states in the 
complimentary chain, where +2 is for the starting 
and for the absorbing states. For the given sub-
chain state index list �𝑙𝑙𝑙𝑙1, … , 𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝�, the generator 
matrix of CTMC can be reordered to the form

�𝑪𝑪𝑪𝑪� 𝑬𝑬𝑬𝑬
𝑿𝑿𝑿𝑿 𝐶𝐶𝐶𝐶

� ,                                     (14)
where the lower right block 𝑪𝑪𝑪𝑪 is a transient 
generator matrix of the sub-chain. The input 𝑬𝑬𝑬𝑬 and 
output 𝑿𝑿𝑿𝑿 matrices are the upper right and lower left 
blocks, respectively. The complimentary chain 
transient generator 𝑪𝑪𝑪𝑪� matrix is not investigated 
further. The structure of the 𝑪𝑪𝑪𝑪, 𝑬𝑬𝑬𝑬 and 𝑿𝑿𝑿𝑿 matrices is 
encoded by the binary element matrices �̇�𝑪𝑪𝑪, �̇�𝑬𝑬𝑬 and 
�̇�𝑿𝑿𝑿

We are interested in a set of PH distributions that 
contain all the distributions which have at least one 
representation �𝛼𝛼, 𝑨𝑨� with the structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �. 
Such a set is denoted as 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� �. 

Two structures �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � and �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � are equivalent if 

𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� �  
and  

𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � . 
The structure with reordered states stands for the 
same set of PH distributions. This comes from the fact 
that renumbering states of a certain representation 
results in another representation, which represents 
the same PH distribution. Formally, given a list of 
unique new states indices�𝑙𝑙�, 𝑙𝑙�, … , 𝑙𝑙�� the equivalent 
structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � obtained from �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � by 
renumbering is defined as 

𝛽𝛽�� = 𝛼𝛼� �� , 𝑏𝑏��,� = 𝑎𝑎� ��,�� , 𝑏𝑏� � = 𝑎𝑎� ��    𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Similarly, the time-reversed structure has the same 
set of PH distributions, as time-reversed 
representation represents the same PH distribution. 
Formally, given a structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �, the equivalent 
time-reversed structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � is obtained by 

𝛽𝛽�� = 𝛼𝛼� �, 𝑏𝑏��,� = 𝑎𝑎��,� , 𝑏𝑏�� = 𝑎𝑎� �   𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Definition 7. A trivial transformation of a structure or 
a representation is such transformation which 
involves the state reordering and/or time reversal. 

In addition, if a structure or a representation was 
obtained by the trivial transformation, those are said 
to be trivially equivalent. 

3.3. Structures with Acyclic Generator and Coxian 
Structure 

Definition 8. The structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � represents the 
acyclic PH distribution if it can be trivially 
transformed into the structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � with an upper 
triangular matrix 𝑩𝑩� . 
 

We are interested in a set of PH distributions that 
contain all the distributions which have at least one 
representation �𝛼𝛼, 𝑨𝑨� with the structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �. 
Such a set is denoted as 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� �. 

Two structures �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � and �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � are equivalent if 

𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� �  
and  

𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � . 
The structure with reordered states stands for the 
same set of PH distributions. This comes from the fact 
that renumbering states of a certain representation 
results in another representation, which represents 
the same PH distribution. Formally, given a list of 
unique new states indices�𝑙𝑙�, 𝑙𝑙�, … , 𝑙𝑙�� the equivalent 
structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � obtained from �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � by 
renumbering is defined as 

𝛽𝛽�� = 𝛼𝛼� �� , 𝑏𝑏��,� = 𝑎𝑎� ��,�� , 𝑏𝑏� � = 𝑎𝑎� ��    𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Similarly, the time-reversed structure has the same 
set of PH distributions, as time-reversed 
representation represents the same PH distribution. 
Formally, given a structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �, the equivalent 
time-reversed structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � is obtained by 

𝛽𝛽�� = 𝛼𝛼� �, 𝑏𝑏��,� = 𝑎𝑎��,� , 𝑏𝑏�� = 𝑎𝑎� �   𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Definition 7. A trivial transformation of a structure or 
a representation is such transformation which 
involves the state reordering and/or time reversal. 

In addition, if a structure or a representation was 
obtained by the trivial transformation, those are said 
to be trivially equivalent. 

3.3. Structures with Acyclic Generator and Coxian 
Structure 

Definition 8. The structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � represents the 
acyclic PH distribution if it can be trivially 
transformed into the structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � with an upper 
triangular matrix 𝑩𝑩� . 
 

We are interested in a set of PH distributions that 
contain all the distributions which have at least one 
representation �𝛼𝛼, 𝑨𝑨� with the structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �. 
Such a set is denoted as 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� �. 

Two structures �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � and �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � are equivalent if 

𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� �  
and  

𝑃𝑃𝑃𝑃��� ,𝑩𝑩� ,�� � ⊆ 𝑃𝑃𝑃𝑃��� ,𝑨𝑨� ,�� � . 
The structure with reordered states stands for the 
same set of PH distributions. This comes from the fact 
that renumbering states of a certain representation 
results in another representation, which represents 
the same PH distribution. Formally, given a list of 
unique new states indices�𝑙𝑙�, 𝑙𝑙�, … , 𝑙𝑙�� the equivalent 
structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � obtained from �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � by 
renumbering is defined as 

𝛽𝛽�� = 𝛼𝛼� �� , 𝑏𝑏��,� = 𝑎𝑎� ��,�� , 𝑏𝑏� � = 𝑎𝑎� ��    𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Similarly, the time-reversed structure has the same 
set of PH distributions, as time-reversed 
representation represents the same PH distribution. 
Formally, given a structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� �, the equivalent 
time-reversed structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � is obtained by 

𝛽𝛽�� = 𝛼𝛼� �, 𝑏𝑏��,� = 𝑎𝑎��,� , 𝑏𝑏�� = 𝑎𝑎� �   𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑓𝑓 = 𝑓, 𝑓𝑓. 
 

Definition 7. A trivial transformation of a structure or 
a representation is such transformation which 
involves the state reordering and/or time reversal. 

In addition, if a structure or a representation was 
obtained by the trivial transformation, those are said 
to be trivially equivalent. 

3.3. Structures with Acyclic Generator and Coxian 
Structure 

Definition 8. The structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � represents the 
acyclic PH distribution if it can be trivially 
transformed into the structure �𝛽𝛽� , 𝑩𝑩� , 𝑏𝑏� � with an upper 
triangular matrix 𝑩𝑩� . 
 

and  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛽𝛽𝛽,�̇�𝑩𝑩𝑩,�̇�𝑏𝑏𝑏� ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎� .

The structure with reordered states stands for the same 
set of PH distributions. This comes from the fact that 
renumbering states of a certain representation results in 
another representation, which represents the same PH 
distribution. Formally, given a list of unique new states 
indices(𝑙𝑙𝑙𝑙1, 𝑙𝑙𝑙𝑙2, … , 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛) the equivalent structure ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏�
obtained from ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� by renumbering is defined as

�̇�𝛽𝛽𝛽𝑖𝑖𝑖𝑖 = �̇�𝛼𝛼𝛼𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �̇�𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = �̇�𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖    𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛.

Similarly, the time-reversed structure has the same set of 
PH distributions, as time-reversed representation 
represents the same PH distribution. Formally, given a 
structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, the equivalent time-reversed 
structure ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� is obtained by

�̇�𝛽𝛽𝛽𝑖𝑖𝑖𝑖 = �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �̇�𝑎𝑎𝑎𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖    𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛.

Definition 7. A trivial transformation of a structure or a 
representation is such transformation which involves the 
state reordering and/or time reversal.

In addition, if a structure or a representation was 
obtained by the trivial transformation, those are said to 
be trivially equivalent.

3.3. Structures with Acyclic Generator and Coxian 
Structure

Definition 8. The structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� represents the 
acyclic PH distribution if it can be trivially transformed 
into the structure ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� with an upper triangular 
matrix �̇�𝑩𝑩𝑩.

Any PH distribution representation with a triangular 
generator matrix can be transformed into an ordered 
Coxian representation structure [8]. The ordered Coxian 
representation structure has the following form [7]

𝛼𝛼𝛼𝛼 = [1 0 … 0],
𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡
𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 0 … 0

0 𝑎𝑎𝑎𝑎2,2 𝑎𝑎𝑎𝑎2,3 … 0
⋮ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 … 0 0 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎥
⎤

,

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖� and 𝑎𝑎𝑎𝑎1,1 ≤ ⋯ ≤ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 for 𝑖𝑖𝑖𝑖 =
1,𝑛𝑛𝑛𝑛.

3.4. Structurally Induced Zero Density of PH 
Distribution at Zero

Proposition 2. If the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� of the 
structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is such that there is no immediate exit 

from the states for which the initial probability is 
non-zero, i.e., for all 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛 ∶  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 0, the 
represented PH distribution is defined by 2𝑛𝑛𝑛𝑛 − 2
parameters at most.

Proof. From (8) we have that

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)𝑓𝑓𝑓𝑓∗(𝑒𝑒𝑒𝑒) = 𝛼𝛼𝛼𝛼�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�𝑎𝑎𝑎𝑎

= [𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] �
𝛾𝛾𝛾𝛾1,1(𝑠𝑠𝑠𝑠) … 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,1(𝑠𝑠𝑠𝑠)
⋮ ⋱ ⋮

𝛾𝛾𝛾𝛾1,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠) … 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)
� �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛
�

= 𝛼𝛼𝛼𝛼1�𝛾𝛾𝛾𝛾1,1(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎1 + ⋯+ 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,1(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛� + ⋯
+𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛�𝛾𝛾𝛾𝛾1,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎1 + ⋯+ 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛�.

From the condition of Proposition 1 it follows that 
adjuncts 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠) are multiplied by zero. Since these 
are the only adjuncts that are polynomials in 𝑠𝑠𝑠𝑠 of 
𝑛𝑛𝑛𝑛 − 1 degree, the numerator in (8) does not contain 
term 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1, i.e., the coefficient 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1 is equal to zero.
Consequently, the Laplace transform (and the 
corresponding PH) is defined by 2𝑛𝑛𝑛𝑛 − 2
parameters.

3.5. The Sub-chains

Recall that PH distribution is defined via a CTMC.
Choose a few transient states for analysis. Partition 
the whole original CTMC into two chains. The first 
one contains the chosen transient states and is 
called a sub-chain. The second one contains all the 
remaining states and is called a complimentary 
chain.

A particular sub-chain with 𝑝𝑝𝑝𝑝 states is given by a 
list of unique state indices �𝑙𝑙𝑙𝑙1, … 𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝�. There are the 
remaining 𝑞𝑞𝑞𝑞 = 𝑛𝑛𝑛𝑛 + 2 − 𝑝𝑝𝑝𝑝 states in the 
complimentary chain, where +2 is for the starting 
and for the absorbing states. For the given sub-
chain state index list �𝑙𝑙𝑙𝑙1, … , 𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝�, the generator 
matrix of CTMC can be reordered to the form

�𝑪𝑪𝑪𝑪� 𝑬𝑬𝑬𝑬
𝑿𝑿𝑿𝑿 𝐶𝐶𝐶𝐶

� ,                                     (14)
where the lower right block 𝑪𝑪𝑪𝑪 is a transient 
generator matrix of the sub-chain. The input 𝑬𝑬𝑬𝑬 and 
output 𝑿𝑿𝑿𝑿 matrices are the upper right and lower left 
blocks, respectively. The complimentary chain 
transient generator 𝑪𝑪𝑪𝑪� matrix is not investigated 
further. The structure of the 𝑪𝑪𝑪𝑪, 𝑬𝑬𝑬𝑬 and 𝑿𝑿𝑿𝑿 matrices is 
encoded by the binary element matrices �̇�𝑪𝑪𝑪, �̇�𝑬𝑬𝑬 and 
�̇�𝑿𝑿𝑿

Definition 7. A trivial transformation of a structure 
or a representation is such transformation which in-
volves the state reordering and/or time reversal.
In addition, if a structure or a representation was ob-
tained by the trivial transformation, those are said to 
be trivially equivalent.

3.3. Structures with Acyclic Generator and 
Coxian Structure

Definition 8. 

Any PH distribution representation with a triangular 
generator matrix can be transformed into an ordered 
Coxian representation structure [8]. The ordered Cox-
ian representation structure has the following form [7]

and  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛽𝛽𝛽,�̇�𝑩𝑩𝑩,�̇�𝑏𝑏𝑏� ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��̇�𝛼𝛼𝛼,�̇�𝑨𝑨𝑨,�̇�𝑎𝑎𝑎� .

The structure with reordered states stands for the same 
set of PH distributions. This comes from the fact that 
renumbering states of a certain representation results in 
another representation, which represents the same PH 
distribution. Formally, given a list of unique new states 
indices(𝑙𝑙𝑙𝑙1, 𝑙𝑙𝑙𝑙2, … , 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛) the equivalent structure ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏�
obtained from ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� by renumbering is defined as

�̇�𝛽𝛽𝛽𝑖𝑖𝑖𝑖 = �̇�𝛼𝛼𝛼𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �̇�𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = �̇�𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖    𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛.

Similarly, the time-reversed structure has the same set of 
PH distributions, as time-reversed representation 
represents the same PH distribution. Formally, given a 
structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎�, the equivalent time-reversed 
structure ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� is obtained by

�̇�𝛽𝛽𝛽𝑖𝑖𝑖𝑖 = �̇�𝛼𝛼𝛼𝑖𝑖𝑖𝑖 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = �̇�𝑎𝑎𝑎𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 , �̇�𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = �̇�𝑎𝑎𝑎𝑖𝑖𝑖𝑖    𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,𝑛𝑛𝑛𝑛.

Definition 7. A trivial transformation of a structure or a 
representation is such transformation which involves the 
state reordering and/or time reversal.

In addition, if a structure or a representation was 
obtained by the trivial transformation, those are said to 
be trivially equivalent.

3.3. Structures with Acyclic Generator and Coxian 
Structure

Definition 8. The structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� represents the 
acyclic PH distribution if it can be trivially transformed 
into the structure ��̇�𝛽𝛽𝛽, �̇�𝑩𝑩𝑩, �̇�𝑏𝑏𝑏� with an upper triangular 
matrix �̇�𝑩𝑩𝑩.

Any PH distribution representation with a triangular 
generator matrix can be transformed into an ordered 
Coxian representation structure [8]. The ordered Coxian 
representation structure has the following form [7]

𝛼𝛼𝛼𝛼 = [1 0 … 0],
𝑎𝑎𝑎𝑎 = [𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 … 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ,

𝑨𝑨𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡
𝑎𝑎𝑎𝑎1,1 𝑎𝑎𝑎𝑎1,2 0 … 0

0 𝑎𝑎𝑎𝑎2,2 𝑎𝑎𝑎𝑎2,3 … 0
⋮ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 … 0 0 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎥
⎤

,

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖� and 𝑎𝑎𝑎𝑎1,1 ≤ ⋯ ≤ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 for 𝑖𝑖𝑖𝑖 =
1,𝑛𝑛𝑛𝑛.

3.4. Structurally Induced Zero Density of PH 
Distribution at Zero

Proposition 2. If the representation �𝛼𝛼𝛼𝛼,𝑨𝑨𝑨𝑨� of the 
structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is such that there is no immediate exit 

from the states for which the initial probability is 
non-zero, i.e., for all 𝑖𝑖𝑖𝑖 = 1,𝑛𝑛𝑛𝑛 ∶  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 0, the 
represented PH distribution is defined by 2𝑛𝑛𝑛𝑛 − 2
parameters at most.

Proof. From (8) we have that

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)𝑓𝑓𝑓𝑓∗(𝑒𝑒𝑒𝑒) = 𝛼𝛼𝛼𝛼�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�𝑎𝑎𝑎𝑎

= [𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] �
𝛾𝛾𝛾𝛾1,1(𝑠𝑠𝑠𝑠) … 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,1(𝑠𝑠𝑠𝑠)
⋮ ⋱ ⋮

𝛾𝛾𝛾𝛾1,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠) … 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)
� �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛
�

= 𝛼𝛼𝛼𝛼1�𝛾𝛾𝛾𝛾1,1(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎1 + ⋯+ 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,1(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛� + ⋯
+𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛�𝛾𝛾𝛾𝛾1,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎1 + ⋯+ 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛�.

From the condition of Proposition 1 it follows that 
adjuncts 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠) are multiplied by zero. Since these 
are the only adjuncts that are polynomials in 𝑠𝑠𝑠𝑠 of 
𝑛𝑛𝑛𝑛 − 1 degree, the numerator in (8) does not contain 
term 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1, i.e., the coefficient 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1 is equal to zero.
Consequently, the Laplace transform (and the 
corresponding PH) is defined by 2𝑛𝑛𝑛𝑛 − 2
parameters.

3.5. The Sub-chains

Recall that PH distribution is defined via a CTMC.
Choose a few transient states for analysis. Partition 
the whole original CTMC into two chains. The first 
one contains the chosen transient states and is 
called a sub-chain. The second one contains all the 
remaining states and is called a complimentary 
chain.

A particular sub-chain with 𝑝𝑝𝑝𝑝 states is given by a 
list of unique state indices �𝑙𝑙𝑙𝑙1, … 𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝�. There are the 
remaining 𝑞𝑞𝑞𝑞 = 𝑛𝑛𝑛𝑛 + 2 − 𝑝𝑝𝑝𝑝 states in the 
complimentary chain, where +2 is for the starting 
and for the absorbing states. For the given sub-
chain state index list �𝑙𝑙𝑙𝑙1, … , 𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝�, the generator 
matrix of CTMC can be reordered to the form

�𝑪𝑪𝑪𝑪� 𝑬𝑬𝑬𝑬
𝑿𝑿𝑿𝑿 𝐶𝐶𝐶𝐶

� ,                                     (14)
where the lower right block 𝑪𝑪𝑪𝑪 is a transient 
generator matrix of the sub-chain. The input 𝑬𝑬𝑬𝑬 and 
output 𝑿𝑿𝑿𝑿 matrices are the upper right and lower left 
blocks, respectively. The complimentary chain 
transient generator 𝑪𝑪𝑪𝑪� matrix is not investigated 
further. The structure of the 𝑪𝑪𝑪𝑪, 𝑬𝑬𝑬𝑬 and 𝑿𝑿𝑿𝑿 matrices is 
encoded by the binary element matrices �̇�𝑪𝑪𝑪, �̇�𝑬𝑬𝑬 and 
�̇�𝑿𝑿𝑿

where αi, i = –(αi, i+1 + αi) and α1, 1 ≤ ... ≤ αn, n for i = 1, n.

3.4. Structurally Induced Zero Density of PH 
Distribution at Zero

Proof. From (8) we have that

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠𝑰𝑰𝑰𝑰 − 𝑨𝑨𝑨𝑨)𝑓𝑓𝑓𝑓∗(𝑒𝑒𝑒𝑒) = 𝛼𝛼𝛼𝛼�𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)�𝑎𝑎𝑎𝑎

= [𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 … 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛] �
𝛾𝛾𝛾𝛾1,1(𝑠𝑠𝑠𝑠) … 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,1(𝑠𝑠𝑠𝑠)
⋮ ⋱ ⋮

𝛾𝛾𝛾𝛾1,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠) … 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)
� �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛
�

= 𝛼𝛼𝛼𝛼1�𝛾𝛾𝛾𝛾1,1(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎1 + ⋯+ 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,1(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛� + ⋯

+𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛�𝛾𝛾𝛾𝛾1,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎1 + ⋯+ 𝛾𝛾𝛾𝛾𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛(𝑠𝑠𝑠𝑠)𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛�.

From the condition of Proposition 1 it follows that ad-
juncts γi, i(s) are multiplied by zero. Since these are the 
only adjuncts that are polynomials in s of n – 1  degree, 
the numerator in (8) does not contain term s n – 1, i.e., 
the coefficient cn–1 is equal to zero. Consequently, the 
Laplace transform (and the corresponding PH) is de-
fined by 2n –2 parameters. 

3.5. The Sub-chains
Recall that PH distribution is defined via a CTMC. 
Choose a few transient states for analysis. Partition 
the whole original CTMC into two chains. The first 
one contains the chosen transient states and is called 
a sub-chain. The second one contains all the remain-
ing states and is called a complimentary chain.
A particular sub-chain with p states is given by a 
list of unique state indices (l1, ... lp). There are the re-
maining q = n + 2 – p  states in the complimentary 
chain, where  +2 is for the starting and for the absorb-
ing states. For the given sub-chain state index list  
(l1, ... lp), the generator matrix of CTMC can be reor-
dered to the form

�𝑪𝑪𝑪𝑪� 𝑬𝑬𝑬𝑬
𝑿𝑿𝑿𝑿

� , 
𝑪𝑪𝑪𝑪 (14)

Proposition 2. If the representation �𝛼𝛼, 𝑨𝑨� of the 
structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � is such that there is no immediate 
exit from the states for which the initial probability is 
non-zero, i.e., for all 𝑖𝑖 𝑖 𝑖, 𝑖𝑖 ∶  𝛼𝛼�𝑎𝑎� 𝑖 0, the represented 
PH distribution is defined by 2𝑖𝑖 𝑛 2 parameters at 
most. 

Proposition 2. If the representation �𝛼𝛼, 𝑨𝑨� of the 
structure �𝛼𝛼� , 𝑨𝑨� , 𝑎𝑎� � is such that there is no immediate 
exit from the states for which the initial probability is 
non-zero, i.e., for all 𝑖𝑖 𝑖 𝑖, 𝑖𝑖 ∶  𝛼𝛼�𝑎𝑎� 𝑖 0, the represented 
PH distribution is defined by 2𝑖𝑖 𝑛 2 parameters at 
most. 

Proposition 2. 

where the lower right block 𝑪𝑪 is a transient generator 
matrix of the sub-chain. The input 𝑬𝑬 and output 𝑿𝑿 
matrices are the upper right and lower left blocks, 
respectively. The complimentary chain transient 
generator 𝑪𝑪� matrix is not investigated further. The 
structure of the 𝑪𝑪, 𝑬𝑬 and 𝑿𝑿 matrices is encoded by the 
binary element matrices 𝑪𝑪� , 𝑬𝑬�  and 𝑿𝑿�  
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�̇�𝑪𝑪𝑪 = �
�̇�𝑐𝑐𝑐1,1 … �̇�𝑐𝑐𝑐1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,1 … �̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝

� ,

�̇�𝑬𝑬𝑬 = �
�̇�𝑒𝑒𝑒1,1 … �̇�𝑒𝑒𝑒1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,1 … �̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,𝑝𝑝𝑝𝑝

� ,

�̇�𝑿𝑿𝑿 = �
�̇�𝑥𝑥𝑥1,1 … �̇�𝑥𝑥𝑥1,𝑞𝑞𝑞𝑞
⋮ ⋱ ⋮
�̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,1 … �̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞

� ,

             (15)

where �̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑝𝑝𝑝𝑝 indicate the 
transitions between sub-chain states; �̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 =
1, 𝑞𝑞𝑞𝑞,  j= 1, 𝑝𝑝𝑝𝑝 indicate the transitions from complimentary 
chain to sub-chain; �̇�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑞𝑞𝑞𝑞
indicate the transitions from sub-chain to complimentary
chain.

The following characteristics based on the matrices �̇�𝑬𝑬𝑬
and �̇�𝑿𝑿𝑿 are defined:

• 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 / 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be entered,

• 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be left,

• 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 is the maximal possible rank of 
input/output matrices, found by (16)

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 ,𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟},

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 ,𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟}.                     (16)

Example 2. Let us study a sub-chain, specified by the state 
indices list (2,3), of the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� given in 
Example 1. The index of the source state is 0 and the index 
of the absorbing state is 4. To have a partition of the CTMC 
generator matrix as shown in (15), the states are reordered 
to be in the sequence of (0,4,1,2,3). After state reordering, 
the structure of the resulting generator matrix is

⎣
⎢
⎢
⎢
⎡
0 0 1 0 1
0 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 0 1 0⎦

⎥
⎥
⎥
⎤
.

Consequently, the structure of the sub-chain is

�̇�𝑪𝑪𝑪 = �0 0
1 0�,

and the structures of the input and output matrices are

�̇�𝑬𝑬𝑬 = �
0 1
0 0
0 1

� , �̇�𝑿𝑿𝑿 = �0 1 1
0 0 0�.

Based on the matrices �̇�𝑬𝑬𝑬, �̇�𝑿𝑿𝑿, the following characteristics 

are found

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 2, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 1, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1,
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 2, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1.

The given structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is investigated by 
analyzing the structure of its sub-chains obtained 
from the corresponding CTMC (or time-reversed 
CTMC) structure. Note that the order of states in 
the sub-chain is not important, because the state 
renumbering in CTMC does not affect the PH 
distribution that it represents.

3.6. The PH(2) Case

A two state sub-chain that is characterized by 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 =
1 and 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 can be considered as a PH(2) 
distribution. To determine whether such a sub-
chain is a constrained PH distribution, the statistic 
𝑇𝑇𝑇𝑇, which denotes the number of independent 
structural elements in the sub-chain, is defined as

𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 − 1 + ���̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 .
𝑝𝑝𝑝𝑝

𝑗𝑗𝑗𝑗=1

𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1

               (17)

If 𝑇𝑇𝑇𝑇 = 2, then the sub-chain is a constrained PH(2) 
and no reasonable conclusion can be drawn about 
the original PH structure.

It is known that any PH(2) distribution can be 
transformed into the Coxian representation 
structure [7]. Therefore, if 𝑇𝑇𝑇𝑇 = 3 and the structure 
of sub-chain is not trivially equivalent to the 
Coxian structure, the original PH structure is not 
preferred.

If > 3 , then the sub-chain represents a redundant 
PH(2) distribution and the original PH structure is 
not preferred as well.

3.7. The PH(3) Case

If a three state sub-chain is such that 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1 and 
𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 , it can be considered as a PH(3) 
distribution. If the sub-chain structure is not 
constrained, it is necessary to check if it is of 
canonical form, as given in [10].

If 𝑇𝑇𝑇𝑇 < 5, then the sub-chain is a constrained PH(3) 
and no reasonable conclusion can be drawn about 
the original PH structure.

In the case of 𝑇𝑇𝑇𝑇 = 5, the original PH structure is 
not preferred if it cannot be trivially transformed 
into one of the structures (18) :

��̇�𝛼𝛼𝛼1, �̇�𝑨𝑨𝑨1, �̇�𝑎𝑎𝑎1� = �[1 1 1], �
0 1 0
0 0 1
0 0 0

� , �
0
0
1
�� ,

��̇�𝛼𝛼𝛼2, �̇�𝑨𝑨𝑨2, �̇�𝑎𝑎𝑎2� = �[1 0 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .

    (18)

(15)

where 𝑐𝑐��,� ∈  �0,1� for 𝑖𝑖 𝑖 𝑖𝑖, 𝑖𝑖, 𝑖𝑖 𝑖 1, 𝑖𝑖 indicate the 
transitions between sub-chain states; 𝑒𝑒��,� ∈  �0,1� for 
𝑖𝑖 𝑖 1, 𝑖𝑖,  j𝑖 1, 𝑖𝑖 indicate the transitions from 
complimentary chain to sub-chain; 𝑥𝑥��,� ∈  �0,1� for 𝑖𝑖 𝑖
𝑖𝑖, 𝑖𝑖, 𝑖𝑖 𝑖 1, 𝑖𝑖 indicate the transitions from sub-chain to 
complimentary chain. 

The following characteristics based on the matrices 𝑬𝑬�  
and 𝑿𝑿�  are defined: 

 𝐸𝐸�  / 𝐸𝐸�  is the number of states to/from which 
sub-chain can be entered, 

 𝑋𝑋�  / 𝑋𝑋�  is the number of states to/from which 
sub-chain can be left, 

 𝐸𝐸����  / 𝑋𝑋����  is the maximal possible rank of 
input/output matrices, found by (16) 
 𝐸𝐸���� 𝑖 min�𝐸𝐸�, 𝐸𝐸��,

𝑋𝑋���� 𝑖 min�𝑋𝑋�, 𝑋𝑋��.                     (16) 

 

Example 2. Let us study a sub-chain, specified by the 
state indices list (2,3), of the structure ��� , 𝑨𝑨� , 𝑎𝑎� � given 
in Example 1. The index of the source state is 0 and the 
index of the absorbing state is 4. To have a partition of 
the CTMC generator matrix as shown in (15), the 
states are reordered to be in the sequence of 
(0,4,1,2,3). After state reordering, the structure of the 
resulting generator matrix is 

 

 

⎣0 0 0 1 0⎦Consequently, the structure of the sub-chain is 

𝑪𝑪� 𝑖 �0 0
1 0�, 

and the structures of the input and output matrices are 

𝑬𝑬� 𝑖 �
0 1
0 0
0 1

� , 𝑿𝑿� 𝑖 �0 1 1
0 0 0�. 

 

Based on the matrices 𝑬𝑬� , 𝑿𝑿� , the following 
characteristics are found 

where 𝑐𝑐��,� ∈  �0,1� for 𝑖𝑖 𝑖 𝑖𝑖, 𝑖𝑖, 𝑖𝑖 𝑖 1, 𝑖𝑖 indicate the 
transitions between sub-chain states; 𝑒𝑒��,� ∈  �0,1� for 
𝑖𝑖 𝑖 1, 𝑖𝑖,  j𝑖 1, 𝑖𝑖 indicate the transitions from 
complimentary chain to sub-chain; 𝑥𝑥��,� ∈  �0,1� for 𝑖𝑖 𝑖
𝑖𝑖, 𝑖𝑖, 𝑖𝑖 𝑖 1, 𝑖𝑖 indicate the transitions from sub-chain to 
complimentary chain. 

The following characteristics based on the matrices 𝑬𝑬�  
and 𝑿𝑿�  are defined: 

 𝐸𝐸�  / 𝐸𝐸�  is the number of states to/from which 
sub-chain can be entered, 

 𝑋𝑋�  / 𝑋𝑋�  is the number of states to/from which 
sub-chain can be left, 

 𝐸𝐸����  / 𝑋𝑋����  is the maximal possible rank of 
input/output matrices, found by (16) 
 𝐸𝐸���� 𝑖 min�𝐸𝐸�, 𝐸𝐸��,

𝑋𝑋���� 𝑖 min�𝑋𝑋�, 𝑋𝑋��.                     (16) 

 

Example 2. Let us study a sub-chain, specified by the 
state indices list (2,3), of the structure ��� , 𝑨𝑨� , 𝑎𝑎� � given 
in Example 1. The index of the source state is 0 and the 
index of the absorbing state is 4. To have a partition of 
the CTMC generator matrix as shown in (15), the 
states are reordered to be in the sequence of 
(0,4,1,2,3). After state reordering, the structure of the 
resulting generator matrix is 

 

 

⎣0 0 0 1 0⎦Consequently, the structure of the sub-chain is 

𝑪𝑪� 𝑖 �0 0
1 0�, 

and the structures of the input and output matrices are 

𝑬𝑬� 𝑖 �
0 1
0 0
0 1

� , 𝑿𝑿� 𝑖 �0 1 1
0 0 0�. 

 

Based on the matrices 𝑬𝑬� , 𝑿𝑿� , the following 
characteristics are found 

where 𝑐𝑐��,� ∈  �0,1� for 𝑖𝑖 𝑖 𝑖𝑖, 𝑖𝑖, 𝑖𝑖 𝑖 1, 𝑖𝑖 indicate the 
transitions between sub-chain states; 𝑒𝑒��,� ∈  �0,1� for 
𝑖𝑖 𝑖 1, 𝑖𝑖,  j𝑖 1, 𝑖𝑖 indicate the transitions from 
complimentary chain to sub-chain; 𝑥𝑥��,� ∈  �0,1� for 𝑖𝑖 𝑖
𝑖𝑖, 𝑖𝑖, 𝑖𝑖 𝑖 1, 𝑖𝑖 indicate the transitions from sub-chain to 
complimentary chain. 

The following characteristics based on the matrices 𝑬𝑬�  
and 𝑿𝑿�  are defined: 

 𝐸𝐸�  / 𝐸𝐸�  is the number of states to/from which 
sub-chain can be entered, 

 𝑋𝑋�  / 𝑋𝑋�  is the number of states to/from which 
sub-chain can be left, 

 𝐸𝐸����  / 𝑋𝑋����  is the maximal possible rank of 
input/output matrices, found by (16) 
 𝐸𝐸���� 𝑖 min�𝐸𝐸�, 𝐸𝐸��,

𝑋𝑋���� 𝑖 min�𝑋𝑋�, 𝑋𝑋��.                     (16) 

 

Example 2. Let us study a sub-chain, specified by the 
state indices list (2,3), of the structure ��� , 𝑨𝑨� , 𝑎𝑎� � given 
in Example 1. The index of the source state is 0 and the 
index of the absorbing state is 4. To have a partition of 
the CTMC generator matrix as shown in (15), the 
states are reordered to be in the sequence of 
(0,4,1,2,3). After state reordering, the structure of the 
resulting generator matrix is 

 

 

⎣0 0 0 1 0⎦Consequently, the structure of the sub-chain is 

𝑪𝑪� 𝑖 �0 0
1 0�, 

and the structures of the input and output matrices are 

𝑬𝑬� 𝑖 �
0 1
0 0
0 1

� , 𝑿𝑿� 𝑖 �0 1 1
0 0 0�. 

 

Based on the matrices 𝑬𝑬� , 𝑿𝑿� , the following 
characteristics are found 

 _ Ec / Er is the number of states to/from which sub-
chain can be entered,

 _ Xc / Xr is the number of states to/from which sub-
chain can be left,

 _ Erank / Xrank is the maximal possible rank of input/
output matrices, found by (16)

�̇�𝑪𝑪𝑪 = �
�̇�𝑐𝑐𝑐1,1 … �̇�𝑐𝑐𝑐1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,1 … �̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝

� ,

�̇�𝑬𝑬𝑬 = �
�̇�𝑒𝑒𝑒1,1 … �̇�𝑒𝑒𝑒1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,1 … �̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,𝑝𝑝𝑝𝑝

� ,

�̇�𝑿𝑿𝑿 = �
�̇�𝑥𝑥𝑥1,1 … �̇�𝑥𝑥𝑥1,𝑞𝑞𝑞𝑞
⋮ ⋱ ⋮
�̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,1 … �̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞

� ,

             (15)

where �̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑝𝑝𝑝𝑝 indicate the 
transitions between sub-chain states; �̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 =
1, 𝑞𝑞𝑞𝑞,  j= 1, 𝑝𝑝𝑝𝑝 indicate the transitions from complimentary 
chain to sub-chain; �̇�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑞𝑞𝑞𝑞
indicate the transitions from sub-chain to complimentary
chain.

The following characteristics based on the matrices �̇�𝑬𝑬𝑬
and �̇�𝑿𝑿𝑿 are defined:

• 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 / 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be entered,

• 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be left,

• 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 is the maximal possible rank of 
input/output matrices, found by (16)

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 ,𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟},

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 ,𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟}.                     (16)

Example 2. Let us study a sub-chain, specified by the state 
indices list (2,3), of the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� given in 
Example 1. The index of the source state is 0 and the index 
of the absorbing state is 4. To have a partition of the CTMC 
generator matrix as shown in (15), the states are reordered 
to be in the sequence of (0,4,1,2,3). After state reordering, 
the structure of the resulting generator matrix is

⎣
⎢
⎢
⎢
⎡
0 0 1 0 1
0 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 0 1 0⎦

⎥
⎥
⎥
⎤
.

Consequently, the structure of the sub-chain is

�̇�𝑪𝑪𝑪 = �0 0
1 0�,

and the structures of the input and output matrices are

�̇�𝑬𝑬𝑬 = �
0 1
0 0
0 1

� , �̇�𝑿𝑿𝑿 = �0 1 1
0 0 0�.

Based on the matrices �̇�𝑬𝑬𝑬, �̇�𝑿𝑿𝑿, the following characteristics 

are found

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 2, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 1, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1,
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 2, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1.

The given structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is investigated by 
analyzing the structure of its sub-chains obtained 
from the corresponding CTMC (or time-reversed 
CTMC) structure. Note that the order of states in 
the sub-chain is not important, because the state 
renumbering in CTMC does not affect the PH 
distribution that it represents.

3.6. The PH(2) Case

A two state sub-chain that is characterized by 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 =
1 and 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 can be considered as a PH(2) 
distribution. To determine whether such a sub-
chain is a constrained PH distribution, the statistic 
𝑇𝑇𝑇𝑇, which denotes the number of independent 
structural elements in the sub-chain, is defined as

𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 − 1 + ���̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 .
𝑝𝑝𝑝𝑝

𝑗𝑗𝑗𝑗=1

𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1

               (17)

If 𝑇𝑇𝑇𝑇 = 2, then the sub-chain is a constrained PH(2) 
and no reasonable conclusion can be drawn about 
the original PH structure.

It is known that any PH(2) distribution can be 
transformed into the Coxian representation 
structure [7]. Therefore, if 𝑇𝑇𝑇𝑇 = 3 and the structure 
of sub-chain is not trivially equivalent to the 
Coxian structure, the original PH structure is not 
preferred.

If > 3 , then the sub-chain represents a redundant 
PH(2) distribution and the original PH structure is 
not preferred as well.

3.7. The PH(3) Case

If a three state sub-chain is such that 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1 and 
𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 , it can be considered as a PH(3) 
distribution. If the sub-chain structure is not 
constrained, it is necessary to check if it is of 
canonical form, as given in [10].

If 𝑇𝑇𝑇𝑇 < 5, then the sub-chain is a constrained PH(3) 
and no reasonable conclusion can be drawn about 
the original PH structure.

In the case of 𝑇𝑇𝑇𝑇 = 5, the original PH structure is 
not preferred if it cannot be trivially transformed 
into one of the structures (18) :

��̇�𝛼𝛼𝛼1, �̇�𝑨𝑨𝑨1, �̇�𝑎𝑎𝑎1� = �[1 1 1], �
0 1 0
0 0 1
0 0 0

� , �
0
0
1
�� ,

��̇�𝛼𝛼𝛼2, �̇�𝑨𝑨𝑨2, �̇�𝑎𝑎𝑎2� = �[1 0 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .

    (18)

(16)

Example 2. 

�̇�𝑪𝑪𝑪 = �
�̇�𝑐𝑐𝑐1,1 … �̇�𝑐𝑐𝑐1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,1 … �̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝

� ,

�̇�𝑬𝑬𝑬 = �
�̇�𝑒𝑒𝑒1,1 … �̇�𝑒𝑒𝑒1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,1 … �̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,𝑝𝑝𝑝𝑝

� ,

�̇�𝑿𝑿𝑿 = �
�̇�𝑥𝑥𝑥1,1 … �̇�𝑥𝑥𝑥1,𝑞𝑞𝑞𝑞
⋮ ⋱ ⋮
�̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,1 … �̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞

� ,

             (15)

where �̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑝𝑝𝑝𝑝 indicate the 
transitions between sub-chain states; �̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 =
1, 𝑞𝑞𝑞𝑞,  j= 1, 𝑝𝑝𝑝𝑝 indicate the transitions from complimentary 
chain to sub-chain; �̇�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑞𝑞𝑞𝑞
indicate the transitions from sub-chain to complimentary
chain.

The following characteristics based on the matrices �̇�𝑬𝑬𝑬
and �̇�𝑿𝑿𝑿 are defined:

• 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 / 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be entered,

• 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be left,

• 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 is the maximal possible rank of 
input/output matrices, found by (16)

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 ,𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟},

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 ,𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟}.                     (16)

Example 2. Let us study a sub-chain, specified by the state 
indices list (2,3), of the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� given in 
Example 1. The index of the source state is 0 and the index 
of the absorbing state is 4. To have a partition of the CTMC 
generator matrix as shown in (15), the states are reordered 
to be in the sequence of (0,4,1,2,3). After state reordering, 
the structure of the resulting generator matrix is

⎣
⎢
⎢
⎢
⎡
0 0 1 0 1
0 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 0 1 0⎦

⎥
⎥
⎥
⎤
.

Consequently, the structure of the sub-chain is

�̇�𝑪𝑪𝑪 = �0 0
1 0�,

and the structures of the input and output matrices are

�̇�𝑬𝑬𝑬 = �
0 1
0 0
0 1

� , �̇�𝑿𝑿𝑿 = �0 1 1
0 0 0�.

Based on the matrices �̇�𝑬𝑬𝑬, �̇�𝑿𝑿𝑿, the following characteristics 

are found

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 2, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 1, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1,
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 2, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1.

The given structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is investigated by 
analyzing the structure of its sub-chains obtained 
from the corresponding CTMC (or time-reversed 
CTMC) structure. Note that the order of states in 
the sub-chain is not important, because the state 
renumbering in CTMC does not affect the PH 
distribution that it represents.

3.6. The PH(2) Case

A two state sub-chain that is characterized by 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 =
1 and 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 can be considered as a PH(2) 
distribution. To determine whether such a sub-
chain is a constrained PH distribution, the statistic 
𝑇𝑇𝑇𝑇, which denotes the number of independent 
structural elements in the sub-chain, is defined as

𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 − 1 + ���̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 .
𝑝𝑝𝑝𝑝

𝑗𝑗𝑗𝑗=1

𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1

               (17)

If 𝑇𝑇𝑇𝑇 = 2, then the sub-chain is a constrained PH(2) 
and no reasonable conclusion can be drawn about 
the original PH structure.

It is known that any PH(2) distribution can be 
transformed into the Coxian representation 
structure [7]. Therefore, if 𝑇𝑇𝑇𝑇 = 3 and the structure 
of sub-chain is not trivially equivalent to the 
Coxian structure, the original PH structure is not 
preferred.

If > 3 , then the sub-chain represents a redundant 
PH(2) distribution and the original PH structure is 
not preferred as well.

3.7. The PH(3) Case

If a three state sub-chain is such that 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1 and 
𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 , it can be considered as a PH(3) 
distribution. If the sub-chain structure is not 
constrained, it is necessary to check if it is of 
canonical form, as given in [10].

If 𝑇𝑇𝑇𝑇 < 5, then the sub-chain is a constrained PH(3) 
and no reasonable conclusion can be drawn about 
the original PH structure.

In the case of 𝑇𝑇𝑇𝑇 = 5, the original PH structure is 
not preferred if it cannot be trivially transformed 
into one of the structures (18) :

��̇�𝛼𝛼𝛼1, �̇�𝑨𝑨𝑨1, �̇�𝑎𝑎𝑎1� = �[1 1 1], �
0 1 0
0 0 1
0 0 0

� , �
0
0
1
�� ,

��̇�𝛼𝛼𝛼2, �̇�𝑨𝑨𝑨2, �̇�𝑎𝑎𝑎2� = �[1 0 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .

    (18)

Consequently, the structure of the sub-chain is

�̇�𝑪𝑪𝑪 = �
�̇�𝑐𝑐𝑐1,1 … �̇�𝑐𝑐𝑐1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,1 … �̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝

� ,

�̇�𝑬𝑬𝑬 = �
�̇�𝑒𝑒𝑒1,1 … �̇�𝑒𝑒𝑒1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,1 … �̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,𝑝𝑝𝑝𝑝

� ,

�̇�𝑿𝑿𝑿 = �
�̇�𝑥𝑥𝑥1,1 … �̇�𝑥𝑥𝑥1,𝑞𝑞𝑞𝑞
⋮ ⋱ ⋮
�̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,1 … �̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞

� ,

             (15)

where �̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑝𝑝𝑝𝑝 indicate the 
transitions between sub-chain states; �̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 =
1, 𝑞𝑞𝑞𝑞,  j= 1, 𝑝𝑝𝑝𝑝 indicate the transitions from complimentary 
chain to sub-chain; �̇�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑞𝑞𝑞𝑞
indicate the transitions from sub-chain to complimentary
chain.

The following characteristics based on the matrices �̇�𝑬𝑬𝑬
and �̇�𝑿𝑿𝑿 are defined:

• 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 / 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be entered,

• 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be left,

• 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 is the maximal possible rank of 
input/output matrices, found by (16)

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 ,𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟},

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 ,𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟}.                     (16)

Example 2. Let us study a sub-chain, specified by the state 
indices list (2,3), of the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� given in 
Example 1. The index of the source state is 0 and the index 
of the absorbing state is 4. To have a partition of the CTMC 
generator matrix as shown in (15), the states are reordered 
to be in the sequence of (0,4,1,2,3). After state reordering, 
the structure of the resulting generator matrix is

⎣
⎢
⎢
⎢
⎡
0 0 1 0 1
0 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 0 1 0⎦

⎥
⎥
⎥
⎤
.

Consequently, the structure of the sub-chain is

�̇�𝑪𝑪𝑪 = �0 0
1 0�,

and the structures of the input and output matrices are

�̇�𝑬𝑬𝑬 = �
0 1
0 0
0 1

� , �̇�𝑿𝑿𝑿 = �0 1 1
0 0 0�.

Based on the matrices �̇�𝑬𝑬𝑬, �̇�𝑿𝑿𝑿, the following characteristics 

are found

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 2, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 1, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1,
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 2, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1.

The given structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is investigated by 
analyzing the structure of its sub-chains obtained 
from the corresponding CTMC (or time-reversed 
CTMC) structure. Note that the order of states in 
the sub-chain is not important, because the state 
renumbering in CTMC does not affect the PH 
distribution that it represents.

3.6. The PH(2) Case

A two state sub-chain that is characterized by 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 =
1 and 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 can be considered as a PH(2) 
distribution. To determine whether such a sub-
chain is a constrained PH distribution, the statistic 
𝑇𝑇𝑇𝑇, which denotes the number of independent 
structural elements in the sub-chain, is defined as

𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 − 1 + ���̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 .
𝑝𝑝𝑝𝑝

𝑗𝑗𝑗𝑗=1

𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1

               (17)

If 𝑇𝑇𝑇𝑇 = 2, then the sub-chain is a constrained PH(2) 
and no reasonable conclusion can be drawn about 
the original PH structure.

It is known that any PH(2) distribution can be 
transformed into the Coxian representation 
structure [7]. Therefore, if 𝑇𝑇𝑇𝑇 = 3 and the structure 
of sub-chain is not trivially equivalent to the 
Coxian structure, the original PH structure is not 
preferred.

If > 3 , then the sub-chain represents a redundant 
PH(2) distribution and the original PH structure is 
not preferred as well.

3.7. The PH(3) Case

If a three state sub-chain is such that 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1 and 
𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 , it can be considered as a PH(3) 
distribution. If the sub-chain structure is not 
constrained, it is necessary to check if it is of 
canonical form, as given in [10].

If 𝑇𝑇𝑇𝑇 < 5, then the sub-chain is a constrained PH(3) 
and no reasonable conclusion can be drawn about 
the original PH structure.

In the case of 𝑇𝑇𝑇𝑇 = 5, the original PH structure is 
not preferred if it cannot be trivially transformed 
into one of the structures (18) :

��̇�𝛼𝛼𝛼1, �̇�𝑨𝑨𝑨1, �̇�𝑎𝑎𝑎1� = �[1 1 1], �
0 1 0
0 0 1
0 0 0

� , �
0
0
1
�� ,

��̇�𝛼𝛼𝛼2, �̇�𝑨𝑨𝑨2, �̇�𝑎𝑎𝑎2� = �[1 0 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .

    (18)

and the structures of the input and output matrices are

�̇�𝑪𝑪𝑪 = �
�̇�𝑐𝑐𝑐1,1 … �̇�𝑐𝑐𝑐1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,1 … �̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝

� ,

�̇�𝑬𝑬𝑬 = �
�̇�𝑒𝑒𝑒1,1 … �̇�𝑒𝑒𝑒1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,1 … �̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,𝑝𝑝𝑝𝑝

� ,

�̇�𝑿𝑿𝑿 = �
�̇�𝑥𝑥𝑥1,1 … �̇�𝑥𝑥𝑥1,𝑞𝑞𝑞𝑞
⋮ ⋱ ⋮
�̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,1 … �̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞

� ,

             (15)

where �̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑝𝑝𝑝𝑝 indicate the 
transitions between sub-chain states; �̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 =
1, 𝑞𝑞𝑞𝑞,  j= 1, 𝑝𝑝𝑝𝑝 indicate the transitions from complimentary 
chain to sub-chain; �̇�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑞𝑞𝑞𝑞
indicate the transitions from sub-chain to complimentary
chain.

The following characteristics based on the matrices �̇�𝑬𝑬𝑬
and �̇�𝑿𝑿𝑿 are defined:

• 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 / 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be entered,

• 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be left,

• 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 is the maximal possible rank of 
input/output matrices, found by (16)

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 ,𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟},

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 ,𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟}.                     (16)

Example 2. Let us study a sub-chain, specified by the state 
indices list (2,3), of the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� given in 
Example 1. The index of the source state is 0 and the index 
of the absorbing state is 4. To have a partition of the CTMC 
generator matrix as shown in (15), the states are reordered 
to be in the sequence of (0,4,1,2,3). After state reordering, 
the structure of the resulting generator matrix is

⎣
⎢
⎢
⎢
⎡
0 0 1 0 1
0 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 0 1 0⎦

⎥
⎥
⎥
⎤
.

Consequently, the structure of the sub-chain is

�̇�𝑪𝑪𝑪 = �0 0
1 0�,

and the structures of the input and output matrices are

�̇�𝑬𝑬𝑬 = �
0 1
0 0
0 1

� , �̇�𝑿𝑿𝑿 = �0 1 1
0 0 0�.

Based on the matrices �̇�𝑬𝑬𝑬, �̇�𝑿𝑿𝑿, the following characteristics 

are found

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 2, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 1, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1,
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 2, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1.

The given structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is investigated by 
analyzing the structure of its sub-chains obtained 
from the corresponding CTMC (or time-reversed 
CTMC) structure. Note that the order of states in 
the sub-chain is not important, because the state 
renumbering in CTMC does not affect the PH 
distribution that it represents.

3.6. The PH(2) Case

A two state sub-chain that is characterized by 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 =
1 and 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 can be considered as a PH(2) 
distribution. To determine whether such a sub-
chain is a constrained PH distribution, the statistic 
𝑇𝑇𝑇𝑇, which denotes the number of independent 
structural elements in the sub-chain, is defined as

𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 − 1 + ���̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 .
𝑝𝑝𝑝𝑝

𝑗𝑗𝑗𝑗=1

𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1

               (17)

If 𝑇𝑇𝑇𝑇 = 2, then the sub-chain is a constrained PH(2) 
and no reasonable conclusion can be drawn about 
the original PH structure.

It is known that any PH(2) distribution can be 
transformed into the Coxian representation 
structure [7]. Therefore, if 𝑇𝑇𝑇𝑇 = 3 and the structure 
of sub-chain is not trivially equivalent to the 
Coxian structure, the original PH structure is not 
preferred.

If > 3 , then the sub-chain represents a redundant 
PH(2) distribution and the original PH structure is 
not preferred as well.

3.7. The PH(3) Case

If a three state sub-chain is such that 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1 and 
𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 , it can be considered as a PH(3) 
distribution. If the sub-chain structure is not 
constrained, it is necessary to check if it is of 
canonical form, as given in [10].

If 𝑇𝑇𝑇𝑇 < 5, then the sub-chain is a constrained PH(3) 
and no reasonable conclusion can be drawn about 
the original PH structure.

In the case of 𝑇𝑇𝑇𝑇 = 5, the original PH structure is 
not preferred if it cannot be trivially transformed 
into one of the structures (18) :

��̇�𝛼𝛼𝛼1, �̇�𝑨𝑨𝑨1, �̇�𝑎𝑎𝑎1� = �[1 1 1], �
0 1 0
0 0 1
0 0 0

� , �
0
0
1
�� ,

��̇�𝛼𝛼𝛼2, �̇�𝑨𝑨𝑨2, �̇�𝑎𝑎𝑎2� = �[1 0 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .

    (18)
  

�̇�𝑪𝑪𝑪 = �
�̇�𝑐𝑐𝑐1,1 … �̇�𝑐𝑐𝑐1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,1 … �̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝

� ,

�̇�𝑬𝑬𝑬 = �
�̇�𝑒𝑒𝑒1,1 … �̇�𝑒𝑒𝑒1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,1 … �̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,𝑝𝑝𝑝𝑝

� ,

�̇�𝑿𝑿𝑿 = �
�̇�𝑥𝑥𝑥1,1 … �̇�𝑥𝑥𝑥1,𝑞𝑞𝑞𝑞
⋮ ⋱ ⋮
�̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,1 … �̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞

� ,

             (15) 

 
where �̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑝𝑝𝑝𝑝 indicate the 
transitions between sub-chain states; �̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 =
1, 𝑞𝑞𝑞𝑞,  j= 1, 𝑝𝑝𝑝𝑝 indicate the transitions from complimentary 
chain to sub-chain; �̇�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑞𝑞𝑞𝑞 
indicate the transitions from sub-chain to complimentary 
chain. 

The following characteristics based on the matrices �̇�𝑬𝑬𝑬 
and �̇�𝑿𝑿𝑿 are defined: 

• 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 / 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟  is the number of states to/from which 
sub-chain can be entered, 

• 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be left, 

• 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 is the maximal possible rank of 
input/output matrices, found by (16) 
 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 ,𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟},

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 ,𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟}.                     (16) 

Example 2. Let us study a sub-chain, specified by the state 
indices list (2,3), of the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� given in 
Example 1. The index of the source state is 0 and the index 
of the absorbing state is 4. To have a partition of the CTMC 
generator matrix as shown in (15), the states are reordered 
to be in the sequence of (0,4,1,2,3). After state reordering, 
the structure of the resulting generator matrix is 

⎣
⎢
⎢
⎢
⎡
0 0 1 0 1
0 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 0 1 0⎦

⎥
⎥
⎥
⎤
. 

Consequently, the structure of the sub-chain is 

�̇�𝑪𝑪𝑪 = �0 0
1 0�, 

and the structures of the input and output matrices are 

�̇�𝑬𝑬𝑬 = �
0 1
0 0
0 1

� , �̇�𝑿𝑿𝑿 = �0 1 1
0 0 0�. 

Based on the matrices �̇�𝑬𝑬𝑬, �̇�𝑿𝑿𝑿, the following characteristics 

are found 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 2, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 1, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1,
𝑟𝑟𝑟𝑟 = 1, 𝑐𝑐𝑐𝑐 = 2, 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1. 

The given structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is investigated by 
analyzing the structure of its sub-chains obtained 
from the corresponding CTMC (or time-reversed 
CTMC) structure. Note that the order of states in 
the sub-chain is not important, because the state 
renumbering in CTMC does not affect the PH 
distribution that it represents. 
 
3.6. The PH(2) Case 

A two state sub-chain that is characterized by 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 =
1 and 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 can be considered as a PH(2) 
distribution. To determine whether such a sub-
chain is a constrained PH distribution, the statistic 
𝑇𝑇𝑇𝑇, which denotes the number of independent 
structural elements in the sub-chain, is defined as  

𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 − 1 + ���̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 .
𝑝𝑝𝑝𝑝

𝑗𝑗𝑗𝑗=1

𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1

               (17) 

If  𝑇𝑇𝑇𝑇 = 2, then the sub-chain is a constrained PH(2) 
and no reasonable conclusion can be drawn about 
the original PH structure. 

It is known that any PH(2) distribution can be 
transformed into the Coxian representation 
structure [7]. Therefore, if 𝑇𝑇𝑇𝑇 = 3 and the structure 
of sub-chain is not trivially equivalent to the 
Coxian structure, the original PH structure is not 
preferred. 

If > 3 , then the sub-chain represents a redundant 
PH(2) distribution and the original PH structure is 
not preferred as well. 
 
3.7. The PH(3) Case 

If a three state sub-chain is such that 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1 and 
𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 , it can be considered as a PH(3) 
distribution. If the sub-chain structure is not 
constrained, it is necessary to check if it is of 
canonical form, as given in [10]. 

If 𝑇𝑇𝑇𝑇 < 5, then the sub-chain is a constrained PH(3) 
and no reasonable conclusion can be drawn about 
the original PH structure. 

In the case of 𝑇𝑇𝑇𝑇 = 5, the original PH structure is 
not preferred if it cannot be trivially transformed 
into one of the structures (18) : 

��̇�𝛼𝛼𝛼1, �̇�𝑨𝑨𝑨1, �̇�𝑎𝑎𝑎1� = �[1 1 1], �
0 1 0
0 0 1
0 0 0

� , �
0
0
1
�� ,

��̇�𝛼𝛼𝛼2, �̇�𝑨𝑨𝑨2, �̇�𝑎𝑎𝑎2� = �[1 0 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .

    (18) 

𝑋𝑋𝑋𝑋 𝑋𝑋𝑋𝑋 𝑋𝑋𝑋𝑋

The given structure ��� , 𝑨𝑨� , 𝑎𝑎� � is investigated by 
analyzing the structure of its sub-chains obtained 
from the corresponding CTMC (or time-reversed 
CTMC) structure. Note that the order of states in the 
sub-chain is not important, because the state 
renumbering in CTMC does not affect the PH 
distribution that it represents. 

3.6. The PH(2) Case
A two state sub-chain that is characterized by Er = 1 
and Xr = 1 can be considered as a PH(2) distribution. 
To determine whether such a sub-chain is a con-
strained PH distribution, the statistic T, which de-
notes the number of independent structural elements 
in the sub-chain, is defined as 

  

�̇�𝑪𝑪𝑪 = �
�̇�𝑐𝑐𝑐1,1 … �̇�𝑐𝑐𝑐1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,1 … �̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝

� ,

�̇�𝑬𝑬𝑬 = �
�̇�𝑒𝑒𝑒1,1 … �̇�𝑒𝑒𝑒1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,1 … �̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,𝑝𝑝𝑝𝑝

� ,

�̇�𝑿𝑿𝑿 = �
�̇�𝑥𝑥𝑥1,1 … �̇�𝑥𝑥𝑥1,𝑞𝑞𝑞𝑞
⋮ ⋱ ⋮
�̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,1 … �̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞

� ,

             (15) 

 
where �̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑝𝑝𝑝𝑝 indicate the 
transitions between sub-chain states; �̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 =
1, 𝑞𝑞𝑞𝑞,  j= 1, 𝑝𝑝𝑝𝑝 indicate the transitions from complimentary 
chain to sub-chain; �̇�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑞𝑞𝑞𝑞 
indicate the transitions from sub-chain to complimentary 
chain. 

The following characteristics based on the matrices �̇�𝑬𝑬𝑬 
and �̇�𝑿𝑿𝑿 are defined: 

• 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 / 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟  is the number of states to/from which 
sub-chain can be entered, 

• 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be left, 

• 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 is the maximal possible rank of 
input/output matrices, found by (16) 
 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 ,𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟},

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 ,𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟}.                     (16) 

Example 2. Let us study a sub-chain, specified by the state 
indices list (2,3), of the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� given in 
Example 1. The index of the source state is 0 and the index 
of the absorbing state is 4. To have a partition of the CTMC 
generator matrix as shown in (15), the states are reordered 
to be in the sequence of (0,4,1,2,3). After state reordering, 
the structure of the resulting generator matrix is 

⎣
⎢
⎢
⎢
⎡
0 0 1 0 1
0 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 0 1 0⎦

⎥
⎥
⎥
⎤
. 

Consequently, the structure of the sub-chain is 

�̇�𝑪𝑪𝑪 = �0 0
1 0�, 

and the structures of the input and output matrices are 

�̇�𝑬𝑬𝑬 = �
0 1
0 0
0 1

� , �̇�𝑿𝑿𝑿 = �0 1 1
0 0 0�. 

Based on the matrices �̇�𝑬𝑬𝑬, �̇�𝑿𝑿𝑿, the following characteristics 

are found 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 2, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 1, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1,
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 2, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1. 

The given structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is investigated by 
analyzing the structure of its sub-chains obtained 
from the corresponding CTMC (or time-reversed 
CTMC) structure. Note that the order of states in 
the sub-chain is not important, because the state 
renumbering in CTMC does not affect the PH 
distribution that it represents. 
 
3.6. The PH(2) Case 

A two state sub-chain that is characterized by 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 =
1 and 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 can be considered as a PH(2) 
distribution. To determine whether such a sub-
chain is a constrained PH distribution, the statistic 
𝑇𝑇𝑇𝑇, which denotes the number of independent 
structural elements in the sub-chain, is defined as  

𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 − 1 + ���̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 .
𝑝𝑝𝑝𝑝

𝑗𝑗𝑗𝑗=1

𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1

               (17) 

If  𝑇𝑇𝑇𝑇 = 2, then the sub-chain is a constrained PH(2) 
and no reasonable conclusion can be drawn about 
the original PH structure. 

It is known that any PH(2) distribution can be 
transformed into the Coxian representation 
structure [7]. Therefore, if 𝑇𝑇𝑇𝑇 = 3 and the structure 
of sub-chain is not trivially equivalent to the 
Coxian structure, the original PH structure is not 
preferred. 

If > 3 , then the sub-chain represents a redundant 
PH(2) distribution and the original PH structure is 
not preferred as well. 
 
3.7. The PH(3) Case 

If a three state sub-chain is such that 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1 and 
𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 , it can be considered as a PH(3) 
distribution. If the sub-chain structure is not 
constrained, it is necessary to check if it is of 
canonical form, as given in [10]. 

If 𝑇𝑇𝑇𝑇 < 5, then the sub-chain is a constrained PH(3) 
and no reasonable conclusion can be drawn about 
the original PH structure. 

In the case of 𝑇𝑇𝑇𝑇 = 5, the original PH structure is 
not preferred if it cannot be trivially transformed 
into one of the structures (18) : 

��̇�𝛼𝛼𝛼1, �̇�𝑨𝑨𝑨1, �̇�𝑎𝑎𝑎1� = �[1 1 1], �
0 1 0
0 0 1
0 0 0

� , �
0
0
1
�� ,

��̇�𝛼𝛼𝛼2, �̇�𝑨𝑨𝑨2, �̇�𝑎𝑎𝑎2� = �[1 0 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .

    (18) 

(17)

If T= 2, then the sub-chain is a constrained PH(2) 
and no reasonable conclusion can be drawn about the 
original PH structure.
It is known that any PH(2) distribution can be trans-
formed into the Coxian representation structure [7]. 
Therefore, if T= 3 and the structure of sub-chain is 
not trivially equivalent to the Coxian structure, the 
original PH structure is not preferred.
If > 3, then the sub-chain represents a redundant 
PH(2) distribution and the original PH structure is 
not preferred as well.

3.7. The PH(3) Case
If a three state sub-chain is such that Er = 1 and Xr = 
1, it can be considered as a PH(3) distribution. If the 
sub-chain structure is not constrained, it is necessary 
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to check if it is of canonical form, as given in [10].
If T < 5, then the sub-chain is a constrained PH(3) 
and no reasonable conclusion can be drawn about the 
original PH structure.
In the case of T = 5, the original PH structure is not 
preferred if it cannot be trivially transformed into one 
of the structures (18):

  

�̇�𝑪𝑪𝑪 = �
�̇�𝑐𝑐𝑐1,1 … �̇�𝑐𝑐𝑐1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,1 … �̇�𝑐𝑐𝑐𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝

� ,

�̇�𝑬𝑬𝑬 = �
�̇�𝑒𝑒𝑒1,1 … �̇�𝑒𝑒𝑒1,𝑝𝑝𝑝𝑝
⋮ ⋱ ⋮
�̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,1 … �̇�𝑒𝑒𝑒𝑞𝑞𝑞𝑞,𝑝𝑝𝑝𝑝

� ,

�̇�𝑿𝑿𝑿 = �
�̇�𝑥𝑥𝑥1,1 … �̇�𝑥𝑥𝑥1,𝑞𝑞𝑞𝑞
⋮ ⋱ ⋮
�̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,1 … �̇�𝑥𝑥𝑥𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞

� ,

             (15) 

 
where �̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑝𝑝𝑝𝑝 indicate the 
transitions between sub-chain states; �̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 =
1, 𝑞𝑞𝑞𝑞,  j= 1, 𝑝𝑝𝑝𝑝 indicate the transitions from complimentary 
chain to sub-chain; �̇�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∈  {0,1} for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 𝑞𝑞𝑞𝑞 
indicate the transitions from sub-chain to complimentary 
chain. 

The following characteristics based on the matrices �̇�𝑬𝑬𝑬 
and �̇�𝑿𝑿𝑿 are defined: 

• 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 / 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟  is the number of states to/from which 
sub-chain can be entered, 

• 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 is the number of states to/from which 
sub-chain can be left, 

• 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 / 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 is the maximal possible rank of 
input/output matrices, found by (16) 
 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 ,𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟},

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = min{𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 ,𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟}.                     (16) 

Example 2. Let us study a sub-chain, specified by the state 
indices list (2,3), of the structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� given in 
Example 1. The index of the source state is 0 and the index 
of the absorbing state is 4. To have a partition of the CTMC 
generator matrix as shown in (15), the states are reordered 
to be in the sequence of (0,4,1,2,3). After state reordering, 
the structure of the resulting generator matrix is 

⎣
⎢
⎢
⎢
⎡
0 0 1 0 1
0 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 0 1 0⎦

⎥
⎥
⎥
⎤
. 

Consequently, the structure of the sub-chain is 

�̇�𝑪𝑪𝑪 = �0 0
1 0�, 

and the structures of the input and output matrices are 

�̇�𝑬𝑬𝑬 = �
0 1
0 0
0 1

� , �̇�𝑿𝑿𝑿 = �0 1 1
0 0 0�. 

Based on the matrices �̇�𝑬𝑬𝑬, �̇�𝑿𝑿𝑿, the following characteristics 

are found 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 2, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 1, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1,
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1, 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 2, 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 = 1. 

The given structure ��̇�𝛼𝛼𝛼, �̇�𝑨𝑨𝑨, �̇�𝑎𝑎𝑎� is investigated by 
analyzing the structure of its sub-chains obtained 
from the corresponding CTMC (or time-reversed 
CTMC) structure. Note that the order of states in 
the sub-chain is not important, because the state 
renumbering in CTMC does not affect the PH 
distribution that it represents. 
 
3.6. The PH(2) Case 

A two state sub-chain that is characterized by 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 =
1 and 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 can be considered as a PH(2) 
distribution. To determine whether such a sub-
chain is a constrained PH distribution, the statistic 
𝑇𝑇𝑇𝑇, which denotes the number of independent 
structural elements in the sub-chain, is defined as  

𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 − 1 + ���̇�𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑋𝑋𝑋𝑋𝑐𝑐𝑐𝑐 .
𝑝𝑝𝑝𝑝

𝑗𝑗𝑗𝑗=1

𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1

               (17) 

If  𝑇𝑇𝑇𝑇 = 2, then the sub-chain is a constrained PH(2) 
and no reasonable conclusion can be drawn about 
the original PH structure. 

It is known that any PH(2) distribution can be 
transformed into the Coxian representation 
structure [7]. Therefore, if 𝑇𝑇𝑇𝑇 = 3 and the structure 
of sub-chain is not trivially equivalent to the 
Coxian structure, the original PH structure is not 
preferred. 

If > 3 , then the sub-chain represents a redundant 
PH(2) distribution and the original PH structure is 
not preferred as well. 
 
3.7. The PH(3) Case 

If a three state sub-chain is such that 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1 and 
𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 1 , it can be considered as a PH(3) 
distribution. If the sub-chain structure is not 
constrained, it is necessary to check if it is of 
canonical form, as given in [10]. 

If 𝑇𝑇𝑇𝑇 < 5, then the sub-chain is a constrained PH(3) 
and no reasonable conclusion can be drawn about 
the original PH structure. 

In the case of 𝑇𝑇𝑇𝑇 = 5, the original PH structure is 
not preferred if it cannot be trivially transformed 
into one of the structures (18) : 

��̇�𝛼𝛼𝛼1, �̇�𝑨𝑨𝑨1, �̇�𝑎𝑎𝑎1� = �[1 1 1], �
0 1 0
0 0 1
0 0 0

� , �
0
0
1
�� ,

��̇�𝛼𝛼𝛼2, �̇�𝑨𝑨𝑨2, �̇�𝑎𝑎𝑎2� = �[1 0 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .

    (18) (18)

Similarly, if T = 6 and the structure of the sub-chain is 
not trivially equivalent to structure (19), the original 
PH structure is not preferred:

Similarly, if 𝑇𝑇𝑇𝑇 = 6 and the structure of the sub-chain is 
not trivially equivalent to structure (19), the original PH 
structure is not preferred:

��̇�𝛼𝛼𝛼3, �̇�𝑨𝑨𝑨3, �̇�𝑎𝑎𝑎3� = �[1 1 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .   (19)

Finally, in the case of 𝑇𝑇𝑇𝑇 > 6 the whole original structure 
is not preferred, since such PH(3) distribution is 
redundant.

3.8. The NMAP(2) Case

A two state sub-chain can be considered as a NMAP(2) 
process if it can be entered from one complimentary 
chain state (𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1) and exited to two complimentary 
chain states (𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 2).

It is necessary to check if NMAP(2) structure is not 
constrained, to do that the statistic 𝑍𝑍𝑍𝑍 is defined as

𝑍𝑍𝑍𝑍 = 𝑧𝑧𝑧𝑧𝐸𝐸𝐸𝐸 + 𝑧𝑧𝑧𝑧𝑋𝑋𝑋𝑋 + 𝑧𝑧𝑧𝑧𝐶𝐶𝐶𝐶 ,                                 (20)
where 𝑧𝑧𝑧𝑧𝐸𝐸𝐸𝐸 / 𝑧𝑧𝑧𝑧𝑋𝑋𝑋𝑋 is the number of zeros in the matrix �̇�𝑬𝑬𝑬 / �̇�𝑿𝑿𝑿
excluding rows/columns with only zero elements and 𝑧𝑧𝑧𝑧𝐶𝐶𝐶𝐶
is the number of zeros in the matrix �̇�𝑪𝑪𝑪 excluding diagonal 
elements.

If 𝑍𝑍𝑍𝑍 > 2, such a sub-chain is a constrained NMAP(2) 
process and the original PH structure has to be left as 
possibly contributing.

Otherwise, if 𝑍𝑍𝑍𝑍 ≤ 2 and sub-chain cannot be trivially 
transformed into one of the two NMAP(2) canonical 
form structures (11), (12), then the original PH structure 
is not preferred.

4. Numerical Experiments
4.1. The Generated PH(4) Structures

The algorithm presented in Section 3 is used to generate 
PH(4) representation structures. We are interested only 
in the structures which have 𝑚𝑚𝑚𝑚 = 7,8, … ,19 independent 
structural elements. The structures with 𝑚𝑚𝑚𝑚 < 7 are not 
significant, because these stand for PH distributions 
parameterized with less than 7 parameters (i.e., less than
2𝑛𝑛𝑛𝑛 − 1 parameters). The number of generated structures 
for 𝑚𝑚𝑚𝑚 = 7,8, … ,19 is given in Table 1.

The generated PH(4) structures, in total 8340, are used 
to randomly generate the initial solutions for the EM 
method.

Table 1. Number of generated structures (𝑀𝑀𝑀𝑀) for 
very number of independent structural elements (𝑚𝑚𝑚𝑚).

𝑚𝑚𝑚𝑚 7 8 9 10 11 12

𝑀𝑀𝑀𝑀 101 441 1136 1752 1885 1433

𝑚𝑚𝑚𝑚 13 14 15 16 17 18 19

𝑀𝑀𝑀𝑀 829 362 132 37 10 2 1

Table 2. Target distributions and their 
density functions.

Distribution Density function

Weibull
�
𝑘𝑘𝑘𝑘
λ
�
𝑡𝑡𝑡𝑡
λ
�
𝑟𝑟𝑟𝑟−1

𝑒𝑒𝑒𝑒−�
𝑡𝑡𝑡𝑡
λ�
𝑘𝑘𝑘𝑘

, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ≥ 0,

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒.
Log-normal

�
1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡√2𝜋𝜋𝜋𝜋
𝑒𝑒𝑒𝑒
−(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)−𝜇𝜇𝜇𝜇)2

2𝜎𝜎𝜎𝜎2 , 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ≥ 0

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒.
Uniform

�
1

𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎
,  if  𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡𝑡𝑡 ≤ 𝑏𝑏𝑏𝑏

0,       otherwise.
Shifted 
exponential

⎩
⎪
⎨

⎪
⎧

1
2
𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡 +

1
2
𝑒𝑒𝑒𝑒−(𝑡𝑡𝑡𝑡−1), 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ≥ 1,

1
2
𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡 , 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 0 ≤ 𝑡𝑡𝑡𝑡 < 1,

0,       otherwise.
Matrix 
exponential ��1 +

1
4𝜋𝜋𝜋𝜋2� �1 − 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋𝑡𝑡𝑡𝑡)�𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡 , 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ≥ 0,

0,       otherwise.

Table 3. Parameters of target distributions.

Distribution Code Parameters

Weibull W1 λ = 1, k = 1.5

W2 λ = 1, k = 0.5

Log-normal 
L1 𝜇𝜇𝜇𝜇 = −1.8,𝑡𝑡𝑡𝑡 = 1.8
L2 𝜇𝜇𝜇𝜇 = −0.32,𝑡𝑡𝑡𝑡 = 0.8
L3 𝜇𝜇𝜇𝜇 = −0.02,𝑡𝑡𝑡𝑡 = 0.2

Uniform U1 𝑎𝑎𝑎𝑎 = 0, 𝑏𝑏𝑏𝑏 = 1
U2 𝑎𝑎𝑎𝑎 = 1, 𝑏𝑏𝑏𝑏 = 2

Shifted 
exponential

SE

Matrix 
exponential

ME

Table 4. Target distribution discretization.

Code Distribution 
truncation 
time, 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒

Number of 
observations, 
𝑁𝑁𝑁𝑁

(19)

Finally, in the case of T >0 the whole original struc-
ture is not preferred, since such PH(3) distribution is 
redundant.

3.8. The NMAP(2) Case
A two state sub-chain can be considered as a NMAP(2) 
process if it can be entered from one complimentary 
chain state (Er = 1) and exited to two complimentary 
chain states (Xr = 2).
It is necessary to check if NMAP(2) structure is not 
constrained, to do that the statistic Z is defined as  

 
 

 

Similarly, if 𝑇𝑇𝑇𝑇 = 6 and the structure of the sub-chain is 
not trivially equivalent to structure (19), the original PH 
structure is not preferred: 

��̇�𝛼𝛼𝛼3, �̇�𝑨𝑨𝑨3, �̇�𝑎𝑎𝑎3� = �[1 1 1], �
0 1 0
0 0 1
1 0 0

� , �
0
0
1
�� .   (19) 

Finally, in the case of 𝑇𝑇𝑇𝑇 > 6 the whole original structure 
is not preferred, since such PH(3) distribution is 
redundant. 
 
3.8. The NMAP(2) Case 

A two state sub-chain can be considered as a NMAP(2) 
process if it can be entered from one complimentary 
chain state (𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 1) and exited to two complimentary 
chain states (𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟 = 2). 

It is necessary to check if NMAP(2) structure is not 
constrained, to do that the statistic 𝑍𝑍𝑍𝑍 is defined as  

𝑍𝑍𝑍𝑍 = 𝑧𝑧𝑧𝑧𝐸𝐸𝐸𝐸 + 𝑧𝑧𝑧𝑧𝑋𝑋𝑋𝑋 + 𝑧𝑧𝑧𝑧𝐶𝐶𝐶𝐶 ,                                 (20) 

where 𝑧𝑧𝑧𝑧𝐸𝐸𝐸𝐸 / 𝑧𝑧𝑧𝑧𝑋𝑋𝑋𝑋 is the number of zeros in the matrix 𝑬𝑬𝑬𝑬
̇
 / �̇�𝑿𝑿𝑿 

excluding rows/columns with only zero elements and 𝑧𝑧𝑧𝑧𝐶𝐶𝐶𝐶  
is the number of zeros in the matrix �̇�𝑪𝑪𝑪 excluding diagonal 
elements. 

If 𝑍𝑍𝑍𝑍 > 2, such a sub-chain is a constrained NMAP(2) 
process and the original PH structure has to be left as 
possibly contributing. 

Otherwise, if 𝑍𝑍𝑍𝑍 ≤ 2 and sub-chain cannot be trivially 
transformed into one of the two NMAP(2) canonical 
form structures (11), (12), then the original PH structure 
is not preferred. 
 
4. Numerical Experiments 
4.1. The Generated PH(4) Structures 

The algorithm presented in Section 3 is used to generate 
PH(4) representation structures. We are interested only 
in the structures which have 𝑚𝑚𝑚𝑚 = 7,8, … ,19 independent 
structural elements. The structures with 𝑚𝑚𝑚𝑚 < 7 are not 
significant, because these stand for PH distributions 
parameterized with less than 7 parameters (i.e., less than 
2𝑛𝑛𝑛𝑛 − 1 parameters). The number of generated structures 
for 𝑚𝑚𝑚𝑚 = 7,8, … ,19 is given in Table 1. 

The generated PH(4) structures, in total 8340, are used 
to randomly generate the initial solutions for the EM 
method. 

Table 1. Number of generated structures (𝑀𝑀𝑀𝑀) for 
very number of independent structural elements (𝑚𝑚𝑚𝑚). 

𝑚𝑚𝑚𝑚 7 8 9 10 11 12 

𝑀𝑀𝑀𝑀 101 441 1136 1752 1885 1433 
 

𝑚𝑚𝑚𝑚 13 14 15 16 17 18 19 

𝑀𝑀𝑀𝑀 829 362 132 37 10 2 1 

 

Table 2. Target distributions and their 
density functions. 

Distribution Density function 

Weibull 
�
𝑘𝑘𝑘𝑘
λ
�
𝑡𝑡𝑡𝑡
λ
�
𝑟𝑟𝑟𝑟−1

𝑒𝑒𝑒𝑒−�
𝑡𝑡𝑡𝑡
λ�
𝑘𝑘𝑘𝑘

, 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ≥ 0,

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒.
 

Log-normal 
�

1
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡√2𝜋𝜋𝜋𝜋

𝑒𝑒𝑒𝑒
−(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)−𝜇𝜇𝜇𝜇)2

2𝜎𝜎𝜎𝜎2 , 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ≥ 0

0, 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒.
 

Uniform 
�

1
𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎

,  if  𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡𝑡𝑡 ≤ 𝑏𝑏𝑏𝑏

0,       otherwise.
 

Shifted 
exponential 

⎩
⎪
⎨

⎪
⎧

1
2
𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡 +

1
2
𝑒𝑒𝑒𝑒−(𝑡𝑡𝑡𝑡−1), 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ≥ 1,

1
2
𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡 , 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 0 ≤ 𝑡𝑡𝑡𝑡 < 1,

0,       otherwise.

 

Matrix 
exponential ��1 +

1
4𝜋𝜋𝜋𝜋2� �1 − 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋𝑡𝑡𝑡𝑡)�𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡 , 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ≥ 0,

0,       otherwise.
 

 

Table 3. Parameters of target distributions. 

Distribution Code Parameters 
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If , such a sub-chain is a constrained NMAP(2) pro-
cess and the original PH structure has to be left as 
possibly contributing.
Otherwise, if  and sub-chain cannot be trivially trans-
formed into one of the two NMAP(2) canonical form 
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not preferred.
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Target distributions and their density functions
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m 13 14 15 16 17 18 19
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Table 3 
Parameters of target distributions

Distribution Code Parameters

Weibull
W1 λ = 1, k = 1.5 
W2 λ = 1, k = 0.5

Log-normal
L1 μ =–1.8, σ = 1.8
L2 μ =–0.32, σ = 0.8
L3 μ =–0.02, σ = 0.2

Uniform
U1 a = 0, b = 1
U2 a = 1, b = 2

Shifted exponential SE

Matrix exponential ME

Table 4 
Target distribution discretization

Code Distribution truncation 
time, tend

Number of 
observations, N 

W1 2.768 277
W2 8.974 897
L1 10.885 1089
L2 4.670 467
L3 1.561 156
U1 1 100
U2 2 200
SE 5.225 523
ME 4.578 458

The generated PH(4) structures, in total 8340, are 
used to randomly generate the initial solutions for the 
EM method.

4.2. The Experiment Setup
The EM algorithm presented in [2] is used to approx-
imate the target distributions (Tables 2 and 3) by 
PH(4) distribution. These benchmark distributions 
are taken from [4]. The EM algorithm has a property 
to maintain the zeros in the refined solutions. There-
fore, the structure of initial solution is preserved. EM 
method maximizes the log-likelihood function  
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5. Conclusions 

The strategy of randomly generating initial solutions of 

various structures helps to improve results of the EM 
method. The 8340 PH(4) distribution representation 
structures were generated by the developed 
algorithm. Randomly generated representations of 
these structures were used as the initial solutions for 
the EM method. Phase-type fitting was performed 
and the results compared with ones obtained when 
the initial solutions were of a general structure. A 
faster convergence to the solution was observed in 
Figures 2 and 6-10. 

In a few cases (Figures 3 and 5), the proposed 
strategy gave distinctly higher log-likelihood values. 
These results suggest that the initial solutions of 
various structures are able to explore the parameter 
space better. 

In order to make the introduced technique more 
applicable for the practical use, a few problems 
should be solved. First of all, an upper bound for the 
number of independent structural elements necessary 
to represent the whole class of PH(n) distributions 
has to be determined. This might significantly reduce 
the number of structures. Secondly, a more efficient 
structure generation algorithm could be developed. 
 

  Table 5. The best log-likelihood function 
values for two initial solution generation strategies 
after running the EM method for 600 iterations. 
 

Code Initial solution of 
various structures  
(A-set) 

Initial solutions of 
general structure 
 (B-set) 

W1 -0.739508894546 -0.739855890106 

W2 -0.799975887679 -0.814530004973 

L1 -0.121300277809 -0.121300291222 

L2 -0.809498393517 -0.810271592230 

L3 -0.292479164600 -0.292479164600 

U1 -0.138916558371 -0.138917012205 

U2 -0.709553122213 -0.709553122213 

SE -1.263328058400 -1.263473379700 

ME -0.857747924918 -0.857810154292 

 

 
Figure 2. Approximation of W1 distribution. 
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where f(ti; θ)is the density function of target distri-
bution, ti are the density function discretization time 
instants with the weights wi for i = 1, N.
The observations are obtained by the evenly spaced 
time discretization of the target distributions in Ta-
ble 3.
A certain target distribution is discretized in the time 
range [0, tend] by dividing it into N equal intervals. The 
middle points of these intervals are the time instants 
ti and the probability of the interval is a weight Wi. 
The distributions are truncated at 0.99 quantile, ex-
cept for the U1 and U2 cases.
The two sets of PH(4) representations are generated 
and used as the initial solutions for the EM method. 
The first set (further referred to by A-set) consists 
of one randomly generated representation for ev-
ery structure generated in the Sub-section 4.1. The 
second one (further referred to by B-set) consists of 
8340 randomly generated PH(4) representations of a 
general structure. These two initial solution genera-
tion strategies are compared by comparing the high-
est log-likelihood function values.

4.3. The Results
The maximum log-likelihood function values ob-
tained after running the EM method for 600 itera-
tions on the initial solutions sets A-set, B-set are giv-
en in Table 5.
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Figure 2 
Approximation of W1 distribution

Figure 3 
Approximation of W2 distribution

Figure 4 
Approximation of L1 distribution

Figure 5 
Approximation of L2 distribution

Figure 6 
Approximation of L3 distribution

Figure 7 
Approximation of U1 distribution

Figure 8 
Approximation of U2 distribution
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Figure 2. Approximation of W1 distribution. 

 

 

 

 
Figure 3. Approximation of W2 distribution. 

 

 
Figure 4. Approximation of L1 distribution. 

 

 
Figure 5. Approximation of L2 distribution. 

 
Figure 6. Approximation of L3 distribution. 

 

 
Figure 7. Approximation of U1 distribution. 

 

Figure 8. Approximation of U2 distribution. 
 

Figure 9. Approximation of SE distribution. 
 

 
Figure 10. Approximation of ME distribution.
  
6. Discussion 

For example, the phase-type distributions can be 
used in modelling particular control systems. In 
practice, time intervals between events or duration of 
operations have a distribution which is not 
Markovian or unknown. In general, the analysis of 
such processes is complex and specific. However, it 
is possible to approximate such distributions by a 
Markovian (i.e. phase-type distribution) and build a 
model which is analytically tractable. This approach 
is applied to modelling queueing systems [2, 9, 18], 
inventory control systems [21] and others. 

In addition, there is more direct relation between the 
phase-type representation and a positive realization 
in control theory. For example, the Perron-Frobenius 
theorem can be used in order to derive a 
transformation from positive realization to a phase-
type representation [6, 12]. Currently, the phase-type 
representation canonical forms for 𝑛𝑛 𝑛 𝑛 are 
unknown. The investigated PH(4) could be 
contributed to the field of positive realization 
systems. 
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