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A simple mobile e-cash system with observers satisfying e-cash divisibility, partial anonymity, off-line payment, 
transferability and double-spending prevention requirements is presented. The proposed e-cash system is based 
on two well-known cryptographic primitives, namely ElGamal signature along with Schnorr identification proto-
cols. Therefore, it can be considered simple in the sense of implementation and security considerations.  The tra-
ditional and elliptic curve realizations of e-money system are presented. The system employs observers, i.e. cryp-
tographic bank chips implemented in customer’s payment device (e.g. smart phone) in order to avoid the increase 
in the size of transferred e-cash data, which is a major flaw of most divisible, anonymous, off-line and transferable 
e-cash systems. The security of the proposed e-money system is based on discrete logarithm problems in cyclic 
and elliptic curve groups. The system’s security against chosen message attack is provided. 
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curve cryptography.

1. Introduction
The electronic wallet (e-wallet) designed to store and 
manage electronic cash has gained much popularity 
in the past decades. Since e-cash is considered the 
digital analogue of traditional cash it is desired for 
electronic money to satisfy the following properties:
Anonymity: The customer using his e-cash to pay for 
a product must remain anonymous against the recip-
ient of the money as well as the bank. The possibility 

of identifying the identity of the customer must arise 
only when the money is spent illegitimately.
Unreusability: E-cash cannot be copied or double 
spent. This implies that e-wallet system has to mini-
mize the risks for forgery and/or provide ways for the 
identification of a dishonest user.
Unforgeability: Only authorized parties (i.e. the 
bank) can produce e-cash.
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Off-line Payment: The payment transaction must be 
performed off-line, i.e. no communication with the 
bank should be necessary during the payment proto-
col.
Divisibility: E-cash must be divisible, i.e. the custom-
er should be able to divide it into smaller amounts.
Transferability: Received e-cash can be applied 
for other payments among customers, regardless of 
whether transactions are on-line or off-line.
Traditional e-cash systems consist of the following 
protocols: Withdrawal, Payment and Deposit. During 
Withdrawal protocol, customer receives e-cash from 
the bank and places it into his e-wallet, implying that 
the sum of money in customer’s bank account is re-
duced by the sum of withdrawn e-cash. While Pay-
ment protocol, customer performs the payment of the 
sum (not exceeding e-cash he received) to the vendor. 
During Deposit protocol, vendor increases the balance 
of e-cash in his e-wallet, or deposits it to the bank. 
One of the first e-cash systems introduced by Chaum, 
Fiat and Naor (CFN) in 1988 was based on cut and 
cut-and-choose approaches [7, 20]. However, the 
system was not efficient since the bank had to store 

22 3k k+  bits (k is bank’s secret key) for each Deposit 
protocol as well as each user’s unique identifier IdP  
for each Withdrawal protocol while the user and the 
merchant had to store 22 4k k+   and 22 3k k+  bits, re-
spectively. 
Later, Jones and Higgins developed Mondex e-cash 
system which used public key cryptography to trans-
fer e-cash off-line [22]. The system was implemented 
in payment card’s microchip and is still used nowa-
days by MasterCard Inc. However, significant disad-
vantage of Mondex system is that transactions are not 
truly anonymous. Unlike pre-paid phone cards, which 
are also based on smart card technology, the user can-
not purchase a Mondex card without revealing his 
identity [1]. 
Off-line e-cash system with observers was first men-
tioned by Brands in [4]. He proposed the idea of the 
implementation of bank’s trustee in purchaser’s 
e-wallet in order to perform payments without con-
nection to the bank. However, the cryptographic se-
curity of Brands e-cash system was never proven and 
hence this system was not activated. 
Therefore, a lot of early e-cash systems that attempt-
ed to satisfy the main e-wallet properties defined 

above faced with such problems as the absence of full 
anonymity, increase of transferred e-cash data, lack 
of strong security analysis or the complexity of the 
realization. Nowadays, due to major breakthroughs 
in computer science as well as the boost in the pop-
ularity of electronic cash more e-cash systems deal-
ing with those flaws seem to appear. We will provide a 
short overview of a few of such systems.    
In [10], Eslami et al. presented an untraceable off-
line anonymous electronic cash system based on 
cryptographic techniques such as ElGamal and blind 
signatures. Eslami and Talebi in [10] achieved the off-
line property of e-cash system by the use of an expi-
ration date for e-coins. Since the authors have used 
ElGamal functions as one of the key elements for the 
system, the security of e-wallet relied on the discrete 
logarithm problem and factoring problem. 
Zhang et al. [23] presented a transferable optimal-size 
fair e-cash system with optimal anonymity. One of the 
goals of the presented system [23] was to eliminate 
the disadvantage of most already existing transferable 
e-cash systems which is that the size of coins grows 
linearly in the number of transfers. The solution imple-
mented by authors was to use the different structure of 
the coin, specifically, dividing transferred coins into 
two parts.  In order to achieve optimal anonymity, the 
authors employed Groth-Sahai proofs, the automor-
phic blind signature and the group blind signature. 
Another approach to achieving the transferability of 
e-cash was proposed in [13]. The presented scheme 
[13] used Forward-Secure Multi-use Unidirectional 
Proxy Re-signature Scheme to achieve transferabili-
ty, without any increase in the size of e-cash after each 
transfer. The proposed scheme also enabled off-line 
transactions which enforced user anonymity. The 
authors also included the Trusted Third Party which 
was the key element for double spending prevention. 
In [16], we proposed an e-wallet system with off-line 
divisible and anonymous e-cash. The presented sys-
tem [16] was also fully controlled by bank, thus the 
prevention of an overpayment and the detection of a 
dishonest user were provided. This system managed 
to deal with the problem of the increase of e-cash data 
during transfers among users by sacrificing honest 
user’s anonymity against bank and off-line deposit.
In [2], Baldimtsi et al. presented an efficient and ful-
ly anonymous transferable e-cash scheme without 
trusted third parties. For the construction of such 
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e-cash system, the authors used malleable signatures 
to allow secure and anonymous transfer of the coins. 
The authors also presented an independent dou-
ble-spending detection mechanism. 
Canard et al. [5, 6] proposed an efficient divisible 
e-cash system secure in the standard model as opposed 
to most systems with such properties that were proven 
secure only in the random oracle model, but had either 
weak security or complex settings. Presented system 
[5, 6] was based on a new way of the construction of 
coins using unique and public global tree structure for 
all coins. Such an e-cash system uses constant time for 
withdrawal and payment protocols, while allowing the 
bank to quickly detect double-spending.
Another practical and secure divisible e-cash system 
proven secure in random oracle and standard models 
where the bandwidth of each protocol is constant was 
presented in [15]. The system [15] also provided with-
drawing and spending of an arbitrary value of coins. 
In [9], Chen et al. proposed an efficient transferable 
conditional e-payment system based on restrictive 
partially blind signature scheme. Since the system [9] 
did not employ cut-and-choose techniques or compli-
cated knowledge proof protocols it was less complex 
in the sense of computation and communication. 
Pointcheval et al. [17] proposed a first divisible e-cash 
system without a tree structure that allowed to 
achieve constant-time complexity with a fairly easy 
management of coins.
Kang et al. in [12] proposed a new untraceable off-line 
electronic cash scheme without merchant frauds, an-
onymity and expiration date faults. The authors also 
provided a security analysis of the scheme and a dou-
ble spending detection mechanism.
Baseri et al. [3] proposed an untraceable anonymous 
unforgeable electronic cash system with double 
spending prevention constructed on the basis of [10] 
but without the weaknesses of [10]. In order to pre-
vent faults of the system described in [10], Baseri et 
al. employed a special construction of e-coin, which 
contained both the expiration date and the identity of 
the customer.
Taking into account existing e-cash systems and their 
problems, we would like to propose an efficient and 
secure e-cash system based on the implementation 
of observers and providing e-cash divisibility, off-line 
payments, transferability, partial anonymity and dou-

ble spending prevention. Partial anonymity means 
that the identity of customer will be revealed, if ven-
dor deposits his e-cash in the bank. The main advan-
tage of the proposed system is that e-cash transferred 
among the users is not growing in size.
The proposed e-cash system is based on the use of 
Trusted Third Party (TTP) which in this system is 
impersonated by the bank implementing its cryp-
tographic chip in user’s mobile device. Such an idea is 
known as Fair Offline e-Cash (FOLC).
Since the observer in this system is the chip imple-
mented in user’s device, it is necessary to supply the 
chip with proper cryptographic functions. In [21], 
we suggested using physical unclonable functions 
(PUFs, [14]) as a better way of ensuring the suitability 
of cryptographic functions and the security of e-mon-
ey system. It was also mentioned in [21] that PUFs al-
low user to extract a unique unclonable code (UUC) 
for the chip and to create a unique cryptographic key. 
Thus, in this paper, we assume that observer chips are 
supplied with PUFs and the UUC is used as an identi-
fier of the owner of the chip.
We introduce the following actors in our system:
Bruce – the bank. He generates public parameters of 
our system and supplies users Peg and Victor with 
their private and public data as well as with their ob-
servers (microchips for mobile devices).
Peg (P) – the purchaser. She is willing to purchase 
some goods from the vendor using our e-cash system. 
Bruce does not trust Peg and hence supplies her with 
an observer.
Oliver ( PO ) – an observer implemented in Peg’s mo-
bile device. Bruce completely trusts Oliver and gener-
ates private and public data for him. Oliver verifies in-
formation obtained from Peg and grants her e-cash to 
spend in case of validity. He also generates vital data, 
which cannot be altered by Peg.
Victor (V) – the vendor. He owns the goods, which Peg 
is willing to purchase. Bruce does not trust Victor and 
hence supplies him with an observer.
Olivia ( VO ) – an observer implemented in Victor’s 
mobile device. Bruce completely trusts Olivia and 
generates private and public data for her. Olivia ver-
ifies information obtained from Victor and deposits 
e-cash to Victor’s e-wallet in case of validity. 
Two alternatives of the proposed e-money system 
are presented. The first one is based on the discrete 
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logarithm problem (DLP), or ElGamal cryptography, 
the second one – on elliptic curve discrete logarithm 
problem (ECDLP). In both cases, it is assumed that 
the discrete logarithm problem is intractable for se-
curity considerations. 
The proposed e-cash scheme is based on two well-
known cryptographic schemes, namely, Schnorr 
identification scheme and ElGamal signature scheme 
and their Elliptic Curve alternatives [19].

2. DLP Approach 

Mathematical background of e-cash scheme 
To start with, Bruce generates a strong prime p, i.e. p 
= 2q + 1, where q is a prime number, and an element g, 
satisfying the congruence 1modqg p≡ . The practical 
way to generate this element is to find a generator of 
the initial group Zp and square it. The element g can be 
used to generate a cyclic subgroup { }| 1,i

q g i q= =G
called a Sylow subgroup. Bruce also selects a hash 
function H such that { }: 0,1 qH ∗

 G .
Assume that Peg is a new client of the bank and is 
willing to use e-cash service provided by the bank. Ac-
cording to ElGamal signature and Schnorr identifica-
tion schemes, Bruce generates the following private 
and public keys for Peg:

  { },  , Px
P PPrK x PuK G A G= = =P P

.

Bruce also supplies Peg with his trustee Oliver and 
generates the following data for him:

  { },  , ,Ox id
OO OO PPrK x PuK G A G A= = = P ,

where 1 , 1P Ox x q< < − and idP  is the Peg’s identifica-
tor, i.e. a unique integer assigned to each client of the 
bank. Note that PA  is a public parameter associated 
with Peg. Bruce certificates the term d

P
iA P .

The signature on the message qm∈G   is computed 
using ElGamal signature function ( )lG

x
ESig , where  x 

denotes the private key of a signer:

 

( ) { }
( )( ){ }1

,

mod , mod ,
m ElG

k

xSig m R s

G p k h m xR q−

= = =

= −

Σ

where k is a random secret non-zero integer less than q.
The verification of the signature mΣ  on the message 
m is performed using verification function ( )A

ElGVer , 
where A is a public key of a signer:

( ) ( )

,  if  
, and mod ;

,  otherwise.

q
A R s h m
ElG m

True R
Ver m A R G p

False

∈

Σ =


= 



G

Schnorr interactive identification protocol is per-
formed between Peg and Victor and consists of 4 
steps:
1 Peg chooses qξ ∈ Z  randomly and sends W Gξ=  to 

Victor;
2 Victor sends randomly generated challenge qh∈ Z  

to Peg;
3 Peg sends the obtained response r xhξ= +   to Victor; 
4 Victor accepts if modr hG WA p≡ .

Description of cryptographic protocols
Assume Peg intends to purchase some goods from Vic-
tor and wants to pay him the sum of im  in e-cash at the 
time instance it . Peg turns to Oliver to grant her the 
desired sum and the Withdrawal protocol is executed.

E-cash withdrawal protocol
Peg sends her observer Oliver the sum im , she intends 
to spend, and time instance it :

: ,i im t→ PP O
 
.

Upon receiving data from Peg, Oliver performs the 
following actions:
 _ He verifies the correctness of the received time 

instance it  and checks if the desired sum is 
available to spend, i.e.

 

( )
( )

0 ;

,
i w

i max

Ver t t

Ver m m

>

< P

where 0wt  denotes time instance of the last with-
drawal and maxmP  is the currently available sum in 
e-wallet.

 _ Oliver generates random integers (1) (2),i i qξ ξ ∈ Z
and computes Schnorr identification protocol 
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values 
(1)(1) i

iW Gξ=  and 
( 2)(2) i

iW Gξ= .
 _ He then computes values (1) (2) (1) (2), , ,i i i in n P P  and 

signs on values (1)(1) (2), , i
i i P

nP P A :

 

( )
( )

( )

(1)

( 2)

(1)

(1)

(2) (1)

(1) (1)

(2) (2)

(1) (1)

(2) (2)

(3)

;

;

;

;

;

;

||

·

·

,

i

i

O

O

O i

i i i

i P i

N
i P i

N
i P i

i ElG i

i ElG i

i El

x

x

n
G P

x

n m

n id

P A W

P A W

Sig P

Sig P

Sig

n

A

t=

=

=

=

=

⋅

Σ =

Σ

Σ =

where ||  denotes the concatenation of the sum im  
and time instance it . The result 

(1)
in  is represented 

by a single integer.
 _ Oliver saves the received time instance it  as the 

time of the last withdrawal and subtracts the 
received sum from the amount of money in the 
Peg’s e-wallet:

 

0 ;

.
w i

max max i

t

m

t

m m

←

← −P P

 _ Finally, Oliver sends the following data to Peg:

 

(1) (2) (1) (2)

(1) (2) (1) (2) (3)

, , ,,
:

, , , , .
i i i i

i i i i i

W W
n n
ξ ξ

Σ Σ


Σ
 →PO P

After the e-cash Withdrawal protocol, Payment pro-
tocol can be executed.

Payment protocol
Schnorr interactive identification protocol is em-
bedded into the payment protocol in order for Peg to 
prove her identity to Victor.
First of all, Peg sends Victor the payment sum im , 
she intends to spend, and time instance it  along with 
signatures (1) (2) (3), ,i i iΣ Σ Σ  received from Oliver, and 
Schnorr protocol values (1) (2),i iW W :

 
(1) (2) (3) (1) (2): || , , , , ,i i i i i i im t W WΣ Σ→ ΣP V .

Victor verifies correctness of the received time in-
stance it , checks if the received sum is equal to the 

actual price im  he is expected to receive and verifies 
validity of all the signatures, i.e.

 

( )
( )

( )

( )

( )

1

1

1

1

0

||

(3)

(1) (1)

(1) (1)

(2) (2)

(2) (2)

;

;

;

;

;

,

·

,

· ·

,

;

;

;

i i

O

O

P

O

i p

i

m t
P

A
ElG i

i i

A
ElG i i

d
i i

A
E

n

n

n

i
n

lG i i

P W

P

P A

Ver t t

Ver m m

A A

Ver A

A

Ver

A W

Ve Pr

Σ

=

Σ

>

=

=

=

Σ









P

where 0pt  is the time instance of the last payment.
Victor wants to be sure that the user he is communi-
cating with is Peg and hence initiates Schnorr identi-
fication protocol by sending randomly selected chal-
lenge i qh ∈ Z  to her:

  : ih→V P

Upon receiving the challenge, Peg computes Schnorr 
protocol values (1) (2),i ir r  and sends them to Victor:

 

(1) (1) (1)

(2) (2) (2)

(1) (2)

;

;

: , .

i i i

i i i

i

i

i

ir h x

r h x

r r

n

n

ξ

ξ

⋅ ⋅

⋅ ⋅

= +

= +

→P V

Victor verifies the following:

 

( )( )
( )( )

(1)

( 2)

1(1) (1) (1)

1(2) (2) (2)

;

.

i
i

i
i

h
r

i i i

h
r

i i i

Ver G W W

Ver G W

P

WP

−−

−−

 ⋅

⋅

= 
 
 = 
 





The above verification equations hold since:

( )( )

( )( )

(1) (1) (1) (1)

(1) (1) (1)

( 2) ( 2) ( 2) ( 2)

( 2) ( 2) ( 2)

1(1) (1)

(1)

1(2) (2)

(2)

;

.

i

i

i
i P ii i i

i P P ii i

i
i P ii i i

i P P ii

i

i i

h
r x n n h

i i P

n x h
i

h
r n n h

i i P

n

h

h x n

h x

h xx
i

n h

G W G

G W

G W G

G W

P A

G

P A

G

ξ

ξ

ξ

ξ

+

+

+

+

−− ⋅ ⋅ −

⋅ ⋅ −

−− ⋅ ⋅ −

⋅ ⋅ −

= =

= =

= =

= =

⋅ ⋅

⋅

⋅ ⋅

⋅
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Victor saves the received time as the time of the last 
payment:

0 ;p it t←  

If all the verifications Victor performed are success-
ful, e-cash Deposit protocol can be performed.

E-cash deposit protocol
Victor sends his observer Olivia the following data re-
ceived from Peg:

(1) (2) (3) (1) (2): || , , , , ,i i i i i i im t W W→ Σ Σ ΣVV O . 

Upon receiving the data, Olivia verifies correctness 
of the received time instance it  and validity of all the 
signatures:

( )

( )

( )

( )

1

1

1

1

0

||

(3)

(1) (1)

(1) (1)

(2) (2)

(2) (2)

,

·

,

·

;

;

;

;

;

;

·

,

;

i i

O

O

P

O

i d

m t
P

A
ElG i

i i

A
E

n

n

n

i

lG i i

d
i i

A
ElG i i

n

Ver t t

A A

Ver A

A

Ver

A W

P

Pr

W

P

V

P A

e

>

=

Σ

=

Σ

=

Σ









P

 

where 0dt  is the time instance of the last deposit.
Olivia saves the received time as the time of the last 
deposit and adds the received sum im  to the total 
amount of e-cash maxmV   in the Victor’s e-wallet:

0 ;

.
d i

max max i

t

m

t

m m

←

← +V V

Double spending prevention
In the case of double spending, Peg’s unique identifi-
cation number Pid  can be revealed as explained below.
Since, Peg spent the same sum of money twice, she 
had to send Victor the following values:

where ih  and ih′  are random Schnorr protocol values 
generated by Victor during the first and the second 
payment protocols, respectively.
Then Peg’s identity Pid  can be computed in the fol-
lowing way:

( )
( )

(2)(2) (2) (1)

(1) (1) (1) (1)
i i P i Pi i i

i i i
P

i P i i

n
n

h h xr r id n
id

r r h h x n
′ ⋅ ⋅′ −−

= = =
− ′ ′ ⋅ ⋅−

.
 

It is important to note that the latter identity is valid, 
since all the actions are performed prime modulo q, 
and hence a non-zero element (1) (1)

i ir r′−  is invertible 
since the algebraic structure qZ  is a field. 

3. ECDLP Approach

Mathematical background of e-cash scheme 

To start with, Bruce generates a prime p and con-
stants ,a b (positive integers satisfying condition

3 24 27 0a b+ ≠ ), that are associated with an elliptic 
curve ( , )pE a b  over the Galois Field pF . We will denote 
the prime order of the elliptic curve by n . Next, Bruce 
determines a generator point G  such that the multi-
ples kG  of the generator point G  are (for 1 1k n≤ ≤ − ) 
including point O located at infinity. Bruce also se-
lects a hash function h such that { }: 0,1 nh F∗

 .
Assume that Peg is a new client of the bank and is 
willing to use e-cash service provided by the bank. Ac-
cording to ElGamal signature and Schnorr identifica-
tion schemes, Bruce generates the following private 
and public keys for Peg:

{ }
,  
,

P P

P P PG
PrK x
PuK A x G

=
= = ⋅

Bruce also supplies Peg with his trustee Oliver and 
generates the following data for him:

{ }
,  
, ,

O O

O O O P PG A

PrK x
PuK A dx G i⋅ ⋅

=
= =

where 1 , 1P Ox x n< < −  and Pid  is the Peg’s identifi-
er, i.e. a unique integer assigned to each client of the 
bank. Note that PA  is a public parameter associated 
with Peg. Bruce certificates the term P Oid A⋅ .
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The signature on the message pm F∈   is computed 
using ElGamal signature function ( )EC

x
ElGSig , where 

x  denotes the private key of a signer:

( )
{ }
( ){ }1

( , ),

, ( mod ) mod ,

x
m ECElG

R R

R

R

G h

Sig m
x y s

k k m x n x n−

Σ

⋅ ⋅

= =

= =

= + ⋅

where k  is a random secret non-zero integer 
[1, 1]k n∈ − .

The verification of the signature mΣ  on the message m 
is performed using verification function ( )A

ECElGVer , 
where A is a public key of a signer:

( ),
,  if 
(

 [ [1, 1],
), ];

,  otherwise.

A
mECElG

q AE F

Ver m
True s n
R s R h m G k

False







=Σ

∈
∈ −
⋅ = ⋅ ⋅ + ⋅=

Schnorr interactive identification protocol is per-
formed between Peg and Victor and consists of 4 
steps:
1 Peg chooses [1, ]nξ ∈  randomly and sends 
W Gξ= ⋅  to Victor;

2 Victor sends randomly generated challenge 
[1, ]h n∈  to Peg;

3 Peg sends the obtained response r x hξ= + ⋅   to 
Victor; 

4 Victor accepts if · · modW hr AG n≡ + .

Description of cryptographic protocols

Assume Peg intends to purchase some goods from 
Victor and wants to pay him the sum of im  in e-cash 
at the time instance it . Peg turns to Oliver to grant her 
the desired sum and the Withdrawal protocol is exe-
cuted.

E-cash withdrawal protocol
Peg sends her observer Oliver the sum im , she intends 
to spend, and time instance it :

: ,i im t→ PP O

Upon receiving data from Peg, Oliver performs the 

following actions:
 _ He verifies the correctness of the received time 

instance it  and checks if the desired sum is 
available to spend, i.e.

( )
( )

0 ;

,
i w

i max

Ver t t

Ver m m

>

< P

where 0wt  denotes time instance of the last with-
drawal and maxmP  is the currently available sum in 
e-wallet.

 _ Oliver generates random integers (1) (2), [1, ]i i nξ ξ ∈
and computes Schnorr identification protocol 
values (1) (1) ,·i iW Gξ= (2) (2)·i iW Gξ= .

 _ He then computes values (1) (2) (1) (2), , ,i i i in n P P  and 
signs on values (1) (2) (1), ·,i i i PP P n A :

( )
( )

( )

(1)

(2) (1)

(1) (1) (1)

(2) (2) (2)

(1) (1)

(2) (2)

(3) (1)

||

·
· ;

·

;
;

;

;

;

,

O

O

O

i i i

i iP

i i iP

i i iP

i iECElG

i iECElG

i i PECElG

x

x

x

n

n n

n

n

m
id

P A W
P A W

Sig P

Sig P

Sig n

t

AΣ

=

= +

= +

= +

Σ

=

Σ =

=

where ||  denotes the concatenation of the sum im  
and time instance it . The result (1)

in  is represented 
by a single integer.

 _ Oliver saves the received time instance it  as the time 
of the last withdrawal and subtracts the received 
sum from the amount of money in the Peg’s e-wallet:

0 ;

.
w i

max max i

t

m

t

m m

←

← −P P

 _ Finally, Oliver sends the following data to Peg:

(1) (2) (1) (2)

(1) (2) (1) (2) (3)

, , ,,
:

, , , , .
i i i i

i i i i i

W W
n n
ξ ξ

Σ Σ


Σ
 →PO P

After the e-cash Withdrawal protocol, Payment pro-
tocol can be executed.

Payment protocol
Schnorr interactive identification protocol is em-
bedded into the payment protocol in order for Peg to 
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prove her identity to Victor.
First of all, Peg sends Victor the payment sum im , 
she intends to spend, and time instance it  along with 
signatures (1) (2) (3), ,i i iΣ Σ Σ received from Oliver, and 
Schnorr protocol values (1) (2),i iW W :

(1) (2) (3) (1) (2): || , , , , ,i i i i i i im t W WΣ Σ→ ΣP V

Victor verifies correctness of the received time in-
stance it , checks if the received sum im is equal to the 
actual price m  he is expected to receive and verifies 
validity of all the signatures, i.e.:

( )
( )

( )

( )

( )

1

1

1

1

0

(3)

(1) (1)

(1) (1)

(2) (2)

(2) (2)

;

;

;

;

;

|| ·

,

,

·

,

;

;

;

O

O

O

i p

i

n i i P

ECElG n i

i n i

ECElG i i

i P n i

ECElG i

A

A

P

A
i

Ver t t

A m t

A

P A

Ver m m

A

Ver

W

Ver

i A W

Ver

P

P d A

P

>

=

=

+

+

Σ

=

+

Σ

=

Σ













where 0pt  is the time instance of the last payment.
Victor wants to be sure that the user he is communi-
cating with is Peg and hence initiates Schnorr identi-
fication protocol by sending randomly selected chal-
lenge [1, ]ih n∈  to her:

: ih→V P

Upon receiving the challenge, Peg computes Schnorr 
protocol values (1) (2),i ir r  and sends them to Victor:

(1) (1) (1)

(2) (2) (2)

(1) (2)

;

;

: , .

i i P i

i i i

i i

i

iP

r h x

r h x

r r

n

n

ξ

ξ

⋅ ⋅

⋅ ⋅

= +

= +

→P V

Victor verifies the following:

( )( )
( )( )

(1) (1) (1) (1)

(2) (2) (2) (2)

( )

( )

;

.

i i i i i

i i i i i

G W

G W

Ver W

Ver

r P

P W

h

r h

−

−

⋅ −⋅ + =

⋅ + ⋅ − =





The above verification equations hold since:

( )

( )

1

1

(1) (1) (1)

(1)

(2) (2) (2)

(1) (1)

(1) (1) (1)

(2) (2)

(2) (2)

· ( )·

· ·

· · ·

·

( ) ( )

;

( ) (

( )·

· ·( )

·

)·

·

i i i i

i P i n

i P i P i

i i i i

i P i P n

i P

P

i P

i

i i

i

i

i

i

i

i

r hG W

G A

G G G W

G W

G i A A

G G

P

h

r h P

h d

h x n

h x n h x n

h x n

h x n h x

ξ

ξ

ξ

ξ

+ − =

= ⋅ ⋅ + =

= ⋅ ⋅ + − ⋅ ⋅ =

+ −

= ⋅ ⋅

−

+ + =

= ⋅ ⋅ + −

−

− =

−

⋅

+

+





(2)(2)· ii G Wn⋅ =

Victor saves the received time as the time of the last 
payment:

0 ;p it t←

If all the verifications Victor performed are success-
ful, e-cash Deposit protocol can be performed.

E-cash deposit protocol
Victor sends his observer Olivia the following data re-
ceived from Peg:

(1) (2) (3) (1) (2): || , , , , , .i i i i i i im t W WΣ Σ Σ→ VV O

Upon receiving the data, Olivia verifies correctness 
of the received time instance it  and validity of all the 
signatures:

( )

( )

( )

( )

1

1

1

1

0

(3)

(1) (1)

(1) (1)

(2) (2)

(2) (2)

|| ·

,

,

·

;

;

;

;

;

,

;

;

O

O

O

i d

n i i P

ECElG n i

i n i

ECElG i i

i P n i

ECElG i

A

A

P

A
i

A m t

A

P A

P

P d A

P

Ver t t

A

Ver

W

Ver

i A W

Ver

>

=

+

+

=

Σ

=

Σ

+

Σ













where 0dt  is the time instance of the last deposit.
Olivia saves the received time as the time of the last 
deposit and adds the received sum im  to the total 
amount of e-cash maxmV   in the Victor’s e-wallet:

0 ;

.
d i

max max i

t

m

t

m m

←

← +V V
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Double spending prevention
In the case of double spending, Peg’s unique identifi-
cation number Pid  can be revealed as explained below.
Since Peg spent the same sum of money twice, she had 
to send Victor the following values:

(1) (1) (1)

(2) (2) (2)

(1) (1) (1)

(2) (2) (2)

;

;

' ' ;

' ' ;

i i P i

i i P i

i i P i

i i P

i

ii

i

i

r h x

r h x

r h x

r h x

n

n

n

n

ξ

ξ

ξ

ξ

⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅

= +

= +

= +

= +⋅

where ih  and ih′  are random Schnorr protocol values 
generated by Victor during the first and the second 
payment protocols, respectively.
Then Peg’s identity Pid  can be computed in the fol-
lowing way:

( )
( )

(2) (2)
(1)

(1) (1)

(2)
(1)

(1)

(1)
(1) (1)

(1) (1)

1

'
1

'

1

i i
i

i i

i i P i
i

i i P i

i
i i

i

p p
p

i

r r
n

r r

n
n

n

id n id
n n id

n n

h h x
h h x

 −
− ⋅ = − 

 −
= − ⋅ =  − 

 +
= − ⋅ = ⋅ =  

′

⋅ ⋅

 

′

⋅ ⋅

4. Security Analysis of the Proposed 
E-cash System
This section will provide only the proof of the secu-
rity of the DLP version of the proposed system, since 
the security of the ECDLP alternative can be proven 
analogously.
The aim of this section is to show that the proposed 
scheme cannot be attacked by using a chosen mes-
sage. Our analysis is based on Theorem 7 of [8], i.e. we 
have to prove the perfect d-wise decorrelation of our 
scheme.
We start by revising the following known facts:
Proposition 1. Let G be a generator of the cyclic 
group qG of cardinality q and let qx ∈ Z  be chosen at 
random. The element xG  has the same distribution in 

qG  as x has in qZ .

Proposition 2. Let 0z  be an arbitrary element of the 
multiplicative cyclic group .qG   Choosing at random 

1 qz ∈ Z and setting 0 1z zz= ⋅  gives the same distribu-
tion for z as choosing random z.
Corollary 3. If 1G  and 2G  are in qG and if , qx y∈ Z
are chosen uniformly at random, then the element z 
being computed by the expression

1 2
x yz G G⋅=

is uniformly distributed in qG .
To prove the resistance of our scheme to chosen mes-
sage attack (CMA), we also rely on the following facts:
Proposition 4. Let 0z  be an arbitrary element of the 
additive cyclic group qG . Choosing at random 1 qz ∈ Z
and setting 0 1z zz= ⋅  gives the same distribution for z 
as choosing random z.
Corollary 5. Let a, b and c be three uniformly distrib-
uted random elements of the field of integers qZ . The 
element a + bc is uniformly distributed in qZ .
Due to these facts at Step 4 of Schnorr identification 
both elements rG  and hWA  are distributed uniform-
ly in qG  and hence both functions ( )1

rf r g=  and 
( )2 , hf W h WA=  provide perfect 1-wise decorrelation. 

It is clear that an element w has the uniform distribu-
tion in qG  due to uniform distribution of ξ .
Next we consider the ElGamal signature. It is import-
ant to note that the version we are using is a modifi-
cation of the original scheme and uses the hash of the 
message rather than a message itself. It was previous-
ly shown in [11] that the original scheme suggested by 
ElGamal was forgeable under CMA. Due to this fact 
Poincheval and Stern suggested a modification of the 
original scheme. The authors proved that the mod-
ified version of ElGamal digital signature is secure 
against adaptive CMA in [18].
Hence the security of our scheme against CMA relies 
on the following facts:
 _ Withdrawal protocol is secure since random 

variables (1) (2) (1) (2), , ,i i i in n P P  are uniformly 
distributed either is qZ  (in case of (1) (2),i in n ) or in 

qG  (in case of (1) (2), )i iP P  due to the facts, presented 
above. Hence these variables as functions have 
perfect 1-wise decorrelation. The signatures are 
secure due to [18].

 _ Payment protocol is secure since random variables 
(1) (2),i ir r  are uniformly distributed in qZ  and 



Information Technology and Control 2018/1/47116

therefore have perfect 1-wise decorrelation.
 _ Deposit protocol is secure since all the random 

variables, involved in the protocol are uniformly 
distributed whereas digital signatures are secure 
due to [18].

Note, however, that neither the original ElGamal digi- 
tal signature nor the modified version provide a uniform 
distribution for parameter ( )( )1 mods k h m xR q−= −
since the parameter modkR G p=  is not uniformly 
distributed in qG .
Assume that Peg performed the payment protocol 
correctly, i.e. Victor received the correct data present-
ed above. 
Proposition 6. No double spending by forgery of the 
data sent by Peg is possible. 
Proof.  The claim of the proposition is valid due to the 
fact that signatures are secure against chosen mes-
sage attack. Hence the data cannot be forged since 
Peg has no access to Oliver’s private key Ox , i.e. sig-
natures ( )(1) (1) ,O

i ElG i
xSig PΣ = ( )(2) (2)O

i ElG i
xSig PΣ =  and 

( )(1)(3) O i
i El

n
G P

xSig AΣ =  as well as data signed have to re-
main intact. Since PA  is a generator of the group qG  
no forgery of (1)

in  is possible, which also implies that 
the time instance it  cannot be altered since the price 
of the desired good im  cannot be affected by Peg. Fur-
thermore, forging (2)

in  is impossible due to the follow-
ing facts:

 _
(1)
in  and (2)

in  are mathematically linked;
 _ the public key id

PA P is certificated and hence idP 
cannot be forged; 

 _ qZ  is a field and hence (1)
in  is invertible.

Unforged values of (1) (2) (1) (2), , ,i i i in n P P  now imply the 
correct values of (1) (2),i iW W  since qG  is a group and 
hence  

(1)
i

P
nA  and 

( 2)
i

P
nA  are both invertible.

Let us now assume that Peg and Victor successfully 
executed all the protocols presented above. 

Proposition 7. No forgery of the data sent by Peg is 
possible by Victor during the Deposit protocol. 

Proof. Victor cannot forge any of the signatures re-
ceived since private information from Peg’s observer 
Oliver is unavailable to him. Furthermore, Victor can-
not change neither the sum im  nor the time instance 

it  due to the structure of the data sent, i.e. by changing 
any of the components the concatenation result is af-
fected. The correct values of  im  and it  now imply the 
correct values of (1) (2),i iW W since 

(1)
i

P
nA  is invertible 

and id
PA P  is certificated.

5. Conclusions
 _ The proposed e-cash system satisfies divisibility, 

partial anonymity, off-line payment, transferability 
and double-spending prevention requirements.

 _ Presented system is based on provable secure 
cryptographic primitives such as Schnorr 
identification and modified ElGamal e-signature 
and their Elliptic Curve alternatives. Thus, the 
security of the system relies on the security of these 
cryptographic primitives. In both cases, double 
spending prevention algorithm is presented.

 _ The use of well-known classical cryptographic 
protocols results in a simple and straightforward 
realization of the system.  

 _ The system employs observers, i.e. cryptographic 
bank chips implemented in customer’s payment 
device in order to satisfy off-line payment 
requirement and avoid the increase in the size of 
transferred e-cash data.

 _ The proposed e-wallet system can be implemented 
in Elliptic Curves as shown in the paper, thus higher 
performance and better security can be achieved. 

 _ Due to algebraic properties of Schnorr iden-
tification and modified ElGamal e-signature 
protocols, it is possible to define basic parameters 
of the proposed system in such a way that would 
result in e-cash system’s security against chosen 
message attack - CMA.

 _ Presented system is partially anonymous, i.e. the 
anonymity is provided against the vendor. However, 
in case of double spending, the identity of malicious 
purchaser is revealed. Hence, the purchaser cannot 
forge any data in order to perform double spending 
and remain undetected. Analogously, the vendor 
cannot perform double spending of the received 
e-cash during deposit protocol as well.
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