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The paper presents a nonlinear control law for a marine vessel to track a reference trajectory. In the wake of the 
results obtained in [19], an integrative approach is incorporated in the linear algebra methodology in order to 
reduce the effect of the uncertainty in the tracking error. This new approach does not increase the complexity 
of the design methodology. In addition, the zero convergence of tracking error under polynomial uncertainties 
is demonstrated. Simulation results under environmental disturbance and model mismatches are presented 
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Introduction
The past few decades have witnessed an increased 
research effort in the autonomous vehicles motion 
control area. A typical motion control problem is tra-
jectory tracking [21, 16, 18], which is concerned with 
the design of control laws that force a vehicle to reach 

and follow a time parameterized reference (i.e., a geo-
metric path with an associated timing law).
One challenge for trajectory tracking of a surface ma-
rine vessel stems from the fact that the system is often 
underactuated [3, 5, 24]. Conventional ships are usually 
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equipped with one or two main propellers for forward 
speed control, and rudders for ship course keeping. For 
ship maneuvering problems, such as path following 
and trajectory tracking, where we seek control for all 
three degrees of freedom (surge, sway, and yaw), the 
two controls cannot influence all three variables inde-
pendently, thereby leading to underactuated control 
problems. In conventional way-point guidance sys-
tems, the output space is reduced such that the number 
of outputs equals the number of control inputs, and a 
fully actuated control problem can be formulated [8].

Another challenge in trajectory tracking problems 
of marine surface vessels is the inherent nonlinear-
ity, from either the ship dynamics or path following 
kinematics. Many different nonlinear design meth-
odologies have been attempted. Generally, backstep-
ping techniques are the most chosen to solve tracking 
problems in marine vessels. In the work of Aguiar et 
al. [1], the authors proposed a solution for underac-
tuated autonomous vehicles in the presence of possi-
bly large modeling parametric uncertainty. They de-
signed an adaptive supervisory control algorithm that 
combines logic-based switching with iterative Lya-
punov-based techniques such as integrator backstep-
ping. In [12], the authors address the trajectory track-
ing problem contemplating modeling errors in its 
implementation, an approach based in measurement 
techniques is proposed in that work. Two construc-
tive backstepping design schemes were developed in 
[25] to solve stabilisation and tracking problems.

Alternative techniques such as adaptive dynami-
cal sliding mode control and Quantitative Feedback 
Theory (QFT) have been reported in the literature 
to address the problem of trajectory tracking in the 
presence of uncertainties. In [22], the combination 
of backstepping and adaptive dynamical sliding mode 
control is proposed for dealing with the planar trajec-
tory tracking control problem in marine vessels. Nico-
lau et al. [17] described the design steps of robust QFT 
autopilot for the course-keeping and course-changing 
control of a ship, in the presence of disturbances. In 
Lekkas and Fossen [11], two adaptive nonlinear ob-
servers are designed in order to estimate the ocean 
current components. The guidance algorithm uses 
this information and generates appropriate relative 
surge speed reference trajectories for minimizing 
the tracking error. A similar procedure is proposed in 
Yang et al. [23], where an observer is developed to pro-

vide an estimation of unknown disturbances. Then, 
this approach is applied to design a novel trajectory 
tracking robust controller through a vectorial back-
stepping technique.
In Serrano et al. [19], a linear algebra-based controller 
was proposed for tracking control in a ship. The orig-
inality of this control strategy is based on the linear 
algebra theory application to find the controller ex-
pression. The control law is obtained by solving a sys-
tem of linear equations. It is easier to implement the 
developed algorithm in a real system because the use 
of discrete equations allows direct adaptation to any 
computer system or programmable device running se-
quential instructions to a programmable clock speed. 
However, this methodology does not consider additive 
uncertainties in the design stage. Thus, if the system is 
under modeling errors or disturbances in control ac-
tions, significant tracking errors can appear.
This work provides a positive answer to the challeng-
ing problem of designing controllers for trajectory 
tracking in multivariable nonlinear systems under 
additive uncertainties. The goal of this paper is to 
design a robust autopilot for ship trajectory tracking 
control, in the presence of disturbances. Thus, the 
main contribution of this work is to extend the tech-
niques based on linear algebra presented in Serrano 
et al. [19], to systems under additive uncertainties. 
First, in order to deal with these uncertainties, some 
integrators have been added to the original controller. 
This achievement allows the tracking errors not to be 
affected by polynomial uncertainties. Next, the con-
ditions for a system of linear equations have unique 
solution were analyzed. Finally, the control action 
were obtained by solving the linear system, even 
though the original system model is nonlinear.
Additionally, our controller shows to be robust under 
disturbances in the control actions. Due to its math-
ematical formulation, our approach can also be im-
plemented as embedded (it does not compute higher 
order derivatives, exponentiation or complex trig-
onometric functions). Another contribution of this 
paper is the application of Monte Carlo (MC) based 
sampling experiment in the simulations. The control-
ler parameters can be computed to minimize a cost 
index; here these are determined by using the Monte 
Carlo (MC) experiment. The theoretical results are 
validated and compared with the original methodol-
ogy by simulations.
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It is noteworthy that due to the above mentioned 
characteristics, the computing power required to 
perform the mathematical operations is low. Thence 
it is possible to implement the algorithm in any con-
troller with low computing capacity. Furthermore, 
the developed algorithm is easier to be implemented 
in a real system because the use of discrete equations 
allows direct adaptation to any computer system or 
programmable device running sequential instruc-
tions at a programmable clock speed. Thus, one great 
advantage of this approach is the use of discrete-time 
equations, hence simplifying its implementation on a 
computer system. The proof of the zero-convergence 
of the tracking error under uncertainty is another 
main contribution of this work.
The paper is organized as follows. Section 2 describes 
the dynamic model for marine vessel and the linear 
algebra-based methodology proposed in Serano et al. 
[19]. The controller design methodology considering 
polynomial uncertainties is shown in Section 3. In 
Section 4, the controller parameters are tuned by the 
MC experiment and theoretical results are validated 
with simulation results of the control algorithm, fol-
lowed by the conclusions in Section 5.

1. The Marine Vessel Model and 
Controller Design

1.1. The Description of the Surface Vessel 
Model
Consider an autonomous marine surface vessel 
whose kinematic and dynamic models are described 
as follows [19, 9]:
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where (x, y) ∈ R2 is the position of the ship given in an 
inertial frame and ψ ∈ [0, 2π) is the heading angle of 
the ship relative to the geographic North. The gener-

Figure 1
A Marine Vessel: a global coordinate frame U and a body-
fixed coordinate frame B

al kinematic equations of motion of the vehicle in the 
horizontal plane can be developed by using a global 
coordinate frame U and a body-fixed coordinate frame 
B, as depicted in Fig. 1. Here, u is the forward veloc-
ity (surge), v is the transverse velocity (sway) and r 
is the angular velocity in yaw. The parameters mii > 0 
are given by the ship inertia and added mass effects. 
The parameters dii > 0 are given by the hydrodynamic 
damping. The available control inputs are the surge 
control force Tu and the yaw control moment Tr [19].

1.2. A Linear Algebra Controller Design
The methodology proposed in Serrano et al. [19] aims 
to find the control actions Tu and Tr so that the ma-
rine vessel reaches and follows a reference trajectory 
(xref,yref). Next, the control design prcedure presented 
in [19] is described.
First, the model (1) is aproximated through the Euleri-
an approximation and rearranged in the matrix form:
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Second, consider the immediately reachable value of 
each state vector, as proposed here:
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In (3), k represents a design parameter (0 < k <1) and en denotes the tracking error. Note that: 
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Considering Eq. (3), system (2) can be written in a more compact form as (4): 
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In (3), k represents a design parameter (0 < k <1) and 
en denotes the tracking error. Note that:
 _ if k =0, 1 , 1( = ),n ref nz z+ +  the reference trajectory is 

reached in one step; 
 _ if k =1, the error will remain constant, 

1 , 1 ,( = ).n n ref n ref nz z z z+ +− −
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At every sample time, the linear system of Eq. (4) is 
used to calculate the control action that ensures the 
tracking of the reference trajectories. To calculate 
Tu,n and Tr,n, the system of equations (4) must have an 
exact solution. Thus, the values of the variables (u, ψ, 
r) must be determined in order that tracking errors 
tends to zero (see [19]).
The unknown variables (uref, ψref, rref) of this system 
will be called sacrificed variables. The values adopt-
ed by such variables force the equation system (4) to 
have an exact solution. Then, in (4), the variables (uref, 
ψref, rref) would be replaced by (uez, ψez, rez), where (uez, 
ψez, rez) represent the values so that (4) has an exact 
solution. Now, it is necessary to specify the conditions 
under which the system (4) has an exact solution.
System (4) is of the type Au = b. Thus, in order for (4) 
to have an exact solution, the column vector b must be 
a linear combination of the columns of A.
Next, the first two rows of system (4) are rewritten in 
the form:
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For (5) to have an exact solution, Eq. (6) must be fulfilled:
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Remark 1. Equation (6) establishes the conditions 
that ensure an exact solution for the model of Eq. (4), 
where ψez,n+1 is the unknown variable. In Eq. (6), ψez,n is 
obtained at the current sampling time, while ψez,n+1 can 
be calculated through Taylor approximations of zero, 
first, or second order, i.e.:
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Equation (9) allows to perform the calculation of the 
control action, Tu and Tr, which makes the tracking er-
rors tend to zero in every sampling time. The control 
action is obtained by least squares (see [19]), i.e.:
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(10)

Theorem 1. If the system behavior is ruled by (2) and 
the controller is designed considering Eqs. (6) to (9), 
the tracking error tends to zero (en → 0) when n → ∞.
Remark 2. Consider the geometric progression below:
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2

(2) (1) (0)
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= =

.

= = n
n n
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a ka k a+



If 0 < k < 1 and n → ∞ (with n ∈ N), then a(n) → 0.
The proof of Theorem 1 and the convergence to zero 
of the tracking errors is shown in detail in [19]. As is 
shown in the above study, if the control action (10) is 
replaced in the system model, then (11) is obtained 
(see Eq. (A.30) in [19]):
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with,
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Equation (11) represents the sum of a linear system 
with a nonlinearity. Acording to [19], this nonlinear-
ity tends to zero. Thence, if 0 < k < 1 the tracking error 
tends to zero (ex,n → 0 and ey,n → 0 when n → ∞( with 
n ∈ N) ), because eψ,n → 0, eu,n → 0 and eu,n → 0 (see Re-
mark 2). Finally, it is thus demonstrated that en+1 → 0 
when n → ∞ (with n ∈ N) [19].

2.3. A Summary for Controller 
Implementation
The next steps can be used to implement the control 
algorithm,
 _ Given (xref,n+i,yref,n+i) for i = 1, 2, and some initial 

conditions zn,
 _ Compute (ψez,n) using (6) and calculate ψez,n+1 using 

the Taylor approximation (see Remark 1).
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 _ Compute (uez,n,rez,n) using (7) and (8), respectively; 
calculate (uez,n+1,rez,n+1) using the Taylor 
approximation (see Remark 1).

 _ Compute the control actions Tu,n and Tu,n according 
to (10).

3. A Controller Design 
Underuncertainty
Now, an additive uncertainty is incorporated into the 
model of the system, and an approach to eliminate its 
influence on the tracking error is proposed. Consider-
ing (2), the following marine vessel model is assumed:
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(12)

where En is the additive uncertainty. Notice that the 
additive uncertainty can be used to model perturbed 
systems as well as a wide class of model mismatches.
Taking into account that the mismatch might depend 
on the state and on the input of the system, consid-
er a real plant 1 = ( , ).n n nz f z u+  The additive uncer-
tainty can be expressed by ˆ= ( , ) ( , ),n n n n nE f z u f z u−  where ˆ ( , )n nf z u  is the discrete-time nonlinear model 
of the system. Note that if, as it will be assumed, z 
and u are bounded and f  is a Lipschitz continuous 
function, then En  can be modeled as a bounded un-
certainty [15, 13].

Now, the procedure for the controller design devel-
oped in the above section is applied to the model un-
der uncertainty in order to analyze the effect of the 
uncertainty in the system. Replacing Tu,n  and Tr,n  from 
(10) in (12), after some simple operations, it yields
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(13)

Now, looking at (13), a direct effect of the additive un-
certainty on the tracking error can be seen.

3.1. The Integral Action
In order to reduce the effect of En, some integrators of 
the tracking errors in the system state variables will 
be introduced, depending on the time variation hy-
pothesis of En. It is assumed that En is unknown and 
each component is an m-order polynomial.
Remark 3. The first order difference of En is defined 
as 1= ,n n nE E Eδ + − the second order difference as 

( ) ( )2
1 n 2 1 n= = = 2 ,n n n n nE E E E E E Eδ δ δ δ + + +− − +  

and as a rule, the q-th order difference is defined as 
( )1= .q q

n nE Eδ δ δ −

Remark 4. The q-th difference of a q−1 order polyno-
mial is zero.
Let us consider a constant uncertainty En = const. 
That means δEn = En+1 − En = 0. In this case, an integra-
tor for each state variable will force the error to con-
verge to zero. Denoting by e(t) the continuous time 
error in the state vector, define

( 1)

1, 1 1, 1,= ( )
n Ts

n n n s n
nTs

U U e t dt U T e
+

+ + ≅ +∫ (14)

as the integral of the error. The control action (10) will 
be computed assuming a new term in (3), such as z

( )1 , 1 , 1 1, 1= ,n ref n ref n n n

en

z z k z z K U+ + +− − +
 (15)

where k and K1 are, respectively, the proportional and 
integral constants of the control actions.
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After incorporating the integral term in the design 
methodology, the controller design algorithm given 
in Section 2.3 is applied. Then, the same procedure is 
carried out to obtain (6), (7) and (8) is carried out to 
compute the new heading angle, forward velocity and 
angular velocity.
The heading angle will be computed as
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The reference forward velocity is
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The angular velocity that makes the tracking errors 
tend to zero must be

, 1, 1, , 1
, = .ez n

ez n
s

K U
r

T
ψ ψ ψ +D +

(18)

Finally, Tu and Tr are obtained using least squares.
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Replacing the control actions (Tu,n,Tr,n) of (19) in (12), 
and after some simple operations, it yields
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Therefore, k and K1 are chosen in order to ensure 
the stability of the linear system represented in the 
left-hand side of (20); that is, the zeros of this poly-
nomial (ri) q should be inside the unit circle. Then 

2 2
, , 0,x n y ne e+ →  as n → ∞.That is, the tracking error 

tends to zero despite of uncertainties, if they are con-
stant.

3.2. Two Integral Actions
Let us now consider that the uncertainty can be mod-
eled by a function where the second order difference 
is zero, such that δ2En = δ (δEn) = δ (En+1 − En) = En+2 

− 2En+1 + En = 0. Then, a double integrator should be 
introduced in a similar way to (14), defining the inte-
grating variables U1, U2

( 1)
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In this case, the control action (10) will be computed assuming an additional term in (3), such as z 
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where k, K1 and K2 are constants and represent the proportional, integral and double integral control parameters. Operating as 
before, and taking into account that δ2En = 0, the error dynamics can be expressed by  
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Now, as can be seen in (23), under the assumption of constant or linear varying uncertainty, δ2En = 0, and the uncertainty has 
no influence on the error dynamics. The controller parameters k, K1 and K2 are constant chosen in order to ensure the stability 
of the linear system represented in the left-hand side of (23), as shown in the previous case. Following a similar reasoning, if 
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of the linear system represented in the left-hand side of (23), as shown in the previous case. Following a similar reasoning, if 
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where k, K1 and K2 are constants and represent the 
proportional, integral and double integral control pa-
rameters. Operating as before, and taking into account 
that δ2En = 0, the error dynamics can be expressed by 
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(23)

Now, as can be seen in (23), under the assumption of 
constant or linear varying uncertainty, δ2En = 0, and 
the uncertainty has no influence on the error dynam-
ics. The controller parameters k, K1 and K2 are con-
stant chosen in order to ensure the stability of the lin-
ear system represented in the left-hand side of (23), 
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as shown in the previous case. Following a similar 
reasoning, if the uncertainties can be approximated 
with a q−1 order polynomial, the influence of En on en 

will be eliminated by introducing q integrators.
Remark 5. The controller parameters can be chosen 
differently for each state variable, as pointed out in (3) 
for k, but not relevant benefit is obtained in the exam-
ples developed later on. The same could be done with 
all the controller parameters k, K1 and K2.

3.3. Multiple Integral Actions
The previous sections added new integrator terms 
in the design methodology presented in [19]. This 
approach can be extended to a number p of integra-
tors. Assume that the uncertainty can be modeled 
by a function where the difference of order p is zero, 
such that ( )1= = 0p p

n nE Eδ δ δ − . Then, a p−integrator 
should be introduced in a similar way to (21), defining 
the integrating variables U1, U2,...,Up:
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where k, K1, K2,...,Kp are, respectively, the proportional 
and integrals control actions. Operating as before, and 
taking into account that δpEn = 0, the error dynamics 
can be expressed by p−1
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(25)

Thence, under the assumption of constant or linear 
varying uncertainty, δpEn = 0, the uncertainty has no 
influence on the error dynamics. The controller pa-
rameters k, K1, K2,...,Kp are chosen in order to ensure 
the stability of the linear system represented in the 
left-hand side of (25), as shown in the above cases.

4. Simulations Results
The simulation results for the performance evalu-
ation of the trajectory tracking controller proposed 
in the previous section are presented in this section. 
Only two integrators (p = 2) will be deemed in the sim-
ulation section for practical reasons.
As was already discussed, the behavior of the con-
trolled system depends on the parameters k, K1, K2. 
Thus, in this work, and in order to determine values for 
the parameters of the controller for p = 0, 1, 2, the Mon-
te Carlo Randomized Algorithm used in [6] is applied.
The control approach is applied on the original time-
continuous system, as shown in Fig. 2. The marine 
vessel configuration is obtained from recent papers 
[9, 19, 13]. It has a length of 1.19 m, a mass of 17.6 kg 
and is represented for the following parameters: m11 

= 19 kg, m22 = 35.2 kg, m33 = 4.2 kg, d11 = 4 kg/s, d22 = 1 
kg/s, d33 = 10 kg/s. In order to perform realistic sim-
ulations, saturation levels in the control signals are 
imposed [10, 19]: Tu,max = 1N, Tu,min = −1N, Tr,max = 1Nm, 
Tr,min = −1Nm.

Figure 2 
The architecture of the trajectory tracking controller

 

4.1. The Monte Carlo Randomized Algorithm
In the field of systems and control, probabilistic 
methods have been found to be useful, especially for 
problems related to robustness of uncertain systems 
[20]. One of these methods, the Monte Carlo Random-
ized Algorithm, is widely used in many fields such as 
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the radioactive decay, systems of interacting atoms, 
the traffic on roads, etc. [2]. In the control area, Monte 
Carlo methods allow to estimate an expectation val-
ue and they provide effective tools for the analysis of 
probabilistically robust control schemes.
Because of its nature, these types of algorithms can 
give an erroneous result with a non zero probability. 
Thus, a natural question arises about how many sim-
ulations should be performed to ensure the correct 
answer. Under a sufficiently large sample size N, a 
probabilistic statement can be made as shown below:
Theorem 2. (Tempo and Ishii [20]) Let ε, δ ∈ (0, 1), 
where ε is an a priori specified accuracy, and 1−δ is the 
confidence interval. If

1log

1log
1

N δ

ε

 
 

≥  
 

− 

, (26)

then the empirical maximum satisfies the following 
inequality with probability greater than 1 − δ

( ){ }max
ˆProb 1 .J J εD D ≤ ≥ − (27)

That is,

( ) ( ){ }{ }max1,..,
ˆProb Prob 1 > 1 ,N J J ε δDD D ≤ ≥ − − (28)

where J is the performance function and maxĴ is the 
empirical maximun. For further details, see [20].
The theorem says that the empirical maximum is an 
estimate of the true value within an a priori speci-
fied accuracy ε with confidence δ if the sample size 
N satisfies (26). The algorithm may not produce an 
approximately correct answer, but the probability of 
this event is no greater than δ. It is worthy to empha-
size that, in Theorem 2, the sample size N is finite and, 
moreover, is not dependent on the size of the uncer-
tain set B, the structured set of uncertainty matrices, 
and the probability density function fD (D), but only on 
ε and δ. In the next section, (26) is used to estimate the 
number of simulations.

4.2. A Monte Carlo Experiment
In this subsection, the Monte Carlo method is applied 
to select an appropiate set of controller parameters. 

Even though the optimum is not guaranteed, the Mon-
te Carlo Experiment (MCE) provides an approximate 
solution based on a large number of trials (M). In this 
paper, a confidence value (δ) of 0.01, and an accuracy 
of 0.007 (ε) is adopted. Then, from (26), it is neces-
sary to make 1 000 simulations. Hence, 1 000 values 
of each parameter ranging from 0 to 1 were simulat-
ed. This parameter range ensures convergence to zero 
tracking error (see the proof of Theorem 2).
The aim of MCE is to find the parameter values (k, K1 

and K2) optimizing a defined cost function. An idea 
widely used in the literature is to consider the cost in-
curred by the tracking error [6, 4]. Let Φ be a desired tra-
jectory, where #Φ is the number of points of such tra-
jectory. Let ( )2#

( ) ( )=0

1=
#x i ref ii

C x xΦΦ   − Φ 
∑  be the squared 

error for the x-coordinate; ( )2#
( ) ( )=0

1=
#y i ref ii

C y yΦΦ   − Φ 
∑  

the squared error for the y-coordinate. Thus, the cost 
function can be represented by the combination of 
them with the aim to reduce the tracking error:

     2#
( ) ( )=0

2

( ) ( )

1=
# .i ref ii i ref iC x x y y

      
      (29) (29)

Thus, the objective is to find k, K1, K2,..., and Kp, in such 
way that CΦ is minimized. To this end, in this work the 
MCE is carried considering p = 0, 1, 2 in (24). The MC 
experiment allows finding empirically the parameter 
values minimizing the cost function.
Below, the considerations made in the MCE are pro-
vided in more detail:
 _ The model mismatch between (1) and the Ship 

behavior is represented by the uncertainty En, with 
high (unknown) order difference.

 _ The simulations are performed using MatLab 
software platform. The simulations are performed 
with p = 1, 2 and will be called C2 and C3, respectively. 
Note that the controller implementation with p = 0 
corresponds to that presented in [19] and it will be 
called C1.

 _ For each controller, 1 000 simulations are carried 
out. All simulations are implemented with the 
same desired trajectory Φ. In this section, an eight-
shaped trajectory is considered. The sampling time 
used is Ts = 0.1s.

 _ For each simulation, the controller parameters are 
constant chosen in a random way, such that the 
roots (ri) of the linear systems defined in the right-
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hand side of (11) and the left-hand side of (20) and 
(23) are ri ∈ (a,b), where b should be < 1 to ensure 
system stability (error convergence) and a > 0 and 
not too low for proper marine vessel response. 
In our case, a = 0.5 and b = 0.99 were empirically 
chosen considering a trade off between the speed 
of convergence to zero of tracking errors and a 
soft ship response. That is, all the roots are ri = 
rand(0.5,0.99).

 _ For p = 0 (controller proposed in [19]), 1 000 
simulations are performed and the controller 
parameter is chosen as k = r1, where r1 is the root of 
the linear system in (11). The k value remains fixed 
during each simulation.

 _ For p = 1, 1 000 simulations are performed again. 
In each simulation, the controller parameters are 
constant chosen according to (20):

1 2

1 2 1 2
1

=
.1=

s

k r r
r r r rK

T
− − + + (30)

 _ For p = 2, 1 000 simulations are performed. In each 
simulation, the controller parameters are chosen 
constant according to (23):

1 2 3

1 2 3 1 2 1 3 2 3
1

1 2 3 1 2 3 1 2 1 3 2 3
2 2

=
2 1=

1= ,

s

s

k r r r
r r r r r r r r rK

T
r r r r r r r r r r r rK

T

+ − − −

− − − − + + + +
(31)

where r1, r2 and r3 are the roots of the linear system 
in (23).

Figure 3(b) shows the results of the 1 000 simulations 
when p = 1. The results show the values taken by the 
cost function for each simulation; scattered values 
are obtained due to the randomness with which the 
parameters were chosen in each simulation. The 
minimum cost obtained for C2 is CΦ = 9.419. Figures 
3(a) and 3(c) shows the trajectory tracking for each 
controller (C2 and C3) in the 1 000 simulations car-
ried out. Figure 3(d) shows that the lowest cost ob-
tained by C3, with p = 2, corresponds to CΦ = 8.161. By 
inspection it can be seen that, in general, all the cost 
values obtained by C3 are under the minimum value 
obtained when p = 1 (C2).

Figure 3 
The results of Monte Carlo Experiment

The analysis of the results shows that the perfor-
mance of the controller improves as p increases. 
Thus, the results obtained by the MCE to choose the 
controller parameters verify the theoretical results 
obtained in the previous section. Table 1 shows the 
summary of the results obtained with each controller 
and the controller parameters used in the minimum 
trajectory cost simulation.

(b) The trajectory cost of C2 for the 1 000 trials

(a) The trajectory of C2 for the 1 000 trials

(d) The trajectory cost of C3 for the 1 000 trials

(c) The trajectory of C3 for the 1 000 trials
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4.3. Simulation Results Considering Model 
Mismatches
In this work, we are especially interested in situations 
for which there is parametric uncertainty in the mod-
el of the vehicle. Typical parameters for which this 

Table 1 
The summary of the Monte Carlo Experiment simulations

Controller \
Results

Minimum 
Cost

Controllers  
Parameters

C2 CΦ = 9.419 k = 0.883 K1 = 0.027

C3 CΦ = 8.161
k = 0.8827 K1 = 0.0269
K2 = 0.0011

uncertainty is high, include mass and added mass for 
underwater vehicles which may be subject to large 
variations according to the payload configuration, and 
friction coefficients that are usually strongly depen-
dent on the environmental conditions [17]. Thus, the 
system is simulated considering model mismatches. 
The model parameters were altered 15% of its nom-
inal value: m11 = 21.5 kg, m22 = 40 kg, m33 = 4.8 kg, d11 =  
4.6 kg/s, d11 = 4.6 kg/s, d22 = 1.15 kg/s-1, d33 = 11.5 kg/s-1.
A sinusoidal reference trajectory is generated with a 
forward velocity of u = 0.1 m/s. The reference trajec-
tory starts at (xref(0),yref(0)) = (3 m,1 m), the sampling 
time Ts used for the simulation is 0.1 sec. and the initial 
position of the ship is (x(0),y(0)) = (−2m,−1m). Figure 
4(a) shows how the ship reaches and follows the ref-
erence trajectory even in the presence of undesirable 
disturbances under the command of C1, C2 and C3. 
As can be seen, the controllers reach and follow the 
desired trajectory without unexpected oscillations. 
Figures 4(b) and 4(c) show that C3 in the sequel has 
the lowest cost error when compared with the rest of 
the controller. By inspection, when the controller has 
two integrators (C3), the tracking error is the lowest 
and present a better performance against unwanted 
disturbances compared with C1 and C2.

4.4. The Simulation Results Under 
Environmental Disturbances

Finally, a curvature test is performed. Three circle 
trajectories with different radius were used in this 
work, as shown in Fig. 5(a). The inner trajectory has 
a radius of r = 5.5 m, the medium one r = 7.5 m and the 
last one r = 10 m. The initial position of the ship is at 
(xref(0),yref(0)) = (−1 m,−3 m) and the trajectory begins 
in the position (x(0),y(0)) = (2 m,−1.5 m).
To verify and illustrate the theoretical results, the 
proposed control law is tested in front of small en-
vironmental disturbances induced by a wave, wind 
and an ocean current [19, 7]. We simulate the con-
trollers C1, C2 and C3 with the same parameters 
of the controller selected above. The environmen-
tal disturbances acting on the surge, sway and yaw 
dynamics are given by Twu = 0.005m11rand(·), Twv = 
0.0025m22rand(·), Twr = 0.02m33rand(·), where rand(·) 
is the random noise with a magnitude of 1 and zero 
lower bound [19, 7]. This choice results in non-zero-
mean disturbances. The above disturbances are rep-
resented as follows:

Figure 4 
The results of simulations considering model mismatches
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(b) The tracking error in x−coordinate

(c) The tracking error in y−coordinate
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The effects of the disturbances introduced on the dy-
namic response are first illustrated in Fig. 5. The ref-
erence trajectory and the results of the controllers are 
shown in Fig. 5(a). As can be seen, all controllers reach 
and follow the desired trajectory. However, the perfor-
mance of controllers with integral action is superior to 
C1 (controller proposed in [19]). Figures 5(b) and 5(c) 
show the plots of the tracking error in the x−coordinate 
and y−coordinate according to each controller used in 
the test for the three curvatures shown in Fig. 5(a).

5. Conclusion
A new control law for trajectory tracking in marine 
vessels under uncertainties was presented. To deal 
with the uncertainties, a new term has been incorpo-
rated into the methodology presented in Serrano et al. 
[19]. This new approach allows reducing the effect of 
uncertainties in the tracking error. To tune the con-
troller, the Monte Carlo experiment was used, and a 
cost function that depends on tracking errors was 
minimized. The proposed controllers are easy to im-
plement, making them suitable for implementation in 
low-profile processors.
To demonstrate the effectiveness of the proposed 
methodology, several simulation tests were carried 
out incorporating different sources of uncertainty. 
The performance of C2 and C3 is noteworthy, while 
the complexity of the algorithms is not excessive. Fi-
nally, the proof of convergence to zero of the tracking 
errors has been included, ensuring that the task being 

performed will be accomplished accordingly.
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Figure 5 
The results of simulation considering environmental 
disturbances
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