
499Information Technology and Control 2017/4/46

Flatness Based Control 
of a HVAC System

ITC 4/46
Journal of Information Technology  
and Control
Vol. 46 / No. 4 / 2017
pp. 499-507
DOI 10.5755/j01.itc.46.4.17697  
© Kaunas University of Technology

Flatness Based Control of a HVAC System

Received  2017/03/03 Accepted after revision  2017/10/31

    http://dx.doi.org/10.5755/j01.itc.46.4.17697 

Corresponding author: arvo@cc.ioc.ee

Arvo Kaldmäe, Ülle Kotta 
Department of Software Science, Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
e-mail: arvo@cc.ioc.ee, kotta@cc.ioc.ee 

This paper studies the flatness-based control of a nonlinear multi-input multi-output heating, ventilating and 
air conditioning (HVAC) system. First, a novel method for checking flatness property is used to verify that the 
given HVAC model is flat and that the flat outputs are the temperature and the humidity ratio of the thermal 
space. Since the flat outputs are also the variables, which one usually wants to control, it is relatively easy to 
construct a flatness-based feedforward control for the HVAC model. We define the appropriate trajectories for 
the flat outputs and then the controller is computed from the parametrization of system inputs in terms of flat 
outputs and their derivatives. The trajectories of flat outputs are chosen such that the temperature and the hu-
midity ratio converge asymptotically from the initial values to the desired values. Simulations are made, which 
show the effectiveness of the approach.
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1. Introduction
Heating, ventilating and air conditioning (HVAC) 
systems are used to control the temperature and hu-
midity ratio in buildings to offer more comfortable 
environment to the occupants. HVAC systems are 
also large energy consumers and thus improvements 
to classical techniques such as ON/OFF and PID con-
trollers, which are not energy efficient, are necessary. 
Popular methods like PID control, LQR control etc. 
require linear models or linear approximations, but 
intrinsically HVAC systems are nonlinear [3, 21]. Dif-

ferent control approaches have been used to achieve 
energy efficient control, but at the same time ensur-
ing occupant comfort. For example, robust control [1], 
intelligent methods like neural networks [8], model 
predictive control (see [16] and references therein), 
adaptive control [5, 11].
In [3] a nonlinear multi-input multi-output HVAC 
model was described, which has been studied a lot 
since then. In [3] an observer is constructed to esti-
mate the states and also the thermal loads, which are 
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viewed as system disturbances. After this a linear 
control law is designed, which also takes into con-
sideration the estimates of thermal loads. In [17], a 
nonlinear controller is designed. First a nonlinear 
decoupling control scheme is developed to decou-
ple temperature and relative humidity of thermal 
space. Then an outer-loop controller (a PD control-
ler) is used for stabilization and control. The paper 
[5] applies the dynamic state feedback linearization 
techniques, after which the linearized system is con-
trolled. Also, they design an adaptive controller to 
cope with the slowly time varying unknown thermal 
loads. Additionally, in [5] a switching mechanism is 
integrated to the system to keep the CO2-concentra-
tion in the system low. In the paper [18] the model 
is extended by adding valve dynamics and then it is 
partially linearized by static state feedback and state 
transformation. After linearization, as in [3], an ob-
server is constructed to estimate the thermal loads 
and finally, a backstepping method is used to control 
the model. Lastly, in [12] the model is extended once 
more by adding dynamics to be able to regulate addi-
tionally the CO2 concentration in the thermal space. 
Then the extended model is linearized by dynamic 
state feedback and an extended state transformation. 
The linearized system is controlled by design of pole 
placement control and linear quadratic regulator, 
which also minimizes the cost function, which rep-
resents the performance characteristic requirements 
as well as the controller input limitations. In [11] a dif-
ferent approach is used. Namely, an adaptive control 
is used to control the given HVAC model.
In this paper, first, we show that the model, given in 
[3], is flat with flat outputs being the temperature and 
the humidity ratio of the thermal space. Since flatness 
property allows to parametrize all the system trajec-
tories by the flat outputs and a finite number of their 
derivatives, by specifying the trajectories for flat out-
puts, one can compute the inputs needed for the flat 
outputs to follow the chosen trajectories from the 
trajectories of the flat outputs and their derivatives 
without solving any differential equations. We choose 
the trajectories for the flat outputs (i.e., for the tem-
perature and the humidity ratio of the thermal space) 
such that they converge asymptotically from the ini-
tial values to the desired values. Then the feedforward 
controller can be directly computed from the parame-
trization of system inputs in terms of flat outputs and 

their derivatives. This is the standard flatness based 
control design, see [9, 10, 14, 20]. Our feedforward 
controller depends only on the initial values, the de-
sired values of the temperature and humidity ratio of 
thermal space and on the selected trajectories. Thus, 
one does not need to measure or estimate the system 
states, unlike in [3, 17, 5, 18, 12], where state feedback 
is used to either control the model or linearize the sys-
tem equations before applying the controller for sta-
bilization and control purposes. The downside of our 
feedforward controller (and flatness-based control 
in general) is that it does not react to possible distur-
bances or modeling errors and thus the disturbances 
have to be included in the model and estimated or 
measured. In fact the same problem appears in the 
papers [17, 5, 18, 12], where the feedback linearization 
is used.
The results of this paper are remotely related to con-
ference paper [4], where analysis of two HVAC mod-
els were performed. It was shown that the model, 
considered also in this paper, is accessible and the 
dynamic state feedback was computed, together with 
extended state transformation, to linearize the model.
The paper is organized as follows. In Section II the 
flatness property is introduced and some preliminary 
results on flatness are given. Also, the mathematical 
approach used to check flatness is described. The 
main results are described in Section III. First, the 
HVAC model is described and its flat outputs com-
puted. Then, the feedforward controller is found. In 
Section IV we describe the simulation results and the 
paper ends with some conclusions.

2. Preliminaries
Consider a continuous-time system described as 

 �� = �(�, �),  (1) (1)

where where �(�): � � � � �� is the vector of state variables, �(�): � � � � �� is the vector of 
input signals and �: � � � � � is real analytic function. 

Below we briefly recall from [6] the algebraic formalism, which we use to describe the 
flatness property and to compute the flat outputs. Let �  denote the field of meromorphic 
functions in finite number of the independent system variables, i.e., {�� �(�)� � � 0}. Then, the 
pair (�� ����)  is the differential field, which usually is denoted simply by � . Over the 
differential field �  one can define a vector space ℰ: = �����{���� ∈ �} spanned by the 
differentials of the elements from �. 

Define for system (1) the non-increasing sequence ℋ� of subspaces of ℰ as follows [2, 
6]  

 ℋ� = �����{��� ��}                               
ℋ� = {� ∈ ℋ������ ∈ ℋ���}�    � � ��  (2) 

The sequence converges after a finite number of steps, i.e., there exists �∗ ∈ ℕ  such that 
ℋ�∗ = ℋ�∗��. Then we define ℋ�: = ℋ�∗. These subspaces play an important role in the study 
of flatness property of system (1), which is shortly discussed next. 

 
2.1  Flatness 
 

Flatness is a system property which is defined as existence of functions � = �(�� �� �� � � � �(�)), 
� ∈ ��, such that � and � can be expressed as functions of � and a finite number of the 
derivatives of �:  

 
� = ��(�� �� � � � �(���))
� = ����� �� � � � �(�)��   (3) 

It is well known, see for example [10], that for continuous-time systems the flatness property is 
equivalent to the possibility to linearize an accessible system by a dynamic state feedback  

 �� = �(�� �� �)
� = �(�� �� �) (4) 

and an extended state transformation � = �(�� �). 
Next we recall some special cases from [2], which are valid for control-affine systems.  
 
Theorem 1  System (1) is linearizable by the static state feedback (i.e., by the feedback 

(4) where ��� � = 0) if and only if all the subspaces ℋ� are integrable and ℋ� = {0}.  
 

Theorem 2  System (1) with � = � � � inputs is linearizable by dynamic state 
feedback (or equivalently, is flat) if and only if ℋ� = {0}.  

 Theorem 2 states that any accessible nonlinear system with one less input than states is 
flat. 
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dependent system variables, i.e., 
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Theorem 2 states that any accessible nonlinear sys-
tem with one less input than states is flat.

3. Flatness Based Control of HVAC 
System

3.1  Model
The model of the HVAC system is taken from [3, 17] 
and described in Fig. 1. 
The differential equations describing the dynamics of 
the HVAC system can be derived from energy conser-
vation principles as follows [3] 

Figure 1 
The model of the HVAC system
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Table 1 
Nomenclature

Parameter Physical description

x1 temperature of thermal space

x2 humidity ratio of thermal space

x3 temperature of supply air

u1 volumetric flow rate of air

u2 flow rate of chilled water

hw enthalpy of liquid water

WO humidity ratio of outdoor air

hfg enthalpy of water vapor

Vhe volume of heat exchanger

WS humidity ratio of supply air

Cp specific heat air

TO temperature of outdoor air

MO moisture load

QO sensible heat load

VS volume of thermal space

ρ air mass density

Therefore, by Theorem 2, system (5) is flat or equiva-
lently dynamic feedback linearizable. However, com-
putation of the flat outputs is still needed, which, in 
general, is a difficult problem.
Here we use the decomposition procedure analogous 
to that, described in [13] for discrete-time systems, to 
derive the flat outputs for system (5). The decomposi-
tion results in a lower-order subsystem of (5), whose 
flatness property implies flatness of the system (5). 
Also, the flat outputs of the subsystem are the flat out-
puts of the original system (5). Thus, instead of find-
ing the flat outputs of the system (5), we can find the 
flat outputs of the lower dimensional subsystem.
To find the decomposition, we are looking for a state 
transformation 

 
 and an input transforma-
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3.3.  Tracking Control
To find the control input, which drives the system 
output y to a desired value, one can utilize the rela-
tions (3). Namely, if we want the output y to follow the 
trajectory yref, then, assuming that yref is k-times dif-
ferentiable, one can compute the desired input from 
(3) by substituting yref and its derivatives to Fu. Note 
that one should also ensure that the trajectory yref  
passes the initial point y(0).
We have shown that the temperature of the thermal 
space y1 and the humidity ratio of thermal space y2  
are the flat outputs of system (5). To continue, we 
need to find the relations (3), which can be found from 
the following equations: 
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The functions Fx and  Fu in (3) are found by solving the 
equations (8) in x and u: 
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−���� �(�� − ��) + 60������(�� − ��)               
+1.667 × 10�����). 

  
                                         (9)

Note that we have not replaced u1, u1
.  and x3 in the ex-

pression of u2 in (9) for the reason to have visually 
compact expressions.

Our goal is to obtain constant values r1 and r2 for the tem-
perature and humidity ratio of thermal space, respec-
tively. To do that, the reference trajectories are chosen as 

   
   

                                          

                                                       

  

 (9) 

 ��� = (��(0) − ��)���� + ��
��� = (��(0) − ��)���� + ��.  (10) 

 

 
���� = −�(��(0) − ��)����

���� = ��(��(0) − ��)����  (11) 

(10)

Table 2 
Numerical values for system parameters

Parameter Value Unit

hw 340.78 Btu/lb

 WO 0.018 lb/lb

hfg 1078.25 Btu/lb 

Vhe 60.75 ft3

WS 0.007 lb/lb 

Cp 0.24 Btu/lb°F 

TO 85 °F

MO 166.06 lb/hour

QO 289897.52 Btu/hour 

VS 58464 ft3 

ρ 0.074 lb/ft3 

The reference trajectories (10) pass the initial points, 
are two times differentiable and converge asymptoti-
cally to the values r1 and r2, respectively. Thus, y1r and  
y2r in (10) are useful for achieving our goals. Since in (9) 
one has derivatives of y up to the order 2, we need to 
compute the first and second derivatives of y1r and y2r: 

   
   

                                          

 
���� � �������� � �������

���� � �������� � �������  (11) (11)

for i = 1,2. Substituting yir, i = 1,2, and their derivatives 
to the expressions of u1 and u2 in (9) results in a feed-
forward control that yields the trajectories (10) for 
y1= x1 and  y2= x2.

4. Simulation Results
The numerical values of all the system parameters 
used in the simulations are given in Table 2. The same 
values have been used also in [12], which makes com-
parisons with those results possible. In all the simula-
tions the initial values were selected as: x1(0) = 76°F, 
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x2(0)=0.021lb/lb and x3(0) = 55°F. The desired values 
for the temperature and humidity ratio of thermal 
space are 71°F and 0.0092lb/lb, respectively. 
The controller is computed by substituting the refer-
ence trajectories, given by (10), and their derivatives, 
given by (11), to the expressions of u1 and u2 in (9). By 
theory, this controller yields the trajectories (10) for 
the temperature y1 and humidity ratio y2 of thermal 
space. Theory is confirmed by simulations seen in Fig. 
2 for three different values of the parameter a in (10).
It is also interesting to see, how the respective system 
inputs change over time, see Fig. 3. As expected, if we 
want the temperature and humidity ratio to converge 
faster to the desired values, then the respective inputs 
have bigger values, which refers to bigger energy us-
age. The balance between the two should be achieved 
by choosing the parameter a appropriately.
In the papers [5, 18, 12] the input signals u1 and u2 in (5) 
are implemented by using liquid valves and therefore 
the valve dynamics, given by the transfer functions 

Figure 2 
Outputs y1 and y2 for different values of parameter a
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applied to the plant, � = ���, ��)� is the input applied to the actuator and ��, ��, �� and �� 
are constants. Similar flatness-based control as for system (5) can be carried out for the extended 
system (5), (12). In fact, since �� and �� are still the flat outputs of the extended system, then 
the only difference compared to the system (5), is that in (3) there is an additional relation ��, 
which describes how the variables �  are expressed in terms of the flat outputs and their 
derivatives. 

(12)

is added to the model (5). In the extended system 
(5), (12) u = (u1, u2)T is the control input applied to 
the plant, v = (v1, v2)T  is the input applied to the ac-
tuator and k1, k2, τ1 and τ2 are constants. Similar flat-
ness-based control as for system (5) can be carried 
out for the extended system (5), (12). In fact, since x1 
and x2 are still the flat outputs of the extended system, 
then the only difference compared to the system (5), 
is that in (3) there is an additional relation Fv, which 
describes how the variables v are expressed in terms 
of the flat outputs and their derivatives.
Making the simulations with the same conditions 
as above and taking k1 = k2 = 5, τ1 = τ2 = 0.008 yields the 
same results for the system outputs (see Fig. 2) and 
inputs u (see Fig. 3). The values of the actuator inputs 
v can be seen in Fig. 4. Although the simulations are 

Figure 3
Input values, that drive the outputs into desired values
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slightly different, the values of the inputs v required 
to achieve the desired room temperature are consid-
erably smaller than those in [18]. Compared to the re-
sults of [12] in our simulations the outputs converge 

to the desired values similarly, but as mentioned 
in the Introduction, our controller does not need 
the measurements or the estimations of the system 
states, whereas the controller in [12] does.
  

5. Conclusions
It was shown that a particular model of a HVAC sys-
tem, studied in many other papers, is flat with flat out-
puts equal to the temperature and humidity ratio of 
thermal space. This fact was utilized to design a flat-
ness based feedforward controller, which drives the 
system outputs (flat outputs) to the desired values. A 
big advantage compared to many other results is that 
our controller does not need the measurements or the 
estimations of the system states.
Flatness property has been used also in many other 
areas of control. For example, in the paper [7] a meth-
od was described, which combines the flatness for-
malism for trajectory generation with the nonlinear 
model predictive control (NMPC) for constraint han-
dling. Thus, in the future studies it would be interest-
ing to see, how the combination of flatness and NMPC 
can be used in controlling HVAC systems. Note that 
flatness can also be used to simplify the optimization 
problem in NMPC [15, 19]. In this article, we have 
fixed the reference trajectory, but one may be able to 
use the NMPC to find an optimal trajectory.
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Actuator input values for the extended system
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This paper studies the flatness-based control of a nonlinear multi-input multi-output heating, ventilating and 
air conditioning (HVAC) system. First, a novel method for checking flatness property is used to verify that the 
given HVAC model is flat and that the flat outputs are the temperature and the humidity ratio of the thermal 
space. Since the flat outputs are also the variables, which one usually wants to control, it is relatively easy to 
construct a flatness-based feedforward control for the HVAC model. We define the appropriate trajectories for 
the flat outputs and then the controller is computed from the parametrization of system inputs in terms of flat 
outputs and their derivatives. The trajectories of flat outputs are chosen such that the temperature and the hu-
midity ratio converge asymptotically from the initial values to the desired values. Simulations are made, which 
show the effectiveness of the approach.

Straipsnyje nagrinėjama plokštumu grįstos netiesinių daugybinės įeigos ir išeigos šildymo, ventiliavimo ir oro 
kondicionavimo (HVAC) sistemos kontrolė. Pirma, panaudojamas naujas plokštumo savybių tikrinimo metodas, 
skirtas patvirtinti, kad HVAC modelis yra plokščias ir kad plokščiosios  išeigos yra šiluminės erdvės temperatūros 
ir drėgmės santykis. Kadangi plokščiosios išeigos taip pat apima kintamuosius, kuriuos įprastai ir norima kontro-
liuoti, yra sąlyginai nesudėtinga sukurti plokštumu grįstą HVAC modelio perdavimo pirmyn valdymą. Autoriai 
įvardina tinkamas plokščiųjų išeigų trajektorijas, tuomet, atsižvelgdami į plokščiąsias išeigas ir jų išvestinius ele-
mentus, iš sistemos įeigų parametrizavimo  apskaičiuoja valdiklį. Plokščiųjų išeigų trajektorijos pasirinktos taip, 
kad temperatūros ir drėgmės santykis asimptomiškai konverguotų iš pradinių verčių į norimas. Atliktos simulia-
cijos atskleidžia siūlomo modelio efektyvumą.

Summary / Santrauka


