ISSN 1392 — 124X, ISSN 2335 — 884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.2

A Memetic Algorithm for Solving Two Variants of the Two-Stage
Uncapacitated Facility Location Problem

Stefan MiSkovic, Zorica Stanimirovié¢

Faculty of Mathematics, University of Belgrade,
Studentski trg 16/1V, 11 000 Belgrade, Serbia
e-mail: stefan@matf.-bg.ac.rs, zoricast@matf.bg.ac.rs

crossref hitp:/dx.doi.org/10.5755/01 itc.42.2.1768

Abstract. This paper deals with a T wo-Stage Uncapacitated Facility Location Problem (TSUFLP), which has
important applications in designing telecommunication systems. Given a set of demand points and a set of possible
locations for the first and second level concentrators (switches, multiplexors), the goal of the TSUFLP is to define the
structure of two-level concentrator access network, such that the total cost of establishing such a network is minimized.
We consider two variants of the TSUFLP from the literature and propose an efficient memetic algorithm (MA), based
on hybridization of an evolutionary approach and two local-search heuristics. A greedy heuristic is incorporated in the
MA frame for efficient calculation of the fitness function, which additionally decreases the overall MA running time.
The described MA approach is benchmarked on test instances of medium and large dimensions from the literature,
which are adapted for the TSUFLP and involve from 50 to 500 user nodes. On these instances, the proposed MA
method quickly reaches all known optimal solutions, previously obtained by a linear programming method from the
literature or CPLEX solver. In order to test effectiveness of the MA, we further modify some largescale instances from
the literature involving 1000 and 2000 demand points, which can not be solved to optimality. Exhaustive
computational experiments show that the MA provides solutions for the newly generated data set in relatively short
CPU times. Regarding both solution quality and running times, we conclude that the proposed MA represents a

powerful metaheuristic method for solving the TSUFLP and other similar network design problems.

Keywords: memetic algorithms, multi-level facility location problem, combinatorial optimization.

1. Introduction

In the literature there are numerous location
problems related to the design and efficiency of
telecommunication services. Facility location models
have been widely wused in optimization of
telecommunication networks. While designing a
telecommunication network, it is often impractical or
inefficient to transfer data from terminal nodes (users)
directly to one or more central units. In a typical
telecommunication network, concentrator nodes are
inserted between terminals and a central unit, in order
to collect, route and distribute the data flow. In more
complex telecommunication networks, concentrators
are usually located on several levels and may provide
different types of service. A modern telecommuni-
cation network is often structured in a multi-level
hierarchical architecture, which includes different
types of service. However, in most optimization
models that arise from atelecommunication sector,
only a part of network, including one or two levels, is
subject to optimization.

131

The models of a telecommunication network may
include different structures of access network, which
connects terminals and concentrators with a backbone
network. A backbone net work is used to interconnect
concentrators or to connect them to a central unit.
Both access and backbone network may have a star,
ring, path or tree structure and may be fully connected
or meshed, which results in various topologies of
network models.

Regarding the way we evaluate efficiency,
relialability, and economy of scale, models of
telecommunication network may involve different
objective functions. Several factors may be taken into
account when defining an objective function: the costs
of installing concentrators and central unit, assignment
costs, the cost of operating a network, data transport-
tation costs, the capability to satisfy users’ demands in
a given amount of time, response delay costs, etc.
Some advanced models also involve the costs of
expanding a network over time, which allow the
installation of new concentrators and links over time.
For detailed review on facility location models in
telecommunication sector we refer the reader to [24].

In the literature, one can find various multilevel
location problems that arise from telecommunication
sector and other real-life systems. A multi-level
facility location model is needed whenever facilities to
be located may be grouped in levels by different
properties and may interact with each other, such that
it is not possible to locate facilities independently at
each level. Some applications of multi-level facility
location problems are: health care delivery systems
[22], [23], [38], [53], solid waste disposal systems [3],
education systems [43], [58], emergency medical
services [37], [50], production-distribution systems
[11], [57], [61], and others. Up to now, several
attempts have been made to classify multi-level
location problems with respect to different network
properties, such as the number of levels, the type of
facility hierarchy, flow pattern, service variety, spatial
configuration, horizontal interactions, etc (see [17],
[44], [51]).

Since network’s structure and properties may
change over time, recent studies on multi-level facility
location problems involve dynamical aspects.
Melachrinoudis and Min [40] deal with a two-level
facility network structure, considering the possibility
of dynamic relocation of an existing facility during a
planning horizon. Hinojosa et al. [28] consider a
dynamic variant of the twoechelon multicommodity
capacitated plant location problem. The model
proposed in the paper by Canel et al. [9] involves the
possibility of reopening a plant in more than one time
period. Dias et al. [19] present uncapacitated and
capacitated dynamic multi-level location models,
which consider the possibility of a facility being
opened, closed, and reopened more than once during
the planning horizon.

In this paper, we consider a multilevel facility
location problem, named the Two-Stage Uncapacitated
Facility Location Problem (TSUFLP). We start with a
given set of locations of terminals, a set of potential
locations for installing the first-level concentrators and
a set of potential sites for locating the second-level
concentrators. The objective is to choose locations on
the first and second level for installing certain number
of concentrators, and to make necessary assignments
of each terminal to an installed first-level concentra-
tors, which further have to be assigned to one of the
concentrators established at locations on the second-
level. These assignments, as well as the installation of
concentrators, assume certain fixed costs. The goal of
the problem is to establish a two-level telecommuni-
cation network, such that the sum of assignment and
installation costs is minimized. No capacity restriction
is assumed in the network. The problem involves a
single allocation scheme, which means that each
terminal is assigned to exactly one, previously esta-
blished concentrator on the first-level, while each
concentrator is assigned to at most one, previously
located concentrator on the second level.

There is a meaningful number of papers in the
literature devoted to the TSUFLP and its variants. The

132

S. Miskovi¢, Z. Stanimirovi¢

problem was studied by Chardaire et al. in [12], as a
natural extension of the uncapacitated facility location
problem (UFLP). The authors proposed two integer
formulations of the problem and developed a
Lagrangian relaxation method (LR) to compute lower
bounds on the optimal value of linear programming
formulations, and feasible solutions of integer
programming models. Chardaire et al. further used a
simulated annealing algorithm (SA) to improve some
of the upper bounds returned by the Lagrangian
relaxation [12]. The combination of the LR and SA
approaches provided low differences in upper and
lower bounds on LP formulations, when solving
problem instances with up to 1501 ocations of
terminals, first and second level concentrators.
Landete and Marin [32] considered the TSFULP
on a supply network consisting of production plants,
depots, and customers. They formulated the TSUFLP
as a set packing problem, and used its characteristics
to develop new facets for the associated polyhedron.
The proposed formulations with triple-indexed
variables cover the transportation of the product from
the production plant to the final destination and
involve demands for each customer [32]. A solution
procedure based on families of facet-defining
inequalities for the problem under consideration was
also described in [32]. Computational tests were
carried out on modified smaller size one-level facility
location instances, involving up to 50 1 ocations of
customers, plants on the first level, and depots on the
second level. Obtained solutions show that the applied
cuts additionally improved the formulations from [32].
Many other variants of the TSUFLP have been
studied in the literature up to now. In the paper by
Helm and Magnanti [27], it is assumed that all con-
centrators are assigned to a central unit, which implies
additional costs for establishing the network. The
study by Chung et al. [15] considers a fully connected
backbone network of concentrators, and assumes that
each terminal is connected to each concentrator. This
case was further studied by Current and Pirkul in [16],
who proposed two heuristic methods based on
Lagrangean relaxation. Matheus et al. [39] imposed a
limit on the number of concentrators to be installed,
and proposed a solution technique based on simulated
annealing. In the study by Pirkul and Nagarajan [46],
the authors considered am inimal spanning tree
structure for the backbone network of concentrators
and develop solution methods inspired by Lagrangean
relaxation. Marin and Pelegrin in [36] imposed
capacity conditions on the first-level concentrators. By
using Lagrangian relaxation, lower bounds and
heuristic solutions were obtained for two variants of
the capacitated two-stage location problem. Another
capacitated variant of the TSUFLP was studied by
Wildbore in [62]. Wildbore proposed a combination of
Lagrangean relaxation and branch-and-bound
technique was as a solution method to the considered
problem [62]. A capacitated model of a twolevel
freight distribution system was considered by Bocca et

A Memetic Algorithm for Solving Two Variants of the Two-Stage Uncapacitated Facility Location Problem

al. in [6]. The problem was decomposed in several
sub-problems and at abu-search heuristic was
efficiently applied to the composing subproblems.

In this paper, we propose an efficient memetic
algorithm (MA) for solving two wvariants of the
TSUFLP, which are presented in [12] and [32]. The
proposed MA uses binary representation of solutions
and appropriate evolutionary operators. A greedy
heuristic method is applied for calculating the fitness
function of each potential solution. Two local search
heuristics are incorporated in the MA frame, directing
the algorithm to promising search regions. The MA is
further enriched with several strategies, which
preserve the diversity of solutions in the population
and prevent a premature convergence of the algorithm.
Finally, the proposed MA is benchmarked on the set of
newly generated TSFLUP test instances, including
challenging large-scale problem instances with up to
2000 locations of terminals. The MA solutions are
compared with optimal solutions obtained by CPLEX
12.1 or existing exact methods. Presented computa-
tional results clearly indicate the robustness and
efficiency of the proposed memetic algorithm for
solving the TSUFLP.

2. Mathematical formulations

In this paper, we first consider the integer
formulation of the TSUFLP given in [12]. Two levels
of locations for concentrators are involved in the
network: each terminal is connected to a concentrator
located on the first level, which is further connected to
at most one concentrator located on the second level.
All concentrators on the second level are connected to
a central unit (see Figure 1). As it can be seen from
Figure 1, the considered model has star topology for
both access and backbone networks (star-star
network).

The mathematical model from [12] uses the
following notation:

e N denotes the set of locations of terminals;

e M is the set of possible locations for installing

first-level concentrators;

e K represents the set of possible locations for
establishing second-level concentrators;

e (;jis the cost of assigning terminal at location
i € N to a concentrator at location j € M on the
first-level;

e Bj represents the sum of installing
concentrator at location j € M on the first-level
and connecting it to the concentrator at location
k € K on the second level;

e F, denotes the costs of installing a concentrator
at site k € K on the second-level.

Three sets of decision binary variables are used. A
decision binary variable x; ; € {0,1}, i €N, j € M is
equal to 1 if terminal ati € N is assigned to concen-
trator installed at location j € M on the first level, and

133

0 otherwise. A decision binary variable y;, € {0,1},
j €M,k € K is equal to | if a concentrator at location
j € M on the first-level is connected to a concentrator
at location k € K on the second level, and 0 otherwise.
A decision binary variable z,, € {0,1}, k € K takes the
value of 1 if a concentrator is installed at location
k € K on the second level, and 0 otherwise.

For sake of simplicity, in the remainder of the
manuscript, a concentrator that is installed at one of
the potential locations from the set M will be referred
as a first-level concentrator. Similarly, a concentrator
that is established at one of the potential locations
from the set K will be referred as a second-level
concentrator.

Using the notation mentioned above, the TSUFLP
can be formulated as:

minz Z Cijxij + Z Z By + Z Fiezy (1)

iEN jEM JEM keK kek
subject to:
injzl foreveryi € N)
jEM
xUSZyjk foreveryi € N,jEM 3)
keK
Yjik < zx foreveryj€ M,k €K 4)
Z Vik <1 foreveryjeM 5)
kek
x;; € {0,1} foreveryi € N,jEM (6)
Vjk €{0,1} for every j € M,k € K (7)
z, €{0,1} foreveryi €N (8)

Central unit

Terminal node

Concentrator on the second level

Concentrator on the first level

Figure 1. Star-star network

The objective function (1) minimizes the sum of
costs of establishing the concentrators at locations on
the first and second levels, and the costs of assigning
terminals to first-level concentrators and assigning
first-level concentrators to secondlevel concentrators.
Constraints (2) guarantee that each terminal is
allocated to exactly one concentrator located on the
first level, which is further connected to a concentrator
established on the second level (3). Each first-level

concentrator is assigned to at most one second-level
concentrator, which is ensured by constraints (5) and
(4), respectively. Finally, constraints (6), (7) and (8)
indicate binary nature of variables x;;, yj, and z,
respectiveely. The TSUFLP is an NP-hard optimiza-
tion problem, since it represents a generalization of the
UFLP, which was proved to be NP-hard in [31].

Figure 2. Locations of terminals and potential locations
for concentrators on the first and the second
level (N =5M =3 and K = 2)

L]
[]
L]

[]
[]

Example 1. Consider a network with |N| =5
terminal nodes (t;,t,,ts,ts,ts5), |M| = 3 potential
locations for first-level concentrators (p;,p,,ps) and
|[K| =2 potential locations for second-level
concentrators (g4, q5), as it is shown in Figure 2. The
assignment costs of terminals to firstlevel concentra-
tors are given in Table 1, while the costs of installation
of first-level concentrators and their assignments to
second-level concentrators are presented in Table 2.
Finally, the costs of establishing second-level
concentrators q; and q, are equal to 20a nd 16,
respectively.

Table 1. The assignment costs of demand nodes to
concentrators on the first level

Pi P2 P3
t 12 22 18
t 14 19 20
13 20 31 13
ty 22 21 2
ts 17 24 9

Table 2. The costs of installation and assignment of
concentrators on the first level to concentrators on the
second level

91 92
1 29 12
D2 28 31
D3 21 13

The optimal solution of Example 1 is presented in
Figure 3. Concentrators p; and p; are installed on the
first level, while concentrator g, is established on the
second level. Terminal nodes t; are t, assigned to p,,
while t3, t, and t5 are as-signed to p;. Both first-level
concentrators p; and p; are allocated to the second-
level concentrator g, . The objective function that
corresponds to optimal solution takes the value of 91.

134

S. Miskovi¢, Z. Stanimirovi¢

12
14

13

.2
9

13

LI

Figure 3. Optimal solution for Example 1

In the paper by Landete and Marin [32], a model
of a supply chain network is considered. The model
involves a set of locations of customers — N, aset of
potential locations for depots — M and as et of
potential locations for plants — K . Note that a
customer’s location in this model corresponds to a
location of a terminal node in the model by [12].
Potential locations for depots and plants correspond to
the possible locations of first-level and second-level
concentrators from [12], respectively. Installing a
depot at location j € M assumes certain location costs
fj - Similarly, building a plant at location k € K
requires location costs g, . A customer at location
i € N requires D; > 0 units of a product. Allocation
costs considered in [12] correspond to transportation
costs in [32]:

e dy; > 0is the cost of transporting one unit of
product from a plant located at k € K to a
depot located at j € M,

e ¢;j > 0is the cost of transporting one unit of
product from a depot established atj € M to a
customer ati € N.

Note that in this model, location costs for installing
depots are considered separately from allocation costs,
while in the model by [12] installation costs for a first-
level concentrator are added to the costs of allocating
this first-level concentrator to as econd-level
concentrator. One should also observe that the model
in [32] considers the flow originating from a plant
located at k € K, which is further routed via depot
installed at location j € M and distributed to a
customer at i € N (see Figure 4).

Customers

Figure 4. Example of a supply chain network

A Memetic Algorithm for Solving Two Variants of the Two-Stage Uncapacitated Facility Location Problem

The goal of the TSUFLP variant in [32] is to
establish a supply chain network in such a way that
the total costs are minimized. The total costs are
obtained by summing up the transportation costs of
both stages, installation costs of all installed depots
that send products to a customer, and installation costs
of all located plants that send products to an installed
depot.

The formulation of TSUFLP model considered in
[32] uses the following variables:

e binary variable y;, j € M, takes the value of 1
if a depot at location j is installed and 0
otherwise,

e binary variable z;, k € K, takes the value of 1
if a plant at location k is opened, and 0
otherwise,

e three-indexed continuous variable 0 < x;j; <
1,i € N,j € M, k € K, represents a fraction of
the demand of a customer at location i € N,
which is supplied from a plant opened at k €
K, via a depot located at j € M.

Using the notation mentioned above, the

formulation of the TSUFLP from [32] can be written

as:
min Z fiyj + Z IrzZi + Z Z Z CijicXijic (9)

JEM keK iEN jEM keK
subject to:
sziﬁ‘ =1 foreveryi€N (10)
JEM keK
xijj <y; foreveryi€N,j€E M,k €K (11)
Xijk < 2z, foreveryi€N,j€ M,k €K (12)
y; €{0,1} foreveryj €M (13)
z, €{0,1} foreveryk €K (14)

0<xjx <1foreveryi€N,jeE M, k€K (15)

The objective function (9) minimizes the sum of
costs of establishing depots and plants, and the costs
Cijx = D; (ci j+di j) of transporting the demand of a
customer located ati € N from a plant established at
k € K K, via a depot installed at j € M. Constraints
(10) guarantee that the demand of each customer is
supplied via one or more one plant-depot
combinations. Constraints (11) ensure that each
customer is supplied via an installed depot. All
customers are supplied from installed plants only,
which is guaranteed by constraint (12). Constraints
(13) and (14) indicate binary nature of variables y;
and z;,, respectively. Variables x;, are continuous and
take the values from the interval [0;1], which is stated
by constraints (15).

Note that Landete and Marin in [32] proved that
variables x;j are also binary. In the sake of simplicity,
in remaining part of the manuscript, we will identify

135

customers with terminals, depots with first-level
concentrators and plants with second-level
concentrators. Without the loss of generality, it may be
assumed that the demands D; are equal to 1 for every
i € N in the second variant of the TSUFLP model
from [32].

3. Proposed memetic algorithm

The main motivation behind a hybridization of
different algorithms is to exploit the complementary
character of different optimization strategies.
Hybridization is not restricted to a combination of two
or more different heuristic or metaheuristic methods.
It also includes, for example, the combination of exact
algorithms with approximative algorithms, such as
heuristics or metaheuristics. Choosing an adequate
combination of algorithmic concepts may be the key
for achieving excellent performance in solving many
hard optimization problems. In the literature, one can
find powerful hybrid metaheuristic algorithms,
obtained by combining elements from two or more
different optimization techniques. A detailed survey of
state of-the-art hybrid metaheuristics in combinatorial
optimization can be found in [5].

Genetic algorithm (GA) is a problem-solving
metaheuristic, based on the concept of natural
evolution. However, in some cases, a pure GA cannot
provide high-quality solutions, especially when
solving complex combinatorial optimization
problems. In these situations, it is useful to combine a
pure GA with other approaches, in order to improve
GA’s search capabilities. For example, a GA may be
hybridized with particle swarm optimization [52],
[10], simulated annealing [42], extremal optimization
[13], Lagrangian decomposition [47], neural networks
and constraint constraint programming [48], iterated
local search [41], variable neighborhood search [35],
etc.

Memetic algorithm is a hybrid meta-heuristic
method that combines a genetic algorithm and a local
search procedure [45]. Local search directs a genetic
algorithm to promising regions of the search space,
and if applied efficiently, it results in obtaining high
quality solutions in significantly shorter running time.
In general, developing an effective memetic algorithm
is a difficult task, which requires the expertise from
both population based and single solution based
optimization techniques. A certain memetic algorithm
might work well for one specific problem, but it might
perform poorly for others. Different variants of the
MA have been presented in the literature for solving
various combinatorial optimization problems, sece
[18], [14], [7], and [25].

In this paper, we propose a novel memetic
algorithm (MA) that is designed in order to solve the
TSUFLP in an efficient manner, especially large-scale
problem instances. The proposed MA showed to be a
successful hybrid metaheuristic for solving the
TSUFLP, regarding both solutions’ quality and

running times. Its efficiency lies in the tradeoff
between the exploration abilities of the GA and the
solution improvement achieved by two implemented
local search procedures. In the implemented MA
approach, a greedy procedure has been used in order
to evaluate fitness function of each potential solution,
which additionally reduces the overall MA running
time. A new modified uniform crossover operator is
proposed and implemented in the MA frame. Selection
and mutation operators adopted to problem under
consideration are used. Several additional strategies
have been applied in order to increase the efficiency of
the MA. The basic pseudo-code of the proposed MA is
given in Algorithm 1, while detailed description of the
MA components will be presented in the following
subsections.

Note that the proposed memetic algorithm is
constructed in such a way that it can be applied for
solving both variants of the TSUFLP. The only
difference is in the procedure for greedy fitness
calculation, due to different objective functions in the
two considered TSUFLP formulations.

Algorithm 1 The basic structure of the MA
: Read Input()
: Generate Initial Population()

: while not Termination Criteria do
: Greedy Fitness Calculation()

: Selection operator()

: Crossover operator()

: Mutation operator()

: Local Search-Inversion()

O 00 1 O L B W N —

: Local Search-Transposition()
10: end while
11: Write Output()

3.1. Representation of solutions

In our MA implementation, a binary encoding of
individuals is used. Each solution is represented by a
two-segment binary string of length |M| + |K|. The
first segment in the genetic code is of length |M|,
where each bit (gene) corresponds to one potential
location for installing a first-level concentrator. The
second segment is of length |K| and it encodes
potential locations for the secondlevel concentrators.
The bit value of 1 in the genetic code denotes that
particular concentrator is installed, while 0 shows it is
not.

Since terminals and first-level concentrators can be
assigned only to established first-level and second
level-concentrators, respectively, from the genetic
code we only obtain the set of locations of installed
concentrators on both levels. From the first segment of
the genetic code, we read the locations of installed
first-level concentrators. From the second part of the
genetic code, we read the locations of the established
second-level concentrators, which give us the values
of variables zy, k € K.

136

S. Miskovi¢, Z. Stanimirovi¢

For instance, the genetic code (101]01)
corresponds to optimal solution presented in Figure 3.
Bit values in the first segment of the genetic code
imply that concentrators are installed at locations 1
and 3 on the first-level. From the second segment, we
conclude that only concentrator at location 2 is
installed on the second level. This further implies that
zy=0and z, = 1.

3.2. Fitness function calculation

Fitness function is used for evaluating the quality
of individuals in the population. The calculation of a
fitness function is the most timeconsuming part of the
algorithm, since the fitness has to be determined for
each individual in each MA generation. An inefficient
fitness calculation may influence the algorithm’s
running time significantly. In order to ensure the MA’s
efficiency, we have used a greedy heuristic to
calculate the fitness function of an individual in the
MA population.

The applied greedy procedure for the first variant
of the TSUFLP [12] starts from the sets of locations of
installed first-level and second-level concentrators,
obtained from an individual’s genetic code. For each
terminal node at i € N, the procedure tries to find the
its best assignment to a concentrator installed at some
location j € M on the first level. Once the best
allocation of a terminal node ati € N to an installed
concentrator at j € M is found, the value of x;; is set
to 1, the corresponding cost C;; is added to the fitness
value, and the location j € M of the installed first-
level concentrator is marked as used.

The same procedure is performed in order to find
the best assignment of each concentrator installed at
location j € M on the first level to an established
concentrator at location k € K on the second level.
When this best assignment (in the sense of minimal
assignment costs) is found, the value of y; is set to 1,
the cost By is added to the fitness function, and the
location k € K of the installed second-level
concentrator is marked as used. Fixed costs Fj, for all
used locations of second-level concentrators k € K are
added to the fitness value.

Finally, we consider all locations of the installed
first-level and second-level concentrators, which are
not marked as wsed. On these locations the
concentrators are being uninstalled, i.e. the
corresponding indices in the genetic code are changed
from 1 to 0. By uninstalling concentrators on locations
that are not used, we additionally help the algorithm to
converge to well-fitted solutions. The pseudocode of
the Greedy Fitness function calculation for the first
variant of the TSUFLP is presented in Algorithm 2.

Similar procedure for fitness calculation is applied
in the the case of the second variant of the TSUFLP.
The procedure, named Greedy Fitness function
calculation 2, is presented in Algorithm 3. In the same
step, this procedure tries to find the best assignment of
a terminal at location i € N to a concentrator installed

A Memetic Algorithm for Solving Two Variants of the Two-Stage Uncapacitated Facility Location Problem

Algorithm 2 Greedy Fitness function calculation 1

1: Get locations of installed first-level and secondlevel
concentrators from the genetic code

2: Fitness =0

3:foralli € N do

4: Find the best assignment of a terminal at location i
to a first-level concentrator installed at location
JEM

5: Add the cost of the found best assignment to
Fitness

6: Mark location the j of installed first-level

concentrator in the found best assignment as used
7: end for
8: for allj € M do
9: if the location j of installed first-level concentrator
is used then

10: For the installed first-level concentrator at lo-
cation j find the best assignment to an installed
concentrator at some location k € K on the
second level

11: Mark the location k of the installed secondlevel
concentrator in the found best assignment as used

12: Add the cost of the found best assignment to
Fitness

13: endif

14: end for

15: for all k € K do
16: if location k of the
concentrator is used then

installed second-level

17: Add the cost of installing the second-level
concentrator at k to Fitness

18: end if

19: end for

20: for all j € M do

21: if a first-level concentrator at location j is installed,
but j is not used then

22: Uninstall the first-level concentrator at location j

23: endif

24: end for

25:for allk € K do

26: if a second-level concentrator at location k is
installed, but k is not used then
27: Uninstall the second-level concentrator at
location k
28: endif
29: end for
30: return Fitness

at some location j € M on the first-level and to a
concentrator installed at some location k € K on the
second level. After the best allocations for a terminal
at i € N are found for each i € N the values of x;j;
are determined and corresponding costs C;j are added
to the fitness value. Locations j € M and k € K with
installed concentrators on the first and second level,
respectively, are marked as used. Fixed costs f; and
gi for all installing concentrators at j €] and k € K
are added to the fitness value. Finally, installed
concentrators on locations on the both levels that are
not marked as used are being uninstalled.

137

Algorithm 3 Greedy Fitness function calculation 1

1: Get locations of installed first-level and second-level

concentrators from the genetic code

2: Fitness =0

3:foralli € N do

4: Find the best assignment of a terminal at location i
to a concentrator installed at location j € M on the
first level to a concentrator installed at location
k € K on the second level

5. Mark location the j € M and k € K in the found
best assignment as used

6: Add the cost of the found best assignment to

Fitness
7: end for
8: for all j € M do
9: if location j of installed first-level concentrator is
used then
10: Add the cost of installing the first-level concen-
trator at location j to Fitness
11: end if
12: end for
13: for all k € K do
14: if location k of the installed second-level concen-
trator is used then
15: Add cost of installing the second-level concen-
trator at k to Fitness
16: end if
17: end for
18: for all j € M do
19: if a first-level concentrator at location j is installed,
but j is not used then
20: Uninstall the first-level concentrator at location j
21: endif
22: end for
23: for all k € K do
24: if a second-level concentrator at location k is
installed, but k is not used then
25: Uninstall the second-level concentrator at
location k
28: end if
29: end for
30: return Fitness

3.3. Generating Initial Population

In order to ensure the diversity of genetic material,
an initial MA population, numbering Np,, = 90
individuals, is randomly generated. Due to different
nature of two segments in the individual’s genetic
code, we have set different probabilities for generating
bits with the value of 1 in each segment. The
probability of generating 1 in the first segment is set to
0.35, while in the second segment it is set to 0.25. The
pseudocode of this step of the MA is presented in
Algorithm 4.

3.4. MA operators

The MA implementation uses a fine-grained
tournament selection (FGTS), which involves
tournaments of different size [21]. The FGTS operator

Algorithm 4 Generating initial population

1: for all Individual € Population do

2: fori«< 1to|M|do

3: if Prob() < 0.35 {Prob() is a function that re-
turns random number in the range [0,1]} then

4: Genemdiuidual [l] <1
5: else

6: Genemgiviguarli] < 0
7: end if

8: end for

9: for i « |M|+ 1to |M|+ |K| do

10: if Prob() < 0.25 then
11 Genemaiauarlil < 1
12: else

13: Genelndividual [l] <1
14: end if

15: end for

16: end for

depends on areal parametre Fy,,,., representing the
average tournament size. In our MA approach, the
FGTS performs two types of tournaments with
different number of competitors. The size of the first
tournament type is set to [Fiy,-], While the second

type has |[F;y,-] individuals participating. The value of

k1 |F +ko | Fy
1[Frourl+kal L'ourJ’ where
kq+ky

k, and k, represent the number of tournaments of the
first and second type, respectively. Parameter value
Fiour = 5.4 is used in our MA, which means that
k; = 12 tournaments have 6 participants and k, = 18
tournaments have 5 participants.

Most of evolutionary approaches proposed in the
literature use simple one-point crossover operator
[26], [59], [56], two-point crossover operator [1], [29],
or standard uniform crossover [30], [60]. In our MA
implementation, an uniform crossover operator is
applied on selected pair of parents producing two
offspring. This operator is modified to the problem
under consideration and adapted to MA’s
representation scheme. For each pair of parent-
individuals, the modified uniform crossover randomly
generates at wo-segment binary mask of length
[M| + |K|. The first segment of the mask is of length

[M| and in this segment exactly [,/|M || bits on
randomly chosen positions have the value of 1. The

second segment has |K| bits, of which exactly [\/W]
randomly chosen ones have the value of 1. A selected
pair of parent-individuals exchange genetic material
according to bit values of a generated two-segment
mask. If a bit on the i-th position in the mask is equal
to 1, the parents will exchange bits on this position,
otherwise no exchange will occur (see Figure 5).
Crossover is performed with the rate p o = 0.85. It
means that around 85% pairs of individuals will
exchange genetic material and produce offspring.
Offspring generated by modified uniform two-
segment crossover are subject to at wosegment
mutation operator. Mutation is performed by changing
a randomly selected bit in the individual’s genetic

Fiour 18 calculated as Fypy =

138

S. Miskovi¢, Z. Stanimirovi¢

First level Second level

Parents |I|]|]|0|I||]|0|0‘
[1]oJofoo]o u]1]

Mask [1[1]o]1]of1]o]1]
Offspring [l o[ifouf ofoi]

[1]i]oo]o]a]1]o]

Figure 5. Modified uniform crossover

code (0 to 1, 1 to 0). Mutation rates differ for the first
and second part of the genetic code and depend on the
problem size, i.c., the number of potential locations
for concentrators on the first and second levels. In our
implementation, bits in the first segment of the genetic
code are inverted with the probability of 1/|M|, while
the bits in the second segment are inverted with the
probability of 0.5/|K|. These mutation rates are
constant through all generations of the MA.
Generational and elitist replacement strategies are
often used in GA implementations from the literature.
Generational replacement in each generation replaces
entire population with new individuals [2], [8]. Elitist
strategy preserves the best individual from the current
population and replaces the remaining members of the
population with new chromosomes [26], [59], [33].
Another approach is as teady-state generation
replacement with elitist strategy, which is used in our
MA implementation. The idea is to is to keep not only
the best individual, but also some of the highly-fitted
individuals from the current population [55], [56]. In
every MA generation, all individuals are ranked
according to their objective function value, and the

best-fitted ngop individuals from the population are

selected as elite ones. FElite individuals are directly
passing in the next generation, preserving highly fitted

.. 1
genes. Remaining = N, non-elite individuals are
3

subject to MA operators and they are replaced in the
following generation. An individual with the best
objective value is denoted as the best individual,
which is updated through MA generations, whenever
we achieve some improvement of the best objective
value. The advantage of the applied strategy is that
elite individuals do not need recalculation of the
objective value, since each of them is evaluated in one
of the previous generations. In this way, we provide
additional time savings through the MA’s run.

In each MA generation, duplicated individuals, i.c.,
individuals with the same genetic code, are removed
from the population by setting their fitness to an
undesirable value. However, after certain number of
MA generations, it may happen that the number of
similar individuals with the same fitness value, but
different genetic codes, significantly increases. If
these similar individuals are well-fitted, they may
become dominant in the population, increasing the
possibility of premature convergence to al ocal
optimum. In order to avoid a local optimum trap,

A Memetic Algorithm for Solving Two Variants of the Two-Stage Uncapacitated Facility Location Problem

standard approaches in the literature simply delete one
or more individuals with similar genetic codes from
the population, see [20], [34], [54], and [55].

In our MA implementation, we apply another
strategy for solving the problem of similar individuals:
we change their genetic codes until their fitness values
become different. More precisely, we iteratively
change the value of randomly chosen gene, or perform
a transposition of two randomly chosen genes in the
genetic code of a similar individual until we obtain
different fitness value from the initial one. This
strategy is applied only if the number of similar
individuals exceeds some constant (20 in our MA
implementation), because we don’t want to
significantly decrease the quantity of good genetic
material in the population. By using this strategy, we
keep the diversity of genetic material, preserve highly
fitted genes and keep the algorithm away from
premature convergence.

The combination of two stopping criteria is used in
the proposed MA. The algorithm stops if the number
of generations exceeds 200 - |[N| or the number of the
best individual repetitions exceeds 100 - |N|.

3.5. Local Search Procedures

Solutions generated in the GA stage are improved
by two local search heuristics based on inversijon and
transpositions of bits in the genetic code. Both local
search procedures tend to explore regions of the
search space that would otherwise be left unexplored,
hence providing better solutions and avoiding local
optimum trap. Local search heuristics are performed
in an iterative way, in order to find a better choice for
locations of the first-level and second-level
concentrators.

Both local search procedures are applied on each
individual in the population, ensuring that each
individual has equal chances to be improved. An
exhaustive application of a local search on an
individual may consume a large amount of
computation time, due to many calls of fitness
function calculation. However, the efficiency of the
greedy approach, which is used for evaluating
individuals in the MA, allows us to explore the
neighborhood of each individual thoroughly, without
significant prolonging the MA’s total running time.

By applying procedure Local Search-Inversion, we
first try to change the value of randomly chosen bit (0
to 1, 1 to 0) in an individual’s genetic code, looking
for an improvement of the fitness function. The
second improvement heuristic Local Search-Transpo-
sition randomly chooses two bits in the genetic code
and exchange their values, trying to obtain a better
solution. In both local search procedures, it is
necessary to calculate the fitness function of the
modified individual. Only in the case that the new
fitness value is better than the previous one, we
perform necessary changes in the individual’s genetic
code and produce a new, improved individual. The

139

described process is repeated on an individual as long
as we are obtaining some improvement (see
Algorithm 5).

Algorithm 5 Local search heuristics

1: Local search heuristic-Inversion:

2: for all Individual € Population do

3 while exists improvement for Individual do
4 Invert randomly selected bito f Individual
5 end while

6: end for

7: Local search heuristic-Transposition:

8: for all Individual € Population do

9 while exists improvement for Individual do
10: if Prob() < 0.65 then
11: Exchange two randomly selected bits
positioned in range [1, |M|] of Individual

12: else

13: Exchange two randomly selected bits positio-
ned in range [|M|+1,|M|+|K|] of
Individual

14: else if

15: end while

16: end for

By changing the value of a bit from 0 to 1, we
install a first-level or second level concentrator at
location that corresponds to the position of the
inverted bit in the genetic code. If a first-level
concentrator is installed, for each terminal node we
need to check whether it is better to assign it to a
newly installed concentrator, or to keep the current
assignment. If the assignment of a terminal to the new
first-level concentrator is cheaper, we re-assign the
terminal to the new concentrator. Similar re-
assignment procedure is performed in the case that we
have installed a new concentrator at location on the
second level (see Algorithm 6).

If the value of the bit is changed from 1 to 0, it
means that one of previously installed concentrators is
uninstalled. The position of the bit that has been
changed gives us the location of the uninstalled
concentrator (on the first or second level). In the case
that a concentrator at location on the first level has
been uninstalled, it is sufficient to consider only the
subset of terminals that were assigned to it. For each
terminal from this subset, it is necessary to find the
best reassignment to one of the currently installed
firstlevel concentrators. The re-assignment process is
realized in the similar way as in the case of
uninstalling one of the previously established
concentrators at locations on the second-level (see
Algorithm 7).

4. Computational Results

All experiments were carried out on an AMD
Athlon II X4 640 on 3.0 GHz with 4GB RAM
memory, underWindows 7 operating system. The MA

implementation was coded
language.

in C# programming

Algorithm 6 Changing i-th gene of Individual from 0 to 1

1: Genepaiquallil = 1

2: ifi < |M| then

3: forj=1to|N|do

4: if first-level concentrator at location i is better

assignment for terminal at location j then

5: Update the best assignment for terminal at
location j
Update the fitness of Individual

end if

end for

Among all locations of installed second-level con-

centrators find the best assignment for a first-level

concentrator at location i

10: elseif [M| < i < |M| + |K| then

R

11: forj=1to|M|do

12: if second-level concentrator at location i is better
assignment for the first-level concentrator at lo-
cation j then

13: Update the best assignment of first-level con-

centrator at location j

14: Update the fitness of /ndividual

15: end if

16: end for

17: end if

In order to verify the quality of the MA solutions,
the optimization package CPLEX, versijon 12.1, was
used to solve considered instances to optimality (if
possible). The CPLEX 12.1 was run in the same
computational environment as the proposed MA. On
each instance from the considered data set, the MA
was run 15 times with different random seeds.

Algorithm 7 Changing i-th gene of Individual from 1 to
0
1: Genepaiquallil = 1
2: ifi < |M] then
3: forj=1to|N|do
4: if first-level concentrator at location i is better
assignment for terminal at location j then
Among all installed concentrators at loca-
tions on the first level, find the best assign-
ment for terminal at location j
Update the fitness of Individual
end if
end for
. elseif [M| < i < |M|+ |K| then
0: forj=1to|M|do
1 if second-level concentrator at location i is the
best assignment for the first-level concentrator at
location j then

W

— = O 00 3 O\

12: Among all installed concentrators on the se-
cond level, find the best assignment for the
first-level concentrator at location j

13: Update the fitness of Individual

14: end if

15: end for

16: end if

140

S. Miskovi¢, Z. Stanimirovi¢

The MA was first tested on the set of smaller size
instances generated by Landete and Marin for the
second variant of the TSUFLP from [32]. These
problem instances were obtained by modifying GapA,
GapB and GapC instances of dimensions |[N| < 50,
M| <50 and |K| <50 . For more details on
generating modified GapA, GapB and GapC data sets,
we refer to paper [32]. In Tables 3-5, we present the
results of the proposed MA on these data sets, and
provide comparisons with the results of the linear
programming method for solving the TSUFLP, given
by Landete and Marin in [32] (we will denote this
method as LP-LM). The LP-LM method from [32]
uses facets for a polyhedron associated to the problem,
which helps in decreasing the CPU time significantly.
However, as the authors state in [32], the duality gaps
remained large. The LP-LM algorithm was tested on a
Sun Java Workstation W2100z with 2 Opteron dual
processors 2.6 GHz and 4 RAM GB.

The results Tables 3-5 are presented as follows:

e The name of a modified GapA, GapB or GapC

instance;

e Optimal solution of the current instance—
Optimal obtained by CPLEX 12.1 solver;

e The best solution — Sol: of the LP-LM method
from [32]. The mark Opt stands for the cases
when the best solution of the LP-LM coincides
with the optimal solution obtained by CPLEX

12.1;

e Running time od the LP-LM procedure t[s] in
seconds;

e The best solution value of MA method—

MApest , with mark Opt in cases when it
reached optimal solution;

e Average running time in which the MA reaches
the best/optimal solution — ¢[s] in seconds;

e Average number of MA generations — Gen;

e Average percentage gap — ag[%] of the MA
solution from the Optimal solution or M A .43

e Standard deviation — o[%] of the MA solution
from the Optimal solution or M Apeg;.

As it can be seen for Tables 3-5, the proposed MA
method reaches all optimal solutions, previously
obtained by CPLEX 12.1 solver. Average gap and
standard deviation are 0%, which means that the MA
produced optimal solution in each run. Comparing
columns "Optimal" and "LP-LM", we have noticed
several differences in optimal solution values obtained
by CPLEX and solution values of the LP-LM method
from [32]. These differences occur for instances:
GapA09, GapA23, GapB30, GapC09, GapCl7,
GapC20, GapC22 and GapC24. In these -cases,
solution values obtained by CPLEX 12.1 (and later
confirmed by the MA) have lower values than the
ones from [32]. Since we have generated the instances
from GapA, GapB and GapC data set by using the
generator code obtained from the authors of [32], it is
possible that in some cases the generated instances do

A Memetic Algorithm for Solving Two Variants of the Two-Stage Uncapacitated Facility Location Problem

Table 3. Results and comparisons on GapA instances

Instance LP-LM Memetic algorithm

Name Optimal Sol. tfs] MAp.y t[s] Gen ag[%] a[%]
GapAOl 43148 Opt 78 Opt 16.1 16663.9 0.000 0.000
GapA02 45137 Opt 37 Opt 235 24555.7 0.000 0.000
GapAO03 45152 Opt 284 Opt 26.3 27271.7 0.000 0.000
GapA04 48155 Opt 67 Opt 19.0 19911.9 0.000 0.000
GapAO05 42124 Opt 115 Opt 25.8 26666.9 0.000 0.000
GapA06 48135 Opt 156 Opt 21.2 22022.7 0.000 0.000
GapAO07 45148 Opt 127 Opt 19.3 20106.8 0.000 0.000
GapAO08 42169 Opt 59 Opt 25.7 26587.0 0.000 0.000
GapA09 45177 54150 70 Opt 28.4 29642.9 0.000 0.000
GapAl0 45145 Opt 71 Opt 15.0 15703.4 0.000 0.000
GapAll 42105 Opt 100 Opt 28.1 29278.4 0.000 0.000
GapAl2 42166 Opt 181 Opt 21.0 21675.5 0.000 0.000
GapAl3 42203 Opt 190 Opt 20.2 20871.7 0.000 0.000
GapAl4 42177 Opt 81 Opt 14.5 15035.3 0.000 0.000
GapAlS 52149 Opt 53 Opt 222 23172.5 0.000 0.000
GapAlé 48142 Opt 105 Opt 16.6 17185.8 0.000 0.000
GapAl7 42165 Opt 38 Opt 26.5 27618.4 0.000 0.000
GapAl8 42178 Opt 46 Opt 18.3 19123.2 0.000 0.000
GapAl9 42149 Opt 116 Opt 18.2 18996.6 0.000 0.000
GapA20 45175 Opt 142 Opt 15.6 16210.5 0.000 0.000
GapA2l 43183 Opt 97 Opt 21.0 22024.0 0.000 0.000
GapA22 42137 Opt 126 Opt 22.6 23346.9 0.000 0.000
GapA23 42133 42139 67 Opt 18.6 19429.1 0.000 0.000
GapA24 42168 Opt 97 Opt 24.1 25055.5 0.000 0.000
GapA25 42180 Opt 53 Opt 17.0 17696.0 0.000 0.000
GapA26 42169 Opt 52 Opt 24.6 254449 0.000 0.000
GapA27 45170 Opt 32 Opt 17.8 18629.0 0.000 0.000
GapA28 42146 Opt 86 Opt 15.8 16372.4 0.000 0.000
GapA29 43205 Opt 36 Opt 22.6 23470.4 0.000 0.000
GapA30 45138 Opt 130 Opt 23.1 23970.2 0.000 0.000
Average: 96.4 Average 21.0 21791.3 0.000 0.000

not coincide with the ones from [32]. The original set
of instances used in [32] is no longer available, and
therefore, we couldn’t identify the reason why these
differences occur.

Regarding CPU times, the average running time of
the proposed MA is 21.0 seconds for the GapA data
set, 20.9 seconds for the GapB instances and 20.8
seconds for the GapC data set. The average running
times of the LP-LM method are 96.4 seconds, 69.9
seconds and 171.8 seconds for GapA, GapB and GapC
data set, respectively. According to SPEC fp2006
benchmarks (www:spec:org), the machine used for
computational experiments with the LP-LM method in
[32] has around two times slower performance
compared to the configuration used for MA tests in
this study. Having in ming these differences, we may
conclude that the proposed MA is more than two times
faster than the LP-LM method, since the average CPU
time on GapA, GapB and GapC data set is 20.9
seconds for the MA and 112.7 seconds for the LP-LM.

In order to evaluate the MA’s performance for
larger dimensions of the TSUFLP, we have generated
the set of 120 test instances, starting from standard
ORLIB instances [4] and M" instances [49]. These
instances were initially designed for solving the well-
known Uncapacitated Facility Location Problem
(UFLP), or its capacitated variant. We have used 15
ORLIB instances cap, capa, capb, capc and 22 M*
instances to derive medium, large and large-scale
instances for the first variant of the TSUFLP from
[12].

For each UFLP instance with |N| locations of
terminals and |C| potential locations for concentrators,
we have generated several TSFULP instances with
different number of potential locations for
concentrators on the first and second levels, |M| and
|K|, respectively. The numbers |M| and |K| were
chosen such that that |[M| + |K| = |C|. The set C of
potential locations for concentrators in an UFLP

141

Table 4. Results and comparisons on GapB instances

S. Miskovi¢, Z. Stanimirovi¢

Instance LP-LM Memetic algorithm

Name Optimal Sol. tfs] MAp,y t[s] Gen ag|%l] a|%]
GapBO01 52213 Opt 72 Opt 22.1 22821.1 0.000 0.000
GapB02 51150 Opt 69 Opt 28.0 29119.6 0.000 0.000
GapB03 54167 Opt 133 Opt 19.8 20513.4 0.000 0.000
GapB04 66158 Opt 89 Opt 16.0 16828.7 0.000 0.000
GapBO05 53126 Opt 98 Opt 17.9 18683.4 0.000 0.000
GapB06 58151 Opt 34 Opt 16.5 17311.0 0.000 0.000
GapB07 52140 Opt 19 Opt 20.0 20741.0 0.000 0.000
GapB08 51157 Opt 122 Opt 26.4 27316.9 0.000 0.000
GapB09 59121 Opt 73 Opt 133 13833.7 0.000 0.000
GapB10 45139 Opt 47 Opt 28.2 29238.2 0.000 0.000
GapB11 53166 Opt 100 Opt 15.1 15687.4 0.000 0.000
GapB12 49192 Opt 82 Opt 19.5 20367.5 0.000 0.000
GapB13 55154 Opt 49 Opt 253 26408.5 0.000 0.000
GapB14 56147 Opt 61 Opt 26.1 27088.8 0.000 0.000
GapB15 51147 Opt 104 Opt 233 24288.5 0.000 0.000
GapB16 52221 Opt 48 Opt 243 25376.3 0.000 0.000
GapB17 52132 Opt 63 Opt 14.9 15609.4 0.000 0.000
GapB18 52230 Opt 34 Opt 23.8 24607.5 0.000 0.000
GapB19 56125 Opt 77 Opt 222 23191.2 0.000 0.000
GapB20 53150 Opt 65 Opt 23.1 24046.5 0.000 0.000
GapB21 48156 Opt 28 Opt 15.4 16067.3 0.000 0.000
GapB22 48162 Opt 76 Opt 15.9 16717.6 0.000 0.000
GapB23 49152 Opt 91 Opt 21.1 21918.5 0.000 0.000
GapB24 53128 Opt 41 Opt 27.0 28091.2 0.000 0.000
GapB25 45119 Opt 42 Opt 18.6 19401.3 0.000 0.000
GapB26 54136 Opt 93 Opt 14.5 15138.2 0.000 0.000
GapB27 48174 Opt 65 Opt 22.7 23586.2 0.000 0.000
GapB28 52137 Opt 112 Opt 18.4 19297.6 0.000 0.000
GapB29 48196 Opt 79 Opt 27.0 27917.9 0.000 0.000
GapB30 51165 51168 32 Opt 20.6 21398.0 0.000 0.000
Average: 69.9 Average: 20.9 21753.7 0.000 0.000

instance was divided into two subsets: locations on the
first and the second levels. Locations to be placed on
each of the two levels were chosen randomly from the
set C in the original UFLP instance. The costs of
installing concentrators and assignment costs of a
terminal { € M to an installed concentrator at location
Jj € M are taken from the original UFLP instance. We
have also generated the assignment costs of a first-
level concentrator at jEM to as econdlevel
concentrator at k € K, such that possible deviations
from the triangle inequality are relatively small. The
generator of the assignment costs is presented in
Algorithm 8.

Note that CostNM;; and CostNK;, are the costs of
assignment of a terminal at location i € N to a first-
level concentrator at location j € J and a second-level
concentrator at location k € K, respectively. Here

Algorithm 8 Generation Assignment costs

1: for allj € M do

2: for all k € K do

3: min < o

4: max < 0

5: foralli € N do

6: if CostNM;; + CostNK; < min then
7: min « CostNM;; + CostNK;

8: end if

9: if CostNMij + CostNK;, > max then
10: max < CostNM;; + CostN Ky,
11: end if

12: end for

13: u < (max + min)/2

14: CostMK;;, € U[0.65u,1.35u]

15: end for

16: end for

142

A Memetic Algorithm for Solving Two Variants of the Two-Stage Uncapacitated Facility Location Problem

Table 5. Results and comparisons on GapC instances

Instance LP-LM Memetic algorithm

Name Optimal Sol. tfs] MAp.y t[s] Gen ag[%] al%]
GapCO01 42231 Opt 118 Opt 27.7 28733.7 0.000 0.000
GapC02 42193 Opt 385 Opt 25.7 26601.5 0.000 0.000
GapCO03 45129 Opt 264 Opt 252 26118.5 0.000 0.000
GapC04 45162 Opt 77 Opt 17.2 17832.0 0.000 0.000
GapCO05 48113 Opt 185 Opt 15.3 15795.6 0.000 0.000
GapC06 45154 Opt 85 Opt 24.8 25743.5 0.000 0.000
GapC07 45103 Opt 80 Opt 24.1 24956.8 0.000 0.000
GapC08 48126 Opt 80 Opt 26.1 26994.2 0.000 0.000
GapC09 48106 48125 161 Opt 214 22092.7 0.000 0.000
GapC10 42183 Opt 178 Opt 13.4 14040.0 0.000 0.000
GapCl1 47154 Opt 290 Opt 17.4 17968.6 0.000 0.000
GapCl12 45126 Opt 347 Opt 25.0 26014.8 0.000 0.000
GapCl13 45134 Opt 102 Opt 244 25506.0 0.000 0.000
GapC14 42137 Opt 303 Opt 13.5 14047.5 0.000 0.000
GapCl15 42129 Opt 356 Opt 14.5 15022.5 0.000 0.000
GapCl6 45143 Opt 112 Opt 14.6 15141.0 0.000 0.000
GapCl17 51169 51191 42 Opt 213 22093.9 0.000 0.000
GapC18 47191 Opt 228 Opt 13.8 14519.1 0.000 0.000
GapC19 45154 Opt 111 Opt 20.8 21754.0 0.000 0.000
GapC20 42133 45106 205 Opt 25.8 26786.0 0.000 0.000
GapC21 42143 Opt 159 Opt 13.6 14090.2 0.000 0.000
Gap(C22 45158 45161 176 Opt 14.7 15465.4 0.000 0.000
Gap(C23 42169 Opt 43 Opt 24.6 25511.4 0.000 0.000
GapC24 48127 52185 11 Opt 284 29452.8 0.000 0.000
GapC25 45144 Opt 225 Opt 13.0 13427.9 0.000 0.000
GapC26 45164 Opt 196 Opt 20.1 20834.4 0.000 0.000
GapC27 42162 Opt 60 Opt 26.7 27814.6 0.000 0.000
GapC28 47211 Opt 215 Opt 28.5 29433.5 0.000 0.000
GapC29 42128 Opt 230 Opt 24.6 25683.0 0.000 0.000
GapC30 39177 Opt 130 Opt 18.2 18897.7 0.000 0.000
Average: 171.8 Average: 20.8 216124 0.000 0.000

U[0.65u, 1.35u] denotes a uniform distribution on the
interval [0.65u, 1.35u], where u = (max + min)/2,
max = max{CostNMU + CostNKik| iEN,jEM,
k € K}, and min = min{CostNM;; + CostNKy|i €
N,j €M,k €K}

Table 6 shows the results of CPLEX 12.1 solver
and the proposedMAapproach on medium size
instances with |[N| < 100,|M| <92 and |K| <45.
For larger problem dimensions, CPLEX 12.1 was
unable to provide any solutions within 3h of running
time, which was imposed time limit. Therefore, in
Tables 7 and 8 we present the MA results only.

Column headings in Tables 6-8 mean:

e The identifier assigned
TSUFLP instance;

e The name of original ORLIB instance used for
generating a TSFULP instance;

e Instance’s parameters: the number of terminal
nodes — |N|, the number of potential locations
for concentrators on the first level |[M| and the

to aco nsidered

143

number of potential locations for concentrators
on the second level — |K|;

e Optimal solution — Optimal obtained by the
CPLEX 12.1 solver;

e Total CPLEX 12.1 running time — #/s/, in
seconds;

e Number of nodes of the CPLEX 12.1 solver —
Nodes;

e The last five columns contain data related to
the proposed MA method, which are presented
in the same way as in Tables 3-5.

From the results presented in Table 6, it can be
seen that the proposed MA method quickly reached all
optimal solutions on medium size instances,
previously solved by CPLEX 12.1 solver. In average,
CPLEX 12.1 needed 170.073 seconds to solve
problem instances to optimality, while the average
number of CPLEX nodes was 2480.9. The proposed
MA method was around 24.5 times faster, since it
needed 6.931 seconds in average to reach optimal

S. Miskovi¢, Z. Stanimirovi¢

Table 6. Results of CPLEX and MA on medium size TSUFLP instances

Instance CPLEX Memetic algorithm

No Instance |[N| |M| |K| Optimal tfs] Nodes | MAp,y tfs] Gen agl%] o6[%]
A01 cap71 50 12 4 2267611.700 0.291 0 Opt 0.015 5.1 0.000 0.000
A02 cap72 50 11 5 2149399.500 0.222 2 Opt 0.013 2.7 0.000 0.000
A03 cap73 50 10 6 1235119.356 0.014 0 Opt 0.014 2.6 0.000 0.000
A04 cap74 50 9 7 1235119.356 0.014 0 Opt 0.012 1.5 0.000 0.000
A05 capl01 50 20 5 1876623.606 0.870 7 Opt 0.034 14.1 0.000 0.000
A06 capl02 50 18 7 2150745.494 0.847 15 Opt 0.039 19.2 0.000 0.000
A07 capl03 50 16 9 2561284.738 0.932 27 Opt 0.032 13.0 0.000 0.000
A08 caplO4 50 14 11 | 2727064.050 0.381 0 Opt 0.016 6.6 0.000 0.000
A09 capl3l 50 45 5 1923278.219 1.748 26 Opt 0.125 66.4 0.000 0.000
A10 capl31 50 42 8 1773278.219 1.824 41 Opt 0.106 54.4 0.000 0.000
All capl32 50 40 10 | 2395821.538 2.264 19 Opt 0.184 91.7 0.000 0.000
Al2 capl32 50 37 13 | 1991443.725 2.921 15 Opt 0.051 20.6 0.000 0.000
Al13 capl33 50 35 15 | 2241911.562 4.770 19 Opt 0.091 47.5 0.000 0.000
Al4 capl33 50 33 17 | 2634635.669 6.823 81 Opt 0.156 67.4 0.000 0.000
Al5 capl34 50 30 20 | 2707135.669 5.175 53 Opt 0.081 39.0 0.000 0.000
Al6 capl34 50 28 22 | 3216485.699 9.260 57 Opt 0.121 57.0 0.000 0.000
Al7 MOl 100 92 8 4226.420 362.740 5567 Opt 12.108 5327.5 0.000 0.000
Al8 MOl 100 90 10 7671.286 745.998 14803 Opt 8.701 39782 0.000 0.000
A19 MOl 100 88 12 4834.337 299.432 4007 Opt 15411 7198.1 0.000 0.000
A20 MOl 100 86 14 6050.172 597.185 11686 Opt 4.536 2101.5 0.000 0.000
A21 MOl 100 8 15 5492915 537.595 8615 Opt 1.790 805.2 0.000 0.000
A22 MO2 100 84 16 7416.173 412.653 3771 Opt 4.161 1956.8 0.000 0.000
A23 MO2 100 81 19 4075.441 366.833 4885 Opt 7.211 34222 0.000 0.000
A24 MO2 100 80 20 5023.186 208.507 3651 Opt 3.367 1537.9 0.000 0.000
A25 MO2 100 77 23 7079.032 431.622 3693 Opt 5.201 2406.6 0.000 0.000
A26 MO2 100 76 24 5218.749 327.743 2884 Opt 10924 5078.8 0.000 0.000
A27 MO3 100 75 25 6669.206 52.359 307 Opt 9.416 4359.9 0.000 0.000
A28 MO3 100 73 27 6690.544 244.677 2325 Opt 4.271 18442 0.000 0.000
A29 MO3 100 72 28 6166.135 197.369 3200 Opt 4.330 1843.3 0.000 0.000
A30 MO3 100 70 30 7681.095 170.932 2230 Opt 16.550 7286.3 0.000 0.000
A3l MO3 100 69 31 8370.142 531.512 4650 Opt 8.647 3726.4 0.000 0.000
A32 MO4 100 67 33 4963.441 284.063 6992 Opt 7.060 3123.6 0.000 0.000
A33 MO4 100 65 35 4963.441 181.151 2223 Opt 7.844 3466.0 0.000 0.000
A34 MO4 100 64 36 5863.441 182.198 2519 Opt 11.846 5153.1 0.000 0.000
A35 MO4 100 63 37 6263.441 263.618 3466 Opt 4.689 2017.6 0.000 0.000
A36 MO4 100 61 39 6320.795 362.340 8246 Opt 28201 12142.8 0.000 0.000
A37 MO5 100 60 40 7077.742 34.436 122 Opt 4.707 19255 0.000 0.000
A38 MO5 100 59 41 6335.654 47.105 452 Opt 13.445 5808.6 0.000 0.000
A39 MO5 100 58 42 5085.654 26.115 422 Opt 31.745 14271.0 0.000 0.000
A40 MO5 100 56 44 3985.654 24.653 245 Opt 30.107 13041.2 0.000 0.000
A4l MO5 100 55 45 7285.654 41.791 396 Opt 26.822 11506.0 0.000 0.000

Average: 170.073 24809 | Average 6.931 3069.2 0.000 0.000

solutions. The maximal CPU time of the MA was
31.745 seconds, in the case of instance A39 (|N| =
100, [M| =55 and |K| = 45). In average, the MA
needed 3069.2 generations before a stopping criterion
was reached.

We further considered larger instances with
[N| <500 demand nodes, |M| <400 potential
locations for concentrators on the first level, and
|K| < 200 potential locations for concentrators on the

144

second level. The CPLEX 12.1 was unable to solve
these instances, due to memory or time limits. From
the results presented in Table 7, it can be seen that
larger TSUFLP instances were solved successfully by
the proposed MA in short CPU times. The maximal
MA running time was 378.143 seconds for instance
B39 (|N| =500, |[M| = 300 and |K| = 200). On the
set of larger problem instances, our MA needed
152.986 seconds and 152.986 generations (in average)

A Memetic Algorithm for Solving Two Variants of the Two-Stage Uncapacitated Facility Location Problem

Table 7. The results of the MA on larger TSFULP instances

Instance Memetic algorithm

No Instance |N| |M| |K| MAp, tfs] Gen ag(%] 6[%]
Co1 capa 1000 94 6 152945133.744 91.335 10068.8 0.000 0.000
C02 capa 1000 93 7 136474427.354 67.619 6859.1 0.000 0.000
Co3 capa 1000 92 8 115073096.128 95.159 10672.4 0.000 0.000
C04 capa 1000 91 9 111702081.201 122.663 12660.2 0.000 0.000
Co05 capa 1000 90 10 119115244.508 76.553 7474.2 0.000 0.000
C06 capa 1000 88 12 100665269.697 57.162 6639.7 0.000 0.000
Co07 capa 1000 86 14 117523041.478 96.733 9609.3 0.000 0.000
Co08 capa 1000 84 16 102031208.697 82.252 9584.0 0.000 0.000
C09 capb 1000 82 18 52924102.150 85.948 9878.8 0.000 0.000
C10 capb 1000 80 20 53080056.537 71.645 8390.8 0.000 0.000
Cl1 capb 1000 78 22 51753302.557 55.327 6723.9 0.000 0.000
Cl2 capb 1000 76 24 48896026.614 93.211 11193.1 0.000 0.000
C13 capb 1000 74 26 48700811.081 51.138 6319.8 0.000 0.000
Cl4 capb 1000 72 28 41783670.435 77.026 9710.0 0.000 0.000
C15 capb 1000 70 30 41828511.147 97.874 12448.5 0.000 0.000
Cl6 capb 1000 68 32 48580219.8475 66.427 8331.4 0.000 0.000
C17 capc 1000 66 34 33337201.9823 62.567 8126.7 0.000 0.000
C18 capc 1000 64 36 32338771.527 88.620 11515.2 0.000 0.000
C19 capc 1000 62 38 35266649.335 98.142 13034.8 0.000 0.000
C20 capc 1000 60 40 31409338.593 70.213 9624.6 0.000 0.000
C21 capc 1000 58 42 34319409.101 104.404 13993.2 0.000 0.000
C22 capc 1000 56 44 34443152.363 111.726 15191.9 0.000 0.000
C23 capc 1000 54 46 30327868.400 86.301 11983.5 0.000 0.000
C24 capc 1000 52 48 30339454.019 78.094 8673.7 0.000 0.000
C25 MS1 1000 980 20 41970.316 517.905 27855.2 0.038 0.049
C26 MS1 1000 970 30 30644.2440 530.684 29686.4 0.000 0.000
C27 MS1 1000 950 50 36743.604 307.328 17226.2 0.000 0.000
C28 MS1 1000 900 100 32281.987 566.629 30701.5 0.000 0.000
C29 MS1 1000 850 150 26816.630 544.257 24221.1 0.025 0.023
C30 MS1 1000 800 200 31750.216 649.724 31738.4 0.000 0.000
C31 MS1 1000 750 250 226233.784 871.152 39109.0 0.000 0.000
C32 MS1 1000 700 300 258529.730 1432.409 59791.9 0.000 0.000
C33 MS1 1000 650 350 260159.418 1383.366 54994.7 0.129 0.230
C34 MS1 1000 600 400 220624.399 1417.818 58312.2 0.046 0.081
C35 MT1 2000 1900 100 73184.559 2385.430 35875.3 0.000 0.000
C36 MT1 2000 1700 300 47816.891 2324.550 27960.7 0.022 0.021
C37 MT1 2000 1500 500 696619.483 2144.032 24985.5 0.014 0.026
C38 MT1 2000 1300 700 705656.536 1836.424 20776.6 0.148 0.189
C39 MT1 2000 1100 900 720792.910 1943.759 20374.2 0.063 0.044

Average: 534.451 19033.8 0.012 0.017

to produce solutions. Standard deviation and average
gap were 0:0%, which indicates good stability of the
proposed MA.

Regarding the fact that large-scale instances often
appear in practice, we have generated 39 instances
with |[N| =1000 , [M|<980 , |K|<400 and
[N| = 2000, |[M| <1900, |K| <900. In Table 8, we
present the MA results on the newly generated, large-
scale data set. The obtained results clearly indicate the
efficiency of the proposed MA approach when solving
problem instances of real-life dimensions. The average

145

MA running time was 534.451 seconds, while the
average number of MA generations was 19033.8. Low
values of average gap (0.012%) and Standard
deviation (0.017%) indicate the stability of the MA
method on the considered large-scale data set.
Although the optimality of the best MA solutions can
not be proven, we believe that the proposed MA
produced high quality solutions on TSFULP instances
of large and large-scale dimensions.

Table 8. The results of the MA on large-scale TSFULP instances

S. Miskovi¢, Z. Stanimirovi¢

Instance Memetic algorithm

No Instance |N| |M| |K| MAp,q tfs/ Gen agl%] c[%]
Co1 capa 1000 94 6 152945133.744 91.335 10068.8 0.000 0.000
C02 capa 1000 93 7 136474427.354 67.619 6859.1 0.000 0.000
Co03 capa 1000 92 8 115073096.128 95.159 10672.4 0.000 0.000
Co04 capa 1000 91 9 111702081.201 122.663 12660.2 0.000 0.000
Co05 capa 1000 90 10 119115244.508 76.553 7474.2 0.000 0.000
C06 capa 1000 88 12 100665269.697 57.162 6639.7 0.000 0.000
Co07 capa 1000 86 14 117523041.478 96.733 9609.3 0.000 0.000
Co08 capa 1000 84 16 102031208.697 82.252 9584.0 0.000 0.000
C09 capb 1000 82 18 52924102.150 85.948 9878.8 0.000 0.000
C10 capb 1000 80 20 53080056.537 71.645 8390.8 0.000 0.000
Cll1 capb 1000 78 22 51753302.557 55.327 6723.9 0.000 0.000
Cl12 capb 1000 76 24 48896026.614 93.211 11193.1 0.000 0.000
C13 capb 1000 74 26 48700811.081 51.138 6319.8 0.000 0.000
Cl4 capb 1000 72 28 41783670.435 77.026 9710.0 0.000 0.000
C15 capb 1000 70 30 41828511.147 97.874 12448.5 0.000 0.000
Cl6 capb 1000 68 32 48580219.8475 66.427 8331.4 0.000 0.000
C17 capc 1000 66 34 33337201.9823 62.567 8126.7 0.000 0.000
C18 capc 1000 64 36 32338771.527 88.620 11515.2 0.000 0.000
C19 capc 1000 62 38 35266649.335 98.142 13034.8 0.000 0.000
C20 capc 1000 60 40 31409338.593 70.213 9624.6 0.000 0.000
C21 capc 1000 58 42 34319409.101 104.404 13993.2 0.000 0.000
C22 capc 1000 56 44 34443152.363 111.726 15191.9 0.000 0.000
C23 capc 1000 54 46 30327868.400 86.301 11983.5 0.000 0.000
C24 capc 1000 52 48 30339454.019 78.094 8673.7 0.000 0.000
C25 MS1 1000 980 20 41970.316 517.905 27855.2 0.038 0.049
C26 MS1 1000 970 30 30644.2440 530.684 29686.4 0.000 0.000
C27 MS1 1000 950 50 36743.604 307.328 17226.2 0.000 0.000
C28 MS1 1000 900 100 32281.987 566.629 30701.5 0.000 0.000
C29 MS1 1000 850 150 26816.630 544.257 24221.1 0.025 0.023
C30 MS1 1000 800 200 31750.216 649.724 31738.4 0.000 0.000
C31 MS1 1000 750 250 226233.784 871.152 39109.0 0.000 0.000
C32 MS1 1000 700 300 258529.730 1432.409 59791.9 0.000 0.000
C33 MS1 1000 650 350 260159.418 1383.366 54994.7 0.129 0.230
C34 MS1 1000 600 400 220624.399 1417.818 58312.2 0.046 0.081
C35 MT1 2000 1900 100 73184.559 2385.430 35875.3 0.000 0.000
C36 MTI1 2000 1700 300 47816.891 2324.550 27960.7 0.022 0.021
C37 MTI1 2000 1500 500 696619.483 2144.032 24985.5 0.014 0.026
C38 MT1 2000 1300 700 705656.536 1836.424 20776.6 0.148 0.189
C39 MTI1 2000 1100 900 720792.910 1943.759 20374.2 0.063 0.044

Average: 534.451 19033.8 0.012 0.017

Computational results presented in Tables 3-8
indicate that the proposed MA represents an efficient
metaheuristic for solving the TSUFLP. The MA
reached all known optimal solutions on smaller and
medium-size test instances that were previously
solved by the CPLEX 12.1 or the LPLM method.
Average gap and standard deviation through all MA
runs were 0%, which proves the reliability of the MA
in producing optimal solutions. Based on presented
results, we believe that the MA would also reach
optimal solutions when solving instances that differ

146

from the ones considered here (if optimal solutions
can be found). On larger and large-scale data sets,
optimal solutions are not known, and therefore, it is
difficult to provide quality guarantees of the obtained
solutions. The stability of the MA on these instances,
reflected in low values of average gap and Standard
deviation, as well as the efficiency and reliability in
providing optimal solutions for lower dimensions of
the problem, may indicate that the MA has produced
high-quality solutions on large and large-scale data
set. Future work may be directed in hybridizing the

A Memetic Algorithm for Solving Two Variants of the Two-Stage Uncapacitated Facility Location Problem

proposed MA with some exact method for the
TSUFLP, in order to obtain optimal solutions on larger
problem instances and to give some quality guarantees
of the solutions. There is also possibility to modify the
proposed MA for solving the multi-level variant of the
considered problem, which is another direction for
future work.

5. Conclusions

In this paper we present a memetic algorithm MA
for solving the two variants of the two-stage
uncapacitated facility location problem. The proposed
MA is based on incorporation of two efficient local
search procedure into an evolutionary algorithm
frame, in order to improve the solution’s quality. The
first local-search is based on inversion procedure,
while the second one performs transposition of
randomly chosen genes in an individual’s genetic
code. Several strategies are additionally applied in
order to improve the MA’s performance.

The proposed MA method was subject to a broad
set of computational experiments on smaller size
problem instances from the literature and on newly
generated benchmark set of medium, larger and large-
scale instances. The MA method showed to be very
efficient in returning optimal solutions, previously
obtained by CPLEX solver, on smaller and medium
size problem instances. For instances of larger and
real-life dimensions, which couldn’t be solved by
CPLEX, the proposed MA provided solutions
efficiently. The average MA’s running time was less
than 9 minutes for the largest considered TSUFLP
instances with 1000 and 2000 demand nodes.

Good performance of the proposed MA on the
considered benchmark data set makes it a valuable
tool for solving the TSUFLP, especially large-scale
problem instances. The investigation of possible use
of the MA approach in other applications needs further
research and may lead to the development of more
advanced memetic algorithms.

Acknowledgement

This research was partially supported by Serbian
Ministry of Science and Technological Development
under the grants no. 174010 and 47017. We are
thankful to M. Landete and A. Marin for providing us
the code for generating modified GapA, GapB and
GapC instances.

References

[1] B. M. Baker, M. A. Ayechew. A genetic algorithm for
the vehicle routing problem. Computers & Operations
Research, 2003, Vol. 30, pp. 787-800.

J. Balakrishnan, C. H. Cheng. Genetic search and the
dynamic layout problem. Computers & Operations

Research, 2000, Vol. 27, pp. 587-593.

(2]

147

[3] A.I. Barros, R. Dekker, V. Scholten. A two-level
network for recycling sand: a case study. European
Journal of Operational Research, 1998, Vol. 110,
pp- 199-214.

J. E. Beasley. Obtaining test problems via internet.
Journal of Global Optimization, 2006, Vol. 8§,
pp- 429-433.

C. Blum, J. Puchingerb, G. R. Raidl, A. Roli. Hybrid
metaheuristics in combinatorial optimization: A
survey. Applied Soft Computing, 2011, Vol. 11,
pp- 4135-4151.

M. Boccia, T. G. Crainic, A. Sforza, C. Sterle. A
metaheuristic for at wo echelon location-rounting
problem. In: Procceding of SEA2010. Lecture Notes in
Computer Science, 2010, Vol. 6049, pp. 288-301.

B. Bontoux, C. Artigues, D. Feillet. A Memetic.
algorithm with a large neighborhood crossover
operator for the generalized traveling salesman
problem. Computers and Operations Research, 2010,
Vol. 37, pp. 1844-1852.

E.C. Brown, R.T. Sumichrast. Impact of the
replacement heuristic in a grouping genetic algorithm.
Computers & Operations Research, 2003, Vol. 30,
pp. 1575-1593.

C. Canel, B. Khumawala, J. Law, A. Loh. An
algorithm for the capacitated, multi-commodity, multi-
period facility location Problem. Computers and
Operations Research, 2001, Vol. 28, pp. 411-427.

D. Capko, A. Erdeljan, S. Vukmirovi¢, I. Lendak. A
hybrid genetic algorithm for partitioning of data model
in distribution management systems. [Information
Technology and Control, 2011, Vol.40, No.4,
pp- 316-322.

M. Eben-Chaime, A. Mehrez, G. Markovich.
Capacitated location-allocation problems ona line.
Computers and Operations Research, 2002, Vol. 29,
pp. 459-470.

P. Chardaire, J. L. Luton, R. Sutter. Upper and
lower bounds for the two-level simple plant location
problem. Annals of Operations Research, 1999,
Vol. 86, pp. 117-140.

Y. W. Chen, Y.Z. Lu, G. K. Yang. Hybrid evolu-
tionary algorithm with marriage of genetic algorithm
and extremal optimization for production scheduling.
In: The International Journal of Advanced Manufac-
turing Technology, 2008, Vol. 36, No. 9-10, pp. 959—
968.

T.C. Chiang, L.C. Fu. A rule-centric memetic
algorithm to minimize the number of tardy jobs in the
job shop. [International Journal of Production
Research, 2008, Vol. 46, pp. 6913—6931.

S. Chung, Y. Myung, D. Tcha. Optimal design of a
distributed network with a two-level hierarchical
structure. European Journal of Operations Research,
1992, Vol. 62, pp. 105-115.

J. Current, H. Pirkul. The hierarchical network
design problem with transshipment facilities.
European Journal of Operation Research, 1991,
Vol. 52, pp. 338-347.

M. S. Daskin. Network and discrete location models.
Algorithms and Applications. John Wiley & Sons, 1995.
J. Dias, M. Captivo, J. Climaco. A memetic algo-
rithm for dynamic location problems. Operations
Research and Computer Science Interfaces Series,
2007, Vol. 39, pp. 225-244.

(4]

(3]

(6]

(7]

[11]

[12]

[13]

[19]

(23]

[25]

[30]

[33]

[35]

J. Dias, ML.E. Captivo, J. Climaco. Dynamic multi-
level capacitated and uncapacitated location problems:
an approach using primal-dual heuristics. In:
Operational Research. An International Journal, 2008,
Vol. 7, pp. 345-379.

Z. Drezner. Extensive experiments with hybrid gene-
tic algorithms for the solution of the quadratic
assignment problem. In: Computers & Operations
Research, 2008, Vol. 35, pp. 717-736.

V. Filipovi¢. Fine-grained tournament selection opera-
tor in genetic algorithms. In: Computing and
Informatics, 2003, Vol. 22, pp. 143-161.

R. D. Galvao, L. G. Espejo, B. Boffey. A hierarchical
model for the location of perinatal facilities in the
municipality of Rio de Janeiro. In: European Journal
of Operational Research, 2002, Vol. 138, pp. 495-517.
R. D. Galvao, L. G. Espejo, B. Boffey, D. Yates.
Load balancing and capacity constraints in a
hierarchical location model. In: European Journal of
Operational Research, 2006, Vol. 172, pp. 631-646.
E. Gourdin, M. Labb, H. Yaman. Telecommu-
nication and location. In: Z. Drezner, HW. Hamacher
(eds). Facility location: applications and theory.
Springer-Verlag, New York, 2002, pp. 274-305.

L. Gao, G.Zhang, L. Zhang, X. Li. An efficient
memetic algorithm for solving the job shop scheduling
problem. Computers and Industrial Engineering, 2011,
Vol. 60, pp. 699-705.

S.A. Helm, M.A. Venkataramanan. Solution
approaches to hub location problems. Annals of
Operations Research, 1998, Vol. 78, pp. 31-50.

M. P. Helme, T.L. Magnanti. Designing satelite
communication networks by zero-one quadratic
programming. Networks, 1999, Vol. 19, pp. 427-450.
Y. Hinojosa, J. Puerto, F.R. Fernndez. A
multiperiod two-echelon multicommodity capacitated
plant location problem. European Journal of
Operational Research, 2000, Vol. 123, pp. 271-291.
N. Jawahar, A. N. Balaji. A genetic algorithm for the
two-stage supply chain distribution problem associated
with a fixed charge. European Journal of Operational
Research, 2009, Vol. 194, pp. 496-537.

M. Khouja, Z. Michalewicz, M. Wilmot. The use of
genetic algorithms to solve the economic lot size
scheduling problem. In: European Journal of
Operational Research, 1998, Vol. 110, pp. 509-524.

J. Krarup, P. M. Pruzan. The simple plant location
problem: survey and synthesis. European Journal of
Operational Research, 1983, Vol. 12, pp. 36-81.

M. Landete, A. Marin. New facets for the two-stage
uncapacitated facility location polytope.
Computational Optimization and Applications, 1999,
Vol. 44, pp. 487-519.

Y. K. Lin, C. T. Yeh. Optimal resource assignment to
maximize multi state network reliability for a computer
network. Computers & Operations Research, 2010,
Vol. 37, pp. 2229-2238.

Z.L.F. Glover, J. K. Hao. A hybrid metaheuristic
approach to solving the UBQP problem. European
Journal of Operational Research, 2010, Vol. 207,
pp. 1254-1262.

M. Marié¢, Z. Stanimirovi¢, S.BoZovié. Hybrid
metaheuristic method for determining locations for
long-term health care facilities. Annals of Operations
Research, 2013, DOI: 10.1007/s10479-013-1313-8.

148

S. Miskovi¢, Z. Stanimirovi¢

[36] A. Marn, B. Pelegrin. Applying Lagrangian
relaxation to the resolution of two-stage location
problems. Annals of Operations Research, 1999,
Vol. 86, pp. 179-198.

[37] M.B. Mandell. Covering models for two-tiered
emergency medical services systems. Location
Science, 1998, Vol. 6, pp. 355-368.

[38] V. Marianov, P. Taborga. Optimal location of public
health centers which provide free and paid services.
Journal of Operational Research Society, 2001,
Vol. 52, pp. 391-400.

[39] G.R. Matheus, F.R.B. Cruz, H.P.L. Luna. An
algorithm for hierarchical network design. Location
Science, 1994, Vol. 2, pp. 149-164.

[40] E. Melachrinoudis, H. Min. The dynamic relocation
and phase-out of a hybrid, two-echelon plant/ware-
house facility: A multiple objective approach.
European Journal of Operational Research, 2000,
Vol. 123, pp. 1-15.

[41] A. Misevi¢ius, D. Rubliauskas. Enhanced improve-
ment of individuals in genetic algorithms. Information
Technology and Control, 2006, Vol.37, No.3,
pp. 179-186.

[42] A. Misevicius, D. Rubliauskas, V. Barkauskas.
Some further experiments with the genetic algorithm
for the quadratic assignment problem. Information
Technology and Control, 2009, Vol.38, No.4,
pp. 325-332.

[43] G. Moore, C. ReVelle. The hierarchical service
location problem. Management Science, 1982, Vol. 28,
pp. 775-780.

[44] S.C. Narula. Hierarchical location-allocation prob-
lems: A classification scheme. European Journal of
Operational Research, 1984, Vol. 5, pp. 93-99.

[45] F. Neri, C. Cotta. Memetic algorithms and memetic
computing optimization: A literature review. Swarm
and Evolutionary Computation, 2012, Vol. 2, pp. 1-14.

[46] H. Pirkul, V. Nagarajan. Location concentrators in
centralized computer networks. Annals of Operations
Research, 1992, Vol. 36, pp. 247-262.

[47] S. Pirkwieser, G. R. Raidl, J. Puchinger. Combining
Lagrangian decomposition with an evolutionary
algorithm for the knapsack constrained maximum
spanning tree problem, In: C. Cotta, JI. van Hemert
(Eds.), Evolutionary Computation in Combinatorial
Optimization, Springer Berlin Heidelberg, 2007,
pp. 176-187.

[48] S. Prestwich, S. Tarim, R. Rossi, B. Hnich. Evolving
parameterised policies for stochastic constraint
programming, In: I Gent (Ed.), Principles and
Practice of Constraint Programming—CP. Lecture
Notes in Computer Science, Springer-Verlag, Berlin
Heidelberg, Germany, 2009, 5732, pp. 684-691.

[49] M. G. C.Resende, R. F. Werneck. A hybrid multistart
heuristic for the uncapacitated facility location
problem. European Journal of Operational Research,
2006, Vol. 174, pp. 54-68.

[50] G. Sahin, H. Sral, S. Meral. Locational analysis for
regionalization of Turkish Red Crescent blood
services. Computers and Operations Research, 2007,
Vol. 34, pp. 692-704.

[51] G. Sahin, H. Sral. A review of hierarchical facility
location networks. Computers and Operations
Research, 2007, Vol. 34, pp. 2310-2331.

[52] X.H. Shi, Y.C. Liang, H.P. Lee, C. Lu,
L. M. Wang. An improved GA and a novel PSO-GA-

A Memetic Algorithm for Solving Two Variants of the Two-Stage Uncapacitated Facility Location Problem

(53]

[56]

based hybrid algorithm. In: Information Processing
Letters, 2005, Vol. 93, No. 5, pp. 255-261.

H. K. Smith, P. R. Harper, C. N. Potts, A. Thyle.
Planning sustainable community health schemes in
rural areas of developing countries. European Journal
of Operational Research, 2009, Vol. 193, pp. 768-777.
Z. Stanimirovié¢, J. Kratica, Dj. Dugosija. Genetic
algorithms for solving the discrete ordered median
problem. European Journal of Operational Research,
2007, Vol. 182, pp. 983-1001.

Z. Stanimirovi¢. An Efficient Genetic Algorithm for
Solving the uncapacitated multiple allocation p-hub
median problem. Control and Cybernetics, 2008,
Vol. 37, pp. 415-426.

Z. Stanimirovi¢, M. Mari¢, S. Bozovié,
P. Stanojevi¢. An efficient evolutionary algorithm for
locating long-term care facilities. Information
Technology and Control, 2012, Vol. 41, No. 1,
pp- 77-89.

D. W. Tcha, B. Lee. A branch-and-bound algorithm
for the multi-level uncapacitated facility location
problem. European Journal of Operational Research,

149

(58]

[60]

(61]

[62]

1984, Vol. 18, pp. 35-43.

J. C. Teixeira, A. P. Antunes. A hierarchical location
model for public facility planing. In: FEuropean
Journal of Operational Research, 2008, Vol. 185,
pp- 92-104.

H. Topcuoglu, F. Court, M. Ermis, G. Yilmaz.
Solving the uncapacitated hub location problem using
genetic algorithms. Computers & Operations
Research, 2005, Vol. 32, pp. 967-984.

A. Troncoso, J.C. Riquelme, J.S. Aguilar-Ruiz,
J.M. Riquelme-Santos. Multi point evolutionary
techniques applied to the optimal short-term
scheduling of the electrical energy production.
European Journal of Operational Research, 2008,
Vol. 185, pp. 1114-1127.

T. J. Van Roy. Multi-level production and distribution
planning with transportation fleet optimization.
Management Science, 1989, Vol. 35, pp. 1443—1453.
B.L. Wildbore. Theoretical and computational
analysis of the two-stage capacitated location problem.
PhD thesis, Massey University, Palmerston North,
New Zeland, 2008

Received May 2012.

