
211Information Technology and Control 2019/2/48

An Improved Biometric
Multi-Server Authentication
Scheme for Chang et al.’s
Protocol

ITC 2/48
Journal of Information Technology
and Control
Vol. 48 / No. 2 / 2019
pp. 211-224
DOI 10.5755/j01.itc.48.2.17417

An Improved Biometric Multi-Server Authentication
Scheme for Chang et al.’s Protocol

Received 2017/01/15 Accepted after revision 2019/05/06

 http://dx.doi.org/10.5755/j01.itc.48.2.17417

Corresponding author: ashraf.shehzad.ch@gmail.com

Azeem Irshad
Department of Computer Science & Software Engineering, International Islamic University, Islamabad,
e-mail: irshadazeem2@gmail.com

Shehzad Ashraf Chaudhry
Department of Computer Science & Software Engineering, International Islamic University, Islamabad
Faculty of Computing & Information Technology, University of Sialkot, Pakistan,
e-mail: ashraf.shehzad.ch@gmail.com

Muhammad Shafiq
Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, South Korea,
e-mail: shafiq.pu@gmail.com

Muhammad Usman
Department of Computer Science, Faculty of Natural Science, Quaid-I-Azam University, Islamabad, Pakistan,
e-mail: musman@qau.edu.pk

Muhammad Asif
Department of Computer Science, National Textile University, Faisalabad, Pakistan, e-mail: asif@ntu.edu.pk

Sajid Ali
Department of information sciences, University of Education, Lahore, Pakistan, e-mail: sajid.ali@ue.edu.pk

Saru Kumari
Department of Mathematics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh 250004, India,
e-mail: saryusiirohi@gmail.com

mailto:obodovskiy58@gmail.com

Information Technology and Control 2019/2/48212

The remote authentication has been advancing with the growth of online services being offered on remote ba-
sis. This calls for an optimal authentication framework other than single-server authentication. In this connec-
tion, the multi-server authentication architecture has been introduced in the literature that enables the users
to avail variety of services of various service providers, using a single pair of identity and password. Lately, we
have witnessed a few multi-server authentication protocols in the literature that had several limitations. One of
those multi-server authentication protocols has been put forward by Chang et al. recently. Our analysis shows
that the Chang et al.’s scheme is susceptible to impersonation threat, stolen smart card threat. In this study,
we have reviewed the protocol thoroughly, and proposed an improved model, that is resistant to all known and
identified threats. The formal security analysis along with discussion of informal analysis for contributed mod-
el is also presented in this study, besides performance and its evaluation analysis.
KEYWORDS: Multiserver authentication, cryptanalysis, biometrics, remote authentication, attacks.

1. Introduction
The growth of internet has facilitated the day-to-
day introduction of new services on remote basis.
In this regard, an efficient Multi-Server Authentica-
tion (MSA) serves as an integral component of this
growth, which lets the users avail remote services
from different servers, by utilizing a single pair of
identity and password for all servers [10, 21, 29, 33].
MSA not only relieves the user of the hassle of mem-
orizing so many passwords, but also relaxes the serv-
ers of individualized registration procedures with
each user, prior to the authentication phase [17]. In
the last five years, many multi-server authentication
schemes were presented. Nevertheless, there is still a
need of more secure and efficient techniques [35]. In
MSA literature, for neural networks, Li et al. [23], Lin
et al. [30], Juang [18], Chang and Lee [3] contributed
few techniques that were based on symmetric cryp-
tography and discrete logarithms. However, these
schemes did not protect the identity of user, and were
also computationally inefficient for their operations
cost. Afterwards, Liao and Wang [28] presented a dy-
namic identity- based MSA protocol. However, the
scheme was found vulnerable by Hsiang and Shih
[9], for lacking mutual authentication, and improved
scheme was presented by Hsiang and Shih. Then, Yeh
et al. [36] found that the previous scheme is exposed
to session key disclosure, replay threat, and forgery
threat. Thereafter, Lee et al. [22] indicated that Yeh
et al.’s scheme is prone to masquerading attack and
also lacks mutual authentication. At the same time,
Sood et al. [34] specifies that the same Yeh et al. pro-
tocol suffers stolen smart card, impersonation threat,
and a flawed password changing procedure. Sood et
al. and Lee et al. also demonstrated their enhanced

models. Then, Li et al. [24, 27] discovered a mutu-
al authentication weakness in Sood et al. protocol,
and server spoofing, faulty authentication procedure
in Lee et al.’s scheme [22], with contribution of im-
proved schemes, respectively. Afterwards, Chang et
al. [5] proposed a dynamic identity based authentica-
tion scheme, which was found to be vulnerable in im-
personation threat, stolen smart card threat, insider
threat, and password-guessing threat by Li et al. [26].
The Li et al. [24] protocol was found to be vulnerable
against forgery attack by Chang et al. [4] and an inher-
ent design weakness was discovered by Chang et al.
that was providing the attacker a chance to perform
illegal activities without being caught. Thereafter,
Chang et al. put forward an enhanced model for pro-
tocol [24]. After careful study of Chang et al. [4], we
found that the Chang et al.’s model is prone to imper-
sonation threat, and session key disclosure attacks,
once smart card gets stolen. We have contributed an
enhanced biometric authentication model that cov-
ers all of the indicated limitations in the Chang et al.
scheme. This study work demonstrates formal anal-
ysis of security and performance evaluation as well.
Our protocol is arranged in the following order: The
section “Preliminaries” defines the preliminaries re-
lated to our scheme and section “A review of the Chang
et al.’s protocol” presents a review and cryptanalysis of
Chang et al.’s protocol. The section “Proposed model”
demonstrates our contributed protocol. The section
“Security discussion” and section “Formal security
analysis” illustrate informal and formal security anal-
ysis, respectively. The “Comparison and performance
analysis” section depicts the related performance anal-
ysis. The last section summarizes this paper.

213Information Technology and Control 2019/2/48

2. Preliminaries
The properties of hash digest and bio-hashing func-
tion are illustrated in preliminaries section.

2.1. Hash Function
To act as a secure authentication protocol, one of the
constituent lightweight crypto-operations, i.e. a one-
way hash function h: {0, 1}* → Z*

q , must hold the under-
stated features.
1 The function h generates a fixed length hash digest

after taking a variable sized input.
2 In case h(μ)=δ, it is hard in polynomial time for

computing h-1(δ)= μ;
3 If μ is given, it is improbable to compute μ' in poly-

nomial time, such that μ'≠μ holds as well as h(μ') =
h(μ);

4 In addition, it is hard to get a pair (μ, μ') given that
μ'≠μ and h(μ')=h(μ) holds at the same time.

2.2. Bio-hashing
The bio-hashing function [19] is employed for captur-
ing the inherent biometric features of a person, such
as fingerprint to be used for authentication purpose,
while these features remains permanent over a period
of time. Jin et al. [16], in 2004 came up with a two-fac-
tor authenticator protocol which bears iterated inner
products, as kept between tokenized pseudorandom
number and user-oriented finger impression-based
features. This procedure computes a particular com-
pact code which provides the basis for the current
bio-hashing concept. Thereafter, this bio-hashing
function was improved further by Lumini and Loris
[32]. The bio-hashing function produces a unique
random vector as a function of specific user’s bio-
metric features, which is named as a Biocode. This,
in addition, helps in discretizing the projection-coef-
ficients and is computed as secure hashed password
in general.

3. A Review of the Chang et al.’s
Scheme
The protocol’s working of Chang et al. [4] is described
as under.

3.1. Revisiting Chang et al.’s Model
The Chang et al.’s model [4] is comprised of three pro-
cedures, such as the registration procedure, mutual
authentication procedure which is also shown in Fig-
ure 1. We present a few notations that may be helpful to
readers to comprehend the scheme as given in Table 1.

Table 1
Symbols guide

Notations Meaning

Ui: ith Subscriber or User

IDi, PWi Subscriber’s identity and password

H(): Private hash function

HB(): Bio-hashing function

SPj: The jth service provider

RC: Registration centre

h(.): a secure hash digest function

Bi: Biometric impression

K, b: RC’s master secret, RC’s random secret

ni, nj: Nonce

SC: Smart Card

||, ⊕ Concatenation and XOR functions

3.1.1. Server Registration Procedure
The Chang et al.’s model comprises a reliable regis-
tration centre (RC) along with n number of servers
(SPj), while the range of j implies 1 ≤ j ≤ n. The SPj
completes its registration procedure with RC before
the user’s registration. The SPj is registered from RC
with the sharing of two secrets K1 and K2 between
SPj and RC over a confidential channel. Earlier, RC
selects a master secret key k and a random integer b.
Afterwards, SPj submits the identity SIDj towards
registration centre. Then, RC calculates K1 = h(k || b)
and K2 = h(SIDj || H(b)). Here, H(.) is a private hash
digest, while h(.) represents public hash-digest func-
tion. Onwards, the registration centre forwards these
keys to SPj employing a confidential channel.

Information Technology and Control 2019/2/48214

SC: Smart Card ||,  Concatenation and XOR functions

Figure 1. Chang et al.’s registration and mutual authentication procedure

3.1.1 Server Registration Procedure

The Chang et al.’s model comprises a reliable
registration centre (RC) along with n number of
servers (SPj), while the range of j implies 1≤ j ≤n.

The SPj completes its registration procedure with
RC before the user’s registration. The SPj is
registered from RC with the sharing of two secrets
K1 and K2 between SPj and RC over a confidential
channel. Earlier, RC selects a master secret key k

Smart card {Vi, Xi, Yi, Zi , h()}

{IDi , MPi} Vi=H(b) h(IDi || MPi)
Wi=h(IDi ||K),
Xi=h(IDi|| H(b))
Yi = h(Wi || h(K || b)) and
Zi = Wi  h(K||b)  H(b) MPi
Stores IDi and Wi in its Database and
Wi is sent to all SPj in the network

1. The user inserts SC and key in IDi and PWi
PK= Vi h(IDi || h(PWi))
h(IDi || PK) ?= Xi
Generates a random nonce ni and computes
Aij = Zi  h(h(SIDj || PK)||ni) h(PWi)  PK
Tidi=h(Yi || SIDj || ni) and
Auth1=h(Aij || Tidi || ni)
m1=h(SIDj || PK)ni)

USER’S REGISTRATION PROCEDURE:

Ui gets SC and stores
safely.

User (Ui) Server (SPj)

Ui RC

MUTUAL AUHTHENTICATION PROCEDURE:

Select IDi, PWi,
MPi=h(PWi)

{Aij, m1, Auth1}
2. ni' =m1 K2
Wi'=Aij h(2 || ni') 
Now checks ni' and Wi' validity. If
ni' is fresh and Wi' is in white list,
then
Yi'= h(Wi' ||

1

)
Tid = h(Yi' || SIDj || ni')
h(Aij || Tidi' || ni')?= Auth1
Generates a random number nj
Auth2= h(Yi' || SIDj || ni' || nj)
m2= K2 nj

{m2 , Auth2}

{Auth3}

3. nj'= m2 h(SIDj || PK)
Next, it checks nj' freshness
h(Yi || SIDj || ni'|| nj') ?= Auth2
Auth3=h(Tidi || ni || nj')

Session key = Sk = h(Tidi || ni' || nj || SIDj)= h(Tidi || ni || nj' || SIDj).

Computes and checks
h(Tidi || ni' || nj) ?=Auth3

K K

1K

Figure 1

Chang et al.’s registration and mutual authentication procedure

215Information Technology and Control 2019/2/48

Figure 2
Proposed model

Figure. 2. Proposed model

Smart card {Vi, Xi, Ri, Zi , h()}

{IDi , MPi}

Vi=H(b)⊕ h(IDi || MPi),
Wi=h(IDi ||K),
Xi=h(IDi|| H(b)),Yi = h(Wi || h(K || b)),

Zi = Wi ⊕ h(K||b) ⊕ H(b) ⊕MPi,
Stores IDi and Wi in its Database and
Wi is sent to all SPj in the network

1. Ui inserts its IDi, PWi and also biometric Bi on SC scanner

 h(IDi || PK) ?= Xi,
 Generates a random nonce ni and computes

 Tidi=h(Yi || SIDj || ni) ,
 Auth1=h(Aij || Tidi || ni),
 m1=h(SIDj || PK)⊕ni

USER REGISTRATION PROCEDURE:

Ui receives SC and
stores safely.

User (Ui) Server (SPj)

Ui RC

MUTUAL AUHTHENTICATION PROCEDURE:

Ui inputs IDi, PWi and Bi

{Aij, m1, Auth1}

 2. ni' =m1⊕ ,
 Wi'=Aij ⊕h(|| ni') ⊕ ,
 Now checks ni' and Wi' validity. If
 ni' is fresh and Wi' is in white list,
 then
 Yi'= h(Wi' ||),
 Tidi' = h(Yi' || SIDj || ni'),
 h(Aij || Tidi' || ni')?= Auth1,
 Generates nj
 Auth2= h(Yi' || SIDj || ni' || nj),
 m2= K2 ⊕nj {m2 , Auth2}

{Auth3}

3. nj'= m2⊕ h(SIDj || PK),

Next, it checks nj' freshness

h(Yi || SIDj || ni'|| nj') ?= Auth2,

Auth3=h(Tidi || ni || nj')

Shared session key =
Sk = h(Tidi' || ni' || nj || SIDj)= h(Tidi || ni || nj' || SIDj)

Compute and check
h(Tidi' || ni' || nj) ?=Auth3

MPi=h(HB(Bi) ||PWi)
 Ri=Yi⊕MPi

Aij =Zi ⊕ h(h(SIDj || PK)||ni) ⊕h(HB(Bi)||PWi) ⊕ PK,
Yi=Ri⊕MPi

PK= Vi ⊕h(IDi || h(HB(Bi) || PWi))

K2
K2 1K

1K

Information Technology and Control 2019/2/48216

3.1.2. User Registration Procedure
In the registration procedure, Ui performs few regis-
tration steps with the RC. Afterwards Ui may access
all service providers SPj. The RC performs the under-
mentioned steps with the user to implement the reg-
istration procedure.
1 Primarily, Ui chooses its identity (IDi) and a pass-

word (PWi). Then, it computes MPi by calculat-
ing MPi=h(PWi) and it sends {IDi, MPi} to SPj as
shown in Figure 1.

2 SPj, then, calculates Vi=H(b) ⊕ h(IDi || MPi),
Wi=h(IDi || k), Xi=h(IDi || H(b)), Yi = h(Wi || h(k
|| b)) and Zi = Wi ⊕ h(k||b) ⊕ H(b) ⊕ MPi. After-
wards, SPj stores IDi and Wi in its database, while
Wi is sent to all servers in the network. RC now
issues smart card to Ui with these parameters {Vi,
Xi, Yi, Zi and h()}.

3.1.3. Mutual Authentication Procedure
1 In this procedure, Ui employs its smart card to

avail the SPj’s services. For this reason, the user
inserts SC and gives IDi and PWi as input. Next, it
computes PK= Vi ⊕ h(IDi || h(PWi)) and checks
the equality h(IDi || PK) ?= Xi. On successful
check, it produces a random nonce ni and calculate
Aij = Zi ⊕ h(h(SIDj || PK)||ni) ⊕ h(PWi) ⊕ PK,
Tidi=h(Yi || SIDj || ni), Auth1=h(Aij || Tidi || ni)
and m2=h(SIDj || PK) ⊕ ni). Next, it submits the
message {Aij, m2, Auth1} to SPj for verification.

2 The SPj receives {Aij, m2, Auth1} and computes
ni’ =m2 ⊕ K2 and Wi’=Aij ⊕ h(K2 || ni’) ⊕ K1. SPj
now checks validity and freshness of ni’ and Wi’. If
ni’ is fresh and Wi’ is in its white list, it computes
Yi’= h(Wi’ || K1) and Tidi = h(Yi’ || SIDj || ni’). Next,
it checks the equality h(Aij || Tidi’ || ni’)?= Auth1. If
true, it engenders a random integer nj and further
calculates Auth2= h(Yi’ || SIDj || ni’ || nj), m2= K2 ⊕
nj. Next, it sends {m2, Auth2} to Ui.

3 After receiving {m2, Auth2}, Ui, calculates nj’= m2

⊕ h(SIDj || PK). He/She checks the validity or
freshness for nj’ and computes h(Yi || SIDj || ni’||
nj’) for checking the validity h(Yi || SIDj || ni’||
nj’) ?= Auth2. If true, then calculates Auth3=
h(Tidi || ni || nj’), and sends the message {Auth3} to
SPj as acknowledgement.

4 SPj receives Auth3 message and computes h(Tidi
|| ni’ || nj) for checking h(Tidi || ni’ || nj) ?=Auth3.

If it proves to be valid, a session key is computed
between the participants, as Sk=h(Tidi||ni’||
nj||SIDj)=h(Tidi||ni|| nj’||SIDj).

3.2. Cryptanalysis of Chang et al.’s Protocol

The Chang et al.’s protocol is a multi-server authen-
tication-based scheme relying on simple hash and
XOR operations. Before presenting the limitations in
Chang et al.’s model, we assume that adversary is pro-
ficient in the following capabilities.
 _ The adversary may intercept, modify or manipulate

the message contents communicated on insecure
public channel.

 _ The adversary may access the smart card and its
parameters by stealth.

 _ The adversary might not get any of the contents
communicated on secure channel, for instance, in
registration phase.

The Chang et al.’s protocol is susceptible to the fol-
lowing attacks.

3.2.1. Impersonation Attack
The Chang et al.’s protocol is prone to impersonation
attack if the user’s smart card contents are revealed
to adversary. Suppose, Eve, a valid but malicious user
happens to steal the user’s smart card contents in
some manner. In this context, Eve seize all SC param-
eters {Vi, Xi, Yi, Zi} and intercepts public messag-
es {Aij, m2, Auth1, m2, Auth2, Auth3}. Next, Eve may
adopt the following steps to launch an impersonation
attack.
1 Initially, Eve computes PK such as PK = Vi ⊕

h(IDEve||MPi), where PK and H(b) represent the
same parameters.

2 Then, Eve computes ni=h(SIDj || PK) ⊕ m2.
3 Next, the PWi, being a low entropy password, can

easily be guessed by applying and testing various
combinations PWi* in the equation Aij ?= Zi ⊕
h(h(SIDj || PK)||ni) ⊕ h(PWi*) ⊕ PK. Wherever
the match is found, the valid PWi becomes known.

4 After the seizure of SC contents and guessing the
password PWi, Eve may launch impersonation
attacks on both sides (user and server). On user’s
end, having the knowledge of Yi and Zi, Eve
generates a nonce ni and constructs the login
message {Aij, m2, Auth1} comfortably by computing

217Information Technology and Control 2019/2/48

Tidi=h(Yi || SIDj || ni), Auth1=h(Aij || Tidi || ni),
and m2=h(SIDj || PK) ⊕ ni) towards server. On
server’s end, while impersonating as a server, Eve
sends the message {m2, Auth2} towards user by
generating fresh nonce nj and computing Auth2=
h(Yi || SIDj || ni’ || nj) and m2= h(SIDj || PK) ⊕ nj.

3.2.2. No Session Key Security
In Chang et al.’s protocol, the attacker could deduce
the session key comfortably, once the smart card is
accessed by it. Since the session key is composed as Sk =
h(Tidi || ni || nj || SIDj), Eve may try to reproduce Sk on
the basis of computed elements. For this purpose, Eve,
having the knowledge of {Vi, Xi, Yi, Zi, m2} parameters,
computes PK = Vi ⊕ h(IDEve || MPi), ni=h(SIDj || PK)
⊕ m2, nj = h(SIDj || PK) ⊕ m2, and Tidi=h(Yi || SIDj
|| ni). Finally, Eve can generate the session key by
concatenating as Sk = h(Tidi || ni || nj || SIDj). In this
manner, Eve may generate all previous session keys
by approaching the publicly available messages as
communicated between the legal participants.

4. Proposed Scheme
Our proposed model is based on countering the lim-
itations in Chang et al.’s model. The contributed mod-
el comprises service provider (server’s) registration
procedure, user’s registration procedure, mutual au-
thentication procedure, and password upgrading pro-
cedure.

4.1. Server Registration Procedure
The proposed model comprises a trustworthy RC and
n number of servers (SPj), while the range of j implies
1 ≤ j ≤ n. The SPj performs the registration with RC
prior to user’s registration procedure, using a secret
channel. During initialization process, RC selects a
master secret key k, and also chooses a random secret
b. Then, SPj forwards its identity SIDj towards reg-
istration centre. Next, RC computes the two keys as
K1=h(k || b) and K2= h(SIDj || H(b)), and sends both
keys (K1 and K2) to SPj employing a confidential chan-
nel. In this manner, the SPj gets registered through RC.

4.2. User Registration Procedure
In registration phase, Ui registers with registration
centre (RC) and follows the under-mentioned steps:

1 The user initially selects its identity as IDi, pass-
word as PWi, and the biometric as Bi [17]. Subse-
quently, Ui calculates MPi=h(HB(Bi) || PWi) and
submits {IDi , MPi} to SPj.

2 Next, SPj calculates Vi=H(b) ⊕ h(IDi || MPi),
Wi=h(IDi | |k), Xi=h(IDi || H(b)), Yi = h(Wi || h(k ||
b)) Ri=Yi ⊕ MPi , and Zi = Wi ⊕ h(k||b) ⊕ H(b) ⊕
MPi, and stores IDi and Wi in its database, while
Wi is sent to all SPj in the network. Next, RC issues
smart card to Ui with these parameters {Vi, Xi, Ri,
Zi and h()}.

4.3. Mutual Authentication Procedure
In this stage, the user is mutually authenticated with
server SPj and uses smart card to avail services. The
related procedure is shown in Figure 2.
1 Initially, Ui inserts its smart card in scanner and

also inputs its ID and PWi. Then, it captures the
biometric imprint Bi. Afterwards, Ui calculates
PK= Vi ⊕ h(IDi || h(HB(Bi) || PWi)) and verifies
the equality for h(IDi || PK) ?= Xi. If true, then Ui
engenders a random integer ni and further calcu-
lates Aij = Zi ⊕ h(h(SIDj || PK)||ni) ⊕ h(HB(Bi) ||
PWi) ⊕ PK, Yi = Ri ⊕ MPi , Tidi=h(Yi || SIDj || ni),
Auth1=h(Aij || Tidi || ni) and m2=h(SIDj || PK) ⊕
ni). Then, Ui sends the message {Aij, m2, Auth1} to
SPj for verification.

2 Next, the SPj receives the message {Aij, m2, Auth1}
and computes ni’ =m2 ⊕ K2 and Wi’=Aij ⊕ h(K2 ||
ni’) ⊕ K1. The SPj confirms the validity and fresh-
ness of ni’ and Wi’. If ni’ is fresh and Wi’ is in the
white list, then it further computes Yi’= h(Wi’ || K1)
and Tidi = h(Yi’ || SIDj || ni’). Now, it verifies the
equation h(Aij || Tidi’ || ni’)?= Auth1. If this proves
to be true, it engenders a random number nj, and
computes Auth2= h(Yi’ || SIDj || ni’ || nj) and m2=
K2 ⊕ nj. Then, it sends {m2, Auth2} to Ui for further
verifications.

3 Upon receiving {m2, Auth2} from SPj, Ui calculates
nj’= m2 ⊕ h(SIDj || PK). Ui checks the validity for
nj’ and computes h(Yi || SIDj || ni’|| nj’) for verify-
ing the validity for h(Yi || SIDj || ni’|| nj’) ?= Auth2.
If this equation is found to be valid, it calculates
Auth3=h(Tidi || ni || nj’), and sends the message
{Auth3} to SPj as an acknowledgement finally.

4 Upon having the message Auth3, the SPj calculates
h(Tidi || ni’ || nj) for verifying h(Tidi || ni’ || nj)

Information Technology and Control 2019/2/48218

?=Auth3. If true, then develops the ultimate session
key as Sk = h(Tidi || ni’ || nj || SIDj)= h(Tidi || ni ||
nj’ || SIDj).

4.4. Password Updating Procedure
Ui modifies his/her old password (PWi) with a fresh
password (PWi fr) without involving RC, by adopting
the under-mentioned steps:
1 To modify the password, the user would input his/

her identity as IDi, old password as PWi into the
smart card. Next, the user imprints biometric iden-
tity Bi into a device scanner.

2 Subsequently, SC computes PK= Vi ⊕ h(IDi ||
h(HB(Bi) || PWi)) and validates the equality h(IDi
|| PK) ?= Xi. If it does not match, the smart card
aborts the session, otherwise allows the user to
proceed on the next step.

3 After that, the user would insert a new password as
PWi fr in SC, which calculates Vinew = PK ⊕ h(IDi ||
h(HB(Bi) || PWi fr)), Rinew = Ri ⊕ h(HB(Bi) || PWi) ⊕
h(HB(Bi) || PWi fr), and Zinew = Zi ⊕ h(HB(Bi)||PWi)
⊕ h(HB(Bi) || PWi fr). Then, the user replaces the
Vi, Ri and Zi parameters in smart card with the
new values Vinew, Rinew and Zinew.

5. Security Discussion
This segment illustrates the informal security discus-
sion for contributed model in comparison with Chang
et al.’s model.

5.1. Replay Attacks
These attacks may be attempted by an attacker after
replaying the seized message contents at opportune
time to deceive any legal entity of the protocol.
An attacker Ⱥ could seize the communication
contents after examining a public channel as {Aij, m2,
Auth1, m2, Auth2, Auth3} and attempt to replay at some
opportune time in future towards a valid participant.
Nonetheless, Ⱥ cannot construct the parameter
Auth1, as it also comprises Aij which includes Ei and
h(HB(Bi) ||PWi) in its construction, such as Aij = Zi
⊕ h(h(SIDj || PK)||ni) ⊕ h(HB(Bi) || PWi) ⊕ PK. An
attacker Ⱥ neither knows the password nor biometric
Bi, which prevents the attacker for launching the
replay attack. If Ⱥ replays the message {Aij, m2, Auth1}

to SPj, it may not be able to construct the upgraded
challenge Auth3, which requires the computation of
Tidi, which further needs Yi to be constructed that is
inaccessible to Ⱥ even if the SC gets stolen. At the same
time, if Ⱥ replays the message {m2 , Auth2} towards Ui,
the latter may easily detect the attack, since Ui knows
that Auth2 cannot be constructed by the adversary due
to the non-availability of Yi parameter. Hence, our
proposed protocol may counter any replay threat.

5.2. Man-In-The-Middle-Attack
In this threat, the attacker intrudes between the le-
gal participants by acting as an intermediary through
replaying or modifying the message contents. A suc-
cessful attack may let the legitimate members com-
municate with the adversary perceiving it as a right
participant [6].
An adversary cannot construct the message {Auth2,
m2} in request of {Aij, m2, Auth1}, since the construc-
tion of Auth2 requires Yi, which is inaccessible to Ⱥ
from either intercepted messages or SC contents.
Then, Ⱥ constructs a valid Auth3 against SPj’s chal-
lenge {Auth2, m2}, as Tidi is inaccessible to Ⱥ due to
unknown Yi. Therefore, the contributed scheme is
protected from MiTM threat.

5.3. Modification Threats
Such threats could be initiated by an attacker if it
transforms the communication message illegally for
submitting it to any valid participant [19].
An adversary may attempt to construct the message
{Aij, m2, Auth1}, however it may not be able to do so,
since it needs the parameter Aij, that further requires
the knowledge of PWi and Bi as Aij = Zi ⊕ h(h(SIDj
|| PK) || ni) ⊕ h(HB(Bi) || PWi) ⊕ PK. Likewise, it
requires Tidi to construct Auth1, which requires the
knowledge of Yi, which is also inaccessible to Ⱥ due
to the unreachable MPi. Similarly, an adversary is not
able to construct the message {Auth2, m2} in request
of {Aij, m2, Auth1}, given that the production of Auth2
requires the information of Yi, which is not accessible
to Ⱥ either from intercepted messages or stolen SC
contents.

5.4. Password or Secret Guessing Threat
An attacker Ⱥ might try to recover password PWi either
from messages intercepted or from stolen smart card
contents. The password guessing requires the attacker

219Information Technology and Control 2019/2/48

to be familiar with biometric information Bi of the user.
If Bi is not available, then the password PWi may not be
inferred or guessed from Vi , Zi and Ri parameters.

5.5. Session Key Disclosure Using Stolen
Card
An attacker Ⱥ might steal smart card contents and
try to generate a session key (Sk) from its contents.
Nonetheless, Ⱥ cannot calculate the session key Sk =
h(Tidi || ni || nj || SIDj) due to the inaccessible Tidi
parameter in Sk. While, the Tidi is constructed as
Tidi=h(Yi || SIDj || ni) and the attacker cannot guess
Yi either from stolen card contents or intercepted
messages.

5.6. Impersonation Attack Using Smart Card
Contents
An attacker Ⱥ might steal smart card and try to
impersonate the legitimate users or service provider
by constructing the identical message {Aij, m2, Auth1}.
Nonetheless, it may not be able to do so [24], since it
needs the parameter Aij. Which further requires PWi
and Bi to be guessed, as Aij = Zi ⊕ h(h(SIDj || PK) ||
ni) ⊕ h(HB(Bi) || PWi) ⊕ PK. Besides, it needs Tidi to
build Auth1, which requires the value Yi, which is also
inaccessible to Ⱥ due to the unknown MPi. Similarly,
an adversary cannot construct the message {Auth2,
m2} in response to a valid user request {Aij, m2,
Auth1}, since, the construction of Auth2 requires the
information of Yi, which is not accessible to Ⱥ either
from intercepted messages or stolen SC contents.

5.7. Session Key Security
This trait makes certain that the established session
key is merely known to lawful members of a session,
i.e. client and service provider.
In proposed model, the agreed session key, i.e.
Sk = h(Tidi || ni || nj || SIDj) is secure, since, the Tidi
calculation requires the access of Yi, i.e., Tidi=h(Yi ||
SIDj || ni), while Yi requires the value MPi for guess-
ing it, as Yi=Ri ⊕ MPi. Hence, the session key Sk has
been safe, in case the SC contents are accessed or Ⱥ
intercepts the public parameters.

5.8. Known Key Security
This attribute makes certain the protection of private
keys of participants in case the current session key is
exposed.

In contributed protocol, even if the adversary accesses
the values Sk, Ri, an attacker cannot recover user
password PWi, since the PWi recovery from Sk = h(Tidi
|| ni || nj || SIDj) requires calculation of Yi=Ri ⊕ MPi
and Tidi=h(Yi || SIDj || ni). This is not possible due to
the inaccessibility of Bi in MPi=h(HB(Bi) || PWi). At
the same time, the server secret K is also secure as it is
existent in a function i.e h(K || b) and is hard be guessed
in polynomial amount of time. Therefore, the proposed
protocol keeps the feature of known key security.

5.9. Mutual Authentication
This attribute assures that the concerned members
authenticate one another in the protocol session and
construct a mutual session key ultimately [7].
In our scheme, both of the participants authenticate
each other mutually on account of Tidi and Yi’ pa-
rameters. The server authenticates the user only if
Tidi is valid in Auth3, and this Tidi cannot be con-
structed by an attacker. Similarly, Ui authenticates
SPj on account Yi’ parameter used by server in the
construction of Auth2= h(Yi’ || SIDj || ni’ || nj). The
Yi parameter cannot be accessed by an attacker even
through Ri if the card gets stolen. Therefore, our pro-
tocol assures mutual authentication feature to the le-
gitimate participants.

5.10. Anonymous Protocol
In an anonymous protocol [11, 12, 15], a legal user
interacts with service provider without exposing its
identity and an adversary may not recover the user’s
identity or secret credentials from intercepted con-
tents on public channel.
In proposed scheme, the adversary cannot extract Ui’s
identity or other secret credentials out of intercept-
ed contents on public channel or stolen smart card
contents. This is because of the fact that the identity
IDi is protected in a secret function Wi =h(IDi ||K),
which is not possible to guess until the server secret
K is exposed. Therefore, the contributed scheme con-
fers anonymity to the user.

6. Formal Security Analysis
In this section, we exhibit the security strength of our
protocol using formal analysis based on Burrows Aba-

Information Technology and Control 2019/2/48220

di Needham-logic (BAN) [2] and random oracle mod-
el-based analysis.
The BAN logic proves the authenticated key agree-
ment based on key distribution and mutual key agree-
ment, and protocol robustness against the revelation
of session key. We utilized few notations in this BAN
logic proof as follows:
The agents interacting in a protocol are termed as
principals
The symmetric encryption is performed using keys in
a protocol.
Nonces in the protocol assist to distinguish various
sessions.
We employed the following notations in proving the
authenticity of our protocol using BAN logic:
β |≡ ϱ: The principal β believes ϱ,
β ⊲ ϱ: β sees ϱ.
β |~ ϱ: β once said ϱ.
β ⇒ ϱ: β has got jurisdiction over ϱ.
♯ (ϱ): The message ϱ is fresh.
(ϱ, ϱ'): ϱ or ϱ' are parts of message (ϱ, ϱ').
⟨ ϱ⟩ϱ': The message ϱ is combined with ϱ'.
{ ϱ, ϱ' }k: ϱ or ϱ' is encrypted using key k.
(ϱ, ϱ')k: ϱ or ϱ' is hashed with k.
ϱ(k) ϱ': ϱ and ϱ' exchange message employing
the shared key k.
Some related postulates utilized in BAN logic are
shown below:
P1. Message meaning postulate

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔.
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh.
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔).
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔.
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k.
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k.

𝝔𝝔 𝒌𝒌 �⎯⎯⎯� 𝝔𝝔𝝔: 𝝔𝝔 and 𝝔𝝔𝝔 exchange message
employing the shared key k.

Some related postulates utilized in BAN logic are
shown below:

P1. Message meaning postulate≈
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�, 𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷 𝝔𝝔

P3. Jurisdiction postulate≈ 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔, 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷 𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔

P4. Freshness conjuncatenation postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔)
𝜷𝜷𝜷𝜷 (𝝔𝝔, 𝝔𝝔𝝔)

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔), 𝜷𝜷𝜷𝜷(𝝔𝝔�)
𝜷𝜷𝜷𝜷(𝝔𝝔, 𝝔𝝔�)

P6. Session keys postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷�𝜷𝜷𝜷��𝜷 𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security
under BAN logic on the basis of above postulates:

Goal-1 : Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-2 : Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-3 : Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-4 : Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

To proceed, we convert the exchanged messages in
our scheme into idealized form as given below:

M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
M2: Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'
M3: Ur → Sr: Auth3: ⟨ ni, nj' ⟩ Tidi

Besides, the understated assumptions are
established for proving security of our scheme:

Υ1 : Ur |≡ ♯ ni

Υ2 : Sr |≡ ♯ nj

Υ3 : Ur |≡ Sr 𝒀𝒀𝒀𝒀 �⎯⎯⎯⎯� Ur

Υ4 : Sr |≡ Sr 𝒀𝒀𝒀𝒀𝝔 �⎯⎯⎯⎯� Ur

Υ5 : Ur |≡ Sr ⇒ nj

Υ6 : Sr |≡ Ur ⇒ ni

Currently, the idealized forms such as M2, M2 and
M3 of our scheme may be analyzed and seen in the
light of stated assumptions and postulates.

Taking the first one of the idealized forms:
M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
By Applying seeing postulate, we have

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi

According to 𝜈𝜈1, Υ3 and message meaning

postulate,

𝜈𝜈2: Sr |≡ Ur ~ (Wi, ni, Tidi)

According to Υ1, 𝜈𝜈2, freshness-conjucatenation,
and nonce-verification postulates, we get

𝜈𝜈3: Sr |≡ Ur |≡ (Wi, ni, Tidi)

The (Wi, ni, Tidi) are essential parameters for
mutual authentication and session key agreement.
According to Υ6, 𝜈𝜈3, and Jurisdiction rule

𝜈𝜈4: Sr |≡ (Wi, ni, Tidi)

Referring to Υ3, 𝜈𝜈4, and session key postulate, we

have

𝜈𝜈5: Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-2)

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate

𝜈𝜈6: Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-1)
Regarding the second idealized form, we have

M2: Sr → Ui: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Using the seeing rule, we have

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Referring to 𝜈𝜈7, Υ4 and message-meaning

postulate,

𝜈𝜈8: Ur |≡ Sr ~ (nj)

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and
nonce-verification postulates, we have

𝜈𝜈9: Ur |≡ Sr |≡ (nj)

where (nj) is an essential parameter for the mutual
authentication and session key establishment.

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we
have

P2. Nonce verification postulate

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔.
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh.
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔).
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔.
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k.
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k.

𝝔𝝔 𝒌𝒌 �⎯⎯⎯� 𝝔𝝔𝝔: 𝝔𝝔 and 𝝔𝝔𝝔 exchange message
employing the shared key k.

Some related postulates utilized in BAN logic are
shown below:

P1. Message meaning postulate≈
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�, 𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷 𝝔𝝔

P3. Jurisdiction postulate≈ 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔, 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷 𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔

P4. Freshness conjuncatenation postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔)
𝜷𝜷𝜷𝜷 (𝝔𝝔, 𝝔𝝔𝝔)

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔), 𝜷𝜷𝜷𝜷(𝝔𝝔�)
𝜷𝜷𝜷𝜷(𝝔𝝔, 𝝔𝝔�)

P6. Session keys postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷�𝜷𝜷𝜷��𝜷 𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security
under BAN logic on the basis of above postulates:

Goal-1 : Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-2 : Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-3 : Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-4 : Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

To proceed, we convert the exchanged messages in
our scheme into idealized form as given below:

M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
M2: Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'
M3: Ur → Sr: Auth3: ⟨ ni, nj' ⟩ Tidi

Besides, the understated assumptions are
established for proving security of our scheme:

Υ1 : Ur |≡ ♯ ni

Υ2 : Sr |≡ ♯ nj

Υ3 : Ur |≡ Sr 𝒀𝒀𝒀𝒀 �⎯⎯⎯⎯� Ur

Υ4 : Sr |≡ Sr 𝒀𝒀𝒀𝒀𝝔 �⎯⎯⎯⎯� Ur

Υ5 : Ur |≡ Sr ⇒ nj

Υ6 : Sr |≡ Ur ⇒ ni

Currently, the idealized forms such as M2, M2 and
M3 of our scheme may be analyzed and seen in the
light of stated assumptions and postulates.

Taking the first one of the idealized forms:
M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
By Applying seeing postulate, we have

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi

According to 𝜈𝜈1, Υ3 and message meaning

postulate,

𝜈𝜈2: Sr |≡ Ur ~ (Wi, ni, Tidi)

According to Υ1, 𝜈𝜈2, freshness-conjucatenation,
and nonce-verification postulates, we get

𝜈𝜈3: Sr |≡ Ur |≡ (Wi, ni, Tidi)

The (Wi, ni, Tidi) are essential parameters for
mutual authentication and session key agreement.
According to Υ6, 𝜈𝜈3, and Jurisdiction rule

𝜈𝜈4: Sr |≡ (Wi, ni, Tidi)

Referring to Υ3, 𝜈𝜈4, and session key postulate, we

have

𝜈𝜈5: Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-2)

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate

𝜈𝜈6: Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-1)
Regarding the second idealized form, we have

M2: Sr → Ui: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Using the seeing rule, we have

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Referring to 𝜈𝜈7, Υ4 and message-meaning

postulate,

𝜈𝜈8: Ur |≡ Sr ~ (nj)

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and
nonce-verification postulates, we have

𝜈𝜈9: Ur |≡ Sr |≡ (nj)

where (nj) is an essential parameter for the mutual
authentication and session key establishment.

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we
have

P3. Jurisdiction postulate

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔.
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh.
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔).
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔.
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k.
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k.

𝝔𝝔 𝒌𝒌 �⎯⎯⎯� 𝝔𝝔𝝔: 𝝔𝝔 and 𝝔𝝔𝝔 exchange message
employing the shared key k.

Some related postulates utilized in BAN logic are
shown below:

P1. Message meaning postulate≈
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�, 𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷 𝝔𝝔

P3. Jurisdiction postulate≈ 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔, 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷 𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔

P4. Freshness conjuncatenation postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔)
𝜷𝜷𝜷𝜷 (𝝔𝝔, 𝝔𝝔𝝔)

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔), 𝜷𝜷𝜷𝜷(𝝔𝝔�)
𝜷𝜷𝜷𝜷(𝝔𝝔, 𝝔𝝔�)

P6. Session keys postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷�𝜷𝜷𝜷��𝜷 𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security
under BAN logic on the basis of above postulates:

Goal-1 : Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-2 : Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-3 : Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-4 : Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

To proceed, we convert the exchanged messages in
our scheme into idealized form as given below:

M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
M2: Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'
M3: Ur → Sr: Auth3: ⟨ ni, nj' ⟩ Tidi

Besides, the understated assumptions are
established for proving security of our scheme:

Υ1 : Ur |≡ ♯ ni

Υ2 : Sr |≡ ♯ nj

Υ3 : Ur |≡ Sr 𝒀𝒀𝒀𝒀 �⎯⎯⎯⎯� Ur

Υ4 : Sr |≡ Sr 𝒀𝒀𝒀𝒀𝝔 �⎯⎯⎯⎯� Ur

Υ5 : Ur |≡ Sr ⇒ nj

Υ6 : Sr |≡ Ur ⇒ ni

Currently, the idealized forms such as M2, M2 and
M3 of our scheme may be analyzed and seen in the
light of stated assumptions and postulates.

Taking the first one of the idealized forms:
M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
By Applying seeing postulate, we have

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi

According to 𝜈𝜈1, Υ3 and message meaning

postulate,

𝜈𝜈2: Sr |≡ Ur ~ (Wi, ni, Tidi)

According to Υ1, 𝜈𝜈2, freshness-conjucatenation,
and nonce-verification postulates, we get

𝜈𝜈3: Sr |≡ Ur |≡ (Wi, ni, Tidi)

The (Wi, ni, Tidi) are essential parameters for
mutual authentication and session key agreement.
According to Υ6, 𝜈𝜈3, and Jurisdiction rule

𝜈𝜈4: Sr |≡ (Wi, ni, Tidi)

Referring to Υ3, 𝜈𝜈4, and session key postulate, we

have

𝜈𝜈5: Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-2)

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate

𝜈𝜈6: Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-1)
Regarding the second idealized form, we have

M2: Sr → Ui: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Using the seeing rule, we have

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Referring to 𝜈𝜈7, Υ4 and message-meaning

postulate,

𝜈𝜈8: Ur |≡ Sr ~ (nj)

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and
nonce-verification postulates, we have

𝜈𝜈9: Ur |≡ Sr |≡ (nj)

where (nj) is an essential parameter for the mutual
authentication and session key establishment.

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we
have

P4. Freshness conjuncatenation postulate

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔.
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh.
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔).
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔.
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k.
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k.

𝝔𝝔 𝒌𝒌 �⎯⎯⎯� 𝝔𝝔𝝔: 𝝔𝝔 and 𝝔𝝔𝝔 exchange message
employing the shared key k.

Some related postulates utilized in BAN logic are
shown below:

P1. Message meaning postulate≈
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�, 𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷 𝝔𝝔

P3. Jurisdiction postulate≈ 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔, 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷 𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔

P4. Freshness conjuncatenation postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔)
𝜷𝜷𝜷𝜷 (𝝔𝝔, 𝝔𝝔𝝔)

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔), 𝜷𝜷𝜷𝜷(𝝔𝝔�)
𝜷𝜷𝜷𝜷(𝝔𝝔, 𝝔𝝔�)

P6. Session keys postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷�𝜷𝜷𝜷��𝜷 𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security
under BAN logic on the basis of above postulates:

Goal-1 : Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-2 : Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-3 : Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-4 : Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

To proceed, we convert the exchanged messages in
our scheme into idealized form as given below:

M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
M2: Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'
M3: Ur → Sr: Auth3: ⟨ ni, nj' ⟩ Tidi

Besides, the understated assumptions are
established for proving security of our scheme:

Υ1 : Ur |≡ ♯ ni

Υ2 : Sr |≡ ♯ nj

Υ3 : Ur |≡ Sr 𝒀𝒀𝒀𝒀 �⎯⎯⎯⎯� Ur

Υ4 : Sr |≡ Sr 𝒀𝒀𝒀𝒀𝝔 �⎯⎯⎯⎯� Ur

Υ5 : Ur |≡ Sr ⇒ nj

Υ6 : Sr |≡ Ur ⇒ ni

Currently, the idealized forms such as M2, M2 and
M3 of our scheme may be analyzed and seen in the
light of stated assumptions and postulates.

Taking the first one of the idealized forms:
M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
By Applying seeing postulate, we have

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi

According to 𝜈𝜈1, Υ3 and message meaning

postulate,

𝜈𝜈2: Sr |≡ Ur ~ (Wi, ni, Tidi)

According to Υ1, 𝜈𝜈2, freshness-conjucatenation,
and nonce-verification postulates, we get

𝜈𝜈3: Sr |≡ Ur |≡ (Wi, ni, Tidi)

The (Wi, ni, Tidi) are essential parameters for
mutual authentication and session key agreement.
According to Υ6, 𝜈𝜈3, and Jurisdiction rule

𝜈𝜈4: Sr |≡ (Wi, ni, Tidi)

Referring to Υ3, 𝜈𝜈4, and session key postulate, we

have

𝜈𝜈5: Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-2)

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate

𝜈𝜈6: Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-1)
Regarding the second idealized form, we have

M2: Sr → Ui: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Using the seeing rule, we have

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Referring to 𝜈𝜈7, Υ4 and message-meaning

postulate,

𝜈𝜈8: Ur |≡ Sr ~ (nj)

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and
nonce-verification postulates, we have

𝜈𝜈9: Ur |≡ Sr |≡ (nj)

where (nj) is an essential parameter for the mutual
authentication and session key establishment.

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we
have

P5. Belief postulate

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔.
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh.
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔).
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔.
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k.
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k.

𝝔𝝔 𝒌𝒌 �⎯⎯⎯� 𝝔𝝔𝝔: 𝝔𝝔 and 𝝔𝝔𝝔 exchange message
employing the shared key k.

Some related postulates utilized in BAN logic are
shown below:

P1. Message meaning postulate≈
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�, 𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷 𝝔𝝔

P3. Jurisdiction postulate≈ 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔, 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷 𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔

P4. Freshness conjuncatenation postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔)
𝜷𝜷𝜷𝜷 (𝝔𝝔, 𝝔𝝔𝝔)

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔), 𝜷𝜷𝜷𝜷(𝝔𝝔�)
𝜷𝜷𝜷𝜷(𝝔𝝔, 𝝔𝝔�)

P6. Session keys postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷�𝜷𝜷𝜷��𝜷 𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security
under BAN logic on the basis of above postulates:

Goal-1 : Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-2 : Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-3 : Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-4 : Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

To proceed, we convert the exchanged messages in
our scheme into idealized form as given below:

M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
M2: Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'
M3: Ur → Sr: Auth3: ⟨ ni, nj' ⟩ Tidi

Besides, the understated assumptions are
established for proving security of our scheme:

Υ1 : Ur |≡ ♯ ni

Υ2 : Sr |≡ ♯ nj

Υ3 : Ur |≡ Sr 𝒀𝒀𝒀𝒀 �⎯⎯⎯⎯� Ur

Υ4 : Sr |≡ Sr 𝒀𝒀𝒀𝒀𝝔 �⎯⎯⎯⎯� Ur

Υ5 : Ur |≡ Sr ⇒ nj

Υ6 : Sr |≡ Ur ⇒ ni

Currently, the idealized forms such as M2, M2 and
M3 of our scheme may be analyzed and seen in the
light of stated assumptions and postulates.

Taking the first one of the idealized forms:
M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
By Applying seeing postulate, we have

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi

According to 𝜈𝜈1, Υ3 and message meaning

postulate,

𝜈𝜈2: Sr |≡ Ur ~ (Wi, ni, Tidi)

According to Υ1, 𝜈𝜈2, freshness-conjucatenation,
and nonce-verification postulates, we get

𝜈𝜈3: Sr |≡ Ur |≡ (Wi, ni, Tidi)

The (Wi, ni, Tidi) are essential parameters for
mutual authentication and session key agreement.
According to Υ6, 𝜈𝜈3, and Jurisdiction rule

𝜈𝜈4: Sr |≡ (Wi, ni, Tidi)

Referring to Υ3, 𝜈𝜈4, and session key postulate, we

have

𝜈𝜈5: Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-2)

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate

𝜈𝜈6: Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-1)

Regarding the second idealized form, we have

M2: Sr → Ui: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Using the seeing rule, we have

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Referring to 𝜈𝜈7, Υ4 and message-meaning

postulate,

𝜈𝜈8: Ur |≡ Sr ~ (nj)

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and
nonce-verification postulates, we have

𝜈𝜈9: Ur |≡ Sr |≡ (nj)

where (nj) is an essential parameter for the mutual
authentication and session key establishment.

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we
have

P6. Session keys postulate

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔.
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh.
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔).
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔.
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k.
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k.

𝝔𝝔 𝒌𝒌 �⎯⎯⎯� 𝝔𝝔𝝔: 𝝔𝝔 and 𝝔𝝔𝝔 exchange message
employing the shared key k.

Some related postulates utilized in BAN logic are
shown below:

P1. Message meaning postulate≈
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�, 𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷 𝝔𝝔

P3. Jurisdiction postulate≈ 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔, 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷 𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔

P4. Freshness conjuncatenation postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔)
𝜷𝜷𝜷𝜷 (𝝔𝝔, 𝝔𝝔𝝔)

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔), 𝜷𝜷𝜷𝜷(𝝔𝝔�)
𝜷𝜷𝜷𝜷(𝝔𝝔, 𝝔𝝔�)

P6. Session keys postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷�𝜷𝜷𝜷��𝜷 𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security
under BAN logic on the basis of above postulates:

Goal-1 : Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-2 : Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-3 : Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-4 : Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

To proceed, we convert the exchanged messages in
our scheme into idealized form as given below:

M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
M2: Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'
M3: Ur → Sr: Auth3: ⟨ ni, nj' ⟩ Tidi

Besides, the understated assumptions are
established for proving security of our scheme:

Υ1 : Ur |≡ ♯ ni

Υ2 : Sr |≡ ♯ nj

Υ3 : Ur |≡ Sr 𝒀𝒀𝒀𝒀 �⎯⎯⎯⎯� Ur

Υ4 : Sr |≡ Sr 𝒀𝒀𝒀𝒀𝝔 �⎯⎯⎯⎯� Ur

Υ5 : Ur |≡ Sr ⇒ nj

Υ6 : Sr |≡ Ur ⇒ ni

Currently, the idealized forms such as M2, M2 and
M3 of our scheme may be analyzed and seen in the
light of stated assumptions and postulates.

Taking the first one of the idealized forms:
M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
By Applying seeing postulate, we have

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi

According to 𝜈𝜈1, Υ3 and message meaning

postulate,

𝜈𝜈2: Sr |≡ Ur ~ (Wi, ni, Tidi)

According to Υ1, 𝜈𝜈2, freshness-conjucatenation,
and nonce-verification postulates, we get

𝜈𝜈3: Sr |≡ Ur |≡ (Wi, ni, Tidi)

The (Wi, ni, Tidi) are essential parameters for
mutual authentication and session key agreement.
According to Υ6, 𝜈𝜈3, and Jurisdiction rule

𝜈𝜈4: Sr |≡ (Wi, ni, Tidi)

Referring to Υ3, 𝜈𝜈4, and session key postulate, we

have

𝜈𝜈5: Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-2)

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate

𝜈𝜈6: Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-1)
Regarding the second idealized form, we have

M2: Sr → Ui: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Using the seeing rule, we have

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Referring to 𝜈𝜈7, Υ4 and message-meaning

postulate,

𝜈𝜈8: Ur |≡ Sr ~ (nj)

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and
nonce-verification postulates, we have

𝜈𝜈9: Ur |≡ Sr |≡ (nj)

where (nj) is an essential parameter for the mutual
authentication and session key establishment.

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we
have

The contributed scheme must meet the under-men-
tioned goals to prove its session key’s security under
BAN logic on the basis of above postulates:
Goal-1 : Sr |≡ Sr

SK Ur

Goal-2 : Sr |≡ Ur |≡ Sr
SK Ur

Goal-3 : Ur |≡ Sr
SK Ur

Goal-4 : Ur |≡ Sr |≡ Sr
SK Ur

To proceed, we convert the exchanged messages in
our scheme into idealized form as given below:

M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi

M2: Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi’

M3: Ur → Sr: Auth3: ⟨ ni, nj’ ⟩ Tidi

Besides, the understated assumptions are established
for proving security of our scheme:
ϒ1 : Ur |≡ ♯ ni
ϒ2 : Sr |≡ ♯ nj
ϒ3 : Ur |≡ Sr

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔.
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh.
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔).
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔.
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k.
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k.

𝝔𝝔 𝒌𝒌 �⎯⎯⎯� 𝝔𝝔𝝔: 𝝔𝝔 and 𝝔𝝔𝝔 exchange message
employing the shared key k.

Some related postulates utilized in BAN logic are
shown below:

P1. Message meaning postulate≈
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�, 𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷 𝝔𝝔

P3. Jurisdiction postulate≈ 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔, 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷 𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔

P4. Freshness conjuncatenation postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔)
𝜷𝜷𝜷𝜷 (𝝔𝝔, 𝝔𝝔𝝔)

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔), 𝜷𝜷𝜷𝜷(𝝔𝝔�)
𝜷𝜷𝜷𝜷(𝝔𝝔, 𝝔𝝔�)

P6. Session keys postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷�𝜷𝜷𝜷��𝜷 𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security
under BAN logic on the basis of above postulates:

Goal-1 : Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-2 : Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-3 : Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-4 : Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

To proceed, we convert the exchanged messages in
our scheme into idealized form as given below:

M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
M2: Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'
M3: Ur → Sr: Auth3: ⟨ ni, nj' ⟩ Tidi

Besides, the understated assumptions are
established for proving security of our scheme:

Υ1 : Ur |≡ ♯ ni

Υ2 : Sr |≡ ♯ nj

Υ3 : Ur |≡ Sr 𝒀𝒀𝒀𝒀 �⎯⎯⎯⎯� Ur

Υ4 : Sr |≡ Sr 𝒀𝒀𝒀𝒀𝝔 �⎯⎯⎯⎯� Ur

Υ5 : Ur |≡ Sr ⇒ nj

Υ6 : Sr |≡ Ur ⇒ ni

Currently, the idealized forms such as M2, M2 and
M3 of our scheme may be analyzed and seen in the
light of stated assumptions and postulates.

Taking the first one of the idealized forms:
M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
By Applying seeing postulate, we have

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi

According to 𝜈𝜈1, Υ3 and message meaning

postulate,

𝜈𝜈2: Sr |≡ Ur ~ (Wi, ni, Tidi)

According to Υ1, 𝜈𝜈2, freshness-conjucatenation,
and nonce-verification postulates, we get

𝜈𝜈3: Sr |≡ Ur |≡ (Wi, ni, Tidi)

The (Wi, ni, Tidi) are essential parameters for
mutual authentication and session key agreement.
According to Υ6, 𝜈𝜈3, and Jurisdiction rule

𝜈𝜈4: Sr |≡ (Wi, ni, Tidi)

Referring to Υ3, 𝜈𝜈4, and session key postulate, we

have

𝜈𝜈5: Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-2)

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate

𝜈𝜈6: Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-1)

Regarding the second idealized form, we have

M2: Sr → Ui: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Using the seeing rule, we have

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Referring to 𝜈𝜈7, Υ4 and message-meaning

postulate,

𝜈𝜈8: Ur |≡ Sr ~ (nj)

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and
nonce-verification postulates, we have

𝜈𝜈9: Ur |≡ Sr |≡ (nj)

where (nj) is an essential parameter for the mutual
authentication and session key establishment.

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we
have

 Ur

ϒ4 : Sr |≡ Sr

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔.
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh.
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔).
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔.
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k.
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k.

𝝔𝝔 𝒌𝒌 �⎯⎯⎯� 𝝔𝝔𝝔: 𝝔𝝔 and 𝝔𝝔𝝔 exchange message
employing the shared key k.

Some related postulates utilized in BAN logic are
shown below:

P1. Message meaning postulate≈
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�, 𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷 𝝔𝝔

P3. Jurisdiction postulate≈ 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔, 𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷 𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔

P4. Freshness conjuncatenation postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔)
𝜷𝜷𝜷𝜷 (𝝔𝝔, 𝝔𝝔𝝔)

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔), 𝜷𝜷𝜷𝜷(𝝔𝝔�)
𝜷𝜷𝜷𝜷(𝝔𝝔, 𝝔𝝔�)

P6. Session keys postulate≈ 𝜷𝜷𝜷𝜷 (𝝔𝝔), 𝜷𝜷�𝜷𝜷𝜷��𝜷 𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security
under BAN logic on the basis of above postulates:

Goal-1 : Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-2 : Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-3 : Ur |≡ Sr �� �⎯⎯⎯⎯� Ur

Goal-4 : Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur

To proceed, we convert the exchanged messages in
our scheme into idealized form as given below:

M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
M2: Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'
M3: Ur → Sr: Auth3: ⟨ ni, nj' ⟩ Tidi

Besides, the understated assumptions are
established for proving security of our scheme:

Υ1 : Ur |≡ ♯ ni

Υ2 : Sr |≡ ♯ nj

Υ3 : Ur |≡ Sr 𝒀𝒀𝒀𝒀 �⎯⎯⎯⎯� Ur

Υ4 : Sr |≡ Sr 𝒀𝒀𝒀𝒀𝝔 �⎯⎯⎯⎯� Ur

Υ5 : Ur |≡ Sr ⇒ nj

Υ6 : Sr |≡ Ur ⇒ ni

Currently, the idealized forms such as M2, M2 and
M3 of our scheme may be analyzed and seen in the
light of stated assumptions and postulates.

Taking the first one of the idealized forms:
M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi
By Applying seeing postulate, we have

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi

According to 𝜈𝜈1, Υ3 and message meaning

postulate,

𝜈𝜈2: Sr |≡ Ur ~ (Wi, ni, Tidi)

According to Υ1, 𝜈𝜈2, freshness-conjucatenation,
and nonce-verification postulates, we get

𝜈𝜈3: Sr |≡ Ur |≡ (Wi, ni, Tidi)

The (Wi, ni, Tidi) are essential parameters for
mutual authentication and session key agreement.
According to Υ6, 𝜈𝜈3, and Jurisdiction rule

𝜈𝜈4: Sr |≡ (Wi, ni, Tidi)

Referring to Υ3, 𝜈𝜈4, and session key postulate, we

have

𝜈𝜈5: Sr |≡ Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-2)

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate

𝜈𝜈6: Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-1)

Regarding the second idealized form, we have

M2: Sr → Ui: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Using the seeing rule, we have

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi'

Referring to 𝜈𝜈7, Υ4 and message-meaning

postulate,

𝜈𝜈8: Ur |≡ Sr ~ (nj)

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and
nonce-verification postulates, we have

𝜈𝜈9: Ur |≡ Sr |≡ (nj)

where (nj) is an essential parameter for the mutual
authentication and session key establishment.

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we
have

 Ur

ϒ5 : Ur |≡ Sr ⇒ nj

ϒ6 : Sr |≡ Ur ⇒ ni

Currently, the idealized forms such as M2, M2 and M3
of our scheme may be analyzed and seen in the light of
stated assumptions and postulates.
Taking the first one of the idealized forms:
M2: Ur → Sr: Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩K1, K2, Yi

By Applying seeing postulate, we have
ν1: Sr ⊲ Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩ K1, K2, Yi

According to ν1, ϒ3 and message meaning postulate,
ν2: Sr |≡ Ur ~ (Wi, ni, Tidi)
According to ν1, ϒ2, freshness-conjucatenation, and
nonce-verification postulates, we get
ν3: Sr |≡ Ur |≡ (Wi, ni, Tidi)
The (Wi, ni, Tidi) are essential parameters for mutual
authentication and session key agreement.
According to ϒ6, ν3, and Jurisdiction rule
ν4: Sr |≡ (Wi, ni, Tidi)
Referring to ϒ3, ν4, and session key postulate, we have
ν5: Sr |≡ Ur |≡ Sr

SK Ur (Goal-2)
Referring to ϒ6, ν5, and Jurisdiction postulate
ν6: Sr |≡ Sr

SK Ur (Goal-1)
Regarding the second idealized form, we have
M2: Sr → Ui: m2 , Auth2: ⟨ nj ⟩ K2, Yi’

Using the seeing rule, we have
ν7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi’

Referring to ν7, ϒ4 and message-meaning postulate,
ν8: Ur |≡ Sr ~ (nj)
Regarding ϒ2, ν8, freshness-conjucatenation, and
nonce-verification postulates, we have
ν 9: Ur |≡ Sr |≡ (nj)
where (nj) is an essential parameter for the mutual
authentication and session key establishment.

221Information Technology and Control 2019/2/48

Regarding ϒ5, ν9, and Jurisdiction postulate, we have
ν10: Ur |≡ (nj)
Referring ϒ4, ν10, and session-key postulate, we get
ν11: Ur |≡ Sr |≡ Sr

SK Ur (Goal-4)
Regarding ϒ5, ν11, and Jurisdiction postulate, we have
ν12: Ur |≡ Sr

SK Ur (Goal-3)
The stated BAN logic-based protocol examination es-
tablishes the fact that our model confers mutual au-
thentication and the constructed session key (SK) is
mutually established among the user Ur and server Sr.
Employing the random oracle model, we implement
a formal security analysis for proving that our proto-
col is quite secure [29]. For the said objective, we em-
ployed the oracle Reveal_oracle as described below:
Reveal_oracle: This oracle would output x from the re-
lated hash digest y=h(x), for sure.
The Reveal_oracle has been employed in
Algorithm 1,

𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈11: Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈12: Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-3)
The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑯𝑯𝑰𝑰𝑰𝑰𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)ni),
and Aij = Zi  h(h(SIDj || PK)||ni)h(HB(Bi)
||PWi)  PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸�����������], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (tm2, qRy1) ≤ 𝜀𝜀 for a negligibly small
𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� and 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (t1) ≤ 𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

, as shown above, signifying
towards the session key’s disclosure if the Reveal_
oracle is executed by inverting hash digest.

𝜈𝜈𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈𝜈𝜈12: Ur |≡ Sr
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-3)

The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni),
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi)
||PWi) ⊕ PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (t1) ≤ 𝜀𝜀𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

Theorem 1. The contributed scheme is secure, if an at-
tacker attempts to determine the mutually agreed ses-
sion key (SK) among legitimate participants SPj and
Ui, provided one-way hash digest function acts nearly
as a random oracle.
Proof. In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and SPj,
makes a use of this Reveal_oracle oracle to implement

𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈11: Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈12: Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-3)
The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑯𝑯𝑰𝑰𝑰𝑰𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)ni),
and Aij = Zi  h(h(SIDj || PK)||ni)h(HB(Bi)
||PWi)  PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸�����������], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (tm2, qRy1) ≤ 𝜀𝜀 for a negligibly small
𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� and 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (t1) ≤ 𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

. The probability of success correspond-
ing to

𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈11: Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈12: Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-3)
The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑯𝑯𝑰𝑰𝑰𝑰𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)ni),
and Aij = Zi  h(h(SIDj || PK)||ni)h(HB(Bi)
||PWi)  PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸�����������], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (tm2, qRy1) ≤ 𝜀𝜀 for a negligibly small
𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� and 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (t1) ≤ 𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

 is Sucs1=Prb.2[

𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈11: Ur |≡ Sr |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈12: Ur |≡ Sr �� �⎯⎯⎯⎯� Ur (Goal-3)
The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑯𝑯𝑰𝑰𝑰𝑰𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)ni),
and Aij = Zi  h(h(SIDj || PK)||ni)h(HB(Bi)
||PWi)  PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸�����������], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (tm2, qRy1) ≤ 𝜀𝜀 for a negligibly small
𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� and 𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (t1) ≤ 𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

=1]-1,
Here Prb[E] depicts the event probability for an event
(E). The advantage function for the above experiment
can be established as

𝜈𝜈𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈𝜈𝜈12: Ur |≡ Sr
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-3)

The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni),
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi)
||PWi) ⊕ PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (t1) ≤ 𝜀𝜀𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

 (tm2, qRy1)=maxA [

𝜈𝜈𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈𝜈𝜈12: Ur |≡ Sr
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-3)

The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni),
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi)
||PWi) ⊕ PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (t1) ≤ 𝜀𝜀𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

], having execution delay time tm2 and
Reveal-query qRy1 maximized on the adversary Ⱥ
[1]. We regard our contributed scheme as quite safe
against an adversary Ⱥ in recovering the agreed ses-
sion key (SK) between Ui and SPj, if

𝜈𝜈𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈𝜈𝜈12: Ur |≡ Sr
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-3)

The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni),
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi)
||PWi) ⊕ PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (t1) ≤ 𝜀𝜀𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

(tm2,
qRy1) ≤ ε for a negligibly small ε > 0. In relation to this
experiment, if the adversary is competent to invert a
one-way hash digest function h(), it might comfort-
ably recover the real session key (SK) shared between
SPj and Ui, and at last Ⱥ wins the game. Nonetheless,
in accordance with Reveal_oracle definition, this is
polynomially unfeasible to invert hash function since

𝜈𝜈𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈𝜈𝜈12: Ur |≡ Sr
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-3)

The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni),
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi)
||PWi) ⊕ PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (t1) ≤ 𝜀𝜀𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

 and

𝜈𝜈𝜈𝜈10: Ur |≡ (nj)

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we
get
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-4)

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we

have

𝜈𝜈𝜈𝜈12: Ur |≡ Sr
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� Ur (Goal-3)

The stated BAN logic-based protocol examination
establishes the fact that our model confers mutual
authentication and the constructed session key (SK)
is mutually established among the user Ur and
server Sr.

 Employing the random oracle model, we
implement a formal security analysis for proving
that our protocol is quite secure [29]. For the said
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
as described below:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from
the related hash digest y=h(x), for sure.
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above,
signifying towards the session key’s disclosure if
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash
digest.

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯

1. Eavesdrop the login-request {Aij, m2, Auth1} where
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni),
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi)
||PWi) ⊕ PK.

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1)

3. Eavesdrop the Authentication message {Auth3} in
verification phase, where Auth3=h(Tidi || ni || nj')

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get
{Tidi', ni, nj'} as (Tidi' || ni || nj')←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3)

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get
{Yi , SIDj , ni} as (Yi || SIDj || ni) ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi')

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle
(Yi)

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi)

8. Compute session key as SK= h(Tidi || ni' || nj ||
SIDj)

9. If (Aij '= Aij) AND (Tidi '= Tidi) Then
Take SK as a legitimate session key
for identity (IDi') of Ui,
against login request {Aij, m2, Auth1}

 Return 1 (shows success)
10. Else
11. Return 0 (shows failure)
12. End if

Theorem 1

The contributed scheme is secure, if an attacker
attempts to determine the mutually agreed session
key (SK) among legitimate participants SPj and Ui,
provided one-way hash digest function acts nearly
as a random oracle.

Proof.

In this proof [6, 8, 13-14], an adversary Ⱥ,
competent enough to derive the agreed session key
(SK) among the participants particularly Ui and
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 is
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E]
depicts the event probability for an event (E). The
advantage function for the above experiment can
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1)=maxA
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻], having execution delay time tm2
and Reveal-query qRy1 maximized on the adversary
Ⱥ [1]. We regard our contributed scheme as quite
safe against an adversary Ⱥ in recovering the
agreed session key (SK) between Ui and SPj, if
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the
adversary is competent to invert a one-way hash
digest function h(), it might comfortably recover
the real session key (SK) shared between SPj and
Ui, and at last Ⱥ wins the game. Nonetheless, in
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is
polynomially unfeasible to invert hash function
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (t1) ≤ 𝜀𝜀𝜀𝜀 for a
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the
contributed protocol may be safely considered as
resistant as the security features for hash functions
are tough to break in polynomial amount of time.

7. Comparison and Performance Analysis

The Chang et al. model presents a multi-server
authenticated key agreement protocol and is based
on light-weight symmetric key operations which
are suitable for power deficient mobile devices. In
this performance section, we evaluate performance
efficiency of authentication protocol by Chang et
al. with proposed protocol. Table 2 lists the
limitations of Chang et al.’s model, while the
proposed scheme acts as a vigorous authentication
protocol as proven in the preceding sections. Table

 (t1) ≤ ε for a negligibly
small value, i.e. ε > 0. Therefore, the contributed pro-
tocol may be safely considered as resistant as the se-
curity features for hash functions are tough to break
in polynomial amount of time.

7. Comparison and Performance
Analysis
The Chang et al. model presents a multi-server au-
thenticated key agreement protocol and is based on
light-weight symmetric key operations which are
suitable for power deficient mobile devices. In this
performance section, we evaluate performance effi-
ciency of authentication protocol by Chang et al. with
proposed protocol. Table 2 lists the limitations of
Chang et al.’s model, while the proposed scheme acts
as a vigorous authentication protocol as proven in the
preceding sections. Table 2 demonstrates that Chang
et al.’s model does not offer protection from stolen
card threat, impersonation attack and lacks session

Information Technology and Control 2019/2/48222

Table 2
Comparison for Multi-server schemes

Chang et
al. [4]

Proposed
protocol

Anonymity ✔ ✔

Mutual authentication ✔ ✔

Known key secrecy ✔ ✔

Resists MiTM threat ✔ ✔

Resists modification threat ✔ ✔

Resists password guessing threat ✔ ✔

Resists stolen smart card threat × ✔

Resists impersonation threat × ✔

Resists replay threat ✔ ✔

Session key security × ✔

Table 3
Number of operations in Chang et al.’s model and
contributed model

 Chang et al. [4] Ours

Registration messages 9 TH 8 TH

User side 9TH 11 TH

Server side 6TH 6TH

Password update messages 4 TH 7 TH

key security, while the proposed scheme is immune
to those identified threats as verified in the formal
security models. The actual cost for both schemes is
shown in Table 3, where different hash operations are
represented with TH, and bypassing exclusive-OR op-
eration for its insignificant computational cost.

Consequently, in consideration of above performance
evaluation and analysis, we may infer that our proto-
col is more secure than Chang et al.’s protocol while
bearing an equivalent cost. The proposed scheme pro-
vides immunity against impersonation and session
key attacks in contrary to Chang et al.’s model. Table
3 compares the number of operations for Chang et al.
protocol and contributed model and depicts that the
phases of both schemes take an equivalent computa-
tional cost with a little variation in the cost of pass-
word modification phase.

8. Conclusion
The multi-server authentication serves as one of the
main requirements of the current internet-based au-
thentication framework. This manuscript studies the
multi-server based Chang et al.’s remote authentica-
tion model which demonstrates that the Chang et al.
scheme is prone to impersonation and session key
attacks, subject to the stolen contents of smart card.
The review and cryptanalysis of Chang et al.’s model
has been demonstrated comprehensively. Thereafter,
a proposed model is presented that foils those par-
ticular attacks with the contribution of an enhanced
model. Moreover, this paper presents the formal se-
curity analysis using BAN logic and random oracle
model, and evaluates the performance against the
Chang et al.’s protocol.

Acknowledgement
This work was supported by the Brain Korea 21 Plus
Program (No. 22A20130012814) funded by the Na-
tional Research Foundation of Korea (NRF).

References
1. Bellare, M., Rogaway, P. Entity Authentication and

Key Distribution. Proceedings of the 13th Annual In-
ternational Cryptology Conference, LNCS 773, San-
ta Barbara, CA, August, 1993, 232-249. https://doi.
org/10.1007/3-540-48329-2_21

2. Burrows, M., Abadi, M., Needham, R. M. A Logic of Au-
thentication. Proceedings of the Royal Society of Lon-

don. Series A, Mathematical and Physical Sciences, 1989,
426, 233-271. https://doi.org/10.1098/rspa.1989.0125

3. Chang, C. C., Lee, J. S. An Efficient and Secure
Multi-Server Password Authentication Scheme Us-
ing Smart Cards. Proceedings of the 3rd International
Conference on Cyberworlds, Tokyo, Japan, November,
2004, 417-22.

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1098/rspa.1989.0125

223Information Technology and Control 2019/2/48

4. Chang, C.-C., Cheng, T.-F., Hsueh, W.-Y. A Robust and
Efficient Dynamic Identity-Based Multi-Server Au-
thentication Scheme Using Smart Cards. International
Journal of Communication Systems, 2016, 29(2), 290-
306. https://doi.org/10.1002/dac.2830

5. Chang, Y. F., Tai, W. L., Chang, H. C. Untraceable Dy-
namic-Identity-Based Remote User Authentication
Scheme with Verifiable Password Update. Internation-
al Journal of Communication Systems, 2013 (Article in
press). https://doi.org/10.1002/dac.2552

6. Chaudhry, S. A., Khan, I., Irshad, A., Ashraf, M. U., Khan,
M. K., Ahmad, H. F. A Provably Secure Anonymous Au-
thentication Scheme for Session Initiation Protocol.
Security and Communication Networks, 2016, 9(18),
5016-5027. https://doi.org/10.1002/sec.1672

7. Chaudhry, S. A., Naqvi, H., Farash, M. S., Shon, T., Sher,
M. An Improved and Robust Biometrics-Based Three
Factor Authentication Scheme for Multiserver Envi-
ronments. The Journal of Supercomputing, 2018, 74(8),
3504-3520. https://doi.org/10.1007/s11227-015-1601-y

8. Chaudhry, S. A., Sher, M., Ghani, A., Naqvi, H., Irshad,
A. An Efficient Signcryption Scheme with Forward Se-
crecy and Public Verifiability Based on Hyper Elliptic
Curve Cryptography. Multimedia Tools and Applica-
tions, 2015, 74(5), 1711-1723. https://doi.org/10.1007/
s11042-014-2283-9

9. Hsiang, H. C., Shih, W. K. Improvement of the Se-
cure Dynamic ID Based Remote User Authentication
Scheme for Multiserver Environment. Computer Stan-
dards and Interfaces, 2009, 31(6), 1118-1123. https://doi.
org/10.1016/j.csi.2008.11.002

10. Hwang, M. S., Lee, C. C., Tang, Y. L. A Simple Remote
User Authentication Scheme. Mathematical and Com-
puter Modelling, 2002, 36(1-2), 103-107. https://doi.
org/10.1016/S0895-7177(02)00106-1

11. Irshad, A., Chaudhry, S. A., Xie, Q., Li, X., Farash, M. S.,
Kumari, S., Wu, F. An Enhanced and Provably Secure
Chaotic Map-Based Authenticated Key Agreement in
Multi-Server Architecture. Arabian Journal for Sci-
ence and Engineering, 2018, 43(2), 811-828. https://doi.
org/10.1007/s13369-017-2764-z

12. Irshad, A., Naqvi, H., Chaudhry, S. A., Raheem, S., Ku-
mari, S., Kanwal, A., Usman, M. An Efficient and Secure
Design of Multi-Server Authenticated Key Agreement
Protocol. The Journal of Supercomputing, 2018, 74(9),
4771-4797. https://doi.org/10.1007/s11227-018-2467-6

13. Irshad, A., Sher, M., Alzahrani, B. A., Albeshri, A.,
Chaudhry, S. A., Kumari, S. Cryptanalysis and Im-

provement of a Multi-server Authentication Protocol
by Lu et al. KSII Transactions on Internet & Infor-
mation Systems, 2018, 12(1). https://doi.org/10.3837/
tiis.2018.01.025

14. Irshad, A., Sher, M., Chaudhary, S. A., Naqvi, H., Farash,
M. S. An Efficient and Anonymous Multi-Server Au-
thenticated Key Agreement Based on Chaotic Map
Without Engaging Registration Centre. The Journal of
Supercomputing, 2016, 72(4), 1623-1644. https://doi.
org/10.1007/s11227-016-1688-9

15. Irshad, A., Sher, M., Chaudhry, S. A., Kumari, S., Sanga-
iah, A. K., Li, X., Wu, F. A Secure Mutual Authenticated
Key Agreement of User with Multiple Servers for Criti-
cal Systems. Multimedia Tools and Applications, 2018,
77(9), 11067-11099. https://doi.org/10.1007/s11042-
017-5078-y

16. Jin, A. T. B., Ling, D. N. C., Goh, A. Bio-hashing: Two
Factor Authentication Featuring Fingerprint Data
and Tokenised Random Number. Pattern Recognition,
2004, 37(11), 2245-2255. https://doi.org/10.1016/j.pat-
cog.2004.04.011

17. Juang, W. S. Efficient Multi-Server Password Authenti-
cated Key Agreement Using Smart Cards. IEEE Trans-
actions on Consumer Electronics, 2004, 50(1), 251-255.
https://doi.org/10.1109/TCE.2004.1277870

18. Juang, W. S. Efficient Password Authenticated Key
Agreement Using Smart Cards. Computers and Se-
curity, 2004, 23(2), 167-173. https://doi.org/10.1016/j.
cose.2003.11.005

19. Kumari, S., Li, X., Wu, F., Das, A. K., Arshad, H., Khan,
M. K. A User Friendly Mutual Authentication and Key
Agreement Scheme for Wireless Sensor Networks
Using Chaotic Maps. Future Generation Computer
Systems, 2016, 63, 56-75. https://doi.org/10.1016/j.fu-
ture.2016.04.016

20. Kumari, S., Li, X., Wu, F., Das, A. K., Choo, K. K. R., Shen,
J. Design of a Provably Secure Biometrics-Based Multi-
Cloud-Server Authentication Scheme. Future Genera-
tion Computer Systems, 2017, 68, 320-330. https://doi.
org/10.1016/j.future.2016.10.004

21. Lamport, L. Password Authentication with Insecure
Communication. Communications of the ACM, 1981,
24(11), 770-772. https://doi.org/10.1145/358790.358797

22. Lee, C. C., Lin, T. H., Chang, R. X. A Secure Dynam-
ic ID Based Remote User Authentication Scheme for
Multi-Server Environment Using Smart Cards. Expert
Systems with Applications, 2011, 38(11), 13863-13870.
https://doi.org/10.1016/j.eswa.2011.04.190

https://doi.org/10.1002/dac.2830
https://doi.org/10.1002/dac.2552
https://doi.org/10.1002/sec.1672
https://doi.org/10.1007/s11227-015-1601-y
https://doi.org/10.1007/s11042-014-2283-9
https://doi.org/10.1007/s11042-014-2283-9
https://doi.org/10.1016/j.csi.2008.11.002
https://doi.org/10.1016/j.csi.2008.11.002
https://doi.org/10.1016/S0895-7177(02)00106-1
https://doi.org/10.1016/S0895-7177(02)00106-1
https://doi.org/10.1007/s13369-017-2764-z
https://doi.org/10.1007/s13369-017-2764-z
https://doi.org/10.1007/s11227-018-2467-6
https://doi.org/10.3837/tiis.2018.01.025
https://doi.org/10.3837/tiis.2018.01.025
https://doi.org/10.1007/s11227-016-1688-9
https://doi.org/10.1007/s11227-016-1688-9
https://doi.org/10.1007/s11042-017-5078-y
https://doi.org/10.1007/s11042-017-5078-y
https://doi.org/10.1016/j.patcog.2004.04.011
https://doi.org/10.1016/j.patcog.2004.04.011
https://doi.org/10.1109/TCE.2004.1277870
https://doi.org/10.1016/j.cose.2003.11.005
https://doi.org/10.1016/j.cose.2003.11.005
https://doi.org/10.1016/j.future.2016.04.016
https://doi.org/10.1016/j.future.2016.04.016
https://doi.org/10.1016/j.future.2016.10.004
https://doi.org/10.1016/j.future.2016.10.004
https://doi.org/10.1145/358790.358797
https://doi.org/10.1016/j.eswa.2011.04.190

Information Technology and Control 2019/2/48224

23. Li, L. H., Lin, I. C., Hwang, M. S. A Remote Password
Authentication Scheme for Multiserver Architec-
ture Using Neural Networks. IEEE Transactions on
Neural Networks, 2001, 12(6), 1498-1504. https://doi.
org/10.1109/72.963786

24. Li, X., Ma, J., Wang, W., Xiong, Y., Zhang, J. A Novel
Smart Card and Dynamic ID Based Remote User Au-
thentication Scheme for Multi-Server Environments.
Mathematical and Computer Modelling, 2013, 58(1-2),
85-95. https://doi.org/10.1016/j.mcm.2012.06.033

25. Li, X., Niu, J., Kumari, S., Liao, J., Liang, W. An En-
hancement of a Smart Card Authentication Scheme for
Multi-Server Architecture. Wireless Personal Commu-
nications, 2015, 80(1), 175-192. https://doi.org/10.1007/
s11277-014-2002-x

26. Li, X., Niu, J., Liao, J., Liang, W. Cryptanalysis of a Dy-
namic Identity-Based Remote User Authentication
Scheme with Verifiable Password Update. Internation-
al Journal of Communication Systems, 2013 (Article in
press). DOI: 10.1002/dac.2676. https://doi.org/10.1002/
dac.2676

27. Li, X., Xiong, Y., Ma, J., Wang, W. An Efficient and Securi-
ty Dynamic Identity Based Authentication Protocol for
Multi-Server Architecture Using Smart Cards. Journal
of Network and Computer Applications, 2012, 35(2),
763-769. https://doi.org/10.1016/j.jnca.2011.11.009

28. Liao, Y. P., Wang, S. S. A Secure Dynamic ID Based Re-
mote User Authentication Scheme for Multi-Server En-
vironment. Computer Standards and Interfaces, 2009,
31(1), 24-29. https://doi.org/10.1016/j.csi.2007.10.007

29. Liao, Y.-P., Hsiao, C.-M. A Novel Multi-Server Remote
User Authentication Scheme Using Self-Certified

Public Keys for Mobile Clients. Future Generation
Computer Systems, 2013, 29(3), 886-900. https://doi.
org/10.1016/j.future.2012.03.017

30. Lin, C. W., Shen, J. J., Hwang, M. S. Security Enhance-
ment for Optimal Strong-Password Authentication Pro-
tocol. ACM SIGOPS Operating Systems Review, 2003,
37(2), 12-16. https://doi.org/10.1145/881783.881785

31. Lin, I. C., Hwang, M. S., Li, L. H. A New Remote User
Authentication Scheme for Multi-Server Architecture.
Future Generation Computer System, 2003, 19(1), 13-
22. https://doi.org/10.1016/S0167-739X(02)00093-6

32. Lumini, A., Loris, N. An Improved Bio-hashing for
Human Authentication. Pattern recognition, 2007,
40(3), 1057-1065. https://doi.org/10.1016/j.pat-
cog.2006.05.030

33. Shieh, W. G., Wang, J. M. Efficient Remote Mutual
Authentication and Key Agreement. Computers and
Security, 2006, 25(1), 72-77. https://doi.org/10.1016/j.
cose.2005.09.008

34. Sood, S. K., Sarje, A. K., Singh, K. A Secure Dynamic
Identity Based Authentication Protocol for Multi-Serv-
er Architecture. Journal of Network and Comput-
er Applications, 2011, 34(2), 609-618. https://doi.
org/10.1016/j.jnca.2010.11.011

35. Yang, W. H, Shieh, S. P. Password Authentication
Schemes with Smart Cards. Computers and Security,
1999, 18(8), 727-733. https://doi.org/10.1016/S0167-
4048(99)80136-9

36. Yeh, K. H., Lo, N. W, Li, Y. Cryptanalysis of Hsiang-Shih’s
Authentication Scheme for Multi-Server Architecture.
International Journal of Communication Systems,
2011, 24(7), 829-836. https://doi.org/10.1002/dac.1184

https://doi.org/10.1109/72.963786
https://doi.org/10.1109/72.963786
https://doi.org/10.1016/j.mcm.2012.06.033
https://doi.org/10.1007/s11277-014-2002-x
https://doi.org/10.1007/s11277-014-2002-x
https://doi.org/10.1002/dac.2676
https://doi.org/10.1002/dac.2676
https://doi.org/10.1016/j.jnca.2011.11.009
https://doi.org/10.1016/j.csi.2007.10.007
https://doi.org/10.1016/j.future.2012.03.017
https://doi.org/10.1016/j.future.2012.03.017
https://doi.org/10.1145/881783.881785
https://doi.org/10.1016/S0167-739X(02)00093-6
https://doi.org/10.1016/j.patcog.2006.05.030
https://doi.org/10.1016/j.patcog.2006.05.030
https://doi.org/10.1016/j.cose.2005.09.008
https://doi.org/10.1016/j.cose.2005.09.008
https://doi.org/10.1016/j.jnca.2010.11.011
https://doi.org/10.1016/j.jnca.2010.11.011
https://doi.org/10.1016/S0167-4048(99)80136-9
https://doi.org/10.1016/S0167-4048(99)80136-9
https://doi.org/10.1002/dac.1184

