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The remote authentication has been advancing with the growth of online services being offered on remote ba-
sis. This calls for an optimal authentication framework other than single-server authentication. In this connec-
tion, the multi-server authentication architecture has been introduced in the literature that enables the users 
to avail variety of services of various service providers, using a single pair of identity and password. Lately, we 
have witnessed a few multi-server authentication protocols in the literature that had several limitations. One of 
those multi-server authentication protocols has been put forward by Chang et al. recently. Our analysis shows 
that the Chang et al.’s scheme is susceptible to impersonation threat, stolen smart card threat. In this study, 
we have reviewed the protocol thoroughly, and proposed an improved model, that is resistant to all known and 
identified threats. The formal security analysis along with discussion of informal analysis for contributed mod-
el is also presented in this study, besides performance and its evaluation analysis. 
KEYWORDS: Multiserver authentication, cryptanalysis, biometrics, remote authentication, attacks.

1. Introduction
The growth of internet has facilitated the day-to-
day introduction of new services on remote basis. 
In this regard, an efficient Multi-Server Authentica-
tion (MSA) serves as an integral component of this 
growth, which lets the users avail remote services 
from different servers, by utilizing a single pair of 
identity and password for all servers [10, 21, 29, 33]. 
MSA not only relieves the user of the hassle of mem-
orizing so many passwords, but also relaxes the serv-
ers of individualized registration procedures with 
each user, prior to the authentication phase [17]. In 
the last five years, many multi-server authentication 
schemes were presented. Nevertheless, there is still a 
need of more secure and efficient techniques [35]. In 
MSA literature, for neural networks, Li et al. [23], Lin 
et al. [30], Juang [18], Chang and Lee [3] contributed 
few techniques that were based on symmetric cryp-
tography and discrete logarithms. However, these 
schemes did not protect the identity of user, and were 
also computationally inefficient for their operations 
cost. Afterwards, Liao and Wang [28] presented a dy-
namic identity- based MSA protocol. However, the 
scheme was found vulnerable by Hsiang and Shih 
[9], for lacking mutual authentication, and improved 
scheme was presented by Hsiang and Shih. Then, Yeh 
et al. [36] found that the previous scheme is exposed 
to session key disclosure, replay threat, and forgery 
threat. Thereafter, Lee et al. [22] indicated that Yeh 
et al.’s scheme is prone to masquerading attack and 
also lacks mutual authentication. At the same time, 
Sood et al. [34] specifies that the same Yeh et al. pro-
tocol suffers stolen smart card, impersonation threat, 
and a flawed password changing procedure. Sood et 
al. and Lee et al. also demonstrated their enhanced 

models. Then, Li et al. [24, 27] discovered a mutu-
al authentication weakness in Sood et al. protocol, 
and server spoofing, faulty authentication procedure 
in Lee et al.’s scheme [22], with contribution of im-
proved schemes, respectively. Afterwards, Chang et 
al. [5] proposed a dynamic identity based authentica-
tion scheme, which was found to be vulnerable in im-
personation threat, stolen smart card threat, insider 
threat, and password-guessing threat by Li et al. [26]. 
The Li et al. [24] protocol was found to be vulnerable 
against forgery attack by Chang et al. [4] and an inher-
ent design weakness was discovered by Chang et al. 
that was providing the attacker a chance to perform 
illegal activities without being caught. Thereafter, 
Chang et al. put forward an enhanced model for pro-
tocol [24]. After careful study of Chang et al. [4], we 
found that the Chang et al.’s model is prone to imper-
sonation threat, and session key disclosure attacks, 
once smart card gets stolen. We have contributed an 
enhanced biometric authentication model that cov-
ers all of the indicated limitations in the Chang et al. 
scheme. This study work demonstrates formal anal-
ysis of security and performance evaluation as well.
Our protocol is arranged in the following order: The 
section “Preliminaries” defines the preliminaries re-
lated to our scheme and section “A review of the Chang 
et al.’s protocol” presents a review and cryptanalysis of 
Chang et al.’s protocol. The section “Proposed model” 
demonstrates our contributed protocol. The section 
“Security discussion” and section “Formal security 
analysis” illustrate informal and formal security anal-
ysis, respectively. The “Comparison and performance 
analysis” section depicts the related performance anal-
ysis. The last section summarizes this paper.
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2. Preliminaries
The properties of hash digest and bio-hashing func-
tion are illustrated in preliminaries section.

2.1. Hash Function
To act as a secure authentication protocol, one of the 
constituent lightweight crypto-operations, i.e. a one-
way hash function h: {0, 1}* → Z*

q , must hold the under-
stated features.
1 The function h generates a fixed length hash digest 

after taking a variable sized input. 
2 In case h(μ)=δ, it  is hard in polynomial time for 

computing h-1(δ)= μ;
3 If μ is given, it is improbable to compute μ' in poly-

nomial time, such that μ'≠μ holds as well as h(μ') = 
h(μ);

4 In addition, it is hard to get a pair (μ, μ') given that 
μ'≠μ and h(μ')=h(μ) holds at the same time.

2.2. Bio-hashing
The bio-hashing function [19] is employed for captur-
ing the inherent biometric features of a person, such 
as fingerprint to be used for authentication purpose, 
while these features remains permanent over a period 
of time. Jin et al. [16], in 2004 came up with a two-fac-
tor authenticator protocol which bears iterated inner 
products, as kept between tokenized pseudorandom 
number and user-oriented finger impression-based 
features. This procedure computes a particular com-
pact code which provides the basis for the current 
bio-hashing concept. Thereafter, this bio-hashing 
function was improved further by Lumini and Loris 
[32]. The bio-hashing function produces a unique 
random vector as a function of specific user’s bio-
metric features, which is named as a Biocode. This, 
in addition, helps in discretizing the projection-coef-
ficients and is computed as secure hashed password 
in general.

3. A Review of the Chang et al.’s 
Scheme
The protocol’s working of Chang et al. [4] is described 
as under.

3.1. Revisiting Chang et al.’s Model
The Chang et al.’s model [4] is comprised of three pro-
cedures, such as the registration procedure, mutual 
authentication procedure which is also shown in Fig-
ure 1. We present a few notations that may be helpful to 
readers to comprehend the scheme as given in Table 1.

Table 1 
Symbols guide

Notations Meaning

Ui: ith Subscriber or User

IDi, PWi Subscriber’s identity and password 

H(): Private hash function

HB(): Bio-hashing function

SPj: The jth service provider

RC: Registration centre

h(.): a secure hash digest function

Bi: Biometric impression

K, b: RC’s master secret, RC’s random secret 

ni, nj: Nonce

SC: Smart Card

||, ⊕ Concatenation and XOR functions

3.1.1. Server Registration Procedure
The Chang et al.’s model comprises a reliable regis-
tration centre (RC) along with n number of servers 
(SPj), while the range of j implies 1 ≤ j ≤ n. The SPj 
completes its registration procedure with RC before 
the user’s registration. The SPj is registered from RC 
with the sharing of two secrets K1 and K2 between 
SPj and RC over a confidential channel. Earlier, RC 
selects a master secret key k and a random integer b. 
Afterwards, SPj submits the identity SIDj towards 
registration centre. Then, RC calculates K1 = h(k || b) 
and K2 = h(SIDj || H(b)). Here, H(.) is a private hash 
digest, while h(.) represents public hash-digest func-
tion. Onwards, the registration centre forwards these 
keys to SPj employing a confidential channel.
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Figure 1.  Chang et al.’s registration and mutual authentication procedure 

3.1.1  Server Registration Procedure 
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RC before the user’s registration. The SPj is 
registered from RC with the sharing of two secrets 
K1 and K2 between SPj and RC over a confidential 
channel. Earlier, RC selects a master secret key k 

Smart card {Vi, Xi, Yi, Zi , h()} 

{IDi , MPi} Vi=H(b) h(IDi || MPi) 
Wi=h(IDi ||K), 
Xi=h(IDi|| H(b)) 
Yi = h(Wi || h(K || b)) and 
Zi = Wi  h(K||b)  H(b) MPi 
Stores IDi and Wi in its Database and 
Wi is sent to all SPj in the network 

1. The user inserts SC and key in IDi and PWi  
PK= Vi h(IDi || h(PWi)) 
h(IDi || PK) ?= Xi 
Generates a random nonce ni and computes 
Aij = Zi  h(h(SIDj || PK)||ni) h(PWi)  PK 
Tidi=h(Yi || SIDj || ni) and 
Auth1=h(Aij || Tidi || ni) 
m1=h(SIDj || PK)ni) 

USER’S REGISTRATION PROCEDURE: 

Ui gets SC and stores 
safely.  

User (Ui) Server (SPj) 

Ui RC 

MUTUAL AUHTHENTICATION PROCEDURE: 

Select IDi, PWi,  
MPi=h(PWi) 

{Aij, m1, Auth1} 
2.  ni' =m1 K2 
Wi'=Aij h( 2 || ni')   
Now checks ni' and Wi' validity. If 
ni' is fresh and Wi' is in white list, 
then 
Yi'= h(Wi' ||  

1

) 
Tid = h(Yi' || SIDj || ni' ) 
h(Aij || Tidi' || ni')?= Auth1 
Generates a random number nj  
Auth2= h(Yi' || SIDj || ni' || nj ) 
m2= K2 nj 
 

{m2 , Auth2} 

{Auth3} 

3. nj'= m2 h(SIDj || PK) 
Next, it checks nj' freshness 
h(Yi || SIDj || ni'|| nj' ) ?= Auth2 
Auth3=h(Tidi || ni || nj') 

Session key = Sk = h(Tidi || ni' || nj || SIDj)= h(Tidi || ni || nj' || SIDj). 

Computes and checks 
h(Tidi || ni' || nj) ?=Auth3 

K K

1K

Figure 1

Chang et al.’s registration and mutual authentication procedure
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Figure 2 
Proposed model

 

 
 

Figure. 2. Proposed model 
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    Tidi=h(Yi || SIDj || ni) , 
    Auth1=h(Aij || Tidi || ni), 
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MUTUAL AUHTHENTICATION PROCEDURE: 

Ui inputs IDi, PWi and Bi  

{Aij, m1, Auth1} 
   

 2.  ni' =m1⊕ , 
    Wi'=Aij ⊕h(  || ni') ⊕ , 
    Now checks ni' and Wi' validity. If     
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Shared session key =  
Sk = h(Tidi' || ni' || nj || SIDj)= h(Tidi || ni || nj' || SIDj) 
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3.1.2. User Registration Procedure
In the registration procedure, Ui performs few regis-
tration steps with the RC. Afterwards Ui may access 
all service providers SPj. The RC performs the under-
mentioned steps with the user to implement the reg-
istration procedure. 
1 Primarily, Ui chooses its identity (IDi) and a pass-

word (PWi). Then, it computes MPi by calculat-
ing MPi=h(PWi) and it sends {IDi, MPi} to SPj as 
shown in Figure 1.

2 SPj, then, calculates Vi=H(b) ⊕ h(IDi || MPi), 
Wi=h(IDi || k), Xi=h(IDi || H(b)), Yi = h(Wi || h(k 
|| b)) and Zi = Wi ⊕ h(k||b) ⊕ H(b) ⊕ MPi. After-
wards, SPj stores IDi and Wi in its database, while 
Wi is sent to all servers in the network. RC now 
issues smart card to Ui with these parameters {Vi, 
Xi, Yi, Zi and h()}.

3.1.3. Mutual Authentication Procedure
1 In this procedure, Ui employs its smart card to 

avail the SPj’s services. For this reason, the user 
inserts SC and gives IDi and PWi as input. Next, it 
computes PK= Vi ⊕ h(IDi || h(PWi)) and checks 
the equality h(IDi || PK) ?= Xi. On successful 
check, it produces a random nonce ni and calculate 
Aij = Zi ⊕ h(h(SIDj || PK)||ni) ⊕ h(PWi) ⊕ PK, 
Tidi=h(Yi || SIDj || ni), Auth1=h(Aij || Tidi || ni) 
and m2=h(SIDj || PK) ⊕ ni). Next, it submits the 
message {Aij, m2, Auth1} to SPj for verification.

2 The SPj receives {Aij, m2, Auth1} and computes  
ni’ =m2 ⊕ K2 and Wi’=Aij ⊕ h(K2 || ni’) ⊕ K1. SPj 
now checks validity and freshness of ni’ and Wi’. If 
ni’ is fresh and Wi’ is in its white list, it computes 
Yi’= h(Wi’ ||  K1) and Tidi = h(Yi’ || SIDj || ni’ ). Next, 
it checks the equality h(Aij || Tidi’ || ni’)?= Auth1. If 
true, it engenders a random integer nj and further 
calculates Auth2= h(Yi’ || SIDj || ni’ || nj ), m2= K2 ⊕ 
nj. Next, it sends {m2, Auth2} to Ui. 

3 After receiving {m2, Auth2}, Ui, calculates nj’= m2 

⊕ h(SIDj || PK). He/She checks the validity or 
freshness for nj’ and computes h(Yi || SIDj || ni’|| 
nj’ ) for checking the validity h(Yi || SIDj || ni’||  
nj’) ?= Auth2. If true, then calculates Auth3= 
h(Tidi || ni || nj’), and sends the message {Auth3} to 
SPj as acknowledgement. 

4 SPj receives Auth3 message and computes h(Tidi 
|| ni’ || nj) for checking h(Tidi || ni’ || nj) ?=Auth3. 

If it proves to be valid, a session key is computed 
between the participants, as Sk=h(Tidi||ni’|| 
nj||SIDj)=h(Tidi||ni|| nj’||SIDj). 

3.2. Cryptanalysis of Chang et al.’s Protocol

The Chang et al.’s protocol is a multi-server authen-
tication-based scheme relying on simple hash and 
XOR operations. Before presenting the limitations in 
Chang et al.’s model, we assume that adversary is pro-
ficient in the following capabilities. 
 _ The adversary may intercept, modify or manipulate 

the message contents communicated on insecure 
public channel.

 _ The adversary may access the smart card and its 
parameters by stealth.

 _ The adversary might not get any of the contents 
communicated on secure channel, for instance, in 
registration phase.  

The Chang et al.’s protocol is susceptible to the fol-
lowing attacks.

3.2.1. Impersonation Attack
The Chang et al.’s protocol is prone to impersonation 
attack if the user’s smart card contents are revealed 
to adversary. Suppose, Eve, a valid but malicious user 
happens to steal the user’s smart card contents in 
some manner. In this context, Eve seize all SC param-
eters {Vi, Xi, Yi, Zi} and intercepts public messag-
es {Aij, m2, Auth1, m2, Auth2, Auth3}. Next, Eve may 
adopt the following steps to launch an impersonation 
attack.
1 Initially, Eve computes PK such as PK = Vi ⊕ 

h(IDEve||MPi), where PK and H(b) represent the 
same parameters. 

2 Then, Eve computes ni=h(SIDj || PK) ⊕ m2.
3 Next, the PWi, being a low entropy password, can 

easily be guessed by applying and testing various 
combinations PWi* in the equation Aij ?= Zi ⊕ 
h(h(SIDj || PK)||ni) ⊕ h(PWi*) ⊕ PK. Wherever 
the match is found, the valid PWi becomes known. 

4 After the seizure of SC contents and guessing the 
password PWi, Eve may launch impersonation 
attacks on both sides (user and server). On user’s 
end, having the knowledge of Yi and Zi, Eve 
generates a nonce ni and constructs the login 
message {Aij, m2, Auth1} comfortably by computing 
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Tidi=h(Yi || SIDj || ni), Auth1=h(Aij || Tidi || ni), 
and m2=h(SIDj || PK) ⊕ ni) towards server. On 
server’s end, while impersonating as a server, Eve 
sends the message {m2, Auth2} towards user by 
generating fresh nonce nj and computing Auth2= 
h(Yi || SIDj || ni’ || nj) and m2= h(SIDj || PK) ⊕ nj.

3.2.2. No Session Key Security
In Chang et al.’s protocol, the attacker could deduce 
the session key comfortably, once the smart card is 
accessed by it. Since the session key is composed as Sk = 
h(Tidi || ni || nj || SIDj), Eve may try to reproduce Sk on 
the basis of computed elements. For this purpose, Eve, 
having the knowledge of {Vi, Xi, Yi, Zi, m2} parameters, 
computes PK = Vi ⊕ h(IDEve || MPi), ni=h(SIDj || PK) 
⊕ m2, nj = h(SIDj || PK) ⊕ m2, and Tidi=h(Yi || SIDj 
|| ni). Finally, Eve can generate the session key by 
concatenating as Sk = h(Tidi || ni || nj || SIDj). In this 
manner, Eve may generate all previous session keys 
by approaching the publicly available messages as 
communicated between the legal participants.

4. Proposed Scheme
Our proposed model is based on countering the lim-
itations in Chang et al.’s model. The contributed mod-
el comprises service provider (server’s) registration 
procedure, user’s registration procedure, mutual au-
thentication procedure, and password upgrading pro-
cedure.

4.1. Server Registration Procedure
The proposed model comprises a trustworthy RC and 
n number of servers (SPj), while the range of j implies 
1 ≤ j ≤ n. The SPj performs the registration with RC 
prior to user’s registration procedure, using a secret 
channel. During initialization process, RC selects a 
master secret key k, and also chooses a random secret 
b. Then, SPj forwards its identity SIDj towards reg-
istration centre. Next, RC computes the two keys as 
K1=h(k || b) and K2= h(SIDj || H(b)), and sends both 
keys (K1 and K2) to SPj employing a confidential chan-
nel. In this manner, the SPj gets registered through RC.

4.2. User Registration Procedure
In registration phase, Ui registers with registration 
centre (RC) and follows the under-mentioned steps:

1 The user initially selects its identity as IDi, pass-
word as PWi, and the biometric as Bi [17]. Subse-
quently, Ui calculates MPi=h(HB(Bi) || PWi) and 
submits {IDi , MPi} to SPj.

2 Next, SPj calculates Vi=H(b) ⊕ h(IDi || MPi), 
Wi=h(IDi | |k), Xi=h(IDi || H(b)), Yi = h(Wi || h(k || 
b)) Ri=Yi ⊕ MPi , and Zi = Wi ⊕ h(k||b) ⊕ H(b) ⊕ 
MPi, and stores IDi and Wi in its database, while 
Wi is sent to all SPj in the network. Next, RC issues 
smart card to Ui with these parameters {Vi, Xi, Ri, 
Zi and h()}.

4.3. Mutual Authentication Procedure
In this stage, the user is mutually authenticated with 
server SPj and uses smart card to avail services. The 
related procedure is shown in Figure 2.
1 Initially, Ui inserts its smart card in scanner and 

also inputs its ID and PWi. Then, it captures the 
biometric imprint Bi. Afterwards, Ui calculates 
PK= Vi ⊕ h(IDi || h(HB(Bi) || PWi)) and verifies 
the equality for h(IDi || PK) ?= Xi. If true, then Ui 
engenders a random integer ni and further calcu-
lates Aij = Zi ⊕ h(h(SIDj || PK)||ni) ⊕ h(HB(Bi) || 
PWi) ⊕ PK, Yi = Ri ⊕ MPi , Tidi=h(Yi || SIDj || ni), 
Auth1=h(Aij || Tidi || ni) and m2=h(SIDj || PK) ⊕ 
ni). Then, Ui sends the message {Aij, m2, Auth1} to 
SPj for verification.

2 Next, the SPj receives the message {Aij, m2, Auth1} 
and computes ni’ =m2 ⊕ K2 and Wi’=Aij ⊕ h(K2 || 
ni’) ⊕ K1. The SPj confirms the validity and fresh-
ness of ni’ and Wi’. If ni’ is fresh and Wi’ is in the 
white list, then it further computes Yi’= h(Wi’ || K1) 
and Tidi = h(Yi’ || SIDj || ni’). Now, it verifies the 
equation h(Aij || Tidi’ || ni’)?= Auth1. If this proves 
to be true, it engenders a random number nj, and 
computes Auth2= h(Yi’ || SIDj || ni’ || nj ) and m2= 
K2 ⊕ nj. Then, it sends {m2, Auth2} to Ui for further 
verifications. 

3 Upon receiving {m2, Auth2} from SPj, Ui calculates 
nj’= m2 ⊕ h(SIDj || PK). Ui checks the validity for 
nj’ and computes h(Yi || SIDj || ni’|| nj’ ) for verify-
ing the validity for h(Yi || SIDj || ni’|| nj’) ?= Auth2. 
If this equation is found to be valid, it calculates 
Auth3=h(Tidi || ni || nj’), and sends the message 
{Auth3} to SPj as an acknowledgement finally. 

4 Upon having the message Auth3, the SPj calculates 
h(Tidi || ni’ || nj) for verifying h(Tidi || ni’ || nj) 
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?=Auth3. If true, then develops the ultimate session 
key as Sk = h(Tidi || ni’ || nj || SIDj)= h(Tidi || ni || 
nj’ || SIDj).

4.4. Password Updating Procedure
Ui modifies his/her old password (PWi) with a fresh 
password (PWi fr) without involving RC, by adopting 
the under-mentioned steps:  
1 To modify the password, the user would input his/

her identity as IDi, old password as PWi into the 
smart card. Next, the user imprints biometric iden-
tity Bi into a device scanner. 

2 Subsequently, SC computes PK= Vi ⊕ h(IDi || 
h(HB(Bi) || PWi)) and validates the equality h(IDi 
|| PK) ?= Xi. If it does not match, the smart card 
aborts the session, otherwise allows the user to 
proceed on the next step. 

3 After that, the user would insert a new password as 
PWi fr in SC, which calculates Vinew = PK ⊕ h(IDi || 
h(HB(Bi) || PWi fr)), Rinew = Ri ⊕ h(HB(Bi) || PWi) ⊕ 
h(HB(Bi) || PWi fr), and Zinew = Zi ⊕ h(HB(Bi)||PWi) 
⊕ h(HB(Bi) || PWi fr). Then, the user replaces the 
Vi, Ri and Zi parameters in smart card with the 
new values Vinew, Rinew and Zinew.

5. Security Discussion 
This segment illustrates the informal security discus-
sion for contributed model in comparison with Chang 
et al.’s model.

5.1. Replay Attacks
These attacks may be attempted by an attacker after 
replaying the seized message contents at opportune 
time to deceive any legal entity of the protocol.   
An attacker Ⱥ could seize the communication 
contents after examining a public channel as {Aij, m2, 
Auth1, m2, Auth2, Auth3} and attempt to replay at some 
opportune time in future towards a valid participant. 
Nonetheless, Ⱥ cannot construct the parameter 
Auth1, as it also comprises Aij which includes Ei and 
h(HB(Bi)  ||PWi) in its construction, such as Aij = Zi 
⊕ h(h(SIDj || PK)||ni) ⊕ h(HB(Bi) || PWi) ⊕ PK. An 
attacker Ⱥ neither knows the password nor biometric 
Bi, which prevents the attacker for launching the 
replay attack. If Ⱥ replays the message {Aij, m2, Auth1} 

to SPj, it may not be able to construct the upgraded 
challenge Auth3, which requires the computation of 
Tidi, which further needs Yi to be constructed that is 
inaccessible to Ⱥ even if the SC gets stolen. At the same 
time, if Ⱥ replays the message {m2 , Auth2} towards Ui, 
the latter may easily detect the attack, since Ui knows 
that Auth2 cannot be constructed by the adversary due 
to the non-availability of Yi parameter. Hence, our 
proposed protocol may counter any replay threat.

5.2. Man-In-The-Middle-Attack 
In this threat, the attacker intrudes between the le-
gal participants by acting as an intermediary through 
replaying or modifying the message contents. A suc-
cessful attack may let the legitimate members com-
municate with the adversary perceiving it as a right 
participant [6].  
An adversary cannot construct the message {Auth2, 
m2} in request of {Aij, m2, Auth1}, since the construc-
tion of Auth2 requires Yi, which is inaccessible to Ⱥ 
from either intercepted messages or SC contents.  
Then, Ⱥ constructs a valid Auth3 against SPj’s chal-
lenge {Auth2, m2}, as Tidi is inaccessible to Ⱥ due to 
unknown Yi. Therefore, the contributed scheme is 
protected from MiTM threat.

5.3. Modification Threats
Such threats could be initiated by an attacker if it 
transforms the communication message illegally for 
submitting it to any valid participant [19].
An adversary may attempt to construct the message 
{Aij, m2, Auth1}, however it may not be able to do so, 
since it needs the parameter Aij, that further requires 
the knowledge of PWi and Bi as Aij = Zi ⊕ h(h(SIDj 
|| PK) || ni) ⊕ h(HB(Bi) || PWi) ⊕ PK. Likewise, it 
requires Tidi to construct Auth1, which requires the 
knowledge of Yi, which is also inaccessible to Ⱥ due 
to the unreachable MPi. Similarly, an adversary is not 
able to construct the message {Auth2, m2} in request 
of {Aij, m2, Auth1}, given that the production of Auth2 
requires the information of Yi, which is not accessible 
to Ⱥ either from intercepted messages or stolen SC 
contents.

5.4. Password or Secret Guessing Threat
An attacker Ⱥ might try to recover password PWi either 
from messages intercepted or from stolen smart card 
contents. The password guessing requires the attacker 
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to be familiar with biometric information Bi of the user. 
If Bi is not available, then the password PWi may not be 
inferred or guessed from Vi , Zi and Ri parameters. 

5.5.  Session Key Disclosure Using Stolen 
Card
An attacker Ⱥ might steal smart card contents and 
try to generate a session key (Sk) from its contents. 
Nonetheless, Ⱥ cannot calculate the session key Sk = 
h(Tidi || ni || nj || SIDj) due to the inaccessible Tidi 
parameter in Sk. While, the Tidi is constructed as 
Tidi=h(Yi || SIDj || ni) and the attacker cannot guess 
Yi either from stolen card contents or intercepted 
messages.

5.6. Impersonation Attack Using Smart Card 
Contents
An attacker Ⱥ might steal smart card and try to 
impersonate the legitimate users or service provider 
by constructing the identical message {Aij, m2, Auth1}. 
Nonetheless, it may not be able to do so [24], since it 
needs the parameter Aij. Which further requires PWi 
and Bi to be guessed, as Aij = Zi ⊕ h(h(SIDj || PK) || 
ni) ⊕ h(HB(Bi) || PWi) ⊕ PK. Besides, it needs Tidi to 
build Auth1, which requires the value Yi, which is also 
inaccessible to Ⱥ due to the unknown MPi. Similarly, 
an adversary cannot construct the message {Auth2, 
m2} in response to a valid user request {Aij, m2, 
Auth1}, since, the construction of Auth2 requires the 
information of Yi, which is not accessible to Ⱥ either 
from intercepted messages or stolen SC contents.

5.7. Session Key Security
This trait makes certain that the established session 
key is merely known to lawful members of a session, 
i.e. client and service provider.
In proposed model, the agreed session key, i.e. 
Sk = h(Tidi || ni || nj || SIDj) is secure, since, the Tidi 
calculation requires the access of Yi, i.e., Tidi=h(Yi || 
SIDj || ni), while Yi requires the value MPi for guess-
ing it, as Yi=Ri ⊕ MPi. Hence, the session key Sk has 
been safe, in case the SC contents are accessed or Ⱥ 
intercepts the public parameters.

5.8. Known Key Security
This attribute makes certain the protection of private 
keys of participants in case the current session key is 
exposed.  

In contributed protocol, even if the adversary accesses 
the values Sk, Ri, an attacker cannot recover user 
password PWi, since the PWi recovery from Sk = h(Tidi 
|| ni || nj || SIDj) requires calculation of Yi=Ri ⊕ MPi 
and Tidi=h(Yi || SIDj || ni). This is not possible due to 
the inaccessibility of Bi in MPi=h(HB(Bi) || PWi). At 
the same time, the server secret K is also secure as it is 
existent in a function i.e h(K || b) and is hard be guessed 
in polynomial amount of time. Therefore, the proposed 
protocol keeps the feature of known key security.

5.9. Mutual Authentication
This attribute assures that the concerned members 
authenticate one another in the protocol session and 
construct a mutual session key ultimately [7].
In our scheme, both of the participants authenticate 
each other mutually on account of Tidi and Yi’ pa-
rameters. The server authenticates the user only if 
Tidi is valid in Auth3, and this Tidi cannot be con-
structed by an attacker. Similarly, Ui authenticates 
SPj on account Yi’ parameter used by server in the 
construction of Auth2= h(Yi’ || SIDj || ni’ || nj ). The 
Yi parameter cannot be accessed by an attacker even 
through Ri if the card gets stolen. Therefore, our pro-
tocol assures mutual authentication feature to the le-
gitimate participants.

5.10. Anonymous Protocol
In an anonymous protocol [11, 12, 15], a legal user 
interacts with service provider without exposing its 
identity and an adversary may not recover the user’s 
identity or secret credentials from intercepted con-
tents on public channel.
In proposed scheme, the adversary cannot extract Ui’s 
identity or other secret credentials out of intercept-
ed contents on public channel or stolen smart card 
contents. This is because of the fact that the identity 
IDi is protected in a secret function Wi =h(IDi ||K), 
which is not possible to guess until the server secret 
K is exposed. Therefore, the contributed scheme con-
fers anonymity to the user.  

6. Formal Security Analysis
In this section, we exhibit the security strength of our 
protocol using formal analysis based on Burrows Aba-
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di Needham-logic (BAN) [2] and random oracle mod-
el-based analysis. 
The BAN logic proves the authenticated key agree-
ment based on key distribution and mutual key agree-
ment, and protocol robustness against the revelation 
of session key. We utilized few notations in this BAN 
logic proof as follows:  
The agents interacting in a protocol are termed as 
principals 
The symmetric encryption is performed using keys in 
a protocol. 
Nonces in the protocol assist to distinguish various 
sessions. 
We employed the following notations in proving the 
authenticity of our protocol using BAN logic: 
β |≡ ϱ: The principal β believes ϱ, 
β ⊲ ϱ: β sees ϱ.
β |~ ϱ: β once said ϱ. 
β ⇒ ϱ: β has got jurisdiction over ϱ.
♯ (ϱ): The message ϱ is fresh.
(ϱ, ϱ'): ϱ or ϱ' are parts of message (ϱ, ϱ').
⟨ ϱ⟩ϱ': The message ϱ is combined with ϱ'.
{ ϱ, ϱ' }k: ϱ or ϱ' is encrypted using key k.
(ϱ, ϱ')k: ϱ or ϱ' is hashed with k.
ϱ( k  ) ϱ':  ϱ and ϱ' exchange message employing 
the shared key k.
Some related postulates utilized in BAN logic are 
shown below:
P1. Message meaning postulate 

 

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔. 
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh. 
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔). 
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔. 
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k. 
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k. 

𝝔𝝔      𝒌𝒌       �⎯⎯⎯� 𝝔𝝔𝝔:  𝝔𝝔 and 𝝔𝝔𝝔 exchange message 
employing the shared key k. 
 
Some related postulates utilized in BAN logic are 
shown below: 

P1. Message meaning postulate≈ 
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�,   𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔  

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~  𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷  𝝔𝝔  

P3. Jurisdiction postulate≈  𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔,   𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷  𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔  

P4. Freshness conjuncatenation postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔)
𝜷𝜷𝜷𝜷  (𝝔𝝔,   𝝔𝝔𝝔) 

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔),   𝜷𝜷𝜷𝜷(𝝔𝝔�)  
𝜷𝜷𝜷𝜷(𝝔𝝔,   𝝔𝝔�)  

P6. Session keys postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷�𝜷𝜷𝜷��𝜷  𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�
 

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security 
under BAN logic on the basis of above postulates: 
  
Goal-1 : Sr |≡ Sr        ��       �⎯⎯⎯⎯� Ur 

Goal-2 : Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-3 : Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-4 : Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

To proceed, we convert the exchanged messages in 
our scheme into idealized form as given below:  
 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
M2: Sr → Ur: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 
M3: Ur → Sr: Auth3:  ⟨ ni, nj' ⟩ Tidi 

Besides, the understated assumptions are 
established for proving security of our scheme: 
 
Υ1 :  Ur |≡  ♯ ni 

Υ2 :  Sr |≡  ♯ nj 

Υ3 : Ur |≡  Sr         𝒀𝒀𝒀𝒀        �⎯⎯⎯⎯� Ur 

Υ4 : Sr |≡  Sr         𝒀𝒀𝒀𝒀𝝔        �⎯⎯⎯⎯� Ur   

Υ5 : Ur |≡  Sr ⇒  nj  

Υ6 : Sr |≡  Ur ⇒  ni  

Currently, the idealized forms such as M2, M2 and 
M3 of our scheme may be analyzed and seen in the 
light of stated assumptions and postulates. 

Taking the first one of the idealized forms: 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
By Applying seeing postulate, we have 

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi 

According to 𝜈𝜈1, Υ3 and message meaning 

postulate,  

𝜈𝜈2: Sr |≡  Ur ~ (Wi, ni, Tidi) 

According to Υ1, 𝜈𝜈2, freshness-conjucatenation, 
and nonce-verification postulates, we get 

𝜈𝜈3: Sr |≡  Ur |≡  (Wi, ni, Tidi)  

The (Wi, ni, Tidi) are essential parameters for 
mutual authentication and session key agreement. 
According to Υ6, 𝜈𝜈3, and Jurisdiction rule 

𝜈𝜈4: Sr |≡  (Wi, ni, Tidi) 

Referring to Υ3, 𝜈𝜈4, and session key postulate, we 

have 

𝜈𝜈5: Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur   (Goal-2) 

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate 

𝜈𝜈6: Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-1) 
Regarding the second idealized form, we have  

M2: Sr → Ui: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 

Using the seeing rule, we have 

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi' 

Referring to 𝜈𝜈7, Υ4 and message-meaning 

postulate,  

𝜈𝜈8: Ur |≡  Sr ~ (nj) 

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and 
nonce-verification postulates, we have 

𝜈𝜈9: Ur |≡  Sr |≡  (nj) 

where (nj) is an essential parameter for the mutual 
authentication and session key establishment. 

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we 
have 

P2. Nonce verification postulate 

 

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔. 
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh. 
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔). 
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔. 
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k. 
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k. 

𝝔𝝔      𝒌𝒌       �⎯⎯⎯� 𝝔𝝔𝝔:  𝝔𝝔 and 𝝔𝝔𝝔 exchange message 
employing the shared key k. 
 
Some related postulates utilized in BAN logic are 
shown below: 

P1. Message meaning postulate≈ 
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�,   𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔  

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~  𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷  𝝔𝝔  

P3. Jurisdiction postulate≈  𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔,   𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷  𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔  

P4. Freshness conjuncatenation postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔)
𝜷𝜷𝜷𝜷  (𝝔𝝔,   𝝔𝝔𝝔) 

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔),   𝜷𝜷𝜷𝜷(𝝔𝝔�)  
𝜷𝜷𝜷𝜷(𝝔𝝔,   𝝔𝝔�)  

P6. Session keys postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷�𝜷𝜷𝜷��𝜷  𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�
 

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security 
under BAN logic on the basis of above postulates: 
  
Goal-1 : Sr |≡ Sr        ��       �⎯⎯⎯⎯� Ur 

Goal-2 : Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-3 : Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-4 : Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

To proceed, we convert the exchanged messages in 
our scheme into idealized form as given below:  
 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
M2: Sr → Ur: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 
M3: Ur → Sr: Auth3:  ⟨ ni, nj' ⟩ Tidi 

Besides, the understated assumptions are 
established for proving security of our scheme: 
 
Υ1 :  Ur |≡  ♯ ni 

Υ2 :  Sr |≡  ♯ nj 

Υ3 : Ur |≡  Sr         𝒀𝒀𝒀𝒀        �⎯⎯⎯⎯� Ur 

Υ4 : Sr |≡  Sr         𝒀𝒀𝒀𝒀𝝔        �⎯⎯⎯⎯� Ur   

Υ5 : Ur |≡  Sr ⇒  nj  

Υ6 : Sr |≡  Ur ⇒  ni  

Currently, the idealized forms such as M2, M2 and 
M3 of our scheme may be analyzed and seen in the 
light of stated assumptions and postulates. 

Taking the first one of the idealized forms: 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
By Applying seeing postulate, we have 

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi 

According to 𝜈𝜈1, Υ3 and message meaning 

postulate,  

𝜈𝜈2: Sr |≡  Ur ~ (Wi, ni, Tidi) 

According to Υ1, 𝜈𝜈2, freshness-conjucatenation, 
and nonce-verification postulates, we get 

𝜈𝜈3: Sr |≡  Ur |≡  (Wi, ni, Tidi)  

The (Wi, ni, Tidi) are essential parameters for 
mutual authentication and session key agreement. 
According to Υ6, 𝜈𝜈3, and Jurisdiction rule 

𝜈𝜈4: Sr |≡  (Wi, ni, Tidi) 

Referring to Υ3, 𝜈𝜈4, and session key postulate, we 

have 

𝜈𝜈5: Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur   (Goal-2) 

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate 

𝜈𝜈6: Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-1) 
Regarding the second idealized form, we have  

M2: Sr → Ui: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 

Using the seeing rule, we have 

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi' 

Referring to 𝜈𝜈7, Υ4 and message-meaning 

postulate,  

𝜈𝜈8: Ur |≡  Sr ~ (nj) 

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and 
nonce-verification postulates, we have 

𝜈𝜈9: Ur |≡  Sr |≡  (nj) 

where (nj) is an essential parameter for the mutual 
authentication and session key establishment. 

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we 
have 

P3. Jurisdiction postulate 

 

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔. 
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh. 
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔). 
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔. 
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k. 
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k. 

𝝔𝝔      𝒌𝒌       �⎯⎯⎯� 𝝔𝝔𝝔:  𝝔𝝔 and 𝝔𝝔𝝔 exchange message 
employing the shared key k. 
 
Some related postulates utilized in BAN logic are 
shown below: 

P1. Message meaning postulate≈ 
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�,   𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔  

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~  𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷  𝝔𝝔  

P3. Jurisdiction postulate≈  𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔,   𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷  𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔  

P4. Freshness conjuncatenation postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔)
𝜷𝜷𝜷𝜷  (𝝔𝝔,   𝝔𝝔𝝔) 

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔),   𝜷𝜷𝜷𝜷(𝝔𝝔�)  
𝜷𝜷𝜷𝜷(𝝔𝝔,   𝝔𝝔�)  

P6. Session keys postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷�𝜷𝜷𝜷��𝜷  𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�
 

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security 
under BAN logic on the basis of above postulates: 
  
Goal-1 : Sr |≡ Sr        ��       �⎯⎯⎯⎯� Ur 

Goal-2 : Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-3 : Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-4 : Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

To proceed, we convert the exchanged messages in 
our scheme into idealized form as given below:  
 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
M2: Sr → Ur: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 
M3: Ur → Sr: Auth3:  ⟨ ni, nj' ⟩ Tidi 

Besides, the understated assumptions are 
established for proving security of our scheme: 
 
Υ1 :  Ur |≡  ♯ ni 

Υ2 :  Sr |≡  ♯ nj 

Υ3 : Ur |≡  Sr         𝒀𝒀𝒀𝒀        �⎯⎯⎯⎯� Ur 

Υ4 : Sr |≡  Sr         𝒀𝒀𝒀𝒀𝝔        �⎯⎯⎯⎯� Ur   

Υ5 : Ur |≡  Sr ⇒  nj  

Υ6 : Sr |≡  Ur ⇒  ni  

Currently, the idealized forms such as M2, M2 and 
M3 of our scheme may be analyzed and seen in the 
light of stated assumptions and postulates. 

Taking the first one of the idealized forms: 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
By Applying seeing postulate, we have 

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi 

According to 𝜈𝜈1, Υ3 and message meaning 

postulate,  

𝜈𝜈2: Sr |≡  Ur ~ (Wi, ni, Tidi) 

According to Υ1, 𝜈𝜈2, freshness-conjucatenation, 
and nonce-verification postulates, we get 

𝜈𝜈3: Sr |≡  Ur |≡  (Wi, ni, Tidi)  

The (Wi, ni, Tidi) are essential parameters for 
mutual authentication and session key agreement. 
According to Υ6, 𝜈𝜈3, and Jurisdiction rule 

𝜈𝜈4: Sr |≡  (Wi, ni, Tidi) 

Referring to Υ3, 𝜈𝜈4, and session key postulate, we 

have 

𝜈𝜈5: Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur   (Goal-2) 

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate 

𝜈𝜈6: Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-1) 
Regarding the second idealized form, we have  

M2: Sr → Ui: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 

Using the seeing rule, we have 

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi' 

Referring to 𝜈𝜈7, Υ4 and message-meaning 

postulate,  

𝜈𝜈8: Ur |≡  Sr ~ (nj) 

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and 
nonce-verification postulates, we have 

𝜈𝜈9: Ur |≡  Sr |≡  (nj) 

where (nj) is an essential parameter for the mutual 
authentication and session key establishment. 

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we 
have 

P4. Freshness conjuncatenation postulate 

 

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔. 
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh. 
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔). 
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔. 
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k. 
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k. 

𝝔𝝔      𝒌𝒌       �⎯⎯⎯� 𝝔𝝔𝝔:  𝝔𝝔 and 𝝔𝝔𝝔 exchange message 
employing the shared key k. 
 
Some related postulates utilized in BAN logic are 
shown below: 

P1. Message meaning postulate≈ 
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�,   𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔  

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~  𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷  𝝔𝝔  

P3. Jurisdiction postulate≈  𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔,   𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷  𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔  

P4. Freshness conjuncatenation postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔)
𝜷𝜷𝜷𝜷  (𝝔𝝔,   𝝔𝝔𝝔) 

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔),   𝜷𝜷𝜷𝜷(𝝔𝝔�)  
𝜷𝜷𝜷𝜷(𝝔𝝔,   𝝔𝝔�)  

P6. Session keys postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷�𝜷𝜷𝜷��𝜷  𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�
 

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security 
under BAN logic on the basis of above postulates: 
  
Goal-1 : Sr |≡ Sr        ��       �⎯⎯⎯⎯� Ur 

Goal-2 : Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-3 : Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-4 : Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

To proceed, we convert the exchanged messages in 
our scheme into idealized form as given below:  
 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
M2: Sr → Ur: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 
M3: Ur → Sr: Auth3:  ⟨ ni, nj' ⟩ Tidi 

Besides, the understated assumptions are 
established for proving security of our scheme: 
 
Υ1 :  Ur |≡  ♯ ni 

Υ2 :  Sr |≡  ♯ nj 

Υ3 : Ur |≡  Sr         𝒀𝒀𝒀𝒀        �⎯⎯⎯⎯� Ur 

Υ4 : Sr |≡  Sr         𝒀𝒀𝒀𝒀𝝔        �⎯⎯⎯⎯� Ur   

Υ5 : Ur |≡  Sr ⇒  nj  

Υ6 : Sr |≡  Ur ⇒  ni  

Currently, the idealized forms such as M2, M2 and 
M3 of our scheme may be analyzed and seen in the 
light of stated assumptions and postulates. 

Taking the first one of the idealized forms: 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
By Applying seeing postulate, we have 

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi 

According to 𝜈𝜈1, Υ3 and message meaning 

postulate,  

𝜈𝜈2: Sr |≡  Ur ~ (Wi, ni, Tidi) 

According to Υ1, 𝜈𝜈2, freshness-conjucatenation, 
and nonce-verification postulates, we get 

𝜈𝜈3: Sr |≡  Ur |≡  (Wi, ni, Tidi)  

The (Wi, ni, Tidi) are essential parameters for 
mutual authentication and session key agreement. 
According to Υ6, 𝜈𝜈3, and Jurisdiction rule 

𝜈𝜈4: Sr |≡  (Wi, ni, Tidi) 

Referring to Υ3, 𝜈𝜈4, and session key postulate, we 

have 

𝜈𝜈5: Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur   (Goal-2) 

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate 

𝜈𝜈6: Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-1) 
Regarding the second idealized form, we have  

M2: Sr → Ui: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 

Using the seeing rule, we have 

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi' 

Referring to 𝜈𝜈7, Υ4 and message-meaning 

postulate,  

𝜈𝜈8: Ur |≡  Sr ~ (nj) 

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and 
nonce-verification postulates, we have 

𝜈𝜈9: Ur |≡  Sr |≡  (nj) 

where (nj) is an essential parameter for the mutual 
authentication and session key establishment. 

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we 
have 

P5. Belief postulate 

 

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔. 
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh. 
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔). 
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔. 
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k. 
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k. 

𝝔𝝔      𝒌𝒌       �⎯⎯⎯� 𝝔𝝔𝝔:  𝝔𝝔 and 𝝔𝝔𝝔 exchange message 
employing the shared key k. 
 
Some related postulates utilized in BAN logic are 
shown below: 

P1. Message meaning postulate≈ 
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�,   𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔  

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~  𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷  𝝔𝝔  

P3. Jurisdiction postulate≈  𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔,   𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷  𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔  

P4. Freshness conjuncatenation postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔)
𝜷𝜷𝜷𝜷  (𝝔𝝔,   𝝔𝝔𝝔) 

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔),   𝜷𝜷𝜷𝜷(𝝔𝝔�)  
𝜷𝜷𝜷𝜷(𝝔𝝔,   𝝔𝝔�)  

P6. Session keys postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷�𝜷𝜷𝜷��𝜷  𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�
 

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security 
under BAN logic on the basis of above postulates: 
  
Goal-1 : Sr |≡ Sr        ��       �⎯⎯⎯⎯� Ur 

Goal-2 : Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-3 : Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-4 : Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

To proceed, we convert the exchanged messages in 
our scheme into idealized form as given below:  
 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
M2: Sr → Ur: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 
M3: Ur → Sr: Auth3:  ⟨ ni, nj' ⟩ Tidi 

Besides, the understated assumptions are 
established for proving security of our scheme: 
 
Υ1 :  Ur |≡  ♯ ni 

Υ2 :  Sr |≡  ♯ nj 

Υ3 : Ur |≡  Sr         𝒀𝒀𝒀𝒀        �⎯⎯⎯⎯� Ur 

Υ4 : Sr |≡  Sr         𝒀𝒀𝒀𝒀𝝔        �⎯⎯⎯⎯� Ur   

Υ5 : Ur |≡  Sr ⇒  nj  

Υ6 : Sr |≡  Ur ⇒  ni  

Currently, the idealized forms such as M2, M2 and 
M3 of our scheme may be analyzed and seen in the 
light of stated assumptions and postulates. 

Taking the first one of the idealized forms: 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
By Applying seeing postulate, we have 

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi 

According to 𝜈𝜈1, Υ3 and message meaning 

postulate,  

𝜈𝜈2: Sr |≡  Ur ~ (Wi, ni, Tidi) 

According to Υ1, 𝜈𝜈2, freshness-conjucatenation, 
and nonce-verification postulates, we get 

𝜈𝜈3: Sr |≡  Ur |≡  (Wi, ni, Tidi)  

The (Wi, ni, Tidi) are essential parameters for 
mutual authentication and session key agreement. 
According to Υ6, 𝜈𝜈3, and Jurisdiction rule 

𝜈𝜈4: Sr |≡  (Wi, ni, Tidi) 

Referring to Υ3, 𝜈𝜈4, and session key postulate, we 

have 

𝜈𝜈5: Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur   (Goal-2) 

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate 

𝜈𝜈6: Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-1) 

Regarding the second idealized form, we have  

M2: Sr → Ui: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 

Using the seeing rule, we have 

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi' 

Referring to 𝜈𝜈7, Υ4 and message-meaning 

postulate,  

𝜈𝜈8: Ur |≡  Sr ~ (nj) 

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and 
nonce-verification postulates, we have 

𝜈𝜈9: Ur |≡  Sr |≡  (nj) 

where (nj) is an essential parameter for the mutual 
authentication and session key establishment. 

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we 
have 

P6. Session keys postulate 

 

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔. 
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh. 
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔). 
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔. 
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k. 
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k. 

𝝔𝝔      𝒌𝒌       �⎯⎯⎯� 𝝔𝝔𝝔:  𝝔𝝔 and 𝝔𝝔𝝔 exchange message 
employing the shared key k. 
 
Some related postulates utilized in BAN logic are 
shown below: 

P1. Message meaning postulate≈ 
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�,   𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔  

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~  𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷  𝝔𝝔  

P3. Jurisdiction postulate≈  𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔,   𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷  𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔  

P4. Freshness conjuncatenation postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔)
𝜷𝜷𝜷𝜷  (𝝔𝝔,   𝝔𝝔𝝔) 

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔),   𝜷𝜷𝜷𝜷(𝝔𝝔�)  
𝜷𝜷𝜷𝜷(𝝔𝝔,   𝝔𝝔�)  

P6. Session keys postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷�𝜷𝜷𝜷��𝜷  𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�
 

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security 
under BAN logic on the basis of above postulates: 
  
Goal-1 : Sr |≡ Sr        ��       �⎯⎯⎯⎯� Ur 

Goal-2 : Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-3 : Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-4 : Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

To proceed, we convert the exchanged messages in 
our scheme into idealized form as given below:  
 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
M2: Sr → Ur: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 
M3: Ur → Sr: Auth3:  ⟨ ni, nj' ⟩ Tidi 

Besides, the understated assumptions are 
established for proving security of our scheme: 
 
Υ1 :  Ur |≡  ♯ ni 

Υ2 :  Sr |≡  ♯ nj 

Υ3 : Ur |≡  Sr         𝒀𝒀𝒀𝒀        �⎯⎯⎯⎯� Ur 

Υ4 : Sr |≡  Sr         𝒀𝒀𝒀𝒀𝝔        �⎯⎯⎯⎯� Ur   

Υ5 : Ur |≡  Sr ⇒  nj  

Υ6 : Sr |≡  Ur ⇒  ni  

Currently, the idealized forms such as M2, M2 and 
M3 of our scheme may be analyzed and seen in the 
light of stated assumptions and postulates. 

Taking the first one of the idealized forms: 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
By Applying seeing postulate, we have 

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi 

According to 𝜈𝜈1, Υ3 and message meaning 

postulate,  

𝜈𝜈2: Sr |≡  Ur ~ (Wi, ni, Tidi) 

According to Υ1, 𝜈𝜈2, freshness-conjucatenation, 
and nonce-verification postulates, we get 

𝜈𝜈3: Sr |≡  Ur |≡  (Wi, ni, Tidi)  

The (Wi, ni, Tidi) are essential parameters for 
mutual authentication and session key agreement. 
According to Υ6, 𝜈𝜈3, and Jurisdiction rule 

𝜈𝜈4: Sr |≡  (Wi, ni, Tidi) 

Referring to Υ3, 𝜈𝜈4, and session key postulate, we 

have 

𝜈𝜈5: Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur   (Goal-2) 

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate 

𝜈𝜈6: Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-1) 
Regarding the second idealized form, we have  

M2: Sr → Ui: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 

Using the seeing rule, we have 

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi' 

Referring to 𝜈𝜈7, Υ4 and message-meaning 

postulate,  

𝜈𝜈8: Ur |≡  Sr ~ (nj) 

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and 
nonce-verification postulates, we have 

𝜈𝜈9: Ur |≡  Sr |≡  (nj) 

where (nj) is an essential parameter for the mutual 
authentication and session key establishment. 

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we 
have 

The contributed scheme must meet the under-men-
tioned goals to prove its session key’s security under 
BAN logic on the basis of above postulates:
Goal-1 : Sr |≡ Sr 

SK  Ur

Goal-2 : Sr |≡ Ur |≡ Sr 
SK Ur

Goal-3 : Ur |≡ Sr 
SK  Ur

Goal-4 : Ur |≡ Sr |≡ Sr 
SK  Ur

To proceed, we convert the exchanged messages in 
our scheme into idealized form as given below: 

M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi

M2: Sr → Ur: m2 , Auth2:  ⟨ nj ⟩ K2, Yi’

M3: Ur → Sr: Auth3:  ⟨ ni, nj’ ⟩ Tidi

Besides, the understated assumptions are established 
for proving security of our scheme:
ϒ1 :  Ur |≡  ♯ ni
ϒ2 :  Sr |≡  ♯ nj
ϒ3 : Ur |≡  Sr 

 

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔. 
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh. 
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔). 
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔. 
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k. 
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k. 

𝝔𝝔      𝒌𝒌       �⎯⎯⎯� 𝝔𝝔𝝔:  𝝔𝝔 and 𝝔𝝔𝝔 exchange message 
employing the shared key k. 
 
Some related postulates utilized in BAN logic are 
shown below: 

P1. Message meaning postulate≈ 
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�,   𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔  

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~  𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷  𝝔𝝔  

P3. Jurisdiction postulate≈  𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔,   𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷  𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔  

P4. Freshness conjuncatenation postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔)
𝜷𝜷𝜷𝜷  (𝝔𝝔,   𝝔𝝔𝝔) 

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔),   𝜷𝜷𝜷𝜷(𝝔𝝔�)  
𝜷𝜷𝜷𝜷(𝝔𝝔,   𝝔𝝔�)  

P6. Session keys postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷�𝜷𝜷𝜷��𝜷  𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�
 

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security 
under BAN logic on the basis of above postulates: 
  
Goal-1 : Sr |≡ Sr        ��       �⎯⎯⎯⎯� Ur 

Goal-2 : Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-3 : Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-4 : Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

To proceed, we convert the exchanged messages in 
our scheme into idealized form as given below:  
 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
M2: Sr → Ur: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 
M3: Ur → Sr: Auth3:  ⟨ ni, nj' ⟩ Tidi 

Besides, the understated assumptions are 
established for proving security of our scheme: 
 
Υ1 :  Ur |≡  ♯ ni 

Υ2 :  Sr |≡  ♯ nj 

Υ3 : Ur |≡  Sr         𝒀𝒀𝒀𝒀        �⎯⎯⎯⎯� Ur 

Υ4 : Sr |≡  Sr         𝒀𝒀𝒀𝒀𝝔        �⎯⎯⎯⎯� Ur   

Υ5 : Ur |≡  Sr ⇒  nj  

Υ6 : Sr |≡  Ur ⇒  ni  

Currently, the idealized forms such as M2, M2 and 
M3 of our scheme may be analyzed and seen in the 
light of stated assumptions and postulates. 

Taking the first one of the idealized forms: 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
By Applying seeing postulate, we have 

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi 

According to 𝜈𝜈1, Υ3 and message meaning 

postulate,  

𝜈𝜈2: Sr |≡  Ur ~ (Wi, ni, Tidi) 

According to Υ1, 𝜈𝜈2, freshness-conjucatenation, 
and nonce-verification postulates, we get 

𝜈𝜈3: Sr |≡  Ur |≡  (Wi, ni, Tidi)  

The (Wi, ni, Tidi) are essential parameters for 
mutual authentication and session key agreement. 
According to Υ6, 𝜈𝜈3, and Jurisdiction rule 

𝜈𝜈4: Sr |≡  (Wi, ni, Tidi) 

Referring to Υ3, 𝜈𝜈4, and session key postulate, we 

have 

𝜈𝜈5: Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur   (Goal-2) 

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate 

𝜈𝜈6: Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-1) 

Regarding the second idealized form, we have  

M2: Sr → Ui: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 

Using the seeing rule, we have 

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi' 

Referring to 𝜈𝜈7, Υ4 and message-meaning 

postulate,  

𝜈𝜈8: Ur |≡  Sr ~ (nj) 

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and 
nonce-verification postulates, we have 

𝜈𝜈9: Ur |≡  Sr |≡  (nj) 

where (nj) is an essential parameter for the mutual 
authentication and session key establishment. 

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we 
have 

 Ur

ϒ4 : Sr |≡  Sr 

 

𝜷𝜷 ⇒ 𝝔𝝔: 𝜷𝜷 has got jurisdiction over 𝝔𝝔. 
♯ (𝝔𝝔): The message 𝝔𝝔 is fresh. 
(𝝔𝝔, 𝝔𝝔𝝔): 𝝔𝝔 or 𝝔𝝔𝝔 are parts of message (𝝔𝝔, 𝝔𝝔𝝔). 
⟨ 𝝔𝝔⟩𝝔𝝔�: The message 𝝔𝝔 is combined with 𝝔𝝔𝝔. 
{ 𝝔𝝔, 𝝔𝝔𝝔 }k: 𝝔𝝔 or 𝝔𝝔𝝔 is encrypted using key k. 
(𝝔𝝔, 𝝔𝝔𝝔)k: 𝝔𝝔 or 𝝔𝝔𝝔 is hashed with k. 

𝝔𝝔      𝒌𝒌       �⎯⎯⎯� 𝝔𝝔𝝔:  𝝔𝝔 and 𝝔𝝔𝝔 exchange message 
employing the shared key k. 
 
Some related postulates utilized in BAN logic are 
shown below: 

P1. Message meaning postulate≈ 
𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�,   𝜷𝜷⊲⟨𝝔𝝔⟩𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~ 𝝔𝝔  

P2. Nonce verification postulate≈ 𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷~  𝝔𝝔
𝜷𝜷𝜷𝜷𝜷𝜷� 𝜷𝜷  𝝔𝝔  

P3. Jurisdiction postulate≈  𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝝔𝝔,   𝜷𝜷𝜷𝜷𝜷𝜷𝝔 𝜷𝜷  𝝔𝝔
𝜷𝜷𝜷𝜷 𝝔𝝔  

P4. Freshness conjuncatenation postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔)
𝜷𝜷𝜷𝜷  (𝝔𝝔,   𝝔𝝔𝝔) 

P5. Belief postulate≈ 𝜷𝜷𝜷𝜷(𝝔𝝔),   𝜷𝜷𝜷𝜷(𝝔𝝔�)  
𝜷𝜷𝜷𝜷(𝝔𝝔,   𝝔𝝔�)  

P6. Session keys postulate≈  𝜷𝜷𝜷𝜷  (𝝔𝝔),   𝜷𝜷�𝜷𝜷𝜷��𝜷  𝝔𝝔�

𝜷𝜷𝜷𝜷𝜷𝜷 �↔ 𝜷𝜷�
 

The contributed scheme must meet the under-
mentioned goals to prove its session key’s security 
under BAN logic on the basis of above postulates: 
  
Goal-1 : Sr |≡ Sr        ��       �⎯⎯⎯⎯� Ur 

Goal-2 : Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-3 : Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

Goal-4 : Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur 

To proceed, we convert the exchanged messages in 
our scheme into idealized form as given below:  
 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
M2: Sr → Ur: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 
M3: Ur → Sr: Auth3:  ⟨ ni, nj' ⟩ Tidi 

Besides, the understated assumptions are 
established for proving security of our scheme: 
 
Υ1 :  Ur |≡  ♯ ni 

Υ2 :  Sr |≡  ♯ nj 

Υ3 : Ur |≡  Sr         𝒀𝒀𝒀𝒀        �⎯⎯⎯⎯� Ur 

Υ4 : Sr |≡  Sr         𝒀𝒀𝒀𝒀𝝔        �⎯⎯⎯⎯� Ur   

Υ5 : Ur |≡  Sr ⇒  nj  

Υ6 : Sr |≡  Ur ⇒  ni  

Currently, the idealized forms such as M2, M2 and 
M3 of our scheme may be analyzed and seen in the 
light of stated assumptions and postulates. 

Taking the first one of the idealized forms: 
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi 
By Applying seeing postulate, we have 

𝜈𝜈1: Sr ⊲ Aij, m2, Auth1: ⟨ Wi, ni, Tidi ⟩ K1, K2, Yi 

According to 𝜈𝜈1, Υ3 and message meaning 

postulate,  

𝜈𝜈2: Sr |≡  Ur ~ (Wi, ni, Tidi) 

According to Υ1, 𝜈𝜈2, freshness-conjucatenation, 
and nonce-verification postulates, we get 

𝜈𝜈3: Sr |≡  Ur |≡  (Wi, ni, Tidi)  

The (Wi, ni, Tidi) are essential parameters for 
mutual authentication and session key agreement. 
According to Υ6, 𝜈𝜈3, and Jurisdiction rule 

𝜈𝜈4: Sr |≡  (Wi, ni, Tidi) 

Referring to Υ3, 𝜈𝜈4, and session key postulate, we 

have 

𝜈𝜈5: Sr |≡ Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur   (Goal-2) 

Referring to Υ6, 𝜈𝜈5, and Jurisdiction postulate 

𝜈𝜈6: Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-1) 

Regarding the second idealized form, we have  

M2: Sr → Ui: m2 , Auth2:  ⟨ nj ⟩ K2, Yi' 

Using the seeing rule, we have 

𝜈𝜈7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi' 

Referring to 𝜈𝜈7, Υ4 and message-meaning 

postulate,  

𝜈𝜈8: Ur |≡  Sr ~ (nj) 

Regarding Υ2, 𝜈𝜈8, freshness-conjucatenation, and 
nonce-verification postulates, we have 

𝜈𝜈9: Ur |≡  Sr |≡  (nj) 

where (nj) is an essential parameter for the mutual 
authentication and session key establishment. 

Regarding Υ5, 𝜈𝜈9, and Jurisdiction postulate, we 
have 

 Ur

ϒ5 : Ur |≡  Sr ⇒  nj 

ϒ6 : Sr |≡  Ur ⇒  ni 

Currently, the idealized forms such as M2, M2 and M3 
of our scheme may be analyzed and seen in the light of 
stated assumptions and postulates.
Taking the first one of the idealized forms:
M2: Ur → Sr:  Aij, m2, Auth1:  ⟨Wi, ni, Tidi ⟩K1, K2, Yi

By Applying seeing postulate, we have
ν1: Sr ⊲ Aij, m2, Auth1: ⟨Wi, ni, Tidi ⟩ K1, K2, Yi

According to ν1, ϒ3 and message meaning postulate, 
ν2: Sr |≡  Ur ~ (Wi, ni, Tidi)
According to ν1, ϒ2, freshness-conjucatenation, and 
nonce-verification postulates, we get
ν3: Sr |≡  Ur |≡  (Wi, ni, Tidi) 
The (Wi, ni, Tidi) are essential parameters for mutual 
authentication and session key agreement.
According to ϒ6, ν3, and Jurisdiction rule
ν4: Sr |≡  (Wi, ni, Tidi)
Referring to ϒ3, ν4, and session key postulate, we have
ν5: Sr |≡ Ur |≡ Sr 

SK  Ur     (Goal-2)
Referring to ϒ6, ν5, and Jurisdiction postulate
ν6: Sr |≡ Sr  

SK  Ur   (Goal-1)
Regarding the second idealized form, we have 
M2: Sr → Ui: m2 , Auth2:  ⟨ nj ⟩ K2, Yi’

Using the seeing rule, we have
ν7: Ur ⊲ Sr → Ur: m2 , Auth2: ⟨ nj ⟩ K2, Yi’

Referring to ν7, ϒ4 and message-meaning postulate, 
ν8: Ur |≡  Sr ~ (nj)
Regarding ϒ2, ν8, freshness-conjucatenation, and 
nonce-verification postulates, we have
ν 9: Ur |≡  Sr |≡  (nj)
where (nj) is an essential parameter for the mutual 
authentication and session key establishment.
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Regarding ϒ5, ν9, and Jurisdiction postulate, we have
ν10: Ur |≡  (nj)
Referring ϒ4, ν10, and session-key postulate, we get
ν11: Ur |≡ Sr |≡ Sr 

SK  Ur     (Goal-4)
Regarding ϒ5, ν11, and Jurisdiction postulate, we have 
ν12: Ur |≡ Sr 

SK  Ur          (Goal-3)
The stated BAN logic-based protocol examination es-
tablishes the fact that our model confers mutual au-
thentication and the constructed session key (SK) is 
mutually established among the user Ur and server Sr. 
Employing the random oracle model, we implement 
a formal security analysis for proving that our proto-
col is quite secure [29]. For the said objective, we em-
ployed the oracle Reveal_oracle as described below: 
Reveal_oracle: This oracle would output x from the re-
lated hash digest y=h(x), for sure. 
The Reveal_oracle has been employed in  
Algorithm 1, 

 

𝜈𝜈10: Ur |≡  (nj) 

Referring Υ4, 𝜈𝜈10, and session-key postulate, we 
get 
𝜈𝜈11: Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-4) 

Regarding Υ5, 𝜈𝜈11, and Jurisdiction postulate, we 

have  

𝜈𝜈12: Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur         (Goal-3) 
The stated BAN logic-based protocol examination 
establishes the fact that our model confers mutual 
authentication and the constructed session key (SK) 
is mutually established among the user Ur and 
server Sr.  

    Employing the random oracle model, we 
implement a formal security analysis for proving 
that our protocol is quite secure [29]. For the said 
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
as described below:  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from 
the related hash digest y=h(x), for sure.  
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in  
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� , as shown above, 
signifying towards the session key’s disclosure if 
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash 
digest. 

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑯𝑯𝑰𝑰𝑰𝑰𝑯𝑯  

1. Eavesdrop the login-request {Aij, m2, Auth1} where 
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)ni), 
and Aij = Zi  h(h(SIDj || PK)||ni)h(HB(Bi) 
||PWi)  PK. 

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1 
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1) 

3. Eavesdrop the Authentication message {Auth3} in 
verification phase, where Auth3=h(Tidi || ni || nj') 

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get 
{Tidi', ni, nj'} as (Tidi' || ni || nj')← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3) 

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get 
{Yi , SIDj , ni} as (Yi || SIDj || ni) ← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi') 

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve 
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
(Yi) 

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve  
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi) 

8. Compute session key as SK= h(Tidi || ni' || nj || 
SIDj)  

9. If  (Aij '= Aij) AND (Tidi '= Tidi)  Then 
Take SK as a legitimate session key   
for identity (IDi') of Ui,  
against login request {Aij, m2,  Auth1} 

 Return 1 (shows success) 
10.             Else 
11.        Return 0 (shows failure) 
12.   End if 

 

Theorem 1 

The contributed scheme is secure, if an attacker 
attempts to determine the mutually agreed session 
key (SK) among legitimate participants SPj and Ui, 
provided one-way hash digest function acts nearly 
as a random oracle. 
 
Proof.  

In this proof [6, 8, 13-14], an adversary Ⱥ, 
competent enough to derive the agreed session key 
(SK) among the participants particularly Ui and 
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to 
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� . The probability of 
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸�����������  is 
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� =1]-1, Here Prb[E] 
depicts the event probability for an event (E). The 
advantage function for the above experiment can 
be established as 𝐴𝐴𝐴𝐴𝑅𝑅 �����������  (tm2, qRy1)=maxA 
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸����������� ], having execution delay time tm2 
and Reveal-query qRy1 maximized on the adversary 
Ⱥ [1]. We regard our contributed scheme as quite 
safe against an adversary Ⱥ in recovering the 
agreed session key (SK) between Ui and SPj, if 
𝐴𝐴𝐴𝐴𝑅𝑅 ����������� (tm2, qRy1 ) ≤ 𝜀𝜀 for a negligibly small 
𝜀𝜀 > 0. In relation to this experiment, if the 
adversary is competent to invert a one-way hash 
digest function h(), it might comfortably recover 
the real session key (SK) shared between SPj and 
Ui, and at last Ⱥ wins the game. Nonetheless, in 
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is 
polynomially unfeasible to invert hash function 
since 𝐴𝐴𝐴𝐴𝑅𝑅 �����������  and 𝐴𝐴𝐴𝐴𝑅𝑅 �����������  (t1) ≤ 𝜀𝜀 for a 
negligibly small value, i.e. 𝜀𝜀 > 0. Therefore, the 
contributed protocol may be safely considered as 
resistant as the security features for hash functions 
are tough to break in polynomial amount of time. 
 
7.   Comparison and Performance Analysis 
 
The Chang et al. model presents a multi-server 
authenticated key agreement protocol and is based 
on light-weight symmetric key operations which 
are suitable for power deficient mobile devices. In 
this performance section, we evaluate performance 
efficiency of authentication protocol by Chang et 
al. with proposed protocol. Table 2 lists the 
limitations of Chang et al.’s model, while the 
proposed scheme acts as a vigorous authentication 
protocol as proven in the preceding sections. Table 

, as shown above, signifying 
towards the session key’s disclosure if the Reveal_
oracle is executed by inverting hash digest.

 

𝜈𝜈𝜈𝜈10: Ur |≡  (nj) 

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we 
get 
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr  

       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur    (Goal-4) 

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we 

have  

𝜈𝜈𝜈𝜈12: Ur |≡ Sr  
       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur         (Goal-3) 

The stated BAN logic-based protocol examination 
establishes the fact that our model confers mutual 
authentication and the constructed session key (SK) 
is mutually established among the user Ur and 
server Sr.  

    Employing the random oracle model, we 
implement a formal security analysis for proving 
that our protocol is quite secure [29]. For the said 
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
as described below:  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from 
the related hash digest y=h(x), for sure.  
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in  
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above, 
signifying towards the session key’s disclosure if 
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash 
digest. 

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯  

1. Eavesdrop the login-request {Aij, m2, Auth1} where 
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni), 
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi) 
||PWi) ⊕ PK. 

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1 
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1) 

3. Eavesdrop the Authentication message {Auth3} in 
verification phase, where Auth3=h(Tidi || ni || nj') 

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get 
{Tidi', ni, nj'} as (Tidi' || ni || nj')← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3) 

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get 
{Yi , SIDj , ni} as (Yi || SIDj || ni) ← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi') 

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve 
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
(Yi) 

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve  
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi) 

8. Compute session key as SK= h(Tidi || ni' || nj || 
SIDj)  

9. If  (Aij '= Aij) AND (Tidi '= Tidi)  Then 
Take SK as a legitimate session key   
for identity (IDi') of Ui,  
against login request {Aij, m2,  Auth1} 

 Return 1 (shows success) 
10.             Else 
11.        Return 0 (shows failure) 
12.   End if 

 

Theorem 1 

The contributed scheme is secure, if an attacker 
attempts to determine the mutually agreed session 
key (SK) among legitimate participants SPj and Ui, 
provided one-way hash digest function acts nearly 
as a random oracle. 
 
Proof.  

In this proof [6, 8, 13-14], an adversary Ⱥ, 
competent enough to derive the agreed session key 
(SK) among the participants particularly Ui and 
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to 
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of 
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  is 
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E] 
depicts the event probability for an event (E). The 
advantage function for the above experiment can 
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (tm2, qRy1)=maxA 
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 ], having execution delay time tm2 
and Reveal-query qRy1 maximized on the adversary 
Ⱥ [1]. We regard our contributed scheme as quite 
safe against an adversary Ⱥ in recovering the 
agreed session key (SK) between Ui and SPj, if 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1 ) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small 
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the 
adversary is competent to invert a one-way hash 
digest function h(), it might comfortably recover 
the real session key (SK) shared between SPj and 
Ui, and at last Ⱥ wins the game. Nonetheless, in 
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is 
polynomially unfeasible to invert hash function 
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (t1) ≤ 𝜀𝜀𝜀𝜀 for a 
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the 
contributed protocol may be safely considered as 
resistant as the security features for hash functions 
are tough to break in polynomial amount of time. 
 
7.   Comparison and Performance Analysis 
 
The Chang et al. model presents a multi-server 
authenticated key agreement protocol and is based 
on light-weight symmetric key operations which 
are suitable for power deficient mobile devices. In 
this performance section, we evaluate performance 
efficiency of authentication protocol by Chang et 
al. with proposed protocol. Table 2 lists the 
limitations of Chang et al.’s model, while the 
proposed scheme acts as a vigorous authentication 
protocol as proven in the preceding sections. Table 

Theorem 1. The contributed scheme is secure, if an at-
tacker attempts to determine the mutually agreed ses-
sion key (SK) among legitimate participants SPj and 
Ui, provided one-way hash digest function acts nearly 
as a random oracle.
Proof.  In this proof [6, 8, 13-14], an adversary Ⱥ, 
competent enough to derive the agreed session key 
(SK) among the participants particularly Ui and SPj, 
makes a use of this Reveal_oracle oracle to implement 

 

𝜈𝜈10: Ur |≡  (nj) 

Referring Υ4, 𝜈𝜈10, and session-key postulate, we 
get 
𝜈𝜈11: Ur |≡ Sr |≡ Sr         ��       �⎯⎯⎯⎯� Ur    (Goal-4) 

Regarding Υ5, 𝜈𝜈11, and Jurisdiction postulate, we 

have  

𝜈𝜈12: Ur |≡ Sr         ��       �⎯⎯⎯⎯� Ur         (Goal-3) 
The stated BAN logic-based protocol examination 
establishes the fact that our model confers mutual 
authentication and the constructed session key (SK) 
is mutually established among the user Ur and 
server Sr.  

    Employing the random oracle model, we 
implement a formal security analysis for proving 
that our protocol is quite secure [29]. For the said 
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
as described below:  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from 
the related hash digest y=h(x), for sure.  
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in  
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������� , as shown above, 
signifying towards the session key’s disclosure if 
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash 
digest. 

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑯𝑯𝑰𝑰𝑰𝑰𝑯𝑯  

1. Eavesdrop the login-request {Aij, m2, Auth1} where 
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)ni), 
and Aij = Zi  h(h(SIDj || PK)||ni)h(HB(Bi) 
||PWi)  PK. 

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1 
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1) 

3. Eavesdrop the Authentication message {Auth3} in 
verification phase, where Auth3=h(Tidi || ni || nj') 

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get 
{Tidi', ni, nj'} as (Tidi' || ni || nj')← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3) 

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get 
{Yi , SIDj , ni} as (Yi || SIDj || ni) ← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi') 

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve 
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
(Yi) 

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve  
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi) 

8. Compute session key as SK= h(Tidi || ni' || nj || 
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attempts to determine the mutually agreed session 
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provided one-way hash digest function acts nearly 
as a random oracle. 
 
Proof.  

In this proof [6, 8, 13-14], an adversary Ⱥ, 
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contributed protocol may be safely considered as 
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al. with proposed protocol. Table 2 lists the 
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2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1 
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1) 

3. Eavesdrop the Authentication message {Auth3} in 
verification phase, where Auth3=h(Tidi || ni || nj') 

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get 
{Tidi', ni, nj'} as (Tidi' || ni || nj')← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3) 

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get 
{Yi , SIDj , ni} as (Yi || SIDj || ni) ← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi') 

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve 
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
(Yi) 

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve  
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi) 

8. Compute session key as SK= h(Tidi || ni' || nj || 
SIDj)  

9. If  (Aij '= Aij) AND (Tidi '= Tidi)  Then 
Take SK as a legitimate session key   
for identity (IDi') of Ui,  
against login request {Aij, m2,  Auth1} 

 Return 1 (shows success) 
10.             Else 
11.        Return 0 (shows failure) 
12.   End if 

 

Theorem 1 

The contributed scheme is secure, if an attacker 
attempts to determine the mutually agreed session 
key (SK) among legitimate participants SPj and Ui, 
provided one-way hash digest function acts nearly 
as a random oracle. 
 
Proof.  

In this proof [6, 8, 13-14], an adversary Ⱥ, 
competent enough to derive the agreed session key 
(SK) among the participants particularly Ui and 
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to 
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of 
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  is 
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E] 
depicts the event probability for an event (E). The 
advantage function for the above experiment can 
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (tm2, qRy1)=maxA 
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 ], having execution delay time tm2 
and Reveal-query qRy1 maximized on the adversary 
Ⱥ [1]. We regard our contributed scheme as quite 
safe against an adversary Ⱥ in recovering the 
agreed session key (SK) between Ui and SPj, if 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1 ) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small 
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the 
adversary is competent to invert a one-way hash 
digest function h(), it might comfortably recover 
the real session key (SK) shared between SPj and 
Ui, and at last Ⱥ wins the game. Nonetheless, in 
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is 
polynomially unfeasible to invert hash function 
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (t1) ≤ 𝜀𝜀𝜀𝜀 for a 
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the 
contributed protocol may be safely considered as 
resistant as the security features for hash functions 
are tough to break in polynomial amount of time. 
 
7.   Comparison and Performance Analysis 
 
The Chang et al. model presents a multi-server 
authenticated key agreement protocol and is based 
on light-weight symmetric key operations which 
are suitable for power deficient mobile devices. In 
this performance section, we evaluate performance 
efficiency of authentication protocol by Chang et 
al. with proposed protocol. Table 2 lists the 
limitations of Chang et al.’s model, while the 
proposed scheme acts as a vigorous authentication 
protocol as proven in the preceding sections. Table 

 (tm2, qRy1)=maxA [

 

𝜈𝜈𝜈𝜈10: Ur |≡  (nj) 

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we 
get 
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr  

       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur    (Goal-4) 

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we 

have  

𝜈𝜈𝜈𝜈12: Ur |≡ Sr  
       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur         (Goal-3) 

The stated BAN logic-based protocol examination 
establishes the fact that our model confers mutual 
authentication and the constructed session key (SK) 
is mutually established among the user Ur and 
server Sr.  

    Employing the random oracle model, we 
implement a formal security analysis for proving 
that our protocol is quite secure [29]. For the said 
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
as described below:  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from 
the related hash digest y=h(x), for sure.  
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in  
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above, 
signifying towards the session key’s disclosure if 
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash 
digest. 

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯  

1. Eavesdrop the login-request {Aij, m2, Auth1} where 
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni), 
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi) 
||PWi) ⊕ PK. 

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1 
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1) 

3. Eavesdrop the Authentication message {Auth3} in 
verification phase, where Auth3=h(Tidi || ni || nj') 

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get 
{Tidi', ni, nj'} as (Tidi' || ni || nj')← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3) 

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get 
{Yi , SIDj , ni} as (Yi || SIDj || ni) ← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi') 

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve 
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
(Yi) 

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve  
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi) 

8. Compute session key as SK= h(Tidi || ni' || nj || 
SIDj)  

9. If  (Aij '= Aij) AND (Tidi '= Tidi)  Then 
Take SK as a legitimate session key   
for identity (IDi') of Ui,  
against login request {Aij, m2,  Auth1} 

 Return 1 (shows success) 
10.             Else 
11.        Return 0 (shows failure) 
12.   End if 

 

Theorem 1 

The contributed scheme is secure, if an attacker 
attempts to determine the mutually agreed session 
key (SK) among legitimate participants SPj and Ui, 
provided one-way hash digest function acts nearly 
as a random oracle. 
 
Proof.  

In this proof [6, 8, 13-14], an adversary Ⱥ, 
competent enough to derive the agreed session key 
(SK) among the participants particularly Ui and 
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to 
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of 
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  is 
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E] 
depicts the event probability for an event (E). The 
advantage function for the above experiment can 
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (tm2, qRy1)=maxA 
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 ], having execution delay time tm2 
and Reveal-query qRy1 maximized on the adversary 
Ⱥ [1]. We regard our contributed scheme as quite 
safe against an adversary Ⱥ in recovering the 
agreed session key (SK) between Ui and SPj, if 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1 ) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small 
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the 
adversary is competent to invert a one-way hash 
digest function h(), it might comfortably recover 
the real session key (SK) shared between SPj and 
Ui, and at last Ⱥ wins the game. Nonetheless, in 
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is 
polynomially unfeasible to invert hash function 
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (t1) ≤ 𝜀𝜀𝜀𝜀 for a 
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the 
contributed protocol may be safely considered as 
resistant as the security features for hash functions 
are tough to break in polynomial amount of time. 
 
7.   Comparison and Performance Analysis 
 
The Chang et al. model presents a multi-server 
authenticated key agreement protocol and is based 
on light-weight symmetric key operations which 
are suitable for power deficient mobile devices. In 
this performance section, we evaluate performance 
efficiency of authentication protocol by Chang et 
al. with proposed protocol. Table 2 lists the 
limitations of Chang et al.’s model, while the 
proposed scheme acts as a vigorous authentication 
protocol as proven in the preceding sections. Table 

], having execution delay time tm2 and 
Reveal-query qRy1 maximized on the adversary Ⱥ 
[1]. We regard our contributed scheme as quite safe 
against an adversary Ⱥ in recovering the agreed ses-
sion key (SK) between Ui and SPj, if 

 

𝜈𝜈𝜈𝜈10: Ur |≡  (nj) 

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we 
get 
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr  

       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur    (Goal-4) 

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we 

have  

𝜈𝜈𝜈𝜈12: Ur |≡ Sr  
       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur         (Goal-3) 

The stated BAN logic-based protocol examination 
establishes the fact that our model confers mutual 
authentication and the constructed session key (SK) 
is mutually established among the user Ur and 
server Sr.  

    Employing the random oracle model, we 
implement a formal security analysis for proving 
that our protocol is quite secure [29]. For the said 
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
as described below:  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from 
the related hash digest y=h(x), for sure.  
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in  
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above, 
signifying towards the session key’s disclosure if 
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash 
digest. 

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯  

1. Eavesdrop the login-request {Aij, m2, Auth1} where 
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni), 
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi) 
||PWi) ⊕ PK. 

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1 
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1) 

3. Eavesdrop the Authentication message {Auth3} in 
verification phase, where Auth3=h(Tidi || ni || nj') 

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get 
{Tidi', ni, nj'} as (Tidi' || ni || nj')← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3) 

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get 
{Yi , SIDj , ni} as (Yi || SIDj || ni) ← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi') 

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve 
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
(Yi) 

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve  
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi) 

8. Compute session key as SK= h(Tidi || ni' || nj || 
SIDj)  

9. If  (Aij '= Aij) AND (Tidi '= Tidi)  Then 
Take SK as a legitimate session key   
for identity (IDi') of Ui,  
against login request {Aij, m2,  Auth1} 

 Return 1 (shows success) 
10.             Else 
11.        Return 0 (shows failure) 
12.   End if 

 

Theorem 1 

The contributed scheme is secure, if an attacker 
attempts to determine the mutually agreed session 
key (SK) among legitimate participants SPj and Ui, 
provided one-way hash digest function acts nearly 
as a random oracle. 
 
Proof.  

In this proof [6, 8, 13-14], an adversary Ⱥ, 
competent enough to derive the agreed session key 
(SK) among the participants particularly Ui and 
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to 
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of 
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  is 
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E] 
depicts the event probability for an event (E). The 
advantage function for the above experiment can 
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (tm2, qRy1)=maxA 
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 ], having execution delay time tm2 
and Reveal-query qRy1 maximized on the adversary 
Ⱥ [1]. We regard our contributed scheme as quite 
safe against an adversary Ⱥ in recovering the 
agreed session key (SK) between Ui and SPj, if 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1 ) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small 
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the 
adversary is competent to invert a one-way hash 
digest function h(), it might comfortably recover 
the real session key (SK) shared between SPj and 
Ui, and at last Ⱥ wins the game. Nonetheless, in 
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is 
polynomially unfeasible to invert hash function 
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (t1) ≤ 𝜀𝜀𝜀𝜀 for a 
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the 
contributed protocol may be safely considered as 
resistant as the security features for hash functions 
are tough to break in polynomial amount of time. 
 
7.   Comparison and Performance Analysis 
 
The Chang et al. model presents a multi-server 
authenticated key agreement protocol and is based 
on light-weight symmetric key operations which 
are suitable for power deficient mobile devices. In 
this performance section, we evaluate performance 
efficiency of authentication protocol by Chang et 
al. with proposed protocol. Table 2 lists the 
limitations of Chang et al.’s model, while the 
proposed scheme acts as a vigorous authentication 
protocol as proven in the preceding sections. Table 

(tm2, 
qRy1 ) ≤ ε for a negligibly small ε > 0. In relation to this 
experiment, if the adversary is competent to invert a 
one-way hash digest function h(), it might comfort-
ably recover the real session key (SK) shared between 
SPj and Ui, and at last Ⱥ wins the game. Nonetheless, 
in accordance with Reveal_oracle definition, this is 
polynomially unfeasible to invert hash function since 

 

𝜈𝜈𝜈𝜈10: Ur |≡  (nj) 

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we 
get 
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr  

       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur    (Goal-4) 

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we 

have  

𝜈𝜈𝜈𝜈12: Ur |≡ Sr  
       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur         (Goal-3) 

The stated BAN logic-based protocol examination 
establishes the fact that our model confers mutual 
authentication and the constructed session key (SK) 
is mutually established among the user Ur and 
server Sr.  

    Employing the random oracle model, we 
implement a formal security analysis for proving 
that our protocol is quite secure [29]. For the said 
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
as described below:  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from 
the related hash digest y=h(x), for sure.  
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in  
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above, 
signifying towards the session key’s disclosure if 
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash 
digest. 

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯  

1. Eavesdrop the login-request {Aij, m2, Auth1} where 
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni), 
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi) 
||PWi) ⊕ PK. 

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1 
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1) 

3. Eavesdrop the Authentication message {Auth3} in 
verification phase, where Auth3=h(Tidi || ni || nj') 

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get 
{Tidi', ni, nj'} as (Tidi' || ni || nj')← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3) 

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get 
{Yi , SIDj , ni} as (Yi || SIDj || ni) ← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi') 

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve 
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
(Yi) 

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve  
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi) 

8. Compute session key as SK= h(Tidi || ni' || nj || 
SIDj)  

9. If  (Aij '= Aij) AND (Tidi '= Tidi)  Then 
Take SK as a legitimate session key   
for identity (IDi') of Ui,  
against login request {Aij, m2,  Auth1} 

 Return 1 (shows success) 
10.             Else 
11.        Return 0 (shows failure) 
12.   End if 

 

Theorem 1 

The contributed scheme is secure, if an attacker 
attempts to determine the mutually agreed session 
key (SK) among legitimate participants SPj and Ui, 
provided one-way hash digest function acts nearly 
as a random oracle. 
 
Proof.  

In this proof [6, 8, 13-14], an adversary Ⱥ, 
competent enough to derive the agreed session key 
(SK) among the participants particularly Ui and 
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to 
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of 
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  is 
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E] 
depicts the event probability for an event (E). The 
advantage function for the above experiment can 
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (tm2, qRy1)=maxA 
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 ], having execution delay time tm2 
and Reveal-query qRy1 maximized on the adversary 
Ⱥ [1]. We regard our contributed scheme as quite 
safe against an adversary Ⱥ in recovering the 
agreed session key (SK) between Ui and SPj, if 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1 ) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small 
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the 
adversary is competent to invert a one-way hash 
digest function h(), it might comfortably recover 
the real session key (SK) shared between SPj and 
Ui, and at last Ⱥ wins the game. Nonetheless, in 
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is 
polynomially unfeasible to invert hash function 
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (t1) ≤ 𝜀𝜀𝜀𝜀 for a 
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the 
contributed protocol may be safely considered as 
resistant as the security features for hash functions 
are tough to break in polynomial amount of time. 
 
7.   Comparison and Performance Analysis 
 
The Chang et al. model presents a multi-server 
authenticated key agreement protocol and is based 
on light-weight symmetric key operations which 
are suitable for power deficient mobile devices. In 
this performance section, we evaluate performance 
efficiency of authentication protocol by Chang et 
al. with proposed protocol. Table 2 lists the 
limitations of Chang et al.’s model, while the 
proposed scheme acts as a vigorous authentication 
protocol as proven in the preceding sections. Table 

 and 

 

𝜈𝜈𝜈𝜈10: Ur |≡  (nj) 

Referring Υ4, 𝜈𝜈𝜈𝜈10, and session-key postulate, we 
get 
𝜈𝜈𝜈𝜈11: Ur |≡ Sr |≡ Sr  

       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur    (Goal-4) 

Regarding Υ5, 𝜈𝜈𝜈𝜈11, and Jurisdiction postulate, we 

have  

𝜈𝜈𝜈𝜈12: Ur |≡ Sr  
       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       
�⎯⎯⎯⎯� Ur         (Goal-3) 

The stated BAN logic-based protocol examination 
establishes the fact that our model confers mutual 
authentication and the constructed session key (SK) 
is mutually established among the user Ur and 
server Sr.  

    Employing the random oracle model, we 
implement a formal security analysis for proving 
that our protocol is quite secure [29]. For the said 
objective, we employed the oracle 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
as described below:  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle: This oracle would output x from 
the related hash digest y=h(x), for sure.  
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle has been employed in  
Algorithm 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 , as shown above, 
signifying towards the session key’s disclosure if 
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle is executed by inverting hash 
digest. 

Algorithm 1. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑯𝑯𝑯𝑯  

1. Eavesdrop the login-request {Aij, m2, Auth1} where 
Auth1=h(Aij || Tidi || ni), m2=h(SIDj || PK)⊕ni), 
and Aij = Zi ⊕ h(h(SIDj || PK)||ni)⊕h(HB(Bi) 
||PWi) ⊕ PK. 

2. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle on the input of Auth1 
to get {Aij', Tidi, ni} as (Aij'||Tidi ||ni)← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth1) 

3. Eavesdrop the Authentication message {Auth3} in 
verification phase, where Auth3=h(Tidi || ni || nj') 

4. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Auth3 to get 
{Tidi', ni, nj'} as (Tidi' || ni || nj')← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Auth3) 

5. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Tidi to get 
{Yi , SIDj , ni} as (Yi || SIDj || ni) ← 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Tidi') 

6. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on the input of Yi to retrieve 
{Wi , h(K || b} as (Wi || h(K || b)← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle 
(Yi) 

7. Call 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle on inputting Wi to retrieve  
{IDi' , K} as (IDi' ||K) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle (Wi) 

8. Compute session key as SK= h(Tidi || ni' || nj || 
SIDj)  

9. If  (Aij '= Aij) AND (Tidi '= Tidi)  Then 
Take SK as a legitimate session key   
for identity (IDi') of Ui,  
against login request {Aij, m2,  Auth1} 

 Return 1 (shows success) 
10.             Else 
11.        Return 0 (shows failure) 
12.   End if 

 

Theorem 1 

The contributed scheme is secure, if an attacker 
attempts to determine the mutually agreed session 
key (SK) among legitimate participants SPj and Ui, 
provided one-way hash digest function acts nearly 
as a random oracle. 
 
Proof.  

In this proof [6, 8, 13-14], an adversary Ⱥ, 
competent enough to derive the agreed session key 
(SK) among the participants particularly Ui and 
SPj, makes a use of this 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle oracle to 
implement 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 . The probability of 
success corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  is 
Sucs1=Prb.2[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 =1]-1, Here Prb[E] 
depicts the event probability for an event (E). The 
advantage function for the above experiment can 
be established as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (tm2, qRy1)=maxA 
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 ], having execution delay time tm2 
and Reveal-query qRy1 maximized on the adversary 
Ⱥ [1]. We regard our contributed scheme as quite 
safe against an adversary Ⱥ in recovering the 
agreed session key (SK) between Ui and SPj, if 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 (tm2, qRy1 ) ≤ 𝜀𝜀𝜀𝜀 for a negligibly small 
𝜀𝜀𝜀𝜀 > 0. In relation to this experiment, if the 
adversary is competent to invert a one-way hash 
digest function h(), it might comfortably recover 
the real session key (SK) shared between SPj and 
Ui, and at last Ⱥ wins the game. Nonetheless, in 
accordance with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_oracle definition, this is 
polynomially unfeasible to invert hash function 
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻  (t1) ≤ 𝜀𝜀𝜀𝜀 for a 
negligibly small value, i.e. 𝜀𝜀𝜀𝜀 > 0. Therefore, the 
contributed protocol may be safely considered as 
resistant as the security features for hash functions 
are tough to break in polynomial amount of time. 
 
7.   Comparison and Performance Analysis 
 
The Chang et al. model presents a multi-server 
authenticated key agreement protocol and is based 
on light-weight symmetric key operations which 
are suitable for power deficient mobile devices. In 
this performance section, we evaluate performance 
efficiency of authentication protocol by Chang et 
al. with proposed protocol. Table 2 lists the 
limitations of Chang et al.’s model, while the 
proposed scheme acts as a vigorous authentication 
protocol as proven in the preceding sections. Table 

 (t1) ≤ ε for a negligibly 
small value, i.e. ε > 0. Therefore, the contributed pro-
tocol may be safely considered as resistant as the se-
curity features for hash functions are tough to break 
in polynomial amount of time.

7. Comparison and Performance 
Analysis
The Chang et al. model presents a multi-server au-
thenticated key agreement protocol and is based on 
light-weight symmetric key operations which are 
suitable for power deficient mobile devices. In this 
performance section, we evaluate performance effi-
ciency of authentication protocol by Chang et al. with 
proposed protocol. Table 2 lists the limitations of 
Chang et al.’s model, while the proposed scheme acts 
as a vigorous authentication protocol as proven in the 
preceding sections. Table 2 demonstrates that Chang 
et al.’s model does not offer protection from stolen 
card threat, impersonation attack and lacks session 
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Table 2 
Comparison for Multi-server schemes

Chang et 
al. [4]

Proposed 
protocol

Anonymity ✔ ✔

Mutual authentication ✔ ✔

Known key secrecy ✔ ✔

Resists MiTM threat ✔ ✔

Resists modification threat ✔ ✔

Resists password guessing threat ✔ ✔

Resists stolen smart card threat × ✔

Resists impersonation threat × ✔

Resists replay threat ✔ ✔

Session key security × ✔

Table 3 
Number of operations in Chang et al.’s model and 
contributed model 

         Chang et al. [4] Ours

Registration messages 9 TH 8 TH 

User side 9TH  11 TH 

Server side 6TH  6TH  

Password update messages 4 TH  7 TH  

key security, while the proposed scheme is immune 
to those identified threats as verified in the formal 
security models. The actual cost for both schemes is 
shown in Table 3, where different hash operations are 
represented with TH, and bypassing exclusive-OR op-
eration for its insignificant computational cost. 

Consequently, in consideration of above performance 
evaluation and analysis, we may infer that our proto-
col is more secure than Chang et al.’s protocol while 
bearing an equivalent cost. The proposed scheme pro-
vides immunity against impersonation and session 
key attacks in contrary to Chang et al.’s model. Table 
3 compares the number of operations for Chang et al. 
protocol and contributed model and depicts that the 
phases of both schemes take an equivalent computa-
tional cost with a little variation in the cost of pass-
word modification phase. 

8. Conclusion
The multi-server authentication serves as one of the 
main requirements of the current internet-based au-
thentication framework. This manuscript studies the 
multi-server based Chang et al.’s remote authentica-
tion model which demonstrates that the Chang et al. 
scheme is prone to impersonation and session key 
attacks, subject to the stolen contents of smart card. 
The review and cryptanalysis of Chang et al.’s model 
has been demonstrated comprehensively. Thereafter, 
a proposed model is presented that foils those par-
ticular attacks with the contribution of an enhanced 
model. Moreover, this paper presents the formal se-
curity analysis using BAN logic and random oracle 
model, and evaluates the performance against the 
Chang et al.’s protocol. 

Acknowledgement
This work was supported by the Brain Korea 21 Plus 
Program (No. 22A20130012814) funded by the Na-
tional Research Foundation of Korea (NRF).

References
1. Bellare, M., Rogaway, P. Entity Authentication and 

Key Distribution. Proceedings of the 13th Annual In-
ternational Cryptology Conference, LNCS 773, San-
ta Barbara, CA, August, 1993, 232-249. https://doi.
org/10.1007/3-540-48329-2_21

2. Burrows, M., Abadi, M., Needham, R. M. A Logic of Au-
thentication. Proceedings of the Royal Society of Lon-

don. Series A, Mathematical and Physical Sciences, 1989, 
426, 233-271. https://doi.org/10.1098/rspa.1989.0125

3. Chang, C. C., Lee, J. S. An Efficient and Secure 
Multi-Server Password Authentication Scheme Us-
ing Smart Cards. Proceedings of the 3rd International 
Conference on Cyberworlds, Tokyo, Japan, November, 
2004, 417-22.

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1098/rspa.1989.0125


223Information Technology and Control 2019/2/48

4. Chang, C.-C., Cheng, T.-F., Hsueh, W.-Y. A Robust and 
Efficient Dynamic Identity-Based Multi-Server Au-
thentication Scheme Using Smart Cards. International 
Journal of Communication Systems, 2016, 29(2), 290-
306. https://doi.org/10.1002/dac.2830

5. Chang, Y. F., Tai, W. L., Chang, H. C. Untraceable Dy-
namic-Identity-Based Remote User Authentication 
Scheme with Verifiable Password Update. Internation-
al Journal of Communication Systems, 2013 (Article in 
press). https://doi.org/10.1002/dac.2552

6. Chaudhry, S. A., Khan, I., Irshad, A., Ashraf, M. U., Khan, 
M. K., Ahmad, H. F. A Provably Secure Anonymous Au-
thentication Scheme for Session Initiation Protocol. 
Security and Communication Networks, 2016, 9(18), 
5016-5027. https://doi.org/10.1002/sec.1672

7. Chaudhry, S. A., Naqvi, H., Farash, M. S., Shon, T., Sher, 
M. An Improved and Robust Biometrics-Based Three 
Factor Authentication Scheme for Multiserver Envi-
ronments. The Journal of Supercomputing, 2018, 74(8), 
3504-3520. https://doi.org/10.1007/s11227-015-1601-y

8. Chaudhry, S. A., Sher, M., Ghani, A., Naqvi, H., Irshad, 
A. An Efficient Signcryption Scheme with Forward Se-
crecy and Public Verifiability Based on Hyper Elliptic 
Curve Cryptography. Multimedia Tools and Applica-
tions, 2015, 74(5), 1711-1723. https://doi.org/10.1007/
s11042-014-2283-9

9. Hsiang, H. C., Shih, W. K. Improvement of the Se-
cure Dynamic ID Based Remote User Authentication 
Scheme for Multiserver Environment. Computer Stan-
dards and Interfaces, 2009, 31(6), 1118-1123. https://doi.
org/10.1016/j.csi.2008.11.002

10. Hwang, M. S., Lee, C. C., Tang, Y. L. A Simple Remote 
User Authentication Scheme. Mathematical and Com-
puter Modelling, 2002, 36(1-2), 103-107. https://doi.
org/10.1016/S0895-7177(02)00106-1

11. Irshad, A., Chaudhry, S. A., Xie, Q., Li, X., Farash, M. S., 
Kumari, S., Wu, F. An Enhanced and Provably Secure 
Chaotic Map-Based Authenticated Key Agreement in 
Multi-Server Architecture. Arabian Journal for Sci-
ence and Engineering, 2018, 43(2), 811-828. https://doi.
org/10.1007/s13369-017-2764-z

12. Irshad, A., Naqvi, H., Chaudhry, S. A., Raheem, S., Ku-
mari, S., Kanwal, A., Usman, M. An Efficient and Secure 
Design of Multi-Server Authenticated Key Agreement 
Protocol. The Journal of Supercomputing, 2018, 74(9), 
4771-4797. https://doi.org/10.1007/s11227-018-2467-6

13. Irshad, A., Sher, M., Alzahrani, B. A., Albeshri, A., 
Chaudhry, S. A., Kumari, S. Cryptanalysis and Im-

provement of a Multi-server Authentication Protocol 
by Lu et al. KSII Transactions on Internet & Infor-
mation Systems, 2018, 12(1). https://doi.org/10.3837/
tiis.2018.01.025

14. Irshad, A., Sher, M., Chaudhary, S. A., Naqvi, H., Farash, 
M. S. An Efficient and Anonymous Multi-Server Au-
thenticated Key Agreement Based on Chaotic Map 
Without Engaging Registration Centre. The Journal of 
Supercomputing, 2016, 72(4), 1623-1644.  https://doi.
org/10.1007/s11227-016-1688-9

15. Irshad, A., Sher, M., Chaudhry, S. A., Kumari, S., Sanga-
iah, A. K., Li, X., Wu, F. A Secure Mutual Authenticated 
Key Agreement of User with Multiple Servers for Criti-
cal Systems. Multimedia Tools and Applications, 2018, 
77(9), 11067-11099. https://doi.org/10.1007/s11042-
017-5078-y

16. Jin, A. T. B., Ling, D. N. C., Goh, A. Bio-hashing: Two 
Factor Authentication Featuring Fingerprint Data 
and Tokenised Random Number. Pattern Recognition, 
2004, 37(11), 2245-2255. https://doi.org/10.1016/j.pat-
cog.2004.04.011

17. Juang, W. S. Efficient Multi-Server Password Authenti-
cated Key Agreement Using Smart Cards. IEEE Trans-
actions on Consumer Electronics, 2004, 50(1), 251-255. 
https://doi.org/10.1109/TCE.2004.1277870

18. Juang, W. S. Efficient Password Authenticated Key 
Agreement Using Smart Cards. Computers and Se-
curity, 2004, 23(2), 167-173. https://doi.org/10.1016/j.
cose.2003.11.005

19. Kumari, S., Li, X., Wu, F., Das, A. K., Arshad, H., Khan, 
M. K. A User Friendly Mutual Authentication and Key 
Agreement Scheme for Wireless Sensor Networks 
Using Chaotic Maps. Future Generation Computer 
Systems, 2016, 63, 56-75. https://doi.org/10.1016/j.fu-
ture.2016.04.016

20. Kumari, S., Li, X., Wu, F., Das, A. K., Choo, K. K. R., Shen, 
J. Design of a Provably Secure Biometrics-Based Multi-
Cloud-Server Authentication Scheme. Future Genera-
tion Computer Systems, 2017, 68, 320-330. https://doi.
org/10.1016/j.future.2016.10.004

21. Lamport, L. Password Authentication with Insecure 
Communication. Communications of the ACM, 1981, 
24(11), 770-772. https://doi.org/10.1145/358790.358797

22. Lee, C. C., Lin, T. H., Chang, R. X. A Secure Dynam-
ic ID Based Remote User Authentication Scheme for 
Multi-Server Environment Using Smart Cards. Expert 
Systems with Applications, 2011, 38(11), 13863-13870. 
https://doi.org/10.1016/j.eswa.2011.04.190

https://doi.org/10.1002/dac.2830
https://doi.org/10.1002/dac.2552
https://doi.org/10.1002/sec.1672
https://doi.org/10.1007/s11227-015-1601-y
https://doi.org/10.1007/s11042-014-2283-9
https://doi.org/10.1007/s11042-014-2283-9
https://doi.org/10.1016/j.csi.2008.11.002
https://doi.org/10.1016/j.csi.2008.11.002
https://doi.org/10.1016/S0895-7177(02)00106-1
https://doi.org/10.1016/S0895-7177(02)00106-1
https://doi.org/10.1007/s13369-017-2764-z
https://doi.org/10.1007/s13369-017-2764-z
https://doi.org/10.1007/s11227-018-2467-6
https://doi.org/10.3837/tiis.2018.01.025
https://doi.org/10.3837/tiis.2018.01.025
https://doi.org/10.1007/s11227-016-1688-9
https://doi.org/10.1007/s11227-016-1688-9
https://doi.org/10.1007/s11042-017-5078-y
https://doi.org/10.1007/s11042-017-5078-y
https://doi.org/10.1016/j.patcog.2004.04.011
https://doi.org/10.1016/j.patcog.2004.04.011
https://doi.org/10.1109/TCE.2004.1277870
https://doi.org/10.1016/j.cose.2003.11.005
https://doi.org/10.1016/j.cose.2003.11.005
https://doi.org/10.1016/j.future.2016.04.016
https://doi.org/10.1016/j.future.2016.04.016
https://doi.org/10.1016/j.future.2016.10.004
https://doi.org/10.1016/j.future.2016.10.004
https://doi.org/10.1145/358790.358797
https://doi.org/10.1016/j.eswa.2011.04.190


Information Technology and Control 2019/2/48224

23. Li, L. H., Lin, I. C., Hwang, M. S. A Remote Password 
Authentication Scheme for Multiserver Architec-
ture Using Neural Networks. IEEE Transactions on 
Neural Networks, 2001, 12(6), 1498-1504. https://doi.
org/10.1109/72.963786

24. Li, X., Ma, J., Wang, W., Xiong, Y., Zhang, J. A Novel 
Smart Card and Dynamic ID Based Remote User Au-
thentication Scheme for Multi-Server Environments. 
Mathematical and Computer Modelling, 2013, 58(1-2), 
85-95. https://doi.org/10.1016/j.mcm.2012.06.033

25. Li, X., Niu, J., Kumari, S., Liao, J., Liang, W. An En-
hancement of a Smart Card Authentication Scheme for 
Multi-Server Architecture. Wireless Personal Commu-
nications, 2015, 80(1), 175-192. https://doi.org/10.1007/
s11277-014-2002-x

26. Li, X., Niu, J., Liao, J., Liang, W. Cryptanalysis of a Dy-
namic Identity-Based Remote User Authentication 
Scheme with Verifiable Password Update. Internation-
al Journal of Communication Systems, 2013 (Article in 
press). DOI: 10.1002/dac.2676. https://doi.org/10.1002/
dac.2676

27. Li, X., Xiong, Y., Ma, J., Wang, W. An Efficient and Securi-
ty Dynamic Identity Based Authentication Protocol for 
Multi-Server Architecture Using Smart Cards. Journal 
of Network and Computer Applications, 2012, 35(2), 
763-769. https://doi.org/10.1016/j.jnca.2011.11.009 

28. Liao, Y. P., Wang, S. S. A Secure Dynamic ID Based Re-
mote User Authentication Scheme for Multi-Server En-
vironment. Computer Standards and Interfaces, 2009, 
31(1), 24-29. https://doi.org/10.1016/j.csi.2007.10.007

29. Liao, Y.-P., Hsiao, C.-M. A Novel Multi-Server Remote 
User Authentication Scheme Using Self-Certified 

Public Keys for Mobile Clients. Future Generation 
Computer Systems, 2013, 29(3), 886-900. https://doi.
org/10.1016/j.future.2012.03.017

30. Lin, C. W., Shen, J. J., Hwang, M. S. Security Enhance-
ment for Optimal Strong-Password Authentication Pro-
tocol. ACM SIGOPS Operating Systems Review, 2003, 
37(2), 12-16. https://doi.org/10.1145/881783.881785 

31. Lin, I. C., Hwang, M. S., Li, L. H. A New Remote User 
Authentication Scheme for Multi-Server Architecture. 
Future Generation Computer System, 2003, 19(1), 13-
22. https://doi.org/10.1016/S0167-739X(02)00093-6 

32. Lumini, A., Loris, N. An Improved Bio-hashing for 
Human Authentication. Pattern recognition, 2007, 
40(3), 1057-1065. https://doi.org/10.1016/j.pat-
cog.2006.05.030

33. Shieh, W. G., Wang, J. M. Efficient Remote Mutual 
Authentication and Key Agreement. Computers and 
Security, 2006, 25(1), 72-77. https://doi.org/10.1016/j.
cose.2005.09.008

34. Sood, S. K., Sarje, A. K., Singh, K. A Secure Dynamic 
Identity Based Authentication Protocol for Multi-Serv-
er Architecture. Journal of Network and Comput-
er Applications, 2011, 34(2), 609-618. https://doi.
org/10.1016/j.jnca.2010.11.011

35. Yang, W. H, Shieh, S. P. Password Authentication 
Schemes with Smart Cards. Computers and Security, 
1999, 18(8), 727-733. https://doi.org/10.1016/S0167-
4048(99)80136-9

36. Yeh, K. H., Lo, N. W, Li, Y. Cryptanalysis of Hsiang-Shih’s 
Authentication Scheme for Multi-Server Architecture. 
International Journal of Communication Systems, 
2011, 24(7), 829-836. https://doi.org/10.1002/dac.1184

https://doi.org/10.1109/72.963786
https://doi.org/10.1109/72.963786
https://doi.org/10.1016/j.mcm.2012.06.033
https://doi.org/10.1007/s11277-014-2002-x
https://doi.org/10.1007/s11277-014-2002-x
https://doi.org/10.1002/dac.2676
https://doi.org/10.1002/dac.2676
https://doi.org/10.1016/j.jnca.2011.11.009
https://doi.org/10.1016/j.csi.2007.10.007
https://doi.org/10.1016/j.future.2012.03.017
https://doi.org/10.1016/j.future.2012.03.017
https://doi.org/10.1145/881783.881785
https://doi.org/10.1016/S0167-739X(02)00093-6
https://doi.org/10.1016/j.patcog.2006.05.030
https://doi.org/10.1016/j.patcog.2006.05.030
https://doi.org/10.1016/j.cose.2005.09.008
https://doi.org/10.1016/j.cose.2005.09.008
https://doi.org/10.1016/j.jnca.2010.11.011
https://doi.org/10.1016/j.jnca.2010.11.011
https://doi.org/10.1016/S0167-4048(99)80136-9
https://doi.org/10.1016/S0167-4048(99)80136-9
https://doi.org/10.1002/dac.1184

