
Information Technology and Control 2017/4/46484

Cloud Services for On-Demand
Vehicles Management

ITC 4/46
Journal of Information Technology
and Control
Vol. 46 / No. 4 / 2017
pp. 484-498
DOI 10.5755/j01.itc.46.4.17331
© Kaunas University of Technology

Cloud Services for On-Demand Vehicles Management

Received 2016/12/24 Accepted after revision 2017/10/16

 http://dx.doi.org/10.5755/j01.itc.46.4.17331

Corresponding author: tramontana@dmi.unict.it

Andrea Fornaia, Christian Napoli, Emiliano Tramontana
Department of Mathematics and Informatics, University of Catania, Viale Andrea Doria 6, 95125, Catania - Italy
e-mail: {fornaia, napoli, tramontana}@dmi.unict.it

Smart cities providing connectivity to users and other advanced services can be leveraged to improve public
transport services. This paper proposes a solution that lets citizens request a public vehicle to perform addi-
tional stops off the main route, hence achieving a customisation of the transport operator services to better
assist users. A cloud infrastructure and a proper distributed architecture have been designed to assess wheth-
er user requests can be accepted. The proposed software solution considers viable the requests that can fit to
available secondary routes, while also satisfying other user demands that have been previously accepted. Then,
drivers will be alerted in advance in order to adapt their route.
KEYWORDS: Cloud computing, workflow, monitoring, intelligent assistive services, smart cities.

1. Introduction
Smart Cities and services providing citizens with
means to better organise daily life, and Smart Mo-
bility are hot topics for future city developments
[2]. An important field where sensors and the inter-
net-of-things will be used is that of monitoring the
physical world, especially critical infrastructures
such as bridges, airports, ports, motorways, etc. Ad-
ditionally, sensors will let cars and their environment
exchange data [1,5].
Several novel services are under test, including au-
tonomous vehicles, infrastructures that analyse car

flows and seek to minimise queues at intersections,
etc. Moreover, users could be provided with an on-de-
mand transport service for them or their goods. This
paper analyses the scenario of public transport and
provides a solution to organise the flow of publicly ac-
cessed vehicles according to user requests, i.e. on-de-
mand. Thanks to timely processed user requests,
the transport operators can improve their services
by using more vehicles on highly requested routes,
and avoid over-provisioning and wastes. The ubiqui-
tous communication infrastructure would be used to

485Information Technology and Control 2017/4/46

connect users, drivers, and transport operators; then
gathered data allow each of them to properly react to
some changes, e.g. newly programmed bus stops, ful-
ly booked vehicles, as well as traffic jams. Of course,
the devised solution can be used in combination with
the future autonomous unmanned vehicles. While for
the time being alerts for adapting the routes would be
passed on to drivers, later they would be sent to the
vehicles themselves.
In the given scenario, we have organised as a work-
flow the interactions between services and users re-
questing a vehicle to stop on some location and for a
selected destination. A workflow is a standard flow of
execution for the activities related to the offered ser-
vice [9]. The proposed workflow is executed on the
server-side and comprises several activities such as:
assessing whether the currently available running
vehicles can stop on requested location, adapting
the route for a vehicle, and alerting the requesting
users, driver and passengers for the adaptation. The
server-side will have to ensure that route changes
will take place only when disruption is minimal, i.e.
the other planned stops are satisfied as well as the
timing constraints agreed with the users. In a smart
environment, such a workflow is one among many
that is executed on a cloud computing resource and a
processing engine [6].
Cloud-computing provides transparent access to ser-
vices, hardware and data. Thanks to the possibility to
add computing resources on-demand a high-level of
availability and performances are ensured. However,
a cloud-based infrastructure can bring about delays
for the virtual machine (VM) to be started, services
to be allocated, etc. Primary goals for enterprises
handling the said transport scenario include: (i) hav-
ing the minimum amount of disruption to paths of
running vehicles, (ii) providing scalability to handle
a variable number of requests with high availability,
and (iii) minimise the potential delays of the process-
ing infrastructure.
This paper is structured as follows. Section 2 details
the transport scenario that we have tackled. Section
3 describes the proposed software architecture for
workflow management. Section 4 details our pro-
posed predictor for transport requests. Section 5
discusses the related work, and Section 6 draws our
conclusions.

2. Smart City Transport Scenarios
The proposed enhanced bus service lets users reserve
seats and then possibly adapts the a priori established
course. Whether the user requested route changes
would be accepted depends on the agreements that
have been taken between users and the transport op-
erator. Users request an additional stop and provide:
the desired pick-up and destination location, and the
useful timeframe for pick-up. The services on a cloud
computing system will then assess and possibly ac-
knowledge the request, indicating the best rendez-
vous point for the user to catch the bus.
In our model, a rendezvous point is a possible bus stop,
one among many known by the transport operator,
that is activated on-demand, hence avoiding the need
to serve bus stops when not requested. As a result, ve-
hicles travel paths can be optimised, and energy con-
sumption and CO2 emissions reduced.

2.1. The First Scenario
Figure 1 shows four possible routes connecting the
Catania and Palermo cities of the Italian region of Sic-
ily. By gathering user requests, the transport operator
can determine in advance which of the five potential
rendezvous points depicted will be served, hence
planning the route to follow. User requests are gath-
ered before the bus starts going and during its journey,

Figure 1
Different routes connecting Catania (A) to Palermo (E) in
Sicily. According to user requests, the fastest route (in blue)
could be bypassed to serve secondary on-demand rendezvous
points, such as Adrano (B), Troina (C) and Nicosia (D).
Suppose that only B has been requested, then the red route
will be chosen; in case D has been requested, the green one
instead; if all B, C and D have been added, the black route will
be chosen, considerably diverging from the original blue one

Information Technology and Control 2017/4/46486

then a server-side component notifies the bus drivers
when it would be possible for the bus to change the
route in order to serve requested rendezvous points.
In the depicted example, the transport operator pro-
vides as a daily basis a connection between two of the
main Sicilian cities, located on the opposite coasts of
the island. Along the way there are possible interme-
diate stops allowing the bus to serve different minor
locations just following different routes. Since the
number of requests for the three depicted inland lo-
cations (Adrano(B), Troina(C) and Nicosia(D)) could be
not enough to justify a separate daily served route for
each, by knowing in advance which of the secondary
stops have been booked, then the main bus route from
Catania to Palermo (depicted in blue) can be adapted.
To timely sense actual customer presence, the trans-
port operator provides an app that allows users to re-
quest either a scheduled bus stop (such as Catania)
or asking for the activation of an on-demand bus stop
among the ones available for the specific adaptable
route (such as Adrano, Troina and Nicosia). In the
first case, choosing a scheduled stop will not cause any
changes in the ongoing travel schedule; in the second
one, before activating an on-demand stop the system
assesses whether updating the route schedule is both
worthy and possible for the transportation company.
Figure 2 shows two screen-shots of an app suited to
access the transport service. After the selection of
the Catania – Palermo route the server side will pro-
vide a complete list of the possible stops. In this ex-
ample, the bus has already left Catania (the state for
the scheduled stop in Catania is set to served), and its
progress is such that the Adrano stop is no more avail-
able, that is, the bus driver cannot change the travel
route (from the blue to the red one in Figure 1) to serve
that stop without violating the service agreement (e.g.
time schedules). The Nicosia stop is still available,
since we are still in time to modify the route from the
scheduled one (in blue) to the one passing from it (in
green). The system has already evaluated the possible
adaptation providing the user with a ticket that could
be charged with a fee due to the on-demand activation
of a non-scheduled stop.
Once the user has requested the Nicosia on-demand
stop, the cloud infrastructure will send the route sched-
ule update to the bus driver on a devised app (see Figure
3) asking them whether to accept or refuse the change,
i.e. diverging from the blue route to the green one.

Figure 2
Using a smartphone app, the transportation company can
gather user requests, and by determining in advance which
of the optional stops need to be served, vehicles travel
cycles can be adjusted and optimised

Figure 3
For the transport company to notify drivers on route changes,
they are given an app. After receiving a route update request
from the cloud infrastructure (left) the app will show the
driver the route change (right) from the blue to the green one.
Red marker shows the bus position on the map

E"
G"

D"

F"
B"

A"

C"2.2. The Second Scenario
In the previous example, the described enhanced bus
service was used to serve cities across the Sicily is-
land, thus considering long distances to be covered by
a scheduled route. However, the on-demand bus ser-

487Information Technology and Control 2017/4/46

vice is also suitable to address transportations needs
over a smaller scale.
Urban areas are usually well connected and frequently
served by different interconnected transport services.
However, this may not be the case in non-urban areas,
where longer distances and typically unpredictable re-
quest rates over a widespread number of possible bus
stops need to be considered. In these cases, the pro-
posed flexible transportation service can be used to op-
timise the number of vehicles to be employed.
Figure 4 shows three possible routes connecting Cat-
ania (A) to the Mascalucia (E) village in its non-urban
area. The fastest route to reach the destination is de-
picted in blue (see right side of Figure 4), so serving
the Gioeni (B), Canalicchio (C), and Gravina (D) stops
along the way. In this scenario, serving the B stop is
considered mandatory for the transportation compa-
ny, thus any possible route variation needs to serve it.
Additionally, two on-demand stops can be request-
ed, such as Nullo (F) and Tremestieri (G). The cloud
infrastructure will show these two stops only when
actually available, i.e. when the route schedule can

still be changed: F will be shown only if B has not been
served yet, thus it is still possible to leave the blue
path moving to the green one; G will be available only
if C has not been served yet, thus it is still possible to
move to the red path.
In both cases, the route change can cause some stops
to be skipped, because belonging to different alterna-
tive routes, i.e. F excludes C and G excludes D. The
cloud infrastructure determines whether to show
possible on-demand stops by evaluating both the pos-
sibility and advantage for the transportation compa-
ny to move from one route to the other.

2.3. Route Planning Workflow
Choosing the right rendezvous points to satisfy user
requests is an important concern: the server-side
planning component has to properly manage the
trade-off between providing the solution nearest to
the requesting user and modifying the established
bus schedule (even on-the-fly). In Section 4 we will
see how this schedule management can be assisted by
an intelligent system able to predict future transport
service requests in a given location.
The proposed solution goes beyond the urban trans-
port use case; i.e. other smart facilities can take advan-
tage of the said data. The number of citizens wishing
to use a transport service would be known for many
locations over time. Then, a possible strategy, which
can benefit mobile service providers, such as telco op-
erators, is to take advantage of data representing user
locations to estimate the mobile cell occupancy and
operate needed counteractions.
Figure 5 shows a simplified version of the workflow
used to manage bus stop requests and the consequent
travel schedule updating described above, dubbed
on-demand adapted route. Of course, this is not the
only workflow that a transport operator can lever-
age to provide an innovative service. For example, in
a previous contribution [8] a different workflow de-
scription was shown, considering a scenario where
instead of selecting a bus stop from a list either sched-
uled or on-demand, citizens were supposed to active-
ly request vehicles to pass by a suggested place, in a
given time-frame, as needed, asking the system to find
the best suited solution to serve user request.
In both cases, on the server-side, once a user request
has been received, a workflow is available to execute
and regulate several services (activities), each corre-

Figure 4
Left side shows different routes connecting Catania
(A) to Mascalucia (E), a village in the Catania province
(non-urban area). Right side shows the corresponding
graph representation: depending on user requests, the
fastest route (in blue), which already serves the Gioeni (B),
Canalicchio (C), and Gravina (D) stops, could be adapted
to serve secondary on-demand stops, such as Nullo (F) or
Tremestieri (G). In the former case, the fastest blue route
will be changed to follow the secondary green one. In the
latter case, the red route will be followed

E"
G"

D"

F"
B"

A"

C"

Information Technology and Control 2017/4/46488

sponding to a step that has to be performed. In our ref-
erence model for the software system assisting such
steps we will have one or more client applications en-
abling the user to submit a request, and wait for a re-
ply. Hence, e.g. the ask for route list step is performed
using a dedicated smartphone app that lets the user
choose the desired schedule or on-demand stop for a
specific travel route.
Services on the server side are processes running, or
started, according to the indication given by the work-
flow description, hence e.g. receive route query is the
first step of an ad-hoc workflow, and is a process lis-
tening for incoming requests, residing in-side a per-
sistent web service, and select routes matching user
request is a process started as the second step of the
workflow once the previous step has been performed,
etc. Since each service needed for a workflow com-
pletion in general can have its own preconditions, i.e.
data and processing requirements, then each service
should be handled ad-hoc to provide the proper qual-
ity of service. Let us suppose that compute prices for
on-demand stops is a CPU-bound process whose exe-
cution time has to be guaranteed, because, e.g. it could
involve several scheduling decisions and transport
combinations, starting from the temporal and loca-

tion request given by users, aiming to provide the best
solution for the users while reducing schedule chang-
es. Instead, another service could simply provide im-
mutable stored documents. Then, handling requests
that trigger service execution requires the provision-
ing of ad-hoc computing resources to ensure the qual-
ity of service.
In a wider smart city scenario, we can consider the
transport concern as one of the possible services that
a smart city environment can offer, ranging from a con-
sumption-aware city lighting management to the coor-
dination of rescue interventions in case of e.g. adverse
natural events. Therefore, to properly support the exe-
cution and integration of different smart city processes
a proper cloud-based infrastructure is needed.

3. Workflow Management System
A smart city process can be formalised by means of a
workflow description and given to a workflow engine
that timely starts the composing services in the de-
sired order over a cloud infrastructure [6]. Deploying
and executing workflows on a cloud calls for a soft-
ware architecture providing support for deploying,

Figure 5
An example of workflow called on-demand adapted route describing the activities and the interactions between the
passengers reserving a bus stop, the drivers that need to update their travel schedules and the server side. While the
passenger and the driver side will be held by two different smartphone apps, the more complex server side will take the
advantages of using a distributed cloud infrastructure for the execution of the related workflow activities

489Information Technology and Control 2017/4/46

executing, and monitoring services, while minimising
resource waste and standard delays affecting opera-
tions typical of this infrastructure (i.e. VM instanti-
ations).
In the scenario depicted in Figure 5, each workflow
activity needs a dedicated description to guide proper
resource allocations inside the cloud without worsen-
ing the level of service. In our solution, new workflow
instances are started by a request coming from a Web
Service (see the following section) and then a Work-
flow Scheduler finds the related workflow description
and prepares resources for the execution of the first
workflow activity. Then the proper cloud resourc-
es are used according to the activity description, e.g.
compute prices for on-demand stops is a CPU inten-
sive task, then a dedicated VM with large hardware
flavour configuration is requested, where a flavour is
a set of hardware characteristics for a VM [11].
An activity description is a tuple (service_name, start_
status, end_status, hw_flavour, sharing, estimated_du-
ration): the service name identifies a specific basic
cloud image previously created inside the cloud infra-
structure and containing all of the binaries end exe-
cutable necessary to run the activity. This will consti-
tute the software requirements of the specific activity.
Each activity must also be characterised by a start
and an end status, together with a description of the
cloud resource type and an indication about the needs
for a dedicated or a shared resource. The start status
of a service environment (VM), such as: already ac-
tive, waiting for new process submissions (on); to be
created and then turned on (off); standby, reducing
resource consumption and response time by avoiding
the creation of a VM. If we specify that dedicated re-
sources are needed, we will assign a separate VM for
task execution, while for shared resources (useful e.g.
to handle simple tasks like querying or updating a da-
tabase or retrieving a document from the object stor-
age) we run a process inside a shared VM.
The flavour (e.g. could be set to small, medium and
large) is used to characterize the hardware require-
ments for the VM that will be used to handle the
workflow activity, such as allocated disk space, num-
ber of (virtual) CPUs and RAM memory. Finally, the
estimated_duration is useful for schedule decisions,
and will be constantly refined while more actual du-
ration data are gathered during the next workflow ex-
ecutions. Not all the activities need a cloud resource

to run: for example, a web service waiting for user re-
quests (such as receive route query in Figure 5), and
then triggering an actual workflow instantiation, need
not be executed on a cloud, since it is only an interface
for the more complex instantiation of a workflow over
the cloud resources.
Together with the activity data described above, we
have to provide additional data related to the whole
workflow, such as e.g. the priority, the allowed dead-
line and the number of instances that can be con-
currently executed. Moreover, for each service (re-
gardless of the involving workflow), the number of
its instances that can be concurrently active is also
given. This is an important information to properly
manage the constraints that must be applied for the
concurrent execution of different instances of the
same service inside the cloud. Even if we can think of
a cloud as a limitless resource provider, we are forced
to trade with the pay-per-use model to access resourc-
es. Therefore, the considered resource constraints
are needed to limit the costs related to resource con-
sumption.

3.1. Software Infrastructure
In order to support the features outlined above, we
propose appropriate software components that en-
hance services and provide: (i) monitoring of work-
flow services, (ii) resource management, (iii) high
availability.
Figure 6 shows how our components cooperate.
Workflow Scheduler collects the user requests, deter-
mining whether to promptly accept them or not, ac-

Figure 6
Workflow Scheduler needs data from several other
components to take its scheduling decisions

Information Technology and Control 2017/4/46490

cording to the infrastructure load state. As any other
scheduler, it manages a list of pending requests, using
priority policies to determine their order, and inter-
acts with other three components: User Manager, Re-
source Manager and Workflow Repository.
User Manager is responsible for the AAA service (Au-
thentication, Authorisation, Accounting) related to
user requests and will be asked to check user privi-
leges and roles. Together with the number of requests
previously accepted and completed for this user, it
determines whether to lower the request priority.
Resource Manager provides a high-level represen-
tation of cloud resource states, holds the scheduling
outcomes, and let us know whether a given resource
is available in a certain time frame. Workflow Manag-
er handles the descriptions of the workflow recorded
inside the Workflow Repository, and is responsible
for workflow instantiation and the monitoring of the
completion of each inner activity for the requested
workflow. It interacts with the Cloud Manager to ask
for the execution on the cloud of the services imple-
menting each activity.
Cloud Manager is a Façade for cloud resources, hence
providing the means for executing services inside
the cloud infrastructure, which is actually managed
by a cloud middleware such as e.g OpenStack. Each
workflow activity will require the support of a service
running on the cloud, either dedicated (in a separated
VM) or on shared resources (in a separated process of
a shared VM).
A Monitoring Service gathers data on the completion
time of each activity for running workflows. Basing
on such data, the accounting data associated with the
requesting user will be updated, and a comparison is
performed between the actual activity completion
times and estimated times. Then such a comparison
will be associated with the description of each activ-
ity.

3.2. The Flow of Operations and Use Case

Figure 7 shows the interactions between the compo-
nents of the workflow management system for the
completion of a workflow execution request. Using,
for example, a web service, the user can submit (ei-
ther explicitly or not) an instantiation request of a
specified workflow registered inside the manage-
ment system.

This request arrives to Workflow Scheduler, that us-
ing the information coming from User Manager and
Resource Manager determines whether to accept or
reject the workflow execution request. It will then ask
the Workflow Repository for the description of the
requested workflow, providing the required services,
resources and the estimated completion time for each
of the inner activity. Workflow Manager will actually
receive the instantiation request of a specified work-
flow, and starting from the first activity (Activity 1
in Figure 7) it will be responsible for monitoring the
execution state of each activity within the workflow.
Workflow Manager interacts with the Cloud Manag-
er to request the instantiation of the cloud services
needed by the current activity, according to the work-
flow description.
In the depicted case (see Figure 7), we want to execute
the first activity described in the selected workflow.
The activity description shows that Service 1 runs
in a dedicated VM (because start state=off) with a
“large” hardware flavor. The instantiation request is
then sent from Workflow Manager to Cloud Manager
that will create a new VM starting from the image that
contains the desired service.
The Cloud Manager handles the execution of the sin-
gle activity and need not be aware of the overall work-
flow composition. Its responsibility is to gather the
requested resources from the cloud infrastructure,
in our example managed using OpenStack. The in-
teraction between the Cloud Manager and OpenStack
is performed by using the OpenStack API (since our
framework was built using Java, we used the Open-
Stack4J API) managing the communication with the
different cloud services needed to drive the activity
execution over the right cloud resources. The first step
is to authenticate the Cloud Manager with the cloud
interacting with the Keystone (identity) service; then
the second step is to ask the Glance (image) service for
the base image of the requested service (Service1.img
in the use case). This image will contain all the exe-
cutable needed to complete the specific activity. The
next step is to ask the Nova (compute) service to create
a dedicated instance (VM) of the selected image, that
will be a base for our execution environment that need
to be contextualised with the information and input
data specific for the current activity instance. When
the new instance is up and running, the Cloud Man-
ager uses a direct ssh connection to proceed with the

491Information Technology and Control 2017/4/46

instance contextualisation, loading or giving a refer-
ence to the input files to be downloaded into the VM,
together with a configuration file containing the activ-
ity information which the VM is related to. The most
important configuration required is the activityID,
that the VM uses to notify the activity completion to
Workflow Manager. In this way, Workflow Manager is
informed on the termination of a specific activity of
the workflow, and can proceed with the destruction of
the dedicated VM (because end state=off), asking also
Cloud Manager to delete it. The Workflow Manager
can then pass to the next activity described inside the
workflow, and so on, until the workflow ends.

4. The WRNN Transport Request
Predictor
The presented system constantly monitors the execu-
tion of each activity in order to keep track of the sta-
tus of each workflow. The global status monitoring of

Figure 7
Scheme of interactions between the components of the workflow management system for the completion of a workflow
execution request

each workflow provides inputs to a management sys-
tem. The latter is responsible to provide constraints
and priorities to the smart urban transport service in
relation to the services requested by each passenger,
as well as the distribution of the rendezvous points.
Then, passenger requests and the overall workflow
status are known up to a recent past moment (the last
data collection time), however in order to prepare
operating conditions, it would be better to know the
upcoming amount of passenger requests in the fu-
ture. Such information is paramount to avoid service
overload as well as over provision. This goal can be
reached only by means of a finely tuned management
of transport resources and human passengers. With-
out a prediction system, resources are usually man-
aged by considering average load values computed
over wide-ranging sets, hence are sub-optimal solu-
tions at best.
Generally, the benefit of such strategies decreases
while the load increases. Moreover, when the num-
ber of passengers overcomes available vehicles, pas-
sengers remain not served or suffer delays. However,

Information Technology and Control 2017/4/46492

since the amount of required resources (e.g. drivers,
vehicles, rendezvous points, etc.) is unknown in ad-
vance, this often causes over-provisioning, bringing
negative effects on the related cost.
For this reason, we devised a predictive algorithm
based on a Wavelet Recurrent Neural Network
(WRNN) in order to predict the future number of pas-
senger requests in a certain location, and therefore ob-
taining a suitable forecast of the future service load.
The component responsible to perform and provide
such predictions has been called Request Predictor,
the related algorithm will be presented in this section.
The Request Predictor component takes as input the
historical time series of requests, which have been
collected by the management system during each
workflow execution.
As known from the literature, a WRNN constitutes an
optimal solution for the modelling and prediction of
time evolving non-linear systems, therefore we point-
ed toward this solution for the development of the
proposed predictor.
The WRNN architecture combines wavelet decom-
position [15] with a peculiar neural network topol-
ogy called nonlinear autoregressive networks with
exogenous inputs (NARX) [21]: the first provide us
with a transform capable to express the input data
in a more suitable manner to train a recurrent neural
network, while the second has the capability to model
such non-linear systems. In this case, the latter fea-
ture strictly depends on the input transform into the
wavelet domain, in fact it is possible to remove redun-
dancies and other irregularities that could tamper
with the network training.
As shown in the literature such an architecture is ca-
pable to devise a correct forecast for the future time
evolution of a data series while both transforming
data into the wavelet domain and then counter trans-
form them into their original domain. In this manner,
the overall architecture, while operating strictly on
the wavelet domain, is capable to take inputs and re-
turn outputs on the original data domain, with no fur-
ther intervention on the data series.
This twofold data transform procedure presents
strong similarities with another approach to wavelet
filters called Second Generation Wavelet Transform.
The proposed model has been proven useful for the
prediction of variable requests over time [17], and

used as a basis for the predictor component to esti-
mate the number of incoming passengers, hence the
transport service load. The model gives such predic-
tions as input for a dedicated management system
allocating resources, i.e. vehicles and drivers. In or-
der to comply with the required resource allocation
in advance, the predictor models the number of in-
coming requests and passengers in each rendezvous
point. Finally, the system determines the availability
to service the upcoming requests. As shown in Figure
8, predictions are highly specialized for each one of
the rendezvous point, hence a dedicated neural net-
work returns a prediction set. Altogether the neural
networks provide an overall status.

Figure 8
The adopted WRNN predictor models and predicts the
future trends regarding the number of passenger waiting
on a rendezvous point. A predictor is specialized for one
rendezvous point, hence a set of predictors is used

This overall status prediction constitutes an early
alert system that gives advices beforehand on the ur-
gency of several transport routes as well as their pre-
dicted occupancy over time.
In this manner, it is possible to reschedule the ser-
vice accordingly in order to better suit both passenger
needs, in terms of newly allocated vehicles, and the
companies needs in terms of unnecessary resources
freed over time. The WRNN predictor operates with
the time series indicating the passenger number at
each rendezvous point over time. Firstly, the WRNN

493Information Technology and Control 2017/4/46

predictor transforms the time series in the wavelet
domain. The wavelet transform permits us to reduce
data redundancies and obtain a representation that
can express the intrinsic structure far more precise-
ly than traditional analysis methods (e.g. Fourier
transform). While the wavelet analysis exposes the
time-frequency signature of the time series on dif-
ferent scales, the WRNN topology is the perfect com-
plement to model the complexity of non-linear data
correlation and perform data prediction on different
scales. Thereby, a relatively accurate forecast of the
passenger number can be achieved even when load
peaks arise. The estimated result is fundamental for
a management service that performs human and me-
chanical resources pre-allocation. The precision of
our estimates allows just the right amount of resourc-
es to be used avoiding over provisioning. More details
on WRNN architecture can be found in [3,17].
In this paper, we have adopted the Biorthogonal wave-
let decomposition (this wavelet family is described in
[15]), and for it symmetrical decomposition and exact
reconstruction are possible with finite impulse re-
sponse (FIR) filters [20]. The transformed data are
fed to the WRNN [16]. The proposed WRNN consists
of an input layer of 7 neurons, two hidden layers of
8 neurons with a radial basis activation function, a
linear output layer with one linear neuron, and two
delayed input units as well as two delayed feedback
units from the output (see Figure 9). The neural net-
work is fed with the data constituted by time steps of
a time series in the wavelet domain representing the

Figure 9
Devised neural network. Delays and feedback are obtained
by using the relative delay lines and operators (D)

number of passengers requesting a transport services
in a given location.
Using a discrete time index τ we can call qμ(τ) the num-
ber of passengers at a time τ for a certain rendezvous
point μ. By applying the wavelet transform to the time
series qμ(τ) we obtain the related representation in the
wavelet space. Since we have used a 5-level transform,
we have defined qμ(τ) as shown in equation 1, where
the arrow represents the transform operation, �� 	
represents the biorthogonal wavelet decomposition
and the resulting vectors have the component values
on the different decomposition scales (from scale 1 to
scale 6, where the letter d indicates the wavelet coef-
ficients and a6 the residuals on the most gross scale).

��(�) ��→ ����� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� (1)

��(�) � ����� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� (2)

���(����) � ������(��)� (3)

(1)

For reasons related to the noise signature we were not
interested in the last component of the transformed
series, therefore we had an input vector xμ(τ) in the
form shown in equation 2.

��(�) ��→ ����� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� (1)

��(�) � ����� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� (2)

���(����) � ������(��)� (3)

(2)

The overall input set, considering N time steps, can be
then represented as a N x 7 matrix where the i-th row
represents the i-th time step. Each row of this dataset
is given as input value to the 7 input neurons of the
proposed WRNN.
The properties of this network make it possible, start-
ing from an input at a time step τn, to predict the num-
ber of requests and throughput at a time step τn + σ.

��(�) ��→ ����� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� (1)

��(�) � ����� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� ���
� (�)� ���

� (�)� (2)

���(����) � ������(��)� (3)

(3)

In this way, the WRNN acts like a function N�� as de-
fined by equation 3, where σ is the number of time
steps of forecast in the future, and the tilde on the
symbol

x�

 indicates that it is a prediction instead of a
measurement.
The number σ is not specified in the equation since it
depends on the sampling frequency of the input and
output time series. In our work, the data had a sam-
pling period of 10 minutes, while we predicted the
number of passengers 4 hours ahead, therefore with
σ = 24. To model the time series and then to predict
their future evolution the neural network is firstly
trained with the historical time series, several train-

Information Technology and Control 2017/4/46494

ing epochs are interleaved with the related supervised
pruning procedure. When the process in concluded, a
network starts to provide forecasts related to a specif-
ic service for which it was trained. By collecting each
service forecast we obtain a complete map ,

 ,

predicted beforehand, as defined by equation 4.

��(�����) = ����(�����)�����.

(4)

The results of the WRNN predictor are shown in Fig-
ure 10. The predictor was able to propose an early es-
timate of the future number of passengers requesting
a transport services in a certain rendezvous point.
The maximum error occurring in the prediction is
two passengers with respect to the effectively mea-
sured number. In our experiments the WRNN predic-
tor has been used in order to schedule transportation
means and manage an optimized planning of the re-

Figure 10
From left to right and top to bottom: the most gross scales of the wavelet decomposition of the historical time series of
passengers for a selected rendezvous point; the predicted and measured throughput, the errors on the throughput predictions,
the predicted and measured number of requests, the errors on the requests predictions. The grey dashed lines represent the
effective measurements, the overlapping black lines represent the predictions made by the WRNN predictors

lated human and mechanical resources, and such op-
erations are made possible thanks to predicted num-
ber of passengers, due to their availability in advance.
Moreover, since each rendezvous point has been asso-
ciated to a WRNN predictor, the proposed solution is
general for any number and kind of transport services
as well as for integrated transportation services. Fi-
nally, due to the cloud technology, the system could be
expanded and scaled on demand.

5. Booking Management and
Priorities
In the previous Section, we have seen how the WRNN
can be used to predict the number of passenger re-
quests in a certain location, so forecasting the future

495Information Technology and Control 2017/4/46

service load to proper manage resource allocation.
Another important problem for a transportation ser-
vice provider is to properly manage seats booking in
order to better serve the customer requests, trying to
sell all available seats while avoiding overbooking.
To address this problem, when the number of avail-
able seats for a transportation vehicle goes beyond a
certain threshold (properly chosen by the service pro-
vider according to a typical amount of seat requests
for that particular route), the system will handle fur-
ther booking requests for the remaining seats in a way
that users which are more likely to buy a ticket will
have more time for such an operation, i.e. more chanc-
es to reserve the remaining seats.
The rational for this is that on the one hand we want
to give an advantage to habitual customers, since they
probably will book one of the remaining seats, so we
can give them more time to complete the booking; on
the other hand, by giving less time to non-habitual
customers we can both have a faster feedback on their
actual decision and also encourage them to complete
their purchase, such as by means of “buy now” alerts.
Our system records user activities to build a person-
al profile for each user id. Recorded data for a user
comprise the number of tickets that have been bought
(NB) and the number of times the user has asked
to view the details for a ticket (NV). Then the ratio
NB  /NV is computed, which represents the likelihood
of the user to buy a ticket (Tu).
Then, a personal expiring time threshold is given to
each customer to complete their booking for the re-
maining seats. This threshold depends on Tu for the
user. Let us suppose that the transport service pro-
vider sets a maximum time to buy a ticket as 10 min-
utes before the departure (this is at time t = 0), we will
call it the BOARDING phase. Then, only users having
Tu ≈ 1 will be allowed to buy a ticket until the last mo-
ment. Other users, having lower values of Tu, will be
required to conclude at an earlier time the procedure.
The remaining time will possibly allow another (more
habitual) customer to see the seat as available and,
more likely, buy it.
Proper messages will be given to customers viewing
seats availability over time, such as a “limited-time
available” and “buy now”, before the status “closed”.
The remaining time is determined by means of a sta-
tus equation given by the following

�(��� ��� ����� �) =
�����(� � ��)�
���(���� � ��)� ���������� � � � ����

�(�) = � �
����

��(��� ��� ����� �) = �(��� ��� ����� �)�(�)

(5)

where Tu is the likelihood to buy a ticket, t0 is the
BOARDING time, tmax is the booking OPENING time,
and t is the wall clock time. With such parameters, the
system state will be set so that

S(Tu, t0, tmax; t) has been devised to be proportional to
Tu, the quadratic form (t-t0)2 grants us to have the time
as leading term for the equation. The denominator is a
normalization factor; and the logarithmic form has been
chosen for its robustness with respect to small varia-
tions of the parameter that would have led to instability.
Together with the status equation S(), we consider
the actual seat availability on the vehicle. Therefore,
we modify the status formula according to the per-
centage of free seats. Therefore, S() is used to man-
age booking operations until the number of available
seats k drops under a certain threshold kmax (e.g. 20%).
Then, given k<kmax, we compute a coefficient

�(��� ��� ����� �) =
�����(� � ��)�
���(���� � ��)� ���������� � � � ����

�(�) = � �
����

��(��� ��� ����� �) = �(��� ��� ����� �)�(�)

(6)

in order to obtain a modified status equation

�(��� ��� ����� �) =
�����(� � ��)�
���(���� � ��)� ���������� � � � ����

�(�) = � �
����

��(��� ��� ����� �) = �(��� ��� ����� �)�(�)

. (7)

Since it is k<kmax it follows c(k)<1. Therefore, this c(k)
coefficient will have the effect to anticipate the timing
computed by S(Tu, t0, tmax; t). In this manner, as a ve-
hicle reaches full occupancy, after a certain occupan-
cy threshold, we anticipate the WARNING and BUY
NOW phase by reducing the time that is given to the
users to buy a ticket. This effect is stronger for users
having a low value of Tu (see Figure 11).
Therefore, a user having a high Tu will barely notice the
difference until very few seats are available. Conversely,
a user having a low Tu witnesses a dramatic decrement
of the remaining time to buy the ticket when the number
of seats availability drops under a certain threshold.
Note that the c(k) coefficient does not scale linearly,
on the contrary it depends by the square root of the
normalized number of available seats (k/kmax). The

Information Technology and Control 2017/4/46496

square root lets us dump the effect of c(k) for as long
as possible, while granting a fast reaction of the sys-
tem when only few seats are still available.

6. Related Works
In our work, we leveraged smart phone sensed data,
such as GPS position, to provide users with transport
services. Future urban environments will likely gath-
er data from several cheap sensors, using cross-cor-
relation and analytical models to mine valuable and
reliable information from a lot of noisy and unreliable
heterogeneous sensors. Smart Cities scenarios offer
new challenges in coping with the amount of hetero-
geneous sensed data that need to be collected and or-
ganised to give uniform and useful exposed informa-
tion [19]. Additionally, the integration between urban
sensor infrastructures and Cloud services presents
research challenges concerning the security issues
related to the use of sensed data can affect our privacy
[7]. Other works in the literature have covered the op-
timisation of a city transportation service, e.g. using
prediction models to estimate traffic condition [13] or
leveraging more flexible electrical vehicle spread over
the urban environment having the scheduling deci-
sion managed by a cloud infrastructure [24].
In [13] the authors combine actual data gathered by
sensors displaced in the city environment, with fu-
ture traffic prediction to provide individual trip plan-

ning for transport users. They used a spatial-temporal
random field model and a Gaussian process regres-
sion to predict traffic condition and to estimate vehi-
cles concentration in areas with low sensor coverage.
This approach differs from ours both in the used pre-
dictive model and in the considered service point of
view. While they highlight congested streets and city
areas, hence accordingly organise user trips, we have
rendezvous-points, i.e. bus stops, that the transport
service vehicles have to reach to serve user requests.
Therefore, in our approach it is the city environment,
i.e. the devised city transportation service, that adapts
itself to user requests, not vice versa.
In [24] the authors propose a public vehicle system
that uses a cloud infrastructure to devise scheduling
strategies and paths based on the demands of pas-
sengers. The proposed electric vehicles can transport
more passengers than a taxi and do not have stops or
routes like a bus service. The service they propose is
different from ours, since they rely on a set of con-
straint based algorithms to compute the best solution
satisfying user requests, instead we use a prediction
model to assist scheduling decisions. We additional-
ly provide predefined bus stops (rendezvous-points)
which are activated on demand according to user re-
quests, hence adapting the overall trip schedules.
In [10] an extensive survey of the literature on quality
of service, availability and performance for distribut-
ed applications has been given. All the approaches in
[10] are not intended to be used in combination with

Figure 11
The timeframe available to confirm the purchase of a ticket varies from customer to customer according to the likelihood
of buying it (Tu), given to each customer by the system, and the availability of seats

497Information Technology and Control 2017/4/46

cloud resources. Hence, further support is needed as
shown in the sections above.
In [23] the authors use pre-processing stages in order
to feed filtered data to neural networks to model time
series with both seasonal and trend patterns. Hybrid
models are widely used in the literature in order to
model phenomena and obtain forecasting software
systems for a wide range of purposes, such as e.g. hy-
dro-geological time series and the related risk assess-
ment [12,14]. Other kinds of neural network related
approaches have been developed for traffic predic-
tion, e.g. basing on a flexible neural tree and particle
swarm optimisation algorithm [4].
Moreover, when wavelet transforms had been used in
other contexts, they have been proved useful to prop-
erly characterise information in signals [18]. Other
techniques have been used to model the distributed
behaviour of complex systems [22].
Our approach provides a novel solution that encom-
passes new strategies and an overall advanced ser-
vice. New means have been provided to interact with
users to gather transport requests, predictive models
have been employed to estimate future demands, and
schedules for vehicles have been handled by a cloud
infrastructure capable to execute workflows.

7. Conclusions
This paper has proposed an approach that on the cli-
ent side provides a software solution giving users sup-
port to book transport vehicles, while on the server
side support is given to deploy, execute, and monitor
services on a cloud and according to workflows. The
server-side components are independent of specif-
ic workflows and can execute services in a variety of
ways to properly govern the life-time of services.
In our solution, a component has been specifically
devised to plan the needed transport service ahead of
time by modelling incoming requests and analysing
them to remove noise, while characterising repeti-
tive trends. This is performed by transforming data
to the wavelet domain before giving them to a neural
network component. Then, we are able to start oper-
ations, such as planning vehicles routes and driver
shifts, avoiding over-provisioning.

Acknowledgments

This work has been partially supported by project
PON CLARA SCN_00451 funded by the Italian Min-
istry of University.

References
1. Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov,

A., Bazzani, A., Wachowicz, M., Ouzounis, G., Portugali,
Y. Smart Cities of the Future. The European Physical
Journal Special Topics, 2012, 214(1), 481-518. https://
doi.org/10.1140/epjst/e2012-01703-3

2. Benevolo, C., Dameri, R. P., D’Auria, B. Smart Mobility in
Smart City. In Empowering Organizations, Springer, 2016,
13-28. https://doi.org/10.1007/978-3-319-23784-8_2

3. Capizzi, G., Napoli, C., Paterno, L. An Innovative Hybrid
Neuro-Wavelet Method for Reconstruction of Missing
Data in Astronomical Photometric Surveys. In Artificial
Intelligence and Soft Computing, Springer, 2012, 7267,
21-29. https://doi.org/10.1007/978-3-642-29347-4_3

4. Chen, Y., Yang, B., Meng, Q. Small-Time Scale Network
Traffic Prediction Based on Flexible Neural Tree. Ap-
plied Soft Computing, 2012, 12(1), 274-279. https://doi.
org/10.1016/j.asoc.2011.08.045

5. Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mel-
louli, S., Nahon, K., Pardo, T., Scholl, H. J. Understan-
ding Smart Cities: An Integrative Framework. In IEEE
Proceedings of 45th Hawaii International Conference
on System Science (HICSS), 2012, 2289-2297.

6. Erl, T. SOA Design Patterns. Pearson Education, 2008.

7. Fazio, M., Paone, M., Puliafito, A., Villari, M. Heteroge-
neous Sensors Become Homogeneous Things in Smart
Cities. In IEEE Proceedings of International Conferen-
ce on Innovative Mobile and Internet Services in Ubi-
quitous Computing (IMIS), 2012, 775-780. https://doi.
org/10.1109/IMIS.2012.136

8. Fornaia, A., Napoli, C., Pappalardo, G., Tramontana, E.
Enhancing City Transportation Services Using Cloud
Support. In International Conference on Information
and Software Technologies (ICIST), Springer Commu-
nications in Computer and Information, 2016, Science,
695-708. https://doi.org/10.1007/978-3-319-46254-7_56

9. Fornaia, A., Napoli, C., Pappalardo, G., Tramontana, E.
Using AOP Neural Networks to Infer User Behaviours
and Interests. In Proceedings of the 16th Workshop
from Objects to Agents (WOA), 2015, 1382, 46-52.

10. Guitart, J., Torres, J., Ayguadé, E. A Survey on Perfor-
mance Management for Internet Applications. Con-
currency and Computation: Practice and Experience,
2009, 22(1), 68-106. https://doi.org/10.1002/cpe.1470

Information Technology and Control 2017/4/46498

11. Jackson, K. OpenStack Cloud Computing Cookbook.
Packt Publishing Ltd., 2012.

12. Jain, A., Kumar, A. M. Hybrid Neural Network Mo-
dels for Hydrologic Time Series Forecasting. Applied
Soft Computing, 2007, 7(2), 585-592. https://doi.or-
g/10.1016/j.asoc.2006.03.002

13. Liebig, T., Piatkowski, N., Bockermann, C., Morik, K.
Dynamic Route Planning with Real-Time Traffic Predi-
ctions. Information Systems, 2016, 64(C), 258-265.

14. Lohani, A., Kumar, R., Singh, R. Hydrological Time
Series Modeling: A Comparison Between Adaptive
Neuro-Fuzzy, Neural Network and Autoregressive Te-
chniques. Journal of Hydrology, 2012, 442-443, 23-35.
https://doi.org/10.1016/j.jhydrol.2012.03.031

15. Mallat, S. A Wavelet Tour of Signal Processing: the
Sparse Way. Academic Press, 2009.

16. Mandic, D. P., Chambers, J. Recurrent Neural Networks
for Prediction: Learning Algorithms, Architectures and
Stability. John Wiley & Sons, Inc., 2001. https://doi.or-
g/10.1002/047084535X

17. Napoli, C., Pappalardo, G., Tramontana, E. A Mathema-
tical Model for File Fragment Diffusion and a Neural
Predictor to Manage Priority Queues over Bittorrent.
International Journal of Applied Mathematics and
Computer Science, 2016, 26(1), 147-160. https://doi.
org/10.1515/amcs-2016-0010

18. Połap, D., Woźniak, M. The Use of Wavelet Transfor-
mation in Conjunction with a Heuristic Algorithm as a

Tool for Feature Extraction from Signals. Information
Technology and Control, 2017, 46(3), 372-381.

19. Puliafito, A., Celesti, A., Villari, M., Fazio, M. Towards
the Integration Between IoT and Cloud Computing:
An Approach for the Secure Self-Configuration of
Embedded Devices. International Journal of Distri-
buted Sensor Networks, 2015, 11(12), 1-9. https://doi.
org/10.1155/2015/286860

20. Rabiner, L. R., Gold, B. Theory and Application of Digi-
tal Signal Processing. Prentice-Hall, 1975.

21. Williams, R. J. A Learning Algorithm for Continual-
ly Running Fully Recurrent Neural Networks. Neu-
ral Computation, 1989, 1(2), 270-280. https://doi.
org/10.1162/neco.1989.1.2.270

22. Woźniak, M., Połap, D., Napoli, C., Tramontana, E.
Application of Bio-Inspired Methods in Intelligent
Gaming Systems. Information Technology and Con-
trol, 2017, 46(1), 150-164. https://doi.org/10.5755/j01.
itc.46.1.13872

23. Zhang, G., Qi, M. Neural Network Forecasting for Sea-
sonal and Trend Time Series. European Journal of Ope-
rational Research, 2005, 160(2), 501-514. https://doi.
org/10.1016/j.ejor.2003.08.037

24. Zhu, M., Liu, X. Y., Qiu, M., Shen, R., Shu, W., Wu, M.
Y. Transfer Problem in a Cloud-based Public Vehicle
System with Sustainable Discomfort. Mobile Networ-
ks and Applications, 2016, 21(5), 890-900. https://doi.
org/10.1007/s11036-016-0675-y

Smart cities providing connectivity to users and other advanced services can be leveraged to improve public
transport services. This paper proposes a solution that lets citizens request a public vehicle to perform addi-
tional stops off the main route, hence achieving a customisation of the transport operator services to better
assist users. A cloud infrastructure and a proper distributed architecture have been designed to assess wheth-
er user requests can be accepted. The proposed software solution considers viable the requests that can fit to
available secondary routes, while also satisfying other user demands that have been previously accepted. Then,
drivers will be alerted in advance in order to adapt their route.

Protingi miestai, aprūpinantys vartotojus susijungimo galimybėmis ir kitomis pažangiomis paslaugomis, gali būti
pasitelkti ir visuomeninio transporto paslaugoms pagerinti. Straipsnyje siūlomas sprendimas, kuris gyventojams
leidžia pateikus užklausą viešojo transporto priemonės paprašyti papildomų sustojimų, nesančių pagrindiniame
transporto priemonės maršrute. Tokiu būdu užtikrinamas geresnis transporto operatoriaus paslaugų pritaiky-
mas pagal vartotojų poreikius. Tam, kad būtų galima įvertinti, ar vartotojų užklausos gali būti priimamos, buvo
suprojektuota debesies infrastruktūra ir tinkama paskirstytų sistemų architektūra. Siūlomas programinės įran-
gos sprendimas gyvybingomis laiko tokias užklausas, kurios gali tikti į pasiekiamus šalutinius maršrutus, tuo pat
metu patenkinant ir ankstesnes iš kitų vartotojų priimtas užklausas. Tokiu būdu vairuotojai iš anksto gauna pra-
nešimą ir gali atitinkamai pakeisti maršrutą.

Summary / Santrauka

