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We present experimental results on a comparison of incompleteness and inconsistency. We used two interpre-
tations of missing attribute values: lost values and “do not care” conditions. Our experiments were conduct-
ed on 204 data sets, including 71 data sets with lost values, 71 data sets with “do not care” conditions and 62 
inconsistent data sets, created from eight original numerical data sets. We used the Modified Learning from 
Examples Module version 2 (MLEM2) rule induction algorithm for data mining, combined with three types 
of probabilistic approximations: lower, middle and upper. We used an error rate, computed by ten-fold cross 
validation, as the criterion of quality. There is experimental evidence that incompleteness is worse than incon-
sistency for data mining (two-tailed test, 5% level of significance). Additionally, lost values are better than “do 
not care” conditions, again, with regards to the error rate, and there is a little difference in an error rate between 
three types of probabilistic approximations.
KEYWORDS: Incomplete data, lost values, “do not care” conditions, inconsistent data, rough set theory, prob-
abilistic approximations, MLEM2 rule induction algorithm.

Introduction
A complete data set, i.e., a data set having all attri-
bute values specified, is consistent if for any two 
cases with the same attribute values, both cases 

belong to the same concept (class). Another defini-
tion of consistency is based on rough set theory: a 
complete data set is consistent if for any concept its 
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lower and upper approximations are equal [10, 11].
In some situations the data set being mined is incom-
plete, some of the attribute values are missing. We use 
two interpretations of missing attribute values, lost 
values and “do not care” conditions [5, 6]. Lost values 
are, e.g., erased, for data mining we use the existing, 
specified attribute values. “Do not care” conditions 
are interpreted differently, e.g., an expert refused to 
tell the attribute value, so such value may be replaced 
by any value from the attribute domain.
The main objective of our paper is to compare mining 
incomplete and inconsistent data in terms of an error 
rate computed as a result of ten-fold cross validation. 
Using eight numerical data sets, we discretized each 
of them and then converted to a symbolic and con-
sistent data set with intervals as attribute values. We 
then randomly replaced some of the intervals with 
“?”s, representing lost values. This process was con-
ducted incrementally, starting by randomly replacing 
5% of the intervals with missing attribute values, and 
then an additional 5%, until a case occurred with all 
attribute values missing. The process was then at-
tempted twice more with the maximum percentage 
and if again a case occurred with all attribute values 
missing, the process was terminated for that data set. 
Finally, in all incomplete data sets, we replaced all “?”s 
by “*”s, representing “do not care” conditions. The 
new data sets, with missing attribute values, were as 
close as possible to the original data sets, having the 
same number of attributes, cases, and concepts.
Additionally, any original data set was discretized 
with a controlled level of inconsistency, starting from 
about 5%, with the same increment of about 5%. Due 
to the nature of discretization, the levels of inconsis-
tency were only approximately equal to 5%, 10%, etc. 
Our way of generation of inconsistent data preserved 
as much as possible the original data set. Again, the 
number of attributes, cases and concepts were not 
changed.
All such incomplete and inconsistent data sets were 
validated using the same setup, based on rule induc-
tion by the MLEM2 rule induction algorithm and the 
same system for ten-fold cross validation.
To the best of our knowledge, no research compar-
ing incompleteness with inconsistency was ever un-
dertaken. However, our results should be taken with 
a grain of salt since the measures of incompleteness 

and inconsistency are different. We measure both of 
them in the most natural way: for a data set, incom-
pleteness is measured by the percentage of missing 
attribute values, or percentage of missing attribute 
values to the total number of cases in the data set. In-
consistency is measured by the level of inconsistency, 
i.e., percentage of conflicting cases to the number of 
cases. Yet the former measure is local, it is associat-
ed with the attribute-value pairs, while the latter is 
global, it is computed by comparing entire cases. On 
the other hand, if we want to compare incompleteness 
with inconsistency, there is no better way than using 
these two measures.
In our experiments we used the idea of a probabilistic 
approximation, with a probability α, as an extension 
of the standard approximation, well known in rough 
set theory. For α = 1, the probabilistic approximation 
is identical with the lower approximation; for very 
small α, it is identical with the upper approximation. 
Research on properties of probabilistic approxima-
tions was first reported in [13] and then was contin-
ued in many other papers, for example, [12, 15–17].
Incomplete data sets are usually analyzed using spe-
cial approximations such as singleton, subset and 
concept [5, 6]. For incomplete data sets probabilistic 
approximations were used for the first time in [7]. 
The first experimental results using probabilistic ap-
proximations were published in [3]. In experiments 
reported in this paper, we used concept probabilistic 
approximations.
A preliminary version of this paper was presented at 
the ICIST 2016, the 22nd International Conference 
on Information and Software Technologies [2].

Incomplete Data
Data sets may be presented in the form of a decision 
table. An example of such a decision table is shown 
in Table 1. Rows of the decision table represent cases 
and columns represent variables. The set of all cases 
will be denoted by U. In Table 1, U = {1, 2, 3, 4, 5, 6, 7}. 
Independent variables are called attributes and a de-
pendent variable is called a decision and is denoted 
by d. The set of all attributes will be denoted by A. In 
Table 1, A = {Age, Cholesterol, Weight}. The value for a 
case x and an attribute a will be denoted by a(x).
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Table 2 presents an example of the discretized and 
consistent data set. All attribute values are intervals 
and as such are considered symbolic.

Table 3 presents an example of an incomplete data set 
with lost values, denoted by “?”s [9, 14]. The percent-
age of missing attribute values is the total number of 
missing attribute values, equal to eight, divided by the 
total number of attribute values, equal to 21, i.e., the 
percentage of missing attribute values is 38.1%.
Table 4 presents an example of an incomplete data set 
with “do not care” conditions, denoted by “*”s [9, 14].
Table 5 represent an inconsistent data set. This data 
set was created from the data set from Table 1. The 
numerical data set from Table 1 was discretized with 
30% level of inconsistency. Cases 3 and 6 are conflict-
ing, so the level of inconsistency is 2/7 ≈ 30%.

Table 1 
A data set with numerical attributes

Attributes Decision

Case Age Cholesterol Weight Risk

1 20 180 140 low

2 60 200 180 low

3 40 220 160 low

4 50 200 180 low

5 60 220 180 high

6 40 220 180 high

7 50 180 220 high

Table 2  
A discretized, consistent data set

Attributes Decision

Case Age Cholesterol Weight Risk

1 20..45 180..210 140..170 low

2 45..60 180..210 170..210 low

3 20..45 210..220 140..170 low

4 45..60 180..210 170..210 low

5 45..60 210..220 170..210 high

6 20..45 210..220 170..210 high

7 45..60 180..210 210..220 high

Table 3  
An incomplete data set with lost values

Attributes Decision

Case Age Cholesterol Weight Risk

1 ? 180..210 140..170 low

2 45..60 ? 170..210 low

3 20..45 ? ? low

4 45..60 180..210 170..210 low

5 45..60 ? 170..210 high

6 ? 210..220 ? high

7 45..60 180..210 ? high

Table 4 
An incomplete data set with “do not care” conditions

Attributes Decision

Case Age Cholesterol Weight Risk

1 * 180..210 140..170 low

2 45..60 * 170..210 low

3 20..45 * * low

4 45..60 180..210 170..210 low

5 45..60 * 170..210 high

6 * 210..220 * high

7 45..60 180..210 * high

Table 5  
An inconsistent data set

Attributes Decision

Case Age Cholesterol Weight Risk

1 20..45 180..210 140..210 low

2 45..60 180..210 140..210 low

3 20..45 210..220 140..210 low

4 45..60 180..210 140..210 low

5 45..60 210..220 140..210 high

6 20..45 210..220 140..210 high

7 45..60 180..210 210..220 high
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A fundamental idea of rough set theory [10] is an in-
discernibility relation, defined for complete data sets. 
Let B be a nonempty subset of the set A for all attri-
butes. The indiscernibility relation R(B) is a relation 
on U defined for x, y ∈ U by
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Table 3.  An incomplete data set with lost values 

Attributes Decision 
Case Age Cholesterol Weight Risk 

1 ? 180..210 140..170 low 
2 45..60 ? 170..210 low 
3 20..45 ? ? low 
4 45..60 180..210 170..210 low 
5 45..60 ? 170..210 high 
6 ? 210..220 ? high 
7 45..60 180..210 ? high 
 

Table 4. An incomplete data set with “do not care” conditions 

Attributes Decision 
Case Age Cholesterol Weight Risk 

1 * 180..210 140..170 low 
2 45..60 * 170..210 low 
3 20..45 * * low 
4 45..60 180..210 170..210 low 
5 45..60 * 170..210 high 
6 * 210..220 * high 
7 45..60 180..210 * high 
 

Table 5.  An inconsistent data set 

Attributes Decision 
Case Age Cholesterol Weight Risk 

1 20..45 180..210 140..210 low 
2 45..60 180..210 140..210 low 
3 20..45 210..220 140..210 low 
4 45..60 180..210 140..210 low 
5 45..60 210..220 140..210 high 
6 20..45 210..220 140..210 high 
7 45..60 180..210 210..220 high 
 
A fundamental idea of rough set theory [10] is an 

indiscernibility relation, defined for complete data sets. 
Let B be a nonempty subset of the set A for all 
attributes. The indiscernibility relation R(B) is a 
relation on U defined for �, � � � by 

 
(�, �) � �(�) if and only if �� � �(�(�) � �(�)). 

 
The indiscernibility relation R(B) is an equivalence 

relation. Equivalence classes of R(B) are called 
elementary sets of B and are denoted by [x]B. A subset 
of U is called B-definable if it is a union of elementary 
sets of B. 

The set X of all cases defined by the same value of 
the decision d is called a concept. The set of all concepts 
is denoted by {d}∗. For example, a concept associated 
with the value low of the decision Risk is the set {1, 2, 
3, 4}. The largest B-definable set contained in X is 
called the B-lower approximation of X, denoted by 
�����(�), and defined as follows 

 

∪ {����|���� ⊆ �}. 
 

The smallest B-definable set containing X, denoted 
by �����(�)  is called the B-upper approximation of 
X, and is defined by 

 
∪ {����|���� � � � �}. 

 
For Table 5, 

�����({1, 2, 3, 4}) = {1, 2, 4}, 
and 

�����({1, 2, 3, 4}) = {1, 2, 3, 4, 6}. 
 
The level of inconsistency may be defined as 

follows 
 

1 −
∑ ������(�)���{�}∗

|�|  

 
where |S| denotes the cardinality of the set S. 

For a variable a and its value v, (a, v) is called a 
variable-value pair. A block of (a, v), denoted by [(a, 
v)], is the set {� � �|�(�) � �}  [4]. For incomplete 
decision tables the definition of a block of an attribute-
value pair is modified in the following way. 
 If for an attribute a and a case x, if a(x) =?, i. e., the 

attribute value is lost, the case x should not be 
included in any blocks [(a,v)] for all values v of 
attribute a, 

 If for an attribute a and a case x, if a(x) = ∗, i.e., the 
attribute values is a “do not care” condition, the 
case x should be included in blocks [(a, v)] for all 
specified values v of attribute a. 

 
For the data set with lost values from Table 3 the 

blocks of attribute-value pairs are: 
[(Age, 20..45)] = {3}, 
[(Age, 45..60)] = {2, 4, 5, 7}, 
[(Cholesterol, 180..210)] = {1, 4, 7}, 
[(Cholesterol, 210..220)] = {6}, 
[(Weight, 180..210)] = {1}, and 
[(Weight, 170..220)] = {2, 4, 5}. 
 
For a case � � � and B ⊆ A, the characteristic set 

KB(x) is defined as the intersection of the sets K(x, a), 
for all � � � , where the set K(x, a) is defined in the 
following way: 
 If a(x) is specified, then K(x, a) is the block [(a, 

a(x))] of attribute a and its value a(x), 
 If a(x) = ? then the set K(x, a) = U, where U is the 

set of all cases. 
 
 
For Table 3 and B = A, 

The indiscernibility relation R(B) is an equivalence 
relation. Equivalence classes of R(B) are called elemen-
tary sets of B and are denoted by [x]B. A subset of U is 
called B-definable if it is a union of elementary sets of B.
The set X of all cases defined by the same value of the 
decision d is called a concept. The set of all concepts 
is denoted by {d}*. For example, a concept associated 
with the value low of the decision Risk is the set {1, 
2, 3, 4}. The largest B-definable set contained in X is 
called the B-lower approximation of X, denoted by 

, denoted by ��������
{��� � ���
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7 45..60 180..210 ? high 
 

Table 4. An incomplete data set with “do not care” conditions 

Attributes Decision 
Case Age Cholesterol Weight Risk 

1 * 180..210 140..170 low 
2 45..60 * 170..210 low 
3 20..45 * * low 
4 45..60 180..210 170..210 low 
5 45..60 * 170..210 high 
6 * 210..220 * high 
7 45..60 180..210 * high 
 

Table 5.  An inconsistent data set 

Attributes Decision 
Case Age Cholesterol Weight Risk 

1 20..45 180..210 140..210 low 
2 45..60 180..210 140..210 low 
3 20..45 210..220 140..210 low 
4 45..60 180..210 140..210 low 
5 45..60 210..220 140..210 high 
6 20..45 210..220 140..210 high 
7 45..60 180..210 210..220 high 
 
A fundamental idea of rough set theory [10] is an 

indiscernibility relation, defined for complete data sets. 
Let B be a nonempty subset of the set A for all 
attributes. The indiscernibility relation R(B) is a 
relation on U defined for �, � � � by 

 
(�, �) � �(�) if and only if �� � �(�(�) � �(�)). 

 
The indiscernibility relation R(B) is an equivalence 

relation. Equivalence classes of R(B) are called 
elementary sets of B and are denoted by [x]B. A subset 
of U is called B-definable if it is a union of elementary 
sets of B. 

The set X of all cases defined by the same value of 
the decision d is called a concept. The set of all concepts 
is denoted by {d}∗. For example, a concept associated 
with the value low of the decision Risk is the set {1, 2, 
3, 4}. The largest B-definable set contained in X is 
called the B-lower approximation of X, denoted by 
�����(�), and defined as follows 

 

∪ {����|���� ⊆ �}. 
 

The smallest B-definable set containing X, denoted 
by �����(�)  is called the B-upper approximation of 
X, and is defined by 

 
∪ {����|���� � � � �}. 

 
For Table 5, 

�����({1, 2, 3, 4}) = {1, 2, 4}, 
and 

�����({1, 2, 3, 4}) = {1, 2, 3, 4, 6}. 
 
The level of inconsistency may be defined as 

follows 
 

1 −
∑ ������(�)���{�}∗

|�|  

 
where |S| denotes the cardinality of the set S. 
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decision tables the definition of a block of an attribute-
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 If for an attribute a and a case x, if a(x) =?, i. e., the 

attribute value is lost, the case x should not be 
included in any blocks [(a,v)] for all values v of 
attribute a, 

 If for an attribute a and a case x, if a(x) = ∗, i.e., the 
attribute values is a “do not care” condition, the 
case x should be included in blocks [(a, v)] for all 
specified values v of attribute a. 

 
For the data set with lost values from Table 3 the 

blocks of attribute-value pairs are: 
[(Age, 20..45)] = {3}, 
[(Age, 45..60)] = {2, 4, 5, 7}, 
[(Cholesterol, 180..210)] = {1, 4, 7}, 
[(Cholesterol, 210..220)] = {6}, 
[(Weight, 180..210)] = {1}, and 
[(Weight, 170..220)] = {2, 4, 5}. 
 
For a case � � � and B ⊆ A, the characteristic set 

KB(x) is defined as the intersection of the sets K(x, a), 
for all � � � , where the set K(x, a) is defined in the 
following way: 
 If a(x) is specified, then K(x, a) is the block [(a, 

a(x))] of attribute a and its value a(x), 
 If a(x) = ? then the set K(x, a) = U, where U is the 

set of all cases. 
 
 
For Table 3 and B = A, 

The smallest B-definable set containing X, denoted 
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of U is called B-definable if it is a union of elementary 
sets of B. 

The set X of all cases defined by the same value of 
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is denoted by {d}∗. For example, a concept associated 
with the value low of the decision Risk is the set {1, 2, 
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called the B-lower approximation of X, denoted by 
�����(�), and defined as follows 

 

∪ {����|���� ⊆ �}. 
 

The smallest B-definable set containing X, denoted 
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X, and is defined by 

 
∪ {����|���� � � � �}. 

 
For Table 5, 

�����({1, 2, 3, 4}) = {1, 2, 4}, 
and 

�����({1, 2, 3, 4}) = {1, 2, 3, 4, 6}. 
 
The level of inconsistency may be defined as 

follows 
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where |S| denotes the cardinality of the set S. 

For a variable a and its value v, (a, v) is called a 
variable-value pair. A block of (a, v), denoted by [(a, 
v)], is the set {� � �|�(�) � �}  [4]. For incomplete 
decision tables the definition of a block of an attribute-
value pair is modified in the following way. 
 If for an attribute a and a case x, if a(x) =?, i. e., the 

attribute value is lost, the case x should not be 
included in any blocks [(a,v)] for all values v of 
attribute a, 

 If for an attribute a and a case x, if a(x) = ∗, i.e., the 
attribute values is a “do not care” condition, the 
case x should be included in blocks [(a, v)] for all 
specified values v of attribute a. 
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blocks of attribute-value pairs are: 
[(Age, 20..45)] = {3}, 
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 If a(x) = ? then the set K(x, a) = U, where U is the 

set of all cases. 
 
 
For Table 3 and B = A, 

For Table 5,
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Table 3.  An incomplete data set with lost values 

Attributes Decision 
Case Age Cholesterol Weight Risk 

1 ? 180..210 140..170 low 
2 45..60 ? 170..210 low 
3 20..45 ? ? low 
4 45..60 180..210 170..210 low 
5 45..60 ? 170..210 high 
6 ? 210..220 ? high 
7 45..60 180..210 ? high 
 

Table 4. An incomplete data set with “do not care” conditions 

Attributes Decision 
Case Age Cholesterol Weight Risk 

1 * 180..210 140..170 low 
2 45..60 * 170..210 low 
3 20..45 * * low 
4 45..60 180..210 170..210 low 
5 45..60 * 170..210 high 
6 * 210..220 * high 
7 45..60 180..210 * high 
 

Table 5.  An inconsistent data set 

Attributes Decision 
Case Age Cholesterol Weight Risk 

1 20..45 180..210 140..210 low 
2 45..60 180..210 140..210 low 
3 20..45 210..220 140..210 low 
4 45..60 180..210 140..210 low 
5 45..60 210..220 140..210 high 
6 20..45 210..220 140..210 high 
7 45..60 180..210 210..220 high 
 
A fundamental idea of rough set theory [10] is an 

indiscernibility relation, defined for complete data sets. 
Let B be a nonempty subset of the set A for all 
attributes. The indiscernibility relation R(B) is a 
relation on U defined for �, � � � by 

 
(�, �) � �(�) if and only if �� � �(�(�) � �(�)). 

 
The indiscernibility relation R(B) is an equivalence 

relation. Equivalence classes of R(B) are called 
elementary sets of B and are denoted by [x]B. A subset 
of U is called B-definable if it is a union of elementary 
sets of B. 

The set X of all cases defined by the same value of 
the decision d is called a concept. The set of all concepts 
is denoted by {d}∗. For example, a concept associated 
with the value low of the decision Risk is the set {1, 2, 
3, 4}. The largest B-definable set contained in X is 
called the B-lower approximation of X, denoted by 
�����(�), and defined as follows 

 

∪ {����|���� ⊆ �}. 
 

The smallest B-definable set containing X, denoted 
by �����(�)  is called the B-upper approximation of 
X, and is defined by 

 
∪ {����|���� � � � �}. 

 
For Table 5, 

�����({1, 2, 3, 4}) = {1, 2, 4}, 
and 

�����({1, 2, 3, 4}) = {1, 2, 3, 4, 6}. 
 
The level of inconsistency may be defined as 

follows 
 

1 −
∑ ������(�)���{�}∗

|�|  

 
where |S| denotes the cardinality of the set S. 

For a variable a and its value v, (a, v) is called a 
variable-value pair. A block of (a, v), denoted by [(a, 
v)], is the set {� � �|�(�) � �}  [4]. For incomplete 
decision tables the definition of a block of an attribute-
value pair is modified in the following way. 
 If for an attribute a and a case x, if a(x) =?, i. e., the 

attribute value is lost, the case x should not be 
included in any blocks [(a,v)] for all values v of 
attribute a, 

 If for an attribute a and a case x, if a(x) = ∗, i.e., the 
attribute values is a “do not care” condition, the 
case x should be included in blocks [(a, v)] for all 
specified values v of attribute a. 

 
For the data set with lost values from Table 3 the 

blocks of attribute-value pairs are: 
[(Age, 20..45)] = {3}, 
[(Age, 45..60)] = {2, 4, 5, 7}, 
[(Cholesterol, 180..210)] = {1, 4, 7}, 
[(Cholesterol, 210..220)] = {6}, 
[(Weight, 180..210)] = {1}, and 
[(Weight, 170..220)] = {2, 4, 5}. 
 
For a case � � � and B ⊆ A, the characteristic set 

KB(x) is defined as the intersection of the sets K(x, a), 
for all � � � , where the set K(x, a) is defined in the 
following way: 
 If a(x) is specified, then K(x, a) is the block [(a, 

a(x))] of attribute a and its value a(x), 
 If a(x) = ? then the set K(x, a) = U, where U is the 

set of all cases. 
 
 
For Table 3 and B = A, 

The level of inconsistency may be defined as follows
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Let B be a nonempty subset of the set A for all 
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The indiscernibility relation R(B) is an equivalence 

relation. Equivalence classes of R(B) are called 
elementary sets of B and are denoted by [x]B. A subset 
of U is called B-definable if it is a union of elementary 
sets of B. 

The set X of all cases defined by the same value of 
the decision d is called a concept. The set of all concepts 
is denoted by {d}∗. For example, a concept associated 
with the value low of the decision Risk is the set {1, 2, 
3, 4}. The largest B-definable set contained in X is 
called the B-lower approximation of X, denoted by 
�����(�), and defined as follows 

 

∪ {����|���� ⊆ �}. 
 

The smallest B-definable set containing X, denoted 
by �����(�)  is called the B-upper approximation of 
X, and is defined by 
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For Table 5, 

�����({1, 2, 3, 4}) = {1, 2, 4}, 
and 

�����({1, 2, 3, 4}) = {1, 2, 3, 4, 6}. 
 
The level of inconsistency may be defined as 

follows 
 

1 −
∑ ������(�)���{�}∗

|�|  

 
where |S| denotes the cardinality of the set S. 

For a variable a and its value v, (a, v) is called a 
variable-value pair. A block of (a, v), denoted by [(a, 
v)], is the set {� � �|�(�) � �}  [4]. For incomplete 
decision tables the definition of a block of an attribute-
value pair is modified in the following way. 
 If for an attribute a and a case x, if a(x) =?, i. e., the 

attribute value is lost, the case x should not be 
included in any blocks [(a,v)] for all values v of 
attribute a, 

 If for an attribute a and a case x, if a(x) = ∗, i.e., the 
attribute values is a “do not care” condition, the 
case x should be included in blocks [(a, v)] for all 
specified values v of attribute a. 

 
For the data set with lost values from Table 3 the 

blocks of attribute-value pairs are: 
[(Age, 20..45)] = {3}, 
[(Age, 45..60)] = {2, 4, 5, 7}, 
[(Cholesterol, 180..210)] = {1, 4, 7}, 
[(Cholesterol, 210..220)] = {6}, 
[(Weight, 180..210)] = {1}, and 
[(Weight, 170..220)] = {2, 4, 5}. 
 
For a case � � � and B ⊆ A, the characteristic set 

KB(x) is defined as the intersection of the sets K(x, a), 
for all � � � , where the set K(x, a) is defined in the 
following way: 
 If a(x) is specified, then K(x, a) is the block [(a, 

a(x))] of attribute a and its value a(x), 
 If a(x) = ? then the set K(x, a) = U, where U is the 

set of all cases. 
 
 
For Table 3 and B = A, 

where |S| denotes the cardinality of the set S.
For a variable a and its value v, (a, v) is called a vari-
able-value pair. A block of (a, v), denoted by [(a, v)], is 
the set {x ∈ U | a(x) = v} [4]. For incomplete decision 
tables the definition of a block of an attribute-value 
pair is modified in the following way.
 _ If for an attribute a and a case x, if a(x) =?, i. e., 

the attribute value is lost, the case x should not 
be included in any blocks [(a,v)] for all values v of 
attribute a,

 _ If for an attribute a and a case x, if a(x) = ∗, i.e., the 
attribute values is a “do not care” condition, the 
case x should be included in blocks [(a, v)] for all 
specified values v of attribute a.

For the data set with lost values from Table 3 the 
blocks of attribute-value pairs are:
[(Age, 20..45)] = {3},
[(Age, 45..60)] = {2, 4, 5, 7},
[(Cholesterol, 180..210)] = {1, 4, 7},
[(Cholesterol, 210..220)] = {6},
[(Weight, 180..210)] = {1}, and
[(Weight, 170..220)] = {2, 4, 5}.
For a case x ∈ U and B ⊆ A, the characteristic set KB(x) 
is defined as the intersection of the sets K(x, a), for all 
a ∈ B, where the set K(x, a) is defined in the following 
way:
 _ If a(x) is specified, then K(x, a) is the block [(a, 

a(x))] of attribute a and its value a(x),
 _ If a(x) = ? then the set K(x, a) = U, where U is the set 

of all cases.
For Table 3 and B = A,
KA(1) = {1},
KA(2) = {2, 4, 5},
KA(3) = {3},
KA(4) = {4}, 
KA(5) = {2, 4, 5},
KA(6) = {6}, and
KA(7) = {4, 7}.
On the other hand, for the data set with “do not care” 
conditions from Table 4 the blocks of attribute-value 
pairs are:
[(Age, 20..45)] = {1, 3, 6},
[(Age, 45..60)] = {1, 2, 4, 5, 6, 7},
[(Cholesterol, 180..210)] = {1, 2, 3, 4, 5, 7}, 
[(Cholesterol, 210..220)] = {2, 3, 5, 6},
[(Weight, 180..210)] = {1, 3, 6, 7}, and
[(Weight, 170..220)] = {2, 3, 4, 5, 6, 7}.
For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is 
defined as the intersection of the sets K(x, a), for all  a ∈
B, where the set K(x, a) is defined in the following way:
 _ If a(x) is specified, then K(x, a) is the block [(a, 

a(x))] of attribute a and its value a(x),
 _ If a(x) =* then the set K(x,a) = U, where U is the set 

of all cases.
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For Table 4 and B = A,
KA(1) = {1, 3, 7},
KA(2) = {2, 4, 5, 6, 7},
KA(3) = {1, 3, 6},
KA(4) = {2, 4, 5, 7},
KA(5) = {2, 4, 5, 6, 7},
KA(6) = {2, 3, 5, 6}, and
KA(7) = {1, 2, 4, 5, 7}.
First we will quote some definitions from [8]. Let X be 
a subset of U. The B-singleton lower approximation of 
X, denoted by 
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KA(1) = {1}, 
KA(2) = {2, 4, 5}, 
KA(3) = {3}, 
KA(4) = {4},  
KA(5) = {2, 4, 5}, 
KA(6) = {6}, and 
KA(7) = {4, 7}. 
 
On the other hand, for the data set with “do not care” 

conditions from Table 4 the blocks of attribute-value 
pairs are: 

[(Age, 20..45)] = {1, 3, 6}, 
[(Age, 45..60)] = {1, 2, 4, 5, 6, 7}, 
[(Cholesterol, 180..210)] = {1, 2, 3, 4, 5, 7},  
[(Cholesterol, 210..220)] = {2, 3, 5, 6}, 
[(Weight, 180..210)] = {1, 3, 6, 7}, and 
[(Weight, 170..220)] = {2, 3, 4, 5, 6, 7}. 
 
For a case � � � and B ⊆ A, the characteristic set 

KB(x) is defined as the intersection of the sets K(x, a), 
for all � � � , where the set K(x, a) is defined in the 
following way: 
 If a(x) is specified, then K(x, a) is the block [(a, 

a(x))] of attribute a and its value a(x), 
 If a(x) =* then the set K(x,a) = U, where U is the 

set of all cases. 
 
For Table 4 and B = A, 
KA(1) = {1, 3, 7}, 
KA(2) = {2, 4, 5, 6, 7}, 
KA(3) = {1, 3, 6}, 
KA(4) = {2, 4, 5, 7}, 
KA(5) = {2, 4, 5, 6, 7}, 
KA(6) = {2, 3, 5, 6}, and 
KA(7) = {1, 2, 4, 5, 7}. 
 
First we will quote some definitions from [8]. Let X 

be a subset of U. The B-singleton lower approximation 
of X, denoted by �����

���������(�), is defined by 
{�|� � �� ��(�) ⊆ �}. 

 
The B-singleton upper approximation of X, denoted 

by �����
���������(�), is defined by 

 
{�|� � �� ��(�) � � � ∅}. 

 
The B-subset lower approximation of X, denoted by 

�����������(�), is defined by 
 

∪ {��(�)|� � �� ��(�) ⊆ �}. 
 

The B-subset upper approximation of X, denoted by 
�����

������(�), is defined by 
 

∪ {��(�)|� � �� ��(�) � � � ∅}. 

 
The B-concept lower approximation of X, denoted 

by �����
�������(�), is defined by 

 
∪ {��(�)|� � �� ��(�) ⊆ �}. 

 
The B-concept upper approximation of X, denoted 

by �����
�������(�), is defined by 

 
∪ {��(�)|� � �� ��(�) � � � ∅} =∪ {��(�)|� � �}. 

 
For Table 3 and X = {5, 6, 7}, all A-singleton, A-

subset and A-concept lower and upper approximations 
are: 

�����
���������(�) = {6}, 

�����
���������(�) = {2, 5, 6, 7}, 

�����������(�) = {6}, 

�����
������(�)  = {2, 4, 5, 6, 7}, 

�����
�������(�) = {6}, 

�����
�������(�) = {2, 4, 5, 6, 7}. 

 
On the other hand, for Table 4 and X = {5, 6, 7}, all 

A-singleton, A-subset and A-concept lower and upper 
approximations are: 

�����
���������(�) = ∅, 

�����
���������(�) = U, 

�����������(�) = ∅, 

�����
������(�)  = U, 

�����
�������(�) = ∅, 

�����
�������(�) = U. 

3. Probabilistic approximations 
Definitions of lower and upper approximations may be 
extended to the probabilistic approximations [7]. In our 
experiments we used only concept approximations, so 
we will cite the corresponding definition only for the 
concept approximation. A B-concept probabilistic 
approximation of the set X with the threshold α, 0 < α ≤ 
1, denoted by �������

�������(�), is defined by 
 

∪ {��(�)|� � �� �� (�|��(�)) � �}, 
 

where �������(�)� = |����(�)|
|��(�)|   is the conditional 

probability of X given ��(�). 
Since we are using only B-concept probabilistic 

approximations, for the sake of simplicity we will call 
them B-probabilistic approximations. Additionally, if B 
= A, B-probabilistic approximations will be called 
simply probabilistic approximations and will be 
denoted by �����(�). 
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|��(�)|   is the conditional 
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extended to the probabilistic approximations [7]. In our 
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for all � � � , where the set K(x, a) is defined in the 
following way: 
 If a(x) is specified, then K(x, a) is the block [(a, 

a(x))] of attribute a and its value a(x), 
 If a(x) =* then the set K(x,a) = U, where U is the 

set of all cases. 
 
For Table 4 and B = A, 
KA(1) = {1, 3, 7}, 
KA(2) = {2, 4, 5, 6, 7}, 
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KA(4) = {2, 4, 5, 7}, 
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First we will quote some definitions from [8]. Let X 
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of X, denoted by �����

���������(�), is defined by 
{�|� � �� ��(�) ⊆ �}. 
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are: 
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we will cite the corresponding definition only for the 
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approximation of the set X with the threshold α, 0 < α ≤ 
1, denoted by �����

�������(�), is defined by 
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where �������(�)� = |����(�)|
|��(�)|   is the conditional 

probability of X given ��(�). 
Since we are using only B-concept probabilistic 

approximations, for the sake of simplicity we will call 
them B-probabilistic approximations. Additionally, if B 
= A, B-probabilistic approximations will be called 
simply probabilistic approximations and will be 
denoted by �����(�). 
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Experiments
Our experiments are based on eight data sets, all tak-
en from the University of California at Irvine Ma-
chine Learning Repository. Essential information 

about these data sets is presented in Table 6. All eight 
data sets are numerical.
For any data set we created a series of incomplete data 
sets in the following way: first, the numerical data set 
was discretized using the agglomerative cluster anal-
ysis method [1]. Then we randomly replaced 5% of 
specified attribute values by symbols of “?”, denoting 
missing attribute values. After that, we replaced ran-
domly and incrementally, with an increment equal 
to 5%, new specified attribute values by symbols “?”, 
preserving old ones. The process continued until we 
reached the point of having a case with all attribute 
values being “?”s. Then we returned to the one but last 
step and tried to add, randomly, 5% of “?”s again. If af-
ter three such attempts the result was still a case with 
“?”s as values for all attributes, the process was termi-
nated. For example, for the australian data set such 
maximum for missing attribute values is 60%. New 
incomplete data sets, with “do not care” conditions, 
were created by replacing all “?”s by “*”s, in respective 
data sets.
For each original numerical data set, a series of incon-
sistent data sets was created by discretization, using 
the same agglomerative cluster analysis method as 
for the missing data sets. However, different levels 
of inconsistency were used as a stopping condition 
for discretization. Note that due to the nature of dis-
cretization, only some levels of inconsistency were 
possible to accomplish, so the levels of inconsistency 
are not as regular as percentage of missing attribute 
values. For example, for the australian data set these 

Figure 3 
Error rates for two series of data sets originated from 
the Hepatitis data set. Lost values are denoted by “?”, 
inconsistent data are denoted by “inc”
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levels are 3.48. 9.71, 15.22 etc. instead of 5, 10, 15, as for 
the percentage of missing attribute values, though we 
tried to keep both series as close as possible.
Our experiments were conducted on 204 data sets, 
including 71 data sets with lost values, 71 data sets 
with “do not care” conditions and 62 inconsistent 
data sets, created from eight original numerical data 
sets, among these data sets, eight discretized and con-
sistent data sets were used as special cases for both 
incomplete and inconsistent data sets.
For every data set we used three different probabilis-
tic approximations for rule induction (lower, middle 
and upper). Thus we had 24 different approaches to 

Figure 4 
Error rates for two series of data sets originated from the 
Image Segmentation data set. Lost values are denoted by 
“?”, inconsistent data are denoted by “inc”

11 

 
Figure 1. Error rates for two series of data sets 

originated from the Australian data set. Lost values are 
denoted by “?”, inconsistent data are denoted by “inc” 

 

 
Figure 2. Error rates for two series of data sets 

originated from the Ecoli data set. Lost values are denoted 
by “?”, inconsistent data are denoted by “inc” 

 

 
Figure 3. Error rates for two series of data sets 

originated from the Hepatitis data set. Lost values are 
denoted by “?”, inconsistent data are denoted by “inc” 
 

 
Figure 4. Error rates for two series of data sets 

originated from the Image Segmentation data set. Lost 
values are denoted by “?”, inconsistent data are denoted by 

“inc” 
 

For each original numerical data set, a series of 

15 

20 

25 

30 

35 

0 10 20 30 40 50 60 

Er
ro

r r
at

e 

Percentage of missing attribute values and level of 
inconsistency 

Lower, ? Middle, ? 
Upper, ? Lower, inc 
Middle, inc Upper, inc 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

0 5 10 15 20 25 30 35 

Er
ro

r r
at

e 

Percentage of missing attribute values and level of 
inconsistency 

Lower, ? 
Middle, ? 
Upper, ? 
Lower, inc 
Middle, inc 
Upper, inc 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

0 10 20 30 40 50 60 
Er

ro
r r

at
e 

Percentage of missing attribute values and level of 
inconsistency 

Lower, ? 
Middle, ? 
Upper, ? 
Lower, inc 
Middle, inc 
Upper, inc 

15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 

0 5 10 15 20 25 30 35 40 45 50 

Er
ro

r r
at

e 

Percentage of missing attribute values and level of 
inconsistency 

Lower, ? 
Middle, ? 
Upper, ? 
Lower, inc 
Middle, inc 
Upper, inc 

Figure 5 
Error rates for two series of data sets originated from 
the Ionosphere data set. Lost values are denoted by “?”, 
inconsistent data are denoted by “inc”

P. G. Clark, C. Gao and J. W. Grzymala-Busse 

12 

 

 
Figure 5. Error rates for two series of data sets 

originated from the Ionosphere data set. Lost values are 
denoted by “?”, inconsistent data are denoted by “inc” 

 

 
Figure 6. Error rates for two series of data sets 

originated from the Iris data set. Lost values are denoted by 
“?”, inconsistent data are denoted by “inc” 

 

 
Figure 7. Error rates for two series of data sets 

originated from the Pima data set. Lost values are denoted 
by “?”, inconsistent data are denoted by “inc” 

 
 
 

 
Figure 8. Error rates for two series of data sets 

originated from the Yeast data set. Lost values are denoted 
by “?”, inconsistent data are denoted by “inc” 

 
 

 

5 

10 

15 

20 

25 

30 

35 

0 5 10 15 20 25 30 35 40 45 

Er
ro

r r
at

e 

Percentage of missing attribute values and level of 
inconsistency 

Lower, ? 
Middle, ? 
Upper, ? 
Lower, inc 
Middle, inc 
Upper, inc 

0 

5 

10 

15 

20 

25 

30 

35 

0 5 10 15 20 25 30 35 

Er
ro

r r
at

e 

Percentage of missing attribute values and level of 
inconsistency 

Lower, ? 
Middle, ? 
Upper, ? 
Lower, inc 
Middle, inc 
Upper, inc 

27 

29 

31 

33 

35 

37 

39 

0 5 10 15 20 25 30 35 40 

Er
ro

r r
at

e 

Percentage of missing attribute values and level of 
inconsistency 

Lower, ? 
Middle, ? 
Upper, ? 
Lower, inc 
Middle, inc 
Upper, inc 

45 

50 

55 

60 

65 

70 

75 

0 5 10 15 20 25 30 35 

Er
ro

r r
at

e 

Percentage of missing attribute values and level of 
inconsistency 

Lower, ? 
Middle, ? 
Upper, ? 
Lower, inc 
Middle, inc 
Upper, inc 

rule induction from data sets with lost values. Obvi-
ously, for “do not care” conditions we had the same 
number of 24 distinct approaches to rule induction. 
For rule induction we used the MLEM2 rule induction 
algorithm, a part of the Learning from Examples based 
on Rough Sets (LERS) data mining system [4].
For lost values we compared incomplete data with 
inconsistent ones for the same type of probabilistic 
approximations, using the Wilcoxon matched-pairs 
signed rank test, with 5% level of significance, two-
tailed test. Since we had 71 incomplete data sets and 62 
inconsistent data sets, missing pairs were construct-
ed by interpolation. Results of experiments rates for 
which there were no matching results, either incom-
plete or inconsistent, are not depicted in Figures 1–8.

Figure 6 
Error rates for two series of data sets originated from the 
Iris data set. Lost values are denoted by “?”, inconsistent 
data are denoted by “inc”
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Results of our experiments, presented in Figures 1–8, 
are: among 24 approaches, in 12 inconsistency was 
better (the error rate was smaller for inconsistent 
data). The australian data set was an exception, for 
all three probabilistic approximations the error rate 
was significantly smaller for incomplete data sets. For 
remaining nine approaches the difference between 
incompleteness and inconsistency was statistically 
insignificant.
For incomplete data sets with “do not care” condi-
tions, results, presented in Figures 9–16, were more 
decisive. For 15 out of 24 combinations, inconsistency 
was better than incompleteness, for remaining nine 
combinations the difference between incompleteness 
and inconsistency was statistically insignificant.

Figure 8 
Error rates for two series of data sets originated from the 
Yeast data set. Lost values are denoted by “?”, inconsistent 
data are denoted by “inc”
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Table 6 
Data sets

Data set Cases Number of 
attributes Concepts

Australian 690 14 2

Ecoli 336 8 8

Hepatitis 155 19 2

Image Segmentation 210 19 7

Ionosphere 351 34 2

Iris 150 4 3

Pima 768 8 2

Yeast 1484 8 9

Figure 9 
Error rates for two series of data sets originated from the 
Australian data set. “Do not care” conditions are denoted 
by “*”, inconsistent data are denoted by “inc”

Figure 10 
Error rates for two series of data sets originated from the 
Ecoli data set. “Do not care” conditions are denoted by “*”, 
inconsistent data are denoted by “inc”

Figure 11 
Error rates for two series of data sets originated from the 
Hepatitis data set. “Do not care” conditions are denoted by 
“*”, inconsistent data are denoted by “inc”
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Taking onto account both interpretations of missing 
attribute values, lost values and “do not care” condi-
tions, we conclude that incompleteness is worse than 
inconsistency for data mining.
With our experimental results, we also compared the 
error rate, computed by ten-fold cross validation, for 
two interpretations of missing attribute values: lost 
values and “do not care” conditions. 
For 14 out of 24 combinations, the error rate for data 
sets with lost values was smaller than the error rate 
for data sets with “do not care” conditions. For re-
maining ten approaches the difference between lost 
values and “do not care” conditions was statistically 
insignificant.
Finally, we compared all three types of probabilistic 
approximations: lower, middle and upper, separately 
for lost values and for “do not care” conditions. For 
this comparison we used the Friedman Rank Sums 
test with 5% of significance level. For a fixed interpre-
tation of missing attribute value, the total number of 
combinations was again 24 (three type of approxima-
tions and eight data sets).
For lost values, lower approximations were better 
than middle approximation for two combinations, 
middle approximations were better than upper ap-
proximations for one combination and upper approx-
imations were better than lower approximations for 
one combination, for remaining 20 combinations the 
difference in performance was statistically insignifi-
cant. For “do not care” conditions, for four combina-

Figure 12 
Error rates for two series of data sets originated from the 
Image Segmentation data set. “Do not care” conditions are 
denoted by “*”, inconsistent data are denoted by “inc”
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tions middle approximations were better than lower 
approximations, for other four combinations upper 
approximations were better than lower approxima-
tions, for remaining 16 combinations the difference 
in performance was statistically insignificant. Thus, 
there is some evidence that for “do not care” condi-
tions, the lower approximations should not be used 
for data mining. 
It is not surprising since for data sets with large num-
ber of “do not care” conditions, the lower approxima-
tions are frequently empty, with the corresponding 
error rate equal to 100%.

Figure 13 
Error rates for two series of data sets originated from the 
Ionosphere data set. “Do not care” conditions are denoted 
by “*”, inconsistent data are denoted by “inc”

Figure 14 
Error rates for two series of data sets originated from the 
Iris data set. “Do not care” conditions are denoted by “*”, 
inconsistent data are denoted by “inc”
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Figure 15 
Error rates for two series of data sets originated from the 
Pima data set. “Do not care” conditions are denoted by “*”, 
inconsistent data are denoted by “inc”
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Figure 13. Error rates for two series of data sets 

originated from the Ionosphere data set. “Do not care” 
conditions are denoted by “*”, inconsistent data are denoted 

by “inc” 
 

 
Figure 14. Error rates for two series of data sets 

originated from the Iris data set. “Do not care” conditions 
are denoted by “*”, inconsistent data are denoted by “inc” 

 

 
Figure 15. Error rates for two series of data sets 

originated from the Pima data set. “Do not care” conditions 
are denoted by “*”, inconsistent data are denoted by “inc” 

 

 
Figure 16. Error rates for two series of data sets 

originated from the Yeast data set. “Do not care” conditions 
are denoted by “*”, inconsistent data are denoted by “inc” 
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Conclusions
Our main conclusion is that there is experimental 
evidence that incompleteness is worse than incon-

Figure 16 
Error rates for two series of data sets originated from the 
Yeast data set. “Do not care” conditions are denoted by “*”, 
inconsistent data are denoted by “inc”

sistency for data mining, in terms of an error rate. 
Additionally, lost values are better than “do not care” 
conditions, and there is a little difference between the 
three types of probabilistic approximations, except 
that for data sets with “do not care” conditions, lower 
approximations should not be used.
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Summary / Santrauka

We present experimental results on a comparison of incompleteness and inconsistency. We used two inter-
pretations of missing attribute values: lost values and “do not care” conditions. Our experiments were conduc-
ted on 204 data sets, including 71 data sets with lost values, 71 data sets with “do not care” conditions and 62 
inconsistent data sets, created from eight original numerical data sets. We used the Modified Learning from 
Examples Module version 2 (MLEM2) rule induction algorithm for data mining, combined with three types 
of probabilistic approximations: lower, middle and upper. We used an error rate, computed by ten-fold cross 
validation, as the criterion of quality. There is experimental evidence that incompleteness is worse than incon-
sistency for data mining (two-tailed test, 5% level of significance). Additionally, lost values are better than “do 
not care” conditions, again, with regards to the error rate, and there is a little difference in an error rate between 
three types of probabilistic approximations.

Straipsnyje pateikiami neužbaigtumo ir nenuoseklumo palyginimo eksperimento rezultatai. Naudotos dvi 
trūkstamų požymių įverčių interpretacijos: prarastos vertės ir „nesvarbu“ sąlygos. Eksperimentui atlikti nau-
doti 204 duomenų rinkiniai, iš kurių 71 – su prarastomis vertėmis, 71 – su „nesvarbu“ sąlygomis ir likę 62 ne-
nuoseklūs duomenų rinkiniai, sukurti iš aštuonių originalių kiekybinių duomenų rinkinių. Duomenų gavybai 
naudotas pakeistas mokymasis (angl. Modified Learning) iš pavyzdžių modulio 2 versijos MLEM2 (angl. Exam-
ples Module version) taisyklių indukcijos algoritmo kartu su trijų tipų tikimybiniais priartėjimais: žemesniuo-
ju, vidutiniu ir aukštesniuoju. Naudotas klaidų lygis, kuris apskaičiuotas kaip kokybės kriterijumi remiantis 
dešimties sluoksnių kryžmine validacija. Eksperimento rezultatai rodo, kad duomenims gauti neužbaigtumas 
blogiau nei nenuoseklumas (atliktas testas, gautas 5 % statistinio reikšmingumo lygmuo). Atsižvelgiant į klaidų 
lygmenį, prarastos vertės yra geriau nei „nesvarbu“ sąlygos. Rezultatai taip pat rodo, kad nėra didelio skirtumo 
tarp trijų tikimybinių priartėjimų tipų klaidų lygmenų.  




