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This paper describes the method of solution of the space fractional and 2D time fractional heat conduction 
inverse problem. In this paper the authors consider two models – 1D space fractional heat conduction equation 
and 2D time fractional heat conduction equation with the initial-boundary conditions. To solve the inverse heat 
conduction problem, a functional defining the error of approximate solution must be minimized. To minimize 
this functional the Real Ant Colony Optimization (ACO) algorithm was used. In order to reduce the computa-
tional time, the calculations were performed in a parallel (multi-threaded) way. The paper presents examples 
to illustrate the accuracy and stability of the presented algorithm.
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Introduction
Inverse problems are very important issues in sci-
ence, they have a wide application in signal process-
ing, communication theory, physics and many other 
fields of engineering. In this paper the authors con-
sider the space and time fractional heat conduction 
inverse problem which consists in reconstructing the 
boundary condition in the fractional heat conduction 
models, basing on the temperature measurements. In 

papers [13-15] the heat conduction inverse problems 
with the classical derivative are considered, whereas 
in articles [4-6] the fractional heat conduction in-
verse problems are investigated.

The artificial intelligent algorithms, particularly the 
algorithms inspired by nature, are very popular in 
solving various practical and theoretical problems [1, 
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10, 13-15, 21, 35, 40-43]. The most popular and effi-
cient algorithms inspired by nature are the following 
algorithms: Ant Colony algorithms [12, 36], Artificial 
Bee Colony algorithm [16-18, 33] and Firefly algo-
rithm [35]. In many cases these types of algorithms 
provide better results than the conventional algo-
rithms and, what is more, they are easy to implement. 
In case of optimization algorithms inspired by nature, 
another good feature of these algorithms is the fact 
that they do not need any requirements about mini-
mized function, except the existence of the solution.
Fractional calculus is very useful to model many var-
ious types of physical and technical phenomena [8, 9, 
11, 25, 26, 30, 34]. Application of fractional calculus 
can be found, for example, in electrical engineering 
[26], control theory [8, 11], mechanics [9]. In papers 
[30, 46] the authors consider the model of heat con-
duction in ceramic and composite medium. The mod-
els containing fractional derivative better describe 
the heat conduction process than the models with 
classical derivative. To solve fractional heat conduc-
tion inverse problem, we need first to solve the direct 
problem. In paper [29] Murio presents the numerical 
method of solving the time fractional diffusion equa-
tion with Dirichlet zero boundary conditions. Meer-
schaert in paper [22] describes the numerical solu-
tion of the space fractional diffusion equation with 
boundary condition of the first kind, and in paper 
[23] the authors present the finite difference method 
for two-dimensional fractional dispersion equation. 
In both papers, as the fractional derivative, the Rie-
mann-Liouville derivative was used. In paper [3] the 
author presents the numerical solution of time frac-
tional heat conduction equation with Neumann and 
Robin boundary conditions, and in paper [7] the au-
thors consider the space fractional heat conduction 
equation with mixed boundary conditions.
In papers [27, 28] Murio deals with the inverse prob-
lems of fractional order. Article [27] presents the 
solution of the time fractional inverse heat conduc-
tion problem with Caputo fractional derivative and in 
paper [28] the author reconstructs the heat flux in the 
fractional-diffusion heat conduction equation. Also 
in paper [24] the inverse diffusion problem is consid-
ered. The problem consists in determining the spatial 
coefficient and the order of derivative. The authors 
prove that under certain conditions the solution of the 
problem is unique. The proof is done by transforming 

the solution to the solution of the wave equation. In 
paper [38] the inverse problems of fractional order 
are considered. The inverse source problem is trans-
formed into a first kind Volterra integral equation. 
Further, the authors use the boundary element meth-
od and Tikhonov regularization to solve the Volterra 
integral equation of the first kind. Many other authors 
deal also with the various kinds of fractional inverse 
problems, see for example [2, 4-6, 20, 39, 44-46].
This paper describes an application of the parallel 
version of Real Ant Colony Optimization algorithm 
to reconstruct the heat flux at the boundary where the 
temperature distribution in measurement points is 
given. Two models are considered: 1D space fractional 
heat conduction equation and 2D time fractional heat 
conduction equation. To reconstruct the heat flux, a 
functional defining the error of approximate solution 
is minimized. In this purpose we use the Real Ant 
Colony Optimization algorithm, which inspiration 
is taken from the behavior of ant swarms, widely re-
garded as the very intelligent communities, especially 
because of their tactics in search for the shortest path 
connecting the anthill with the source of food. In or-
der to speed up the solving procedures we used the 
parallelization of the ant algorithm which significant-
ly reduced the computation time. The direct problem 
in the proposed approach was solved by applying the 
implicit finite difference method [3, 7, 22, 23]. The pa-
per also includes some examples illustrating the ac-
curacy and stability of the presented procedures.

Formulation of the problem
We consider two mathematical models of fractional 
heat conduction equation. 

Model I
First of all we introduce the following space fraction-
al heat conduction equation
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where c, 
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, λ denote the specific heat, density and 
thermal conductivity, respectively. Equation (1) is 
completed with the initial condition
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(2)

and the boundary conditions of the second and third 
kind
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where h is the heat transfer coefficient, q is the heat 
flux and 
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 denotes the ambient temperature.
The space fractional derivative occurring in equation 
(1) is interpreted in the sense of the left-sided Rie-
mann-Liouville derivative, which is defined by for-
mula [34]:
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where  Γ is the Gamma function, α ∈ (n –1, n]. In case of   
α ∈ (1, 2) equation (1) describes the phenomenon of 
super-diffusion, whereas for α  = 2 we get the differ-
ential equation with classical derivative. In this paper 
we investigate α ∈ (1, 2).

Model II
Now, let us consider the 2D time fractional heat con-
duction equation
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 is the density 
and λ1, λ2 > 0 for (x, y, t) ∈ D. To equation (6) we add 
the initial condition

 
�(�, �, �) = �(�, �),    � � [�, ��], � � ��, ���,   (7) 

 

 
���(�, �, �) ��(�,�,�)

�� = ��(�, �),      � � [�, �∗], � � [�, ��],    (8) 

       �����, ��, �� ����,��,��
�� = ��(�, �),      � � [�, �∗], � � [�, ��],         (9) 

  ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��),    � � [�, �∗], � � ��, ���, (10) 

  ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��),    � � [�, �∗], � � ��, ���, (11) 

 
���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
�   (12) 

 
where Γ is the Gamma function and � � (� � �, �]. 
 

 
�(��, ��) =  ����,     � = �,�, � , ��,   � = �,�, � , ��,  (Model I) (13) 

����, ��, ��� =  ��(��)�,     (��) = �,�, � , ��,   � = �,�, � , ��,  (Model II)   (14)                  

 
�(ℎ) =  ∑ ∑ ����(ℎ) � ������,��

���
��
���    (for Model I),  (15) 

 
�(ℎ�, ℎ�) =  ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)��    (for Model II). (16) 

 

(7)

and the Neumann (for y = 0, y = Ly)  and Robin (for x = 0,  
x = Lx) boundary conditions:

 
�(�, �, 0) = �(�, �),    � ∈ [0, ��], � ∈ �0, ���,   (7) 

 

 
−��(�, 0, �) ��(�,�,�)

�� = ��(�, �),      � ∈ [0, �∗], � ∈ [0, ��],    (8) 

       −����, ��, �� ����,��,��
�� = ��(�, �),      � ∈ [0, �∗], � ∈ [0, ��],         (9) 

  −��(0, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(0, �, �) − ��),    � ∈ [0, �∗], � ∈ �0, ���, (10) 

  −��(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) − ��),    � ∈ [0, �∗], � ∈ �0, ���, (11) 

 
���(�,�)

��� = �
�(���) � ���(�,�)

��� (� − �)����� ��,�
�   (12) 

 
where Γ is the Gamma function and � ∈ (� − �, �]. 
 

 
�(��, ��) =  ����,     � = �,�, � , ��,   � = �,�, � , ��,  (Model I) (13) 

����, ��, ��� =  ��(��)�,     (��) = �,�, � , ��,   � = �,�, � , ��,  (Model II)   (14)                  

 
�(ℎ) =  ∑ ∑ ����(ℎ) − ������,��

���
��
���    (for Model I),  (15) 

 
�(ℎ�, ℎ�) =  ∑ ∑ ��(��)�(ℎ�, ℎ�) − ��(��)���,��

���
��
(��)��    (for Model II). (16) 

 

 
�(�, �, 0) = �(�, �),    � ∈ [0, ��], � ∈ �0, ���,   (7) 

 

 
−��(�, 0, �) ��(�,�,�)

�� = ��(�, �),      � ∈ [0, �∗], � ∈ [0, ��],    (8) 

       −����, ��, �� ����,��,��
�� = ��(�, �),      � ∈ [0, �∗], � ∈ [0, ��],         (9) 

  −��(0, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(0, �, �) − ��),    � ∈ [0, �∗], � ∈ �0, ���, (10) 

  −��(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) − ��),    � ∈ [0, �∗], � ∈ �0, ���, (11) 

 
���(�,�)

��� = �
�(���) � ���(�,�)

��� (� − �)����� ��,�
�   (12) 

 
where Γ is the Gamma function and � ∈ (� − �, �]. 
 

 
�(��, ��) =  ����,     � = �,�, � , ��,   � = �,�, � , ��,  (Model I) (13) 

����, ��, ��� =  ��(��)�,     (��) = �,�, � , ��,   � = �,�, � , ��,  (Model II)   (14)                  

 
�(ℎ) =  ∑ ∑ ����(ℎ) − ������,��

���
��
���    (for Model I),  (15) 

 
�(ℎ�, ℎ�) =  ∑ ∑ ��(��)�(ℎ�, ℎ�) − ��(��)���,��

���
��
(��)��    (for Model II). (16) 

 

(8)

 
�(�, �, 0) = �(�, �),    � ∈ [0, ��], � ∈ �0, ���,   (7) 

 

 −��(�, 0, �) ��(�,�,�)
�� = ��(�, �),      � ∈ [0, �∗], � ∈ [0, ��], 

   (8) 

       −����, ��, �� ����,��,��
�� = ��(�, �),      � ∈ [0, �∗], � ∈ [0, ��],          (9) 

  −��(0, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(0, �, �) − ��),    � ∈ [0, �∗], � ∈ �0, ���, (10) 

  −��(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) − ��),    � ∈ [0, �∗], � ∈ �0, ���, (11) 

 
���(�,�)

��� = �
�(���) � ���(�,�)

��� (� − �)����� ��,�
�   (12) 

 
where Γ is the Gamma function and � ∈ (� − �, �]. 
 

 
�(��, ��) =  ����,     � = �,�, � , ��,   � = �,�, � , ��,  (Model I) (13) 

����, ��, ��� =  ��(��)�,     (��) = �,�, � , ��,   � = �,�, � , ��,  (Model II)   (14)                  

 
�(ℎ) =  ∑ ∑ ����(ℎ) − ������,��

���
��
���    (for Model I),  (15) 

 
�(ℎ�, ℎ�) =  ∑ ∑ ��(��)�(ℎ�, ℎ�) − ��(��)���,��

���
��
(��)��    (for Model II). (16) 

 

 
�(�, �, 0) = �(�, �),    � ∈ [0, ��], � ∈ �0, ���,   (7) 

 

 −��(�, 0, �) ��(�,�,�)
�� = ��(�, �),      � ∈ [0, �∗], � ∈ [0, ��], 

   (8) 

       −����, ��, �� ����,��,��
�� = ��(�, �),      � ∈ [0, �∗], � ∈ [0, ��],          (9) 

  −��(0, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(0, �, �) − ��),    � ∈ [0, �∗], � ∈ �0, ���, (10) 

  −��(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) − ��),    � ∈ [0, �∗], � ∈ �0, ���, (11) 

 
���(�,�)

��� = �
�(���) � ���(�,�)

��� (� − �)����� ��,�
�   (12) 

 
where Γ is the Gamma function and � ∈ (� − �, �]. 
 

 
�(��, ��) =  ����,     � = �,�, � , ��,   � = �,�, � , ��,  (Model I) (13) 

����, ��, ��� =  ��(��)�,     (��) = �,�, � , ��,   � = �,�, � , ��,  (Model II)   (14)                  

 
�(ℎ) =  ∑ ∑ ����(ℎ) − ������,��

���
��
���    (for Model I),  (15) 

 
�(ℎ�, ℎ�) =  ∑ ∑ ��(��)�(ℎ�, ℎ�) − ��(��)���,��

���
��
(��)��    (for Model II). (16) 

 

(9)

 
�(�, �, �) = �(�, �),    � � [�, ��], � � ��, ���,   (7) 

 

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �),      � � [�, �∗], � � [�, ��], 

   (8) 

       �����, ��, �� ����,��,��
�� = ��(�, �),      � � [�, �∗], � � [�, ��],         (9) 

  ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��),    � � [�, �∗], � � ��, ���, (10) 

  ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��),    � � [�, �∗], � � ��, ���, (11) 

 
���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
�   (12) 

 
where Γ is the Gamma function and � � (� � �, �]. 
 

 
�(��, ��) =  ����,     � = �,�, � , ��,   � = �,�, � , ��,  (Model I) (13) 

����, ��, ��� =  ��(��)�,     (��) = �,�, � , ��,   � = �,�, � , ��,  (Model II)   (14)                  

 
�(ℎ) =  ∑ ∑ ����(ℎ) � ������,��

���
��
���    (for Model I),  (15) 

 
�(ℎ�, ℎ�) =  ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)��    (for Model II). (16) 

 

 
�(�, �, �) = �(�, �),    � � [�, ��], � � ��, ���,   (7) 

 

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �),      � � [�, �∗], � � [�, ��], 

   (8) 

       �����, ��, �� ����,��,��
�� = ��(�, �),      � � [�, �∗], � � [�, ��],         (9) 

  ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��),    � � [�, �∗], � � ��, ���, (10) 

  ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��),    � � [�, �∗], � � ��, ���, (11) 

 
���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
�   (12) 

 
where Γ is the Gamma function and � � (� � �, �]. 
 

 
�(��, ��) =  ����,     � = �,�, � , ��,   � = �,�, � , ��,  (Model I) (13) 

����, ��, ��� =  ��(��)�,     (��) = �,�, � , ��,   � = �,�, � , ��,  (Model II)   (14)                  

 
�(ℎ) =  ∑ ∑ ����(ℎ) � ������,��

���
��
���    (for Model I),  (15) 

 
�(ℎ�, ℎ�) =  ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)��    (for Model II). (16) 

 

(10)

 
�(�, �, �) = �(�, �),    � � [�, ��], � � ��, ���,   (7) 

 

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �),      � � [�, �∗], � � [�, ��], 

   (8) 

       �����, ��, �� ����,��,��
�� = ��(�, �),      � � [�, �∗], � � [�, ��],         (9) 

  ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��),    � � [�, �∗], � � ��, ���, (10) 

  ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��),    � � [�, �∗], � � ��, ���, (11) 

 
���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
�   (12) 

 
where Γ is the Gamma function and � � (� � �, �]. 
 

 
�(��, ��) =  ����,     � = �,�, � , ��,   � = �,�, � , ��,  (Model I) (13) 

����, ��, ��� =  ��(��)�,     (��) = �,�, � , ��,   � = �,�, � , ��,  (Model II)   (14)                  

 
�(ℎ) =  ∑ ∑ ����(ℎ) � ������,��

���
��
���    (for Model I),  (15) 

 
�(ℎ�, ℎ�) =  ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)��    (for Model II). (16) 

 

 
�(�, �, �) = �(�, �),    � � [�, ��], � � ��, ���,   (7) 

 

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �),      � � [�, �∗], � � [�, ��], 

   (8) 

       �����, ��, �� ����,��,��
�� = ��(�, �),      � � [�, �∗], � � [�, ��],         (9) 

  ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��),    � � [�, �∗], � � ��, ���, (10) 

  ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��),    � � [�, �∗], � � ��, ���, (11) 

 
���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
�   (12) 

 
where Γ is the Gamma function and � � (� � �, �]. 
 

 
�(��, ��) =  ����,     � = �,�, � , ��,   � = �,�, � , ��,  (Model I) (13) 

����, ��, ��� =  ��(��)�,     (��) = �,�, � , ��,   � = �,�, � , ��,  (Model II)   (14)                  

 
�(ℎ) =  ∑ ∑ ����(ℎ) � ������,��

���
��
���    (for Model I),  (15) 

 
�(ℎ�, ℎ�) =  ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)��    (for Model II). (16) 

 

(11)

where  h1, h2 are the heat transfer coefficients, q1, q2 are the 
heat fluxes and 
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 is the ambient temperature. In this 
model, the fractional derivative with respect to time, oc-
curing in equation (6) is the Caputo derivative defined by 
the following equation
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(12)

where Γ is the Gamma function and α ∈ (n –1, n].
In case of Model I we assume that the function h, 
occurring in boundary condition (4), will depend on 
n parameters ai(i = 1, 2, ..., n). In Model II we need to 
reconstruct functions h1, h2 occurring in the Robin 
boundary conditions. These functions also depend on 
n parameters bi(b1, b2, ..., bn). The considered inverse 
problem consists in restoring the parameters ai (and, 
therefore, the boundary condition in Model I) and pa-
rameters bi (in Model II). Additional information is 
delivered by the temperature measurements (values 
of function u) at the selected points inside region D. 
The known values of function u (the input data for in-
verse problem) at the selected points (xi, tk) (or (xi, yj, 
tk) in case of Model II) of region D will be denoted as 
follows
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where N1 is the number of sensors and N2 denotes 
the number of measurements at each sensor. Solving 
the direct problem for the fixed values of coefficients 
ai (or bi in case of Model II) we obtain the values ap-
proximating function u at the selected points (xi, 
tk) ∈ D   (or (xi, yj, tk)). These values will be denoted 
by Uik(h) (or U(ij)k (h1, h2)). In this way, basing on this 
computation and the input data, we create the fol-
lowing functional defining the error of approximate 
solution
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By minimization of these functionals we will recon-
struct the heat transfer coefficients h, h1, h2. 

Method of solution
Direct problems, defined by equations (1)-(4) (Model 
I) and (6)-(11) (Model II), for the fixed values of h, h1 
and h2 is solved by using the implicit finite difference 
method [3, 7, 23]. 
To reconstruct the heat transfer coefficients, it is nec-
essary to minimize functionals (15) and (16). For this 
purpose we use the parallel version of Real Ant Colony 
Optimization (ACO) algorithm [5, 36]. The ACO algo-
rithm was inspired by observation of the ant colonies 
behavior, widely regarded as the efficient and intelli-
gent communities. Because it is a heuristic algorithm, 
the calculation need to be repeated a certain number 
of times. In this paper it is ten times. In order to re-
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.

7 Repeating steps 5-6 for each ant. Obtaining M new 
solutions (pheromone spots).

8 Dividing the new solutions on nT groups. Calculat-
ing the value of minimized function F for each new 
solution (parallel computing).

9 Adding the new solutions to the archive Ti, organiz-
ing the archive with respect to quality, removing M 
worst solutions.

10 Repeating steps 3 − 9 I times.
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Figure 1 
Control block diagram of the procedure reconstructing the boundary condition by using RealACO algorithm
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Experimental results
The proposed algorithm was implemented in C# 5.0 
on the computer with the following parameters : CPU: 
Intel Core i5-3230M 2.60GHz; OS: Microsoft Win-
dows 10 Home; RAM: 8.00 GB. The multi-threaded 
calculations were performed by using the Task Paral-
lel Library.     
Example 1. We consider equation (1) (Model I) with 
the following data:  a = 1.8, t* = 500, x ∈ [0,1], c = 1000, 
ρ = 2680, λ = 240, u∞ = 100, f(x) = 100x2, q(t) = 0. The 
unknown heat transfer coefficient depends on four 
parameters (which have to be reconstructed) in the 
following form
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have to be reconstructed) in the following form 
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input data disturbance at the measurement point xp = 0.18 for measurements taken at 

The exact values of sought parameters a1, a2, a3  and 
a4 are equal to 2000, 1400, 800 and 250, respectively.
As a result of solving the direct problem for the exact 
heat transfer coefficient h, we obtain the values of 
temperature at the selected points in the grid of do-
main D. Then, from these values we select only those 
ones corresponding to the predetermined grid points 
(location of the thermocouple). These values simu-
late the temperature measurements. We call them the 
exact input data and denote by 
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. The grid used to 
generate these data was of size 200 × 1000.
There is one measurement point xp = 0.18 (N1 = 1), the 
measurements from this point will be read every 1s and 
2s (N2 = 501, 251). In order to investigate the impact of 
measurement errors on the results of reconstruction 
and stability of the algorithm, the input data were per-
turbed by the pseudo-random error of sizes 1 and 2%.
In the process of reconstructing the boundary condi-
tion (minimizing the functional), the direct problem 
was solved many times. The grid used for this purpose 
was of size 150 × 500 and had different density than 
the grid used to generate the input data.
Minimum of functional (15) was searched by using 
the ACO algorithm. This algorithm is heuristic, there-
fore it is required to repeat calculations a certain 
number of times. In this paper, we assumed that the 
calculations for each case were repeated ten times. 

Table 1 
Results of calculations in case of measurements ae every 
1s, 2s (ai

– – restored value of ai, δai
–  percentage relative error 

of ai,  σ - standard deviation (i = 1, 2, 3, 4))

N
oi

se ai
– δai

–   [%] σ ai
– δai

–   [%] σ

every 1s every 2s

0%

2003.22
1399.18
796.60
245.11

0.17
0.06
0.43
1.96

7.78
8.32
3.06
3.34

2002.89
1400.90

796.73
245.35

0.15
0.07
0.41
1.86

6.15
7.33
3.18
2.34

1%

2002.85
1398.24

797.16
246.41

0.15
0.13
0.36
1.44

5.21
3.93
1.56
1.57

2003.34
1398.39

795.59
246.42

0.17
0.12
0.56
1.44

2.41
7.04
2.81
0.88

2%

2004.94
1394.81

800.01
244.44

0.25
0.38
0.02
2.23

2.13
2.72
3.18
3.72

2002.50
1401.83
792.80
245.08

0.13
0.14
0.90
1.97

7.79
4.62
2.02
3.52

Algorithm was adapted for parallel computations 
(multi-threaded calculations) which significantly re-
duced the computational time. In ACO algorithm, we 
set the following parameters
nT = 4,  M  =  12, L  =  8, I  =  30, a1 ∈ [1800, 2300], a2 ∈
[1200, 1700], a3 ∈ [500, 1000], a4 ∈ [100, 500].
Thus, the number of minimized function calls was 
equal to 368.
Table 1 presents the results of determining a1, a2, a3, a4 
in dependence on the size of input data disturbance 

at the measurement point xp = 0.18 for measurements 
taken at every 1s and 2s. Generally, the obtained re-
sults are quite good. Except the error of  parameter a4 
restoration, the other errors do not exceed the input 
data errors. Maximal error of parameter a4 recon-
struction is equal to 2.23%, in case of the other param-
eters the errors do not exceed 0.91%.
One of the main indicators of evaluating the obtained 
results is the error of reconstructing the temperature 
at the measurement point xp = 0.18. Table 2 presents the 
errors of this reconstruction in case of measurements 
at every 1 and 2s. The average errors of temperature re-
constructed in the measurement point are small. The 
relative average errors do not exceed 0.1% in each case. 
If the input errors are higher, then the average relative 
errors of temperature reconstruction slightly increase. 
These differences are however minimal.
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Table 2
Errors of temperature reconstruction in measurement 
point xp = 0.18 for measurements at every 1, 2s (∆avg – 
average absolute error, ∆max – maximal absolute error, δavg – 
average relative error, δmax – maximal relative error)

N
oi

se

0% 1% 2% 0% 1% 2%

every 1s every 2s

∆avg[K] 0.0070 0.0113 0.0175 0.0097 0.0116 0.0278

∆max[K] 0.0846 0.0846 0.0850 0.0846 0.0847 0.0845

δavg [%] 0.0424 0.0546 0.0663 0.0487 0.0524 0.0977

δmax [%] 2.3406 2.3384 2.3508 2.3386 2.3413 2.3363

Figure 1 shows the relative errors of reconstructing 
the heat transfer coefficient h for measurements at 
every 1, 2s. This error was calculated according to the 
formula
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These errors are minimal and smaller than 0.42%. For measurements every one second, 
relative error of reconstruction heat conduction coefficient for exact input data is sligh-
tly greater than in case of 1% perturbed input data. The reason for this it could be pro-
babilistic character of Real Ant Colony Optimization algorithm. 
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input data and for measurements at every 1s and 2s 

Figure 2 presents the distribution of errors of the temperature reconstruction in meas-
urement point xp = 0.18 in case of measurements at every 2s. 
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These errors are minimal and smaller than 0.42%. 
For measurements every one second, relative error of 
reconstruction heat conduction coefficient for exact 
input data is slightly greater than in case of 1% per-
turbed input data. The reason for this it could be pro-
babilistic character of Real Ant Colony Optimization 
algorithm.
Figure 2 presents the distribution of errors of the 
temperature reconstruction in measurement point  
xp = 0.18 in case of measurements at every 2s.
We can see that the error of  temperature reconstruc-
tion depends on perturbations of the input data. The 
input errors are larger, the errors of temperature re-
constuction increase. Generally, the temperature is 
reconstructed very well. 

Figure 2 
Relative errors of reconstructing the heat transfer 
coefficient for various perturbations of input data and for 
measurements at every 1s and 2s

 

Figure 3 
Distribution of errors of temperature reconstruction in 
measurement point xp = 0.18 for measurements at every 2s 
and for various perturbations of input data (0% – dotted 
line, 1% – dashed line, 2% – solid line)

 

Example 2. In this example, we consider equation (6) 
(Model II) with the following data: 
t* = 100, x ∈ [0, 0.2], 
y ∈ [0, 0.2], 
c = 1000, ρ = 2680, a = 0.4,
λ1(x, y, t) = λ2(x, y, t) = 240, 
u∞ = 300, f(x, y) = 900,
q1(t, x) = q2(t, x) = 0,  
g(x, y, t) = 0.
Each of the unknown heat transfer coefficients de-
pends on three parameters in the following form



Information Technology and Control 2017/2/46178

11 
 

 
Fig. 3. Distribution of errors of temperature reconstruction in measurement point xp = 0.18 for 
measurements at every 2s and for various perturbations of input data (0% – dotted line, 1% – 
dashed line, 2% – solid line) 

We can see that the error of  temperature reconstruction depends on perturbations of 
the input data. The input errors are larger, the errors of temperature reconstuction in-
crease. Generally, the temperature is reconstructed very well.  
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To restore the Robin boundary conditions, we need to find parameters ��, ��, � , ��. In 
this numerical experiment the exact values of parameters �� (� = 1,2, � ,6) are equal to 
1200, 800, 300, 900, 600, 150, respectively. In order to generate the input data, we used 
the grid of size 200 × 200 × 200, but in process of solving the inverse problem we 
used the grid of size 100 × 100 × 100. We obtained thus the measurements for four 
measurement points (�� = 4) with the following spatial coordinates : �(0.004, 0.19),
�(0.004, 0.17), �(0.196, 0.01), �(0.196, 0.03). Distribution of the measurement 
points is presented in Figure 3. 
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.

To restore the Robin boundary conditions, we need to 
find parameters b1, b2, ..., b6. In this numerical experi-
ment the exact values of parameters bi(i = 1, 2, ..., 6) are 
equal to 1200, 800, 300, 900, 600, 150, respectively. In 
order to generate the input data, we used the grid of 
size 200 × 200 × 200, but in process of solving the in-
verse problem we used the grid of size 100 × 100 × 100. 
We obtained thus the measurements for four mea-
surement points (N1 = 4) with the following spatial 
coordinates  : A(0.004, 0.19), B(0.004, 0.17), C(0.196, 
0.01), D(0.196, 0.03). Distribution of the measurement 
points is presented in Figure 4.
The parameters of the algorithm are as follows:
M = 16, L = 8, I = 30, nT= 8, 

Table 3 
Results of calculation in case of measurements at every 1s, 2s (bi  – restored value of b

–
i, δbi

–  – percentage relative error of bi, 
σ – standard deviation (i = 1, 2, 3, 4, 5, 6))

Noise
ai
– δai

–   [%] σ ai
– δai

–   [%] σ ai
– δai

–   [%] σ 

every 1s every 2s every 4s

0%

1203.46
795.37
300.48
904.04
597.71
149.21

0.29
0.58
0.16
0.45
0.38
0.53

2.82
3.12
3.03
2.62
2.97
2.66

1202.18
797.13
293.33
903.58
599.43
148.12

0.19
0.36
2.23
0.40
0.10
1.26

2.58
2.94
4.16
3.04
2.61
3.17

1201.77
792.84
299.59
899.67
597.77
147.58

0.15
0.90
0.14
0.04
0.38
1.62

4.78
3.59
3.41
2.39
3.73
3.38

1%

1199.52
796.77
293.47
903.13
605.68
150.31

0.04
0.41
2.18
0.35
0.95
0.21

4.51
3.10
7.12

4.82
4.43
5.78

1187.69
811.48
291.51
900.55
609.84
160.77

1.03
1.44
2.83
0.07
1.65
7.19

3.41
2.03
3.29
3.59
2.87
2.55

1225.32
798.24
282.09
917.64
587.49
153.12

2.12
0.22
5.97
1.97
2.09
2.09

2.62
3.63
3.56
5.79
3.39
4.79

2%

1182.44
813.03
302.47
946.56
624.32
114.66

1.47
1.63
0.82
5.18
4.06

23.56

3.26
3.03
3.11
2.79
1.94
2.72

1259.78
757.22
295.87
913.90
613.14
143.02

4.99
5.35
1.38
1.55
2.20
4.66

3.03
2.75
8.74
4.83
5.76
5.74

1186.09
792.29
326.24
918.73
555.50
186.08

1.16
0.97
8.75
2.09
7.42

24.06

2.35
2.31
4.99
4.07
5.17
4.56

Figure 4 
Distribution of the measurement points

 

 

 
 
 
 
 
 
 
 

b1 ∈ [1000, 1400], b2 ∈ [600, 1000], b3 ∈ [100, 500],
b4 ∈ [700, 1100], b5 ∈ [400, 800], b6 ∈ [50, 350].
Table 3 presents the results of coefficients bi recon-
struction. If the input data are not affected by the 
pseudorandom error, the obtained  results are good. 
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Table 4 
Errors of temperature reconstruction in measurement points A,B,C,D for measurements at every 1, 2, 4s (∆avg  – average 
absolute error, ∆max – maximal absolute error, δavg – average relative error, δmax – maximal relative error)

Noise
0% 1% 2% 0% 1% 2% 0% 1% 2%

every 1s every 2s every 4s

∆avg[K] 0.1168 0.1869 0.8028 0.1262 0.3920 0.8036 0.1284 0.4234 0.7543

∆max[K] 1.7559 1.8189 2.0914 1.7764 2.0077 3.0930 1.7830 1.5291 2.0332

δavg [%] 0.0128 0.0208 0.0899 0.0139 0.0431 0.0869 0.0140 0.0462 0.0839

δmax [%] 0.1909 0.1977 0.2273 0.1931 0.2182 0.3238 0.1938 0.1613 0.2210

Most of the coefficients are restored with the errors 
not exceeding 0.6%. The only exceptions are in case of 
coefficients b3, b6 for the measurements taken at every 
2s, and in case of coefficients b2, b6 for measurements 
taken at every 4s. However these errors are still ac-
ceptable. For the input data disturbed by 1% error, the 
best results were obtained for measurements read at 
every 1s. In this case, only the error of parameter b3 
reconstruction is greater than the error of input data. 
Considering the case of 2% input data error, we can 
see the different levels of reconstruction errors for 
various coefficients bi . For example, the error of coef-

Figure 5 
Distribution of errors of temperature reconstruction in 
measurement point A for measurements at every 1s and for 
various perturbations of input data (0% – blue dots, 1% – 
red dots, 2% – green dots)

 

 

 

 

Figure 6 
Distribution of errors of temperature reconstruction in 
measurement point D for measurements at every 1s and for 
various perturbations of input data (0% – blue dots, 1% – 
red dots, 2% – green dots)

 

 

 

 

ficient b3  reconstruction for measurements at every 
1s is 0.82%, while for the measurements at every 2 and 
4s these errors are, respectively, 1.38% and 8.75%.
Table 4 shows the errors of temperature reconstruc-
tion in the measurement points. In each case, the rel-
ative error does not exceed 0.33%. With the increase 
of disturbance input data, the errors of reconstruc-
tion temperature grow. For example, for the measure-
ments at every 2s and the input data error of 0%, 1%, 
2%, the maximal relative error of temperature res-
toration are equal to 0.1931%, 0.2182%, 0.3238%, re-
spectively.

In Figures 5 and 6, we can see the errors of tempera-
ture reconstruction in measuremetn points A and D. 
In case of points B and C these errors are almost at the 
same level as in case of points A and D, respectively. 

This is due to the fact that points A and B and points 
C and D are close to each other. The largest errors in 
case of point A are observed in the initial moment of 
time, and in case of point D about the time t = 30.
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Conclusions
In this paper the Real Ant Colony Optimization algo-
rithm was used to solve the heat conduction inverse 
problem of fractional order. We considered two mod-
els – 1D space fractional heat conduction equation 
and 2D time fractional heat conduction equation. 
The heat transfer coefficient occurring in the Robin 
boundary condition was restored. In order to recon-
struct it, the functional defining the error of approx-
imate solution was minimized. The direct problem 
was solved using the finite difference method.
The obtained results are very good. In Example 1, the 
errors of heat transfer coefficient reconstruction in 
each considered case are less than 0.42 % and do not 
exceed the input data errors. More importantly, the 

errors of temperature reconstruction at the measure-
ment point are minimal, the average relative errors 
are smaller than 0.1 %. 
In case of Example 2, the obtained results are also 
good. Although some of the parameters bi are recon-
structed with quite large error (e.g. b6 for 2% input 
data ), the error of temperature reconstruction are 
still small. In each considered case, the average rela-
tive error is less than 0.09%
It is worth mentioning that the used algorithm can be 
easily adapted to parallel computing which allows to 
reduce significantly the computation time. 
In Example 1, by executing the algorithm for 4 threads 
the computations were performed nearly 3.8 times 
faster than without the multi-threaded approach.
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