
171Information Technology and Control 2017/2/46

Application of Real Ant Colony
Optimization Algorithm to Solve
Space and Time Fractional Heat
Conduction Inverse Problem

ITC 2/46
Journal of Information Technology
and Control
Vol. 46 / No. 2 / 2017
pp. 171-182
DOI 10.5755/j01.itc.46.2.17298
© Kaunas University of Technology

Application of Real Ant Colony Optimization Algorithm to Solve
Space and Time Fractional Heat Conduction Inverse Problem

Received 2016/12/20 Accepted after revision 2017/04/05

 http://dx.doi.org/10.5755/j01.itc.46.2.17298

Corresponding author: rafal.brociek@polsl.pl

Rafał Brociek, Damian Słota
Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland

This paper describes the method of solution of the space fractional and 2D time fractional heat conduction
inverse problem. In this paper the authors consider two models – 1D space fractional heat conduction equation
and 2D time fractional heat conduction equation with the initial-boundary conditions. To solve the inverse heat
conduction problem, a functional defining the error of approximate solution must be minimized. To minimize
this functional the Real Ant Colony Optimization (ACO) algorithm was used. In order to reduce the computa-
tional time, the calculations were performed in a parallel (multi-threaded) way. The paper presents examples
to illustrate the accuracy and stability of the presented algorithm.
KEYWORDS: Ant Colony Optimization Algorithm, Inverse Problem, Identification, Time Fractional Heat
Conduction Equation, Space Fractional Heat Conduction Equation.

Introduction
Inverse problems are very important issues in sci-
ence, they have a wide application in signal process-
ing, communication theory, physics and many other
fields of engineering. In this paper the authors con-
sider the space and time fractional heat conduction
inverse problem which consists in reconstructing the
boundary condition in the fractional heat conduction
models, basing on the temperature measurements. In

papers [13-15] the heat conduction inverse problems
with the classical derivative are considered, whereas
in articles [4-6] the fractional heat conduction in-
verse problems are investigated.

The artificial intelligent algorithms, particularly the
algorithms inspired by nature, are very popular in
solving various practical and theoretical problems [1,

Information Technology and Control 2017/2/46172

10, 13-15, 21, 35, 40-43]. The most popular and effi-
cient algorithms inspired by nature are the following
algorithms: Ant Colony algorithms [12, 36], Artificial
Bee Colony algorithm [16-18, 33] and Firefly algo-
rithm [35]. In many cases these types of algorithms
provide better results than the conventional algo-
rithms and, what is more, they are easy to implement.
In case of optimization algorithms inspired by nature,
another good feature of these algorithms is the fact
that they do not need any requirements about mini-
mized function, except the existence of the solution.
Fractional calculus is very useful to model many var-
ious types of physical and technical phenomena [8, 9,
11, 25, 26, 30, 34]. Application of fractional calculus
can be found, for example, in electrical engineering
[26], control theory [8, 11], mechanics [9]. In papers
[30, 46] the authors consider the model of heat con-
duction in ceramic and composite medium. The mod-
els containing fractional derivative better describe
the heat conduction process than the models with
classical derivative. To solve fractional heat conduc-
tion inverse problem, we need first to solve the direct
problem. In paper [29] Murio presents the numerical
method of solving the time fractional diffusion equa-
tion with Dirichlet zero boundary conditions. Meer-
schaert in paper [22] describes the numerical solu-
tion of the space fractional diffusion equation with
boundary condition of the first kind, and in paper
[23] the authors present the finite difference method
for two-dimensional fractional dispersion equation.
In both papers, as the fractional derivative, the Rie-
mann-Liouville derivative was used. In paper [3] the
author presents the numerical solution of time frac-
tional heat conduction equation with Neumann and
Robin boundary conditions, and in paper [7] the au-
thors consider the space fractional heat conduction
equation with mixed boundary conditions.
In papers [27, 28] Murio deals with the inverse prob-
lems of fractional order. Article [27] presents the
solution of the time fractional inverse heat conduc-
tion problem with Caputo fractional derivative and in
paper [28] the author reconstructs the heat flux in the
fractional-diffusion heat conduction equation. Also
in paper [24] the inverse diffusion problem is consid-
ered. The problem consists in determining the spatial
coefficient and the order of derivative. The authors
prove that under certain conditions the solution of the
problem is unique. The proof is done by transforming

the solution to the solution of the wave equation. In
paper [38] the inverse problems of fractional order
are considered. The inverse source problem is trans-
formed into a first kind Volterra integral equation.
Further, the authors use the boundary element meth-
od and Tikhonov regularization to solve the Volterra
integral equation of the first kind. Many other authors
deal also with the various kinds of fractional inverse
problems, see for example [2, 4-6, 20, 39, 44-46].
This paper describes an application of the parallel
version of Real Ant Colony Optimization algorithm
to reconstruct the heat flux at the boundary where the
temperature distribution in measurement points is
given. Two models are considered: 1D space fractional
heat conduction equation and 2D time fractional heat
conduction equation. To reconstruct the heat flux, a
functional defining the error of approximate solution
is minimized. In this purpose we use the Real Ant
Colony Optimization algorithm, which inspiration
is taken from the behavior of ant swarms, widely re-
garded as the very intelligent communities, especially
because of their tactics in search for the shortest path
connecting the anthill with the source of food. In or-
der to speed up the solving procedures we used the
parallelization of the ant algorithm which significant-
ly reduced the computation time. The direct problem
in the proposed approach was solved by applying the
implicit finite difference method [3, 7, 22, 23]. The pa-
per also includes some examples illustrating the ac-
curacy and stability of the presented procedures.

Formulation of the problem
We consider two mathematical models of fractional
heat conduction equation.

Model I
First of all we introduce the following space fraction-
al heat conduction equation

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � � [�, �], � � [�, �∗) },

�(�, �) = �(�), � � [�, �], (2)

��(�) ��(�,�)

�� = �(�), � � (�, �∗), (3)

 ��(�) ��(�,�)
�� = ℎ(�)(�(�, �∗) � ��), � � (�, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� � �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

(1)

defined in region

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � � [�, �], � � [�, �∗) },

�(�, �) = �(�), � � [�, �], (2)

��(�) ��(�,�)

�� = �(�), � � (�, �∗), (3)

 ��(�) ��(�,�)
�� = ℎ(�)(�(�, �∗) � ��), � � (�, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� � �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

173Information Technology and Control 2017/2/46

where c,

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � � [�, �], � � [�, �∗) },

�(�, �) = �(�), � � [�, �], (2)

��(�) ��(�,�)

�� = �(�), � � (�, �∗), (3)

 ��(�) ��(�,�)
�� = ℎ(�)(�(�, �∗) � ��), � � (�, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� � �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

, λ denote the specific heat, density and
thermal conductivity, respectively. Equation (1) is
completed with the initial condition

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � � [�, �], � � [�, �∗) },

�(�, �) = �(�), � � [�, �], (2)

��(�) ��(�,�)

�� = �(�), � � (�, �∗), (3)

 ��(�) ��(�,�)
�� = ℎ(�)(�(�, �∗) � ��), � � (�, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� � �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

(2)

and the boundary conditions of the second and third
kind

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � � [�, �], � � [�, �∗) },

�(�, �) = �(�), � � [�, �], (2)

��(�) ��(�,�)

�� = �(�), � � (�, �∗), (3)

 ��(�) ��(�,�)
�� = ℎ(�)(�(�, �∗) � ��), � � (�, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� � �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

(3)

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � ∈ [�, �], � ∈ [0, �∗) },

�(�, 0) = �(�), � ∈ [�, �], (2)

−�(�) ��(�,�)

�� = �(�), � ∈ (0, �∗), (3)

 −�(�)��(�,�)
�� = ℎ(�)(�(�, �∗)− ��), � ∈ (0, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� − �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

(4)

where h is the heat transfer coefficient, q is the heat
flux and

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � ∈ [�, �], � ∈ [0, �∗) },

�(�, 0) = �(�), � ∈ [�, �], (2)

−�(�) ��(�,�)

�� = �(�), � ∈ (0, �∗), (3)

 −�(�)��(�,�)
�� = ℎ(�)(�(�, �∗)− ��), � ∈ (0, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� − �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

 denotes the ambient temperature.
The space fractional derivative occurring in equation
(1) is interpreted in the sense of the left-sided Rie-
mann-Liouville derivative, which is defined by for-
mula [34]:

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � � [�, �], � � [�, �∗) },

�(�, �) = �(�), � � [�, �], (2)

−�(�) ��(�,�)

�� = �(�), � � (�, �∗), (3)

 −�(�) ��(�,�)
�� = ℎ(�)(�(�, �∗) − ��), � � (�, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(�−�)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

(5)

where Γ is the Gamma function, α ∈ (n –1, n]. In case of
α ∈ (1, 2) equation (1) describes the phenomenon of
super-diffusion, whereas for α = 2 we get the differ-
ential equation with classical derivative. In this paper
we investigate α ∈ (1, 2).

Model II
Now, let us consider the 2D time fractional heat con-
duction equation

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � � [�, �], � � [�, �∗) },

�(�, �) = �(�), � � [�, �], (2)

��(�) ��(�,�)

�� = �(�), � � (�, �∗), (3)

 ��(�) ��(�,�)
�� = ℎ(�)(�(�, �∗) � ��), � � (�, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� � �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � � [�, �], � � [�, �∗) },

�(�, �) = �(�), � � [�, �], (2)

��(�) ��(�,�)

�� = �(�), � � (�, �∗), (3)

 ��(�) ��(�,�)
�� = ℎ(�)(�(�, �∗) � ��), � � (�, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� � �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

(6)

defined in region

� � � (�� �� �)� � ∈ [�� ��]� � ∈ ��� ���� � ∈ [�� �∗]� ��� ��� �∗ ∈ ℝ� },

� � � (�� �� �)� � ∈ [�� ��]� � ∈ ��� ���� � ∈ [�� �∗]� ��� ��� �∗ ∈ ℝ� },

where α ∈ (0, 1), c is the specific heat,

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � � [�, �], � � [�, �∗) },

�(�, �) = �(�), � � [�, �], (2)

��(�) ��(�,�)

�� = �(�), � � (�, �∗), (3)

 ��(�) ��(�,�)
�� = ℎ(�)(�(�, �∗) � ��), � � (�, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� � �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

 is the density
and λ1, λ2 > 0 for (x, y, t) ∈ D. To equation (6) we add
the initial condition

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

���(�, �, �) ��(�,�,�)

�� = ��(�, �), � � [�, �∗], � � [�, ��], (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

(7)

and the Neumann (for y = 0, y = Ly) and Robin (for x = 0,
x = Lx) boundary conditions:

�(�, �, 0) = �(�, �), � ∈ [0, ��], � ∈ �0, ���, (7)

−��(�, 0, �) ��(�,�,�)

�� = ��(�, �), � ∈ [0, �∗], � ∈ [0, ��], (8)

 −����, ��, �� ����,��,��
�� = ��(�, �), � ∈ [0, �∗], � ∈ [0, ��], (9)

 −��(0, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(0, �, �) − ��), � ∈ [0, �∗], � ∈ �0, ���, (10)

 −��(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) − ��), � ∈ [0, �∗], � ∈ �0, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� − �)����� ��,�
� (12)

where Γ is the Gamma function and � ∈ (� − �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) − ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) − ��(��)���,��

���
��
(��)�� (for Model II). (16)

�(�, �, 0) = �(�, �), � ∈ [0, ��], � ∈ �0, ���, (7)

−��(�, 0, �) ��(�,�,�)

�� = ��(�, �), � ∈ [0, �∗], � ∈ [0, ��], (8)

 −����, ��, �� ����,��,��
�� = ��(�, �), � ∈ [0, �∗], � ∈ [0, ��], (9)

 −��(0, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(0, �, �) − ��), � ∈ [0, �∗], � ∈ �0, ���, (10)

 −��(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) − ��), � ∈ [0, �∗], � ∈ �0, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� − �)����� ��,�
� (12)

where Γ is the Gamma function and � ∈ (� − �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) − ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) − ��(��)���,��

���
��
(��)�� (for Model II). (16)

(8)

�(�, �, 0) = �(�, �), � ∈ [0, ��], � ∈ �0, ���, (7)

 −��(�, 0, �) ��(�,�,�)
�� = ��(�, �), � ∈ [0, �∗], � ∈ [0, ��],

 (8)

 −����, ��, �� ����,��,��
�� = ��(�, �), � ∈ [0, �∗], � ∈ [0, ��], (9)

 −��(0, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(0, �, �) − ��), � ∈ [0, �∗], � ∈ �0, ���, (10)

 −��(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) − ��), � ∈ [0, �∗], � ∈ �0, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� − �)����� ��,�
� (12)

where Γ is the Gamma function and � ∈ (� − �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) − ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) − ��(��)���,��

���
��
(��)�� (for Model II). (16)

�(�, �, 0) = �(�, �), � ∈ [0, ��], � ∈ �0, ���, (7)

 −��(�, 0, �) ��(�,�,�)
�� = ��(�, �), � ∈ [0, �∗], � ∈ [0, ��],

 (8)

 −����, ��, �� ����,��,��
�� = ��(�, �), � ∈ [0, �∗], � ∈ [0, ��], (9)

 −��(0, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(0, �, �) − ��), � ∈ [0, �∗], � ∈ �0, ���, (10)

 −��(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) − ��), � ∈ [0, �∗], � ∈ �0, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� − �)����� ��,�
� (12)

where Γ is the Gamma function and � ∈ (� − �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) − ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) − ��(��)���,��

���
��
(��)�� (for Model II). (16)

(9)

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

(10)

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

(11)

where h1, h2 are the heat transfer coefficients, q1, q2 are the
heat fluxes and

�� ��(�,�)

�� = �(�) ���(�,�)
��� (1)

� = { (�, �)� � ∈ [�, �], � ∈ [0, �∗) },

�(�, 0) = �(�), � ∈ [�, �], (2)

−�(�) ��(�,�)

�� = �(�), � ∈ (0, �∗), (3)

 −�(�)��(�,�)
�� = ℎ(�)(�(�, �∗)− ��), � ∈ (0, �∗), (4)

���(�,�)

��� = �
�(���)

��

��� � �(�, �)(� − �)����� ��,�
� (5)

�� ���(�,�,�)

��� = ��(�, �, �) ���(�,�,�)
��� � ��(�, �, �) ���(�,�,�)

��� � �(�, �, �) (6)

 is the ambient temperature. In this
model, the fractional derivative with respect to time, oc-
curing in equation (6) is the Caputo derivative defined by
the following equation

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

(12)

where Γ is the Gamma function and α ∈ (n –1, n].
In case of Model I we assume that the function h,
occurring in boundary condition (4), will depend on
n parameters ai(i = 1, 2, ..., n). In Model II we need to
reconstruct functions h1, h2 occurring in the Robin
boundary conditions. These functions also depend on
n parameters bi(b1, b2, ..., bn). The considered inverse
problem consists in restoring the parameters ai (and,
therefore, the boundary condition in Model I) and pa-
rameters bi (in Model II). Additional information is
delivered by the temperature measurements (values
of function u) at the selected points inside region D.
The known values of function u (the input data for in-
verse problem) at the selected points (xi, tk) (or (xi, yj,
tk) in case of Model II) of region D will be denoted as
follows

Information Technology and Control 2017/2/46174

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

(Model I)
(13)

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � 1, �].

�(��, ��) = ����, � = 1,2, … , ��, � = 1,2, … , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��)= 1,2, … , ��, � =1,2, … , ��,

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

(Model II)
(14)

where N1 is the number of sensors and N2 denotes
the number of measurements at each sensor. Solving
the direct problem for the fixed values of coefficients
ai (or bi in case of Model II) we obtain the values ap-
proximating function u at the selected points (xi,
tk) ∈ D (or (xi, yj, tk)). These values will be denoted
by Uik(h) (or U(ij)k (h1, h2)). In this way, basing on this
computation and the input data, we create the fol-
lowing functional defining the error of approximate
solution

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

(for Model I)
(15)

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

 (for Model II)
(16)

By minimization of these functionals we will recon-
struct the heat transfer coefficients h, h1, h2.

Method of solution
Direct problems, defined by equations (1)-(4) (Model
I) and (6)-(11) (Model II), for the fixed values of h, h1
and h2 is solved by using the implicit finite difference
method [3, 7, 23].
To reconstruct the heat transfer coefficients, it is nec-
essary to minimize functionals (15) and (16). For this
purpose we use the parallel version of Real Ant Colony
Optimization (ACO) algorithm [5, 36]. The ACO algo-
rithm was inspired by observation of the ant colonies
behavior, widely regarded as the efficient and intelli-
gent communities. Because it is a heuristic algorithm,
the calculation need to be repeated a certain number
of times. In this paper it is ten times. In order to re-
duce computation time, we adapted the algorithm for
parallel computing. To describe the algorithm, we will
use the following notation
F – minimized function, n – dimension (number of
variables), nT – number of threads, M = nT · p − num-

ber of ants, I − number of iteration, L – number of
pheromone spots, q, ξ – parameters of the algorithm.
Now we present the steps of the algorithm.

Initialization of the algorithm
1 Setting the input parameters of the algorithm L, M,

I, nT, q, ξ.
2 Generating randomly L pheromone spots (solu-

tions). Assigning them to set T0 (starting archive).
3 Calculating the value of minimized function F for

each pheromone spot and organizing the archive
T0 from the best solution to the worst.

Iterative process
4 Assigning probabilities to pheromone spots (solu-

tions) according to the following formula

5

 By minimization of these functionals we will reconstruct the heat transfer coefficients
ℎ, ℎ�, ℎ�.

3 Method of solution

Direct problems, defined by equations (1)-(4) (Model I) and (6)-(11) (Model II), for the
fixed values of ℎ, ℎ� and ℎ� is solved by using the implicit finite difference method [3,
7, 23].

To reconstruct the heat transfer coefficients, it is necessary to minimize func-
tionals (15) and (16). For this purpose we use the parallel version of Real Ant Colony
Optimization (ACO) algorithm [5, 36]. The ACO algorithm was inspired by observa-
tion of the ant colonies behavior, widely regarded as the efficient and intelligent com-
munities. Because it is a heuristic algorithm, the calculation need to be repeated a cer-
tain number of times. In this paper it is ten times. In order to reduce computation time,
we adapted the algorithm for parallel computing. To describe the algorithm, we will
use the following notation

� − minimized function, � – dimension (number of variables),

�� − number of threads, � = �� � � − number of ants,
� − number of iteration, � – number of pheromone spots,

�, � – parameters of the algorithm.

Now we present the steps of the algorithm.

Initialization of the algorithm

1. Setting the input parameters of the algorithm �, �, �, ��, �, �.
2. Generating randomly � pheromone spots (solutions). Assigning them to set ��

(starting archive).
3. Calculating the value of minimized function � for each pheromone spot and

organizing the archive �� from the best solution to the worst.

Iterative process

4. Assigning probabilities to pheromone spots (solutions) according to the fol-
lowing formula

�� = ��
∑ ���

���
 � = 1,�, � , �,

where wights ωl are associated with l-th solution and expressed by formula

�� = 1
��√�� � �

�(���)�
����� .

where wights wl are associated with l-th solution and
expressed by formula

5

 By minimization of these functionals we will reconstruct the heat transfer coefficients
ℎ, ℎ�, ℎ�.

3 Method of solution

Direct problems, defined by equations (1)-(4) (Model I) and (6)-(11) (Model II), for the
fixed values of ℎ, ℎ� and ℎ� is solved by using the implicit finite difference method [3,
7, 23].

To reconstruct the heat transfer coefficients, it is necessary to minimize func-
tionals (15) and (16). For this purpose we use the parallel version of Real Ant Colony
Optimization (ACO) algorithm [5, 36]. The ACO algorithm was inspired by observa-
tion of the ant colonies behavior, widely regarded as the efficient and intelligent com-
munities. Because it is a heuristic algorithm, the calculation need to be repeated a cer-
tain number of times. In this paper it is ten times. In order to reduce computation time,
we adapted the algorithm for parallel computing. To describe the algorithm, we will
use the following notation

� − minimized function, � – dimension (number of variables),

�� − number of threads, � = �� � � − number of ants,
� − number of iteration, � – number of pheromone spots,

�, � – parameters of the algorithm.

Now we present the steps of the algorithm.

Initialization of the algorithm

1. Setting the input parameters of the algorithm �, �, �, ��, �, �.
2. Generating randomly � pheromone spots (solutions). Assigning them to set ��

(starting archive).
3. Calculating the value of minimized function � for each pheromone spot and

organizing the archive �� from the best solution to the worst.

Iterative process

4. Assigning probabilities to pheromone spots (solutions) according to the fol-
lowing formula

�� = ��
∑ ���

���
 � = 1,�, � , �,

where wights ωl are associated with l-th solution and expressed by formula

�� = 1
��√�� � �

�(���)�
����� .

5 Ant chooses a random l-th solution with probabil-
ity pl.

6 Ant transforms the j-th coordinate (j = 1, 2, . . . , n)
of l-th solution sj

l by proximity sampling with the
probability density function (Gaussian function)

5. Ant chooses a random l-th solution with probability pl.
6. Ant transforms the j-th coordinate (j = 1, 2, . . . , n) of l-th solution ��

� by
proximity sampling with the probability density function (Gaussian function)

�(�� �� �) = 1
�√�� � �

�(���)�
���

where � = ��

�, � = �
��� ∑ |��� � ��

����� | .
7. Repeating steps 5-6 for each ant. Obtaining M new solutions (pheromone

spots).
8. Dividing the new solutions on nT groups. Calculating the value of minimized

function F for each new solution (parallel computing).
9. Adding the new solutions to the archive Ti, organizing the archive with respect

to quality, removing M worst solutions.
10. Repeating steps 3 − 9 I times.

where

5. Ant chooses a random l-th solution with probability pl.
6. Ant transforms the j-th coordinate (j = 1, 2, . . . , n) of l-th solution ��

� by
proximity sampling with the probability density function (Gaussian function)

�(�� �� �) = 1
�√�� � �

�(���)�
���

where � = ��

�, � = �
��� ∑ |��� � ��

����� | .
7. Repeating steps 5-6 for each ant. Obtaining M new solutions (pheromone

spots).
8. Dividing the new solutions on nT groups. Calculating the value of minimized

function F for each new solution (parallel computing).
9. Adding the new solutions to the archive Ti, organizing the archive with respect

to quality, removing M worst solutions.
10. Repeating steps 3 − 9 I times.

.

7 Repeating steps 5-6 for each ant. Obtaining M new
solutions (pheromone spots).

8 Dividing the new solutions on nT groups. Calculat-
ing the value of minimized function F for each new
solution (parallel computing).

9 Adding the new solutions to the archive Ti, organiz-
ing the archive with respect to quality, removing M
worst solutions.

10 Repeating steps 3 − 9 I times.

175Information Technology and Control 2017/2/46

Figure 1
Control block diagram of the procedure reconstructing the boundary condition by using RealACO algorithm

Information Technology and Control 2017/2/46176

Experimental results
The proposed algorithm was implemented in C# 5.0
on the computer with the following parameters : CPU:
Intel Core i5-3230M 2.60GHz; OS: Microsoft Win-
dows 10 Home; RAM: 8.00 GB. The multi-threaded
calculations were performed by using the Task Paral-
lel Library.
Example 1. We consider equation (1) (Model I) with
the following data: a = 1.8, t* = 500, x ∈ [0,1], c = 1000,
ρ = 2680, λ = 240, u∞ = 100, f(x) = 100x2, q(t) = 0. The
unknown heat transfer coefficient depends on four
parameters (which have to be reconstructed) in the
following form

4 Experimental results

The proposed algorithm was implemented in C# 5.0 on the computer with the following
parameters : CPU: Intel Core i5-3230M 2.60GHz; OS: Microsoft Windows 10 Home;
RAM: 8.00 GB. The multi-threaded calculations were performed by using the Task
Parallel Library.

Example 1. We consider equation (1) (Model I) with the following data: � = 1.8, �∗ =
500, � ∈ [0,1], � = 1000, � = 2�80, � = �2�0, �� = 100, �(�) = 100��,
�(�) = 0. The unknown heat transfer coefficient depends on four parameters (which
have to be reconstructed) in the following form

ℎ(�) =
�
�
���, � ∈ [0,100].
��, � ∈ (100,200],
��, � ∈ (200,350],
��, � ∈ (350,500].

The exact values of sought parameters ��, ��, �� and �� are equal to 2000, 1400, 800
and 250, respectively.

As a result of solving the direct problem for the exact heat transfer coefficient
h, we obtain the values of temperature at the selected points in the grid of domain D.
Then, from these values we select only those ones corresponding to the predetermined
grid points (location of the thermocouple). These values simulate the temperature meas-
urements. We call them the exact input data and denote by ����. The grid used to gener-
ate these data was of size 200 × 1000.

There is one measurement point xp = 0.18 (N1 = 1), the measurements from
this point will be read every 1s and 2s (N2 = 501, 251). In order to investigate the impact
of measurement errors on the results of reconstruction and stability of the algorithm,
the input data were perturbed by the pseudo-random error of sizes 1 and 2%.

In the process of reconstructing the boundary condition (minimizing the func-
tional), the direct problem was solved many times. The grid used for this purpose was
of size 150 × 500 and had different density than the grid used to generate the input data.

Minimum of functional (15) was searched by using the ACO algorithm. This
algorithm is heuristic, therefore it is required to repeat calculations a certain number of
times. In this paper, we assumed that the calculations for each case were repeated ten
times. Algorithm was adapted for parallel computations (multi-threaded calculations)
which significantly reduced the computational time. In ACO algorithm, we set the fol-
lowing parameters

�� = �,���� = 12,���� = 8,���� = 30,
�� ∈ [1800, 2300], �� ∈ [1200, 1700],
�� ∈ [500, 1000], �� ∈ [100, 500].

Thus, the number of minimized function calls was equal to 368.
Table 1 presents the results of determining a1, a2, a3, a4 in dependence on the size of
input data disturbance at the measurement point xp = 0.18 for measurements taken at

The exact values of sought parameters a1, a2, a3 and
a4 are equal to 2000, 1400, 800 and 250, respectively.
As a result of solving the direct problem for the exact
heat transfer coefficient h, we obtain the values of
temperature at the selected points in the grid of do-
main D. Then, from these values we select only those
ones corresponding to the predetermined grid points
(location of the thermocouple). These values simu-
late the temperature measurements. We call them the
exact input data and denote by

�(�, �, �) = �(�, �), � � [�, ��], � � ��, ���, (7)

 ���(�, �, �) ��(�,�,�)
�� = ��(�, �), � � [�, �∗], � � [�, ��],

 (8)

 �����, ��, �� ����,��,��
�� = ��(�, �), � � [�, �∗], � � [�, ��], (9)

 ���(�, �, �) ��(�,�,�)
�� = ℎ�(�, �)(�(�, �, �) � ��), � � [�, �∗], � � ��, ���, (10)

 ���(��, �, �) ��(��,�,�)
�� = ℎ�(�, �)(�(��, �, �) � ��), � � [�, �∗], � � ��, ���, (11)

���(�,�)

��� = �
�(���) � ���(�,�)

��� (� � �)����� ��,�
� (12)

where Γ is the Gamma function and � � (� � �, �].

�(��, ��) = ����, � = �,�, � , ��, � = �,�, � , ��, (Model I) (13)

����, ��, ��� = ��(��)�, (��) = �,�, � , ��, � = �,�, � , ��, (Model II) (14)

�(ℎ) = ∑ ∑ ����(ℎ) � ������,��

���
��
��� (for Model I), (15)

�(ℎ�, ℎ�) = ∑ ∑ ��(��)�(ℎ�, ℎ�) � ��(��)���,��

���
��
(��)�� (for Model II). (16)

. The grid used to
generate these data was of size 200 × 1000.
There is one measurement point xp = 0.18 (N1 = 1), the
measurements from this point will be read every 1s and
2s (N2 = 501, 251). In order to investigate the impact of
measurement errors on the results of reconstruction
and stability of the algorithm, the input data were per-
turbed by the pseudo-random error of sizes 1 and 2%.
In the process of reconstructing the boundary condi-
tion (minimizing the functional), the direct problem
was solved many times. The grid used for this purpose
was of size 150 × 500 and had different density than
the grid used to generate the input data.
Minimum of functional (15) was searched by using
the ACO algorithm. This algorithm is heuristic, there-
fore it is required to repeat calculations a certain
number of times. In this paper, we assumed that the
calculations for each case were repeated ten times.

Table 1
Results of calculations in case of measurements ae every
1s, 2s (ai

– – restored value of ai, δai
– percentage relative error

of ai, σ - standard deviation (i = 1, 2, 3, 4))

N
oi

se ai
– δai

– [%] σ ai
– δai

– [%] σ

every 1s every 2s

0%

2003.22
1399.18
796.60
245.11

0.17
0.06
0.43
1.96

7.78
8.32
3.06
3.34

2002.89
1400.90

796.73
245.35

0.15
0.07
0.41
1.86

6.15
7.33
3.18
2.34

1%

2002.85
1398.24

797.16
246.41

0.15
0.13
0.36
1.44

5.21
3.93
1.56
1.57

2003.34
1398.39

795.59
246.42

0.17
0.12
0.56
1.44

2.41
7.04
2.81
0.88

2%

2004.94
1394.81

800.01
244.44

0.25
0.38
0.02
2.23

2.13
2.72
3.18
3.72

2002.50
1401.83
792.80
245.08

0.13
0.14
0.90
1.97

7.79
4.62
2.02
3.52

Algorithm was adapted for parallel computations
(multi-threaded calculations) which significantly re-
duced the computational time. In ACO algorithm, we
set the following parameters
nT = 4, M = 12, L = 8, I = 30, a1 ∈ [1800, 2300], a2 ∈
[1200, 1700], a3 ∈ [500, 1000], a4 ∈ [100, 500].
Thus, the number of minimized function calls was
equal to 368.
Table 1 presents the results of determining a1, a2, a3, a4
in dependence on the size of input data disturbance

at the measurement point xp = 0.18 for measurements
taken at every 1s and 2s. Generally, the obtained re-
sults are quite good. Except the error of parameter a4
restoration, the other errors do not exceed the input
data errors. Maximal error of parameter a4 recon-
struction is equal to 2.23%, in case of the other param-
eters the errors do not exceed 0.91%.
One of the main indicators of evaluating the obtained
results is the error of reconstructing the temperature
at the measurement point xp = 0.18. Table 2 presents the
errors of this reconstruction in case of measurements
at every 1 and 2s. The average errors of temperature re-
constructed in the measurement point are small. The
relative average errors do not exceed 0.1% in each case.
If the input errors are higher, then the average relative
errors of temperature reconstruction slightly increase.
These differences are however minimal.

177Information Technology and Control 2017/2/46

Table 2
Errors of temperature reconstruction in measurement
point xp = 0.18 for measurements at every 1, 2s (∆avg –
average absolute error, ∆max – maximal absolute error, δavg –
average relative error, δmax – maximal relative error)

N
oi

se

0% 1% 2% 0% 1% 2%

every 1s every 2s

∆avg[K] 0.0070 0.0113 0.0175 0.0097 0.0116 0.0278

∆max[K] 0.0846 0.0846 0.0850 0.0846 0.0847 0.0845

δavg [%] 0.0424 0.0546 0.0663 0.0487 0.0524 0.0977

δmax [%] 2.3406 2.3384 2.3508 2.3386 2.3413 2.3363

Figure 1 shows the relative errors of reconstructing
the heat transfer coefficient h for measurements at
every 1, 2s. This error was calculated according to the
formula

�� = ∥ ℎ�(�) � ℎ(�) ∥
∥ ℎ(�) ∥ ∙ 100 [%],

where ℎ�(�), ℎ(�) describe the reconstructed and exact heat transfer coefficient, respec-
tively, and ∥ ∙ ∥ denotes the norm defined by the following formula

‖�(�)‖ = �� |�(�)|�
�∗

�
�

�
�

.

These errors are minimal and smaller than 0.42%. For measurements every one second,
relative error of reconstruction heat conduction coefficient for exact input data is sligh-
tly greater than in case of 1% perturbed input data. The reason for this it could be pro-
babilistic character of Real Ant Colony Optimization algorithm.

Fig. 2. Relative errors of reconstructing the heat transfer coefficient for various perturbations of
input data and for measurements at every 1s and 2s

Figure 2 presents the distribution of errors of the temperature reconstruction in meas-
urement point xp = 0.18 in case of measurements at every 2s.

where ĥ(t), h(t) describe the reconstructed and exact
heat transfer coefficient, respectively, and

�� = ∥ ℎ�(�) � ℎ(�) ∥
∥ ℎ(�) ∥ ∙ 100 [%],

where ℎ�(�), ℎ(�) describe the reconstructed and exact heat transfer coefficient, respec-
tively, and ∥ ∙ ∥ denotes the norm defined by the following formula

‖�(�)‖ = �� |�(�)|�
�∗

�
�

�
�

.

These errors are minimal and smaller than 0.42%. For measurements every one second,
relative error of reconstruction heat conduction coefficient for exact input data is sligh-
tly greater than in case of 1% perturbed input data. The reason for this it could be pro-
babilistic character of Real Ant Colony Optimization algorithm.

Fig. 2. Relative errors of reconstructing the heat transfer coefficient for various perturbations of
input data and for measurements at every 1s and 2s

Figure 2 presents the distribution of errors of the temperature reconstruction in meas-
urement point xp = 0.18 in case of measurements at every 2s.

 ∙

�� = ∥ ℎ�(�) � ℎ(�) ∥
∥ ℎ(�) ∥ ∙ 100 [%],

where ℎ�(�), ℎ(�) describe the reconstructed and exact heat transfer coefficient, respec-
tively, and ∥ ∙ ∥ denotes the norm defined by the following formula

‖�(�)‖ = �� |�(�)|�
�∗

�
�

�
�

.

These errors are minimal and smaller than 0.42%. For measurements every one second,
relative error of reconstruction heat conduction coefficient for exact input data is sligh-
tly greater than in case of 1% perturbed input data. The reason for this it could be pro-
babilistic character of Real Ant Colony Optimization algorithm.

Fig. 2. Relative errors of reconstructing the heat transfer coefficient for various perturbations of
input data and for measurements at every 1s and 2s

Figure 2 presents the distribution of errors of the temperature reconstruction in meas-
urement point xp = 0.18 in case of measurements at every 2s.

 de-
notes the norm defined by the following formula

�� = ∥ ℎ�(�) � ℎ(�) ∥
∥ ℎ(�) ∥ ∙ 100 [%],

where ℎ�(�), ℎ(�) describe the reconstructed and exact heat transfer coefficient, respec-
tively, and ∥ ∙ ∥ denotes the norm defined by the following formula

‖�(�)‖ = �� |�(�)|�
�∗

�
�

�
�

.

These errors are minimal and smaller than 0.42%. For measurements every one second,
relative error of reconstruction heat conduction coefficient for exact input data is sligh-
tly greater than in case of 1% perturbed input data. The reason for this it could be pro-
babilistic character of Real Ant Colony Optimization algorithm.

Fig. 2. Relative errors of reconstructing the heat transfer coefficient for various perturbations of
input data and for measurements at every 1s and 2s

Figure 2 presents the distribution of errors of the temperature reconstruction in meas-
urement point xp = 0.18 in case of measurements at every 2s.

These errors are minimal and smaller than 0.42%.
For measurements every one second, relative error of
reconstruction heat conduction coefficient for exact
input data is slightly greater than in case of 1% per-
turbed input data. The reason for this it could be pro-
babilistic character of Real Ant Colony Optimization
algorithm.
Figure 2 presents the distribution of errors of the
temperature reconstruction in measurement point
xp = 0.18 in case of measurements at every 2s.
We can see that the error of temperature reconstruc-
tion depends on perturbations of the input data. The
input errors are larger, the errors of temperature re-
constuction increase. Generally, the temperature is
reconstructed very well.

Figure 2
Relative errors of reconstructing the heat transfer
coefficient for various perturbations of input data and for
measurements at every 1s and 2s

Figure 3
Distribution of errors of temperature reconstruction in
measurement point xp = 0.18 for measurements at every 2s
and for various perturbations of input data (0% – dotted
line, 1% – dashed line, 2% – solid line)

Example 2. In this example, we consider equation (6)
(Model II) with the following data:
t* = 100, x ∈ [0, 0.2],
y ∈ [0, 0.2],
c = 1000, ρ = 2680, a = 0.4,
λ1(x, y, t) = λ2(x, y, t) = 240,
u∞ = 300, f(x, y) = 900,
q1(t, x) = q2(t, x) = 0,
g(x, y, t) = 0.
Each of the unknown heat transfer coefficients de-
pends on three parameters in the following form

Information Technology and Control 2017/2/46178

11

Fig. 3. Distribution of errors of temperature reconstruction in measurement point xp = 0.18 for
measurements at every 2s and for various perturbations of input data (0% – dotted line, 1% –
dashed line, 2% – solid line)

We can see that the error of temperature reconstruction depends on perturbations of
the input data. The input errors are larger, the errors of temperature reconstuction in-
crease. Generally, the temperature is reconstructed very well.

Example 2. In this example, we consider equation (6) (Model II) with the following
data: �∗ = 100, � � [0, 0.2], � � [0, 0.2], � = 1000, � = 26�0, � =
0.4, ��(�, �, �) = ��(�, �, �) = 240, �� = 300, �(�, �) = 900, ��(�, �) =
��(�, �) = 0, �(�, �, �) = 0.
Each of the unknown heat transfer coefficients depends on three parameters in the fol-
lowing form

ℎ�(�, �) = �
��, � � [0, 30],
��, � � (30, 70],
��, � � (70, 100],

 ℎ�(�, �) = �
��, � � [0, 30],
��, � � (30, 70],
��, � � (70, 100].

To restore the Robin boundary conditions, we need to find parameters ��, ��, � , ��. In
this numerical experiment the exact values of parameters �� (� = 1,2, � ,6) are equal to
1200, 800, 300, 900, 600, 150, respectively. In order to generate the input data, we used
the grid of size 200 × 200 × 200, but in process of solving the inverse problem we
used the grid of size 100 × 100 × 100. We obtained thus the measurements for four
measurement points (�� = 4) with the following spatial coordinates : �(0.004, 0.19),
�(0.004, 0.17), �(0.196, 0.01), �(0.196, 0.03). Distribution of the measurement
points is presented in Figure 3.

11

Fig. 3. Distribution of errors of temperature reconstruction in measurement point xp = 0.18 for
measurements at every 2s and for various perturbations of input data (0% – dotted line, 1% –
dashed line, 2% – solid line)

We can see that the error of temperature reconstruction depends on perturbations of
the input data. The input errors are larger, the errors of temperature reconstuction in-
crease. Generally, the temperature is reconstructed very well.

Example 2. In this example, we consider equation (6) (Model II) with the following
data: �∗ = 100, � � [0, 0.2], � � [0, 0.2], � = 1000, � = 26�0, � =
0.4, ��(�, �, �) = ��(�, �, �) = 240, �� = 300, �(�, �) = 900, ��(�, �) =
��(�, �) = 0, �(�, �, �) = 0.
Each of the unknown heat transfer coefficients depends on three parameters in the fol-
lowing form

ℎ�(�, �) = �
��, � � [0, 30],
��, � � (30, 70],
��, � � (70, 100],

 ℎ�(�, �) = �
��, � � [0, 30],
��, � � (30, 70],
��, � � (70, 100].

To restore the Robin boundary conditions, we need to find parameters ��, ��, � , ��. In
this numerical experiment the exact values of parameters �� (� = 1,2, � ,6) are equal to
1200, 800, 300, 900, 600, 150, respectively. In order to generate the input data, we used
the grid of size 200 × 200 × 200, but in process of solving the inverse problem we
used the grid of size 100 × 100 × 100. We obtained thus the measurements for four
measurement points (�� = 4) with the following spatial coordinates : �(0.004, 0.19),
�(0.004, 0.17), �(0.196, 0.01), �(0.196, 0.03). Distribution of the measurement
points is presented in Figure 3.

.

To restore the Robin boundary conditions, we need to
find parameters b1, b2, ..., b6. In this numerical experi-
ment the exact values of parameters bi(i = 1, 2, ..., 6) are
equal to 1200, 800, 300, 900, 600, 150, respectively. In
order to generate the input data, we used the grid of
size 200 × 200 × 200, but in process of solving the in-
verse problem we used the grid of size 100 × 100 × 100.
We obtained thus the measurements for four mea-
surement points (N1 = 4) with the following spatial
coordinates : A(0.004, 0.19), B(0.004, 0.17), C(0.196,
0.01), D(0.196, 0.03). Distribution of the measurement
points is presented in Figure 4.
The parameters of the algorithm are as follows:
M = 16, L = 8, I = 30, nT= 8,

Table 3
Results of calculation in case of measurements at every 1s, 2s (bi – restored value of b

–
i, δbi

– – percentage relative error of bi,
σ – standard deviation (i = 1, 2, 3, 4, 5, 6))

Noise
ai
– δai

– [%] σ ai
– δai

– [%] σ ai
– δai

– [%] σ

every 1s every 2s every 4s

0%

1203.46
795.37
300.48
904.04
597.71
149.21

0.29
0.58
0.16
0.45
0.38
0.53

2.82
3.12
3.03
2.62
2.97
2.66

1202.18
797.13
293.33
903.58
599.43
148.12

0.19
0.36
2.23
0.40
0.10
1.26

2.58
2.94
4.16
3.04
2.61
3.17

1201.77
792.84
299.59
899.67
597.77
147.58

0.15
0.90
0.14
0.04
0.38
1.62

4.78
3.59
3.41
2.39
3.73
3.38

1%

1199.52
796.77
293.47
903.13
605.68
150.31

0.04
0.41
2.18
0.35
0.95
0.21

4.51
3.10
7.12

4.82
4.43
5.78

1187.69
811.48
291.51
900.55
609.84
160.77

1.03
1.44
2.83
0.07
1.65
7.19

3.41
2.03
3.29
3.59
2.87
2.55

1225.32
798.24
282.09
917.64
587.49
153.12

2.12
0.22
5.97
1.97
2.09
2.09

2.62
3.63
3.56
5.79
3.39
4.79

2%

1182.44
813.03
302.47
946.56
624.32
114.66

1.47
1.63
0.82
5.18
4.06

23.56

3.26
3.03
3.11
2.79
1.94
2.72

1259.78
757.22
295.87
913.90
613.14
143.02

4.99
5.35
1.38
1.55
2.20
4.66

3.03
2.75
8.74
4.83
5.76
5.74

1186.09
792.29
326.24
918.73
555.50
186.08

1.16
0.97
8.75
2.09
7.42

24.06

2.35
2.31
4.99
4.07
5.17
4.56

Figure 4
Distribution of the measurement points

b1 ∈ [1000, 1400], b2 ∈ [600, 1000], b3 ∈ [100, 500],
b4 ∈ [700, 1100], b5 ∈ [400, 800], b6 ∈ [50, 350].
Table 3 presents the results of coefficients bi recon-
struction. If the input data are not affected by the
pseudorandom error, the obtained results are good.

179Information Technology and Control 2017/2/46

Table 4
Errors of temperature reconstruction in measurement points A,B,C,D for measurements at every 1, 2, 4s (∆avg – average
absolute error, ∆max – maximal absolute error, δavg – average relative error, δmax – maximal relative error)

Noise
0% 1% 2% 0% 1% 2% 0% 1% 2%

every 1s every 2s every 4s

∆avg[K] 0.1168 0.1869 0.8028 0.1262 0.3920 0.8036 0.1284 0.4234 0.7543

∆max[K] 1.7559 1.8189 2.0914 1.7764 2.0077 3.0930 1.7830 1.5291 2.0332

δavg [%] 0.0128 0.0208 0.0899 0.0139 0.0431 0.0869 0.0140 0.0462 0.0839

δmax [%] 0.1909 0.1977 0.2273 0.1931 0.2182 0.3238 0.1938 0.1613 0.2210

Most of the coefficients are restored with the errors
not exceeding 0.6%. The only exceptions are in case of
coefficients b3, b6 for the measurements taken at every
2s, and in case of coefficients b2, b6 for measurements
taken at every 4s. However these errors are still ac-
ceptable. For the input data disturbed by 1% error, the
best results were obtained for measurements read at
every 1s. In this case, only the error of parameter b3
reconstruction is greater than the error of input data.
Considering the case of 2% input data error, we can
see the different levels of reconstruction errors for
various coefficients bi . For example, the error of coef-

Figure 5
Distribution of errors of temperature reconstruction in
measurement point A for measurements at every 1s and for
various perturbations of input data (0% – blue dots, 1% –
red dots, 2% – green dots)

Figure 6
Distribution of errors of temperature reconstruction in
measurement point D for measurements at every 1s and for
various perturbations of input data (0% – blue dots, 1% –
red dots, 2% – green dots)

ficient b3 reconstruction for measurements at every
1s is 0.82%, while for the measurements at every 2 and
4s these errors are, respectively, 1.38% and 8.75%.
Table 4 shows the errors of temperature reconstruc-
tion in the measurement points. In each case, the rel-
ative error does not exceed 0.33%. With the increase
of disturbance input data, the errors of reconstruc-
tion temperature grow. For example, for the measure-
ments at every 2s and the input data error of 0%, 1%,
2%, the maximal relative error of temperature res-
toration are equal to 0.1931%, 0.2182%, 0.3238%, re-
spectively.

In Figures 5 and 6, we can see the errors of tempera-
ture reconstruction in measuremetn points A and D.
In case of points B and C these errors are almost at the
same level as in case of points A and D, respectively.

This is due to the fact that points A and B and points
C and D are close to each other. The largest errors in
case of point A are observed in the initial moment of
time, and in case of point D about the time t = 30.

Information Technology and Control 2017/2/46180

Conclusions
In this paper the Real Ant Colony Optimization algo-
rithm was used to solve the heat conduction inverse
problem of fractional order. We considered two mod-
els – 1D space fractional heat conduction equation
and 2D time fractional heat conduction equation.
The heat transfer coefficient occurring in the Robin
boundary condition was restored. In order to recon-
struct it, the functional defining the error of approx-
imate solution was minimized. The direct problem
was solved using the finite difference method.
The obtained results are very good. In Example 1, the
errors of heat transfer coefficient reconstruction in
each considered case are less than 0.42 % and do not
exceed the input data errors. More importantly, the

errors of temperature reconstruction at the measure-
ment point are minimal, the average relative errors
are smaller than 0.1 %.
In case of Example 2, the obtained results are also
good. Although some of the parameters bi are recon-
structed with quite large error (e.g. b6 for 2% input
data), the error of temperature reconstruction are
still small. In each considered case, the average rela-
tive error is less than 0.09%
It is worth mentioning that the used algorithm can be
easily adapted to parallel computing which allows to
reduce significantly the computation time.
In Example 1, by executing the algorithm for 4 threads
the computations were performed nearly 3.8 times
faster than without the multi-threaded approach.

References
1. Ardakani, M., Khodadad, M. Identification of thermal

conductivity and the shape of an in-clusion using the
boundary elements method and the particle swarm
optimization algorithm. Inverse Problems in Sci-
ence and Engineering, 2009, 17, 855-870. https://doi.
org/10.1080/17415970902884136

2. Battaglia, J. L, Cois, O., Puigsegur, L., Oustaloup, A. Solv-
ing an inverse heat conduction problem using a non-in-
teger identified model. International Journal of Heat
and Mass Trans-fer, 2001, 44, 2671-2680. https://doi.
org/10.1016/S0017-9310(00)00310-0

3. Brociek, R. Implicit finite difference method for time
fractional diffusion equations with mixed boundary
conditions. Zesz. Nauk. PŚ., Mat. Stosow, 2014, 4, 73-87.

4. Brociek, R., Słota, D. Reconstruction of the boundary
condition for the heat conduction equation of fraction-
al order. Thermal Science, 2015, 19, 35-42. https://doi.
org/10.2298/TSCI15S1S35B

5. Brociek R., Słota D., Application and comparison of in-
telligent algorithms to solve the frac-tional heat con-
duction inverse problem. Information Technology and
Control, 2016, 45, 184-194. https://doi.org/10.5755/j01.
itc.45.2.13716

6. Brociek, R., Słota, D., Wituła, R. Reconstruction of the
thermal conductivity coefficient in the time fractional
diffusion equation. In: K. Latawiec, M. Łukaniszyn, R.
Stanisławski (Eds.), Advances in Modelling and Con-
trol of Non-integer-Order Systems, Vol. 320 of Lec-ture

Notes in Electrical Engineering. Springer, 2015, 239-
247. https://doi.org/10.1007/978-3-319-09900-2_22

7. Brociek, R., Słota, D. Implicit finite difference method
for the space fractional heat conduc-tion equation with
the mixed boundary conditions. Silesian Journal of
Pure and Applied Mathematics, 2016, 6, 125-136.

8. Caponetto, R., Dongola, G., Fortuna, I., Petras, I. Frac-
tional Order Systems: Modeling and Control Applica-
tions. World Scientific Series on Nonlinear Science,
Series A, World Scien-tific Publishing, 2010, 72. https://
doi.org/10.1142/7709

9. Carpinteri, A., Mainardi, F. Fractal and Fractional Cal-
culus in Continuum Mechanics. Springer, New York,
1997. https://doi.org/10.1007/978-3-7091-2664-6

10. Carvalho, A. R., Velho, H. F. D. C., Stephany, S., Sou-
to, R. P., Sandri, J. C. B. S. Fuzzy ant colony optimiza-
tion for estimating chlorophyll concentration profile
in offshore sea wa-ter. Inverse Problems in Science
and Engineering, 2008, 16, 705-715. https://doi.
org/10.1080/17415970802083276

11. Das, S. Functional Fractional Calculus for System Iden-
tification and Controls. Springer, Berlin, 2008.

12. Dorigo, M., Stützle, T. Ant Colony Optimization. MIT
Press, Cambridge, 2004.

13. Hetmaniok, E., Nowak, I., Słota, D., Zielonka, A. Deter-
mination of optimal parameters for the immune algo-
rithm used for solving inverse heat conduction prob-

181Information Technology and Control 2017/2/46

lems with and without a phase change. Numerical Heat
Transfer, Part B, 2012, 62(6), 462-478. https://doi.org/1
0.1080/10407790.2013.730906

14. Hetmaniok, E., Słota, D., Zielonka, A. Experimental ve-
rification of selected artificial intelli-gence algorithms
used for solving the inverse Stefan problem. Numerical
Heat Transfer, Part B, 2014, 66, 343-359. https://doi.org
/10.1080/10407790.2014.915680

15. Hetmaniok, E., Słota, D., Zielonka, A., Using the swarm
intelligence algorithms in solution of the two-dimen-
sional inverse Stefan problem. Computers and Mathe-
matics with Applica-tions, 2015, 69, 347-361. https://
doi.org/10.1016/j.camwa.2014.12.013

16. Karaboga, D., Basturk, B. A powerful and efficient algo-
rithm for numerical function optimi-zation: artificial
bee colony (ABC) algorithm. Journal of Global Opti-
mization, 2007, 39, 459-471. https://doi.org/10.1007/
s10898-007-9149-x

17. Karaboga, D., Basturk, B. On the performance of arti-
ficial bee colony (ABC) algorithm. Applied Soft Com-
puting, 2008, 8, 687-697. https://doi.org/10.1016/j.
asoc.2007.05.007

18. Karaboga, D., Akay, B. A comparative study of artificial
bee colony algorithm. Applied Mathematics and Com-
putation, 2009, 214, 108-132. https://doi.org/10.1016/j.
amc.2009.03.090

19. Klafter, J., Lim, S., Metzler, R. Fractional dynamics. Re-
cent advances, World Scientific, New Jersey, 2012.

20. Liu, J., Yamamoto, M. A backward problem for the
time-fractional diffusion equation. Jour-nal of Ap-
plied Analysis, 2010, 89, 1769-1788. https://doi.
org/10.1080/00036810903479731

21. Martišius, I., Birvinskas, D., Damaševičius, R., Jusas, V.
EEG dataset reduction and classi-fication using wave
atom transform. Lecture Notes in Computer Science –
ICANN’2013, 2013, 8131, 208-215.

22. Meerschaert, M. M., Tadjeran, C. Finite difference ap-
proximations for fractional advection-dispersion flow
equations. Journal of Computational and Applied Math-
ematics, 2006, 172, 65-77. https://doi.org/10.1016/j.
cam.2004.01.033

23. Meerschaert, M. M., Scheffler, H. P., Tadjeran, C. Finite
difference method for two-dimensional fractional disper-
sion equation. Journal of Computational Physics, 2006,
211, 249-261. https://doi.org/10.1016/j.jcp.2005.05.017

24. Miller, L., Yamamoto, M. Coefficient inverse problem
for a fractional diffusion equation, Inverse Problems,
2013, 29(7), 075013, (8pp).

25. Mitkowski, W., Kacprzyk, J., Baranowski, J. Advances
in the Theory and Applications of Non-integer Order
Systems. Springer Inter. Publ., Cham, 2013. https://doi.
org/10.1007/978-3-319-00933-9

26. Mitkowski, W., Skruch, P. Fractional-order models of
the supercapacitors in the form of RC ladder networks.
Bulletin of the Polish Academy of Sciences Technical
Sciences, 2013, 61, 581-587. https://doi.org/10.2478/
bpasts-2013-0059

27. Murio, D. Time fractional IHCP with Caputo fractional
derivatives. Computers and Mathe-matics with Appli-
cations, 2008, 56, 2371-2381. https://doi.org/10.1016/j.
camwa.2008.05.015

28. Murio, D. Stable numerical solution of a fractional-dif-
fusion inverse heat conduction prob-lem. Computers
and Mathematics with Applications, 2007, 53, 1492-
1501. https://doi.org/10.1016/j.camwa.2006.05.027

29. Murio, D. Implicit finite difference approximation for
time fractional diffusion equations. Computers and
Mathematics with Applications, 2008, 56, 1138-1145.
https://doi.org/10.1016/j.camwa.2008.02.015

30. Obrączka, A., Kowalski, J. Modeling the distribution of
heat in the ceramic materials using fractional differ-
ential equations. In: M. Szczygieł (Ed.), Materiały XV
Jubileuszowego Sympozjum «Podstawowe Problemy
Energoelektroniki, Elektromechaniki i Mechatron-
iki,” PPEEm, 2012, Archiwum Konferencji PTETiS,
Komitet Organizacyjny Sympozjum PPEE i Seminari-
um BSE, 2012, 32, 133-132 (in Polish).

31. Obraczka, A., Mitkowski, W. The comparison of parame-
ter identification methods for frac-tional partial differen-
tial equation. Solid State Phenomena, 2014, 210, 265-270.
https://doi.org/10.4028/www.scientific.net/SSP.210.265

32. Oprzędkiewicz, K. Approximation method for a frac-
tional order transfer function with zero and pole. Ar-
chives of Control Sciences, 2014, 24, 409-425.

33. Özbakir, L., Baykasoglu, A., Tapkan, P. Bees algorithm
for generalized assignment prob-lem. Applied Mathe-
matics and Computation, 2010, 215, 3782-3795. https://
doi.org/10.1016/j.amc.2009.11.018

34. Podlubny, I. Fractional Differential Equations. Acade-
mic Press, San Diego, 1999.

35. Santos, A., Campos, V. H., Luz, E., Freitas, S., Grell, G.,
Gan, M. Firefly optimization to determine the preci-
pitation field on South America. Inverse Problems in
Science and Engi-neering, 2013, 21, 451-466. https://
doi.org/10.1080/17415977.2012.712531

36. Socha, K., Dorigo, M. Ant Colony Optimization in conti-
nuous domains. European Journal of Operational Re-

Information Technology and Control 2017/2/46182

search, 2008, 185, 1155-1173. https://doi.org/10.1016/j.
ejor.2006.06.046

37. Toksari, M. D. Ant colony optimization for finding the global
minimum. Applied Mathemat-ics and Computing, 2006,
176, 308-316. https://doi.org/10.1016/j.amc.2005.09.043

38. Wei, T., Zhang, Z. Q. Reconstruction of time-dependent
source term in time-fractional diffu-sion equation. En-
gineering Analysis with Boundary Elements, 2013, 37, 23-
31. https://doi.org/10.1016/j.enganabound.2012.08.003

39. Wang, J. G., Zhou, Y. B., Wei, T. A posteriori regulariza-
tion parameter choice rule for the quasi-boundary value
method for the backward time fractional diffusion pro-
blem. Applied Mathematics Letters, 2013, 26, 741-747.
https://doi.org/10.1016/j.aml.2013.02.006

40. Woźniak, M. Novel image correction method based on
swarm intelligence approach. Com-munications in
Computer and Information Science, Springer Publi-
shing International, Swit-zerland, 2016, 639, 404-413.
https://doi.org/10.1007/978-3-319-46254-7_32

41. Woźniak, M., Połap, D. Flexible neural network ar-
chitecture for handwritten signatures recognition.
International Journal of Electronics and Telecommu-
nications, De Gruyter Open Ltd., 2016, 62(2), 197-202.
https://doi.org/10.1515/eletel-2016-0027

This paper describes the method of solution of the space fractional and 2D time fractional heat conduction
inverse problem. In this paper the authors consider two models – 1D space fractional heat conduction equation
and 2D time fractional heat conduction equation with the initial-boundary conditions. To solve the inverse heat
conduction problem, a functional defining the error of approximate solution must be minimized. To minimize
this functional the Real Ant Colony Optimization (ACO) algorithm was used. In order to reduce the computa-
tional time, the calculations were performed in a parallel (multi-threaded) way. The paper presents examples
to illustrate the accuracy and stability of the presented algorithm.

Straipsnyje aprašomas metodas, kurį taikant sprendžiama erdvės frakcinės ir 2D laiko frakcinės karščio lai-
dumo inversijos problema. Autoriai aptaria du modelius – 1D erdvės frakcinę karščio laidumo lygtį ir 2D laiko
frakcinę karščio laidumo lygtį su pradinėmis ribinėmis sąlygomis. Norint išspręsti inversinę karščio laidumo
problemą, turi būti minimizuota funkcionalo apibrėžties apytikrio sprendimo klaida. Šiam funkcionalui mini-
mizuoti naudojamas skruzdžių kolonijos optimizavimo algoritmas (angl. Real Ant Colony Optimization (ACO)).
Tam, kad būtų sumažintas skaičiavimų laikas, jie atlikti lygiagrečiu (daugiagiju) būdu. Straipsnyje pateikta siū-
lomo algoritmo tikslumo ir stabilumo pavyzdžių.

42. Woźniak, M., Połap, D., Napoli, C., Tramontana, E. Gra-
phic object feature extraction system based on cuckoo
search algorithm. Expert Systems with Applications,
Elsevier, 2016, 66, 20-31. https://doi.org/10.1016/j.
eswa.2016.08.068

43. Woźniak, M., Damaševičius, R., Vasiljevas, M., Šalke-
vičius J. Human Activity Recognition in AAL Environ-
ments Using Random Projections. Computational and
Mathematical Meth-ods in Medicine, Hindawi Publi-
shing Corporation, USA, 2016, Vol. 2016, 4073584:1-
4073584:17. https:// doi.org/10.1155/2016/4073584

44. Yan, L., Yang, F. Efficient Kansa-type MFS algorithm for
time-fractional inverse diffusion problems. Computers
and Mathematics with Applications, 2014, 67, 1507-1520.
https://doi.org/10.1016/j.camwa.2014.02.008

45. Zheng, G., Wei, T. A new regularization method for the time
fractional inverse advection-dispersion problem. SIAM
Journal on Numerical Analysis, 2011, 49, 1972-1990.
https://doi.org/10.1137/100783042

46. Zhuang, Q., Yu, B., Jiang, X. An inverse problem of pa-
rameter estimation for time-fractional heat conduction
in a composite medium using carbon–carbon exper-
imental data. Physica B, 2015, 456, 9-15. https://doi.
org/10.1016/j.physb.2014.08.011

Summary / Santrauka

