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Abstract. In this paper, a new simplified version of the Bayesian Approach to coordinate global optimization (BAcoor) 
is compared with the well-known algorithms. BAcoor is a method of multi-dimensional optimization by applying a 
sequence of one-dimensional global optimizers starting from the best points obtained by previous one-dimensional 
optimization. The globality of one-dimension search is controlled by the only parameter. The new element is that 
observation points are defined by explicit formulas. In other similar methods this is performed by some numerical 
techniques that minimize the risk functions. The efficiency of suggested method is investigated and compared with 
other methods by solving a real-life civil engineering global optimization problem of pile placement schemes in 
grillage-type foundations. This problem is a good benchmark, because the minimal value of the objective function is 
known so the optimization error can be defined exactly. 

Keywords: global optimization; finite element method; genetic algorithms; optimization of grillages. 

1. Introduction 
In this paper we suggest a new simplified 

algorithm BAcoor (Bayesian Approach to coordinate 
global optimization) performance of which is 
controlled by the only parameter, and compare it with 
other well-known algorithms. As the benchmark for 
the comparison, one particular engineering optimiza-
tion problem, for which the global solution is known 
in advance, is chosen: optimization of pile placement 
schemes in grillage-type foundations. Grillage-type 
foundations (or simply “grillages”) are the most popu-
lar and effective scheme of foundations. Grillages 
consist of supporting piles and connecting beams, and 
transfer the dead loadings from the erection together 
with effective loading to the ground. If the minimum 
required number of piles is known (and in case of 
homogeneous piles it can be simply obtained dividing 
the total loading by the carrying capacity of a pile), the 
optimal placement scheme is characterized by an even 
distribution of reactive forces arising in piles.  This 
can be achieved choosing appropriate positions of all 
piles. Thus, optimal design of pile placement schemes 
under grillages is a specific problem of civil enginee-
ring. However, it ideally suits for comparison of 
global optimization algorithms. First of all, the global 

solution is known in advance, therefore we can 
estimate the achieved results. Secondly, our experien-
ce shows that the objective function for practical 
grillage optimization problems has complex surface 
and possesses many local minima points. Moreover, 
usually the objective function is very sensitive to the 
positions of piles: even a small alteration of one 
position leads to a significant change of the objective 
function. All this makes the optimal design of pile 
placement schemes under grillages a difficult global 
optimization problem. 

Exhaustive technical details on the design of 
grillages can be found, e.g. in [14]. However, only a 
few papers deal with optimization of placement 
schemes.  In [4] combination of the sizing and topolo-
gy optimization is observed, however the piles are 
aggregated to special groups of piles. In [7] minimiza-
tion of the differential settlements of piled rafts is 
analyzed, again, by a special way minimizing the 
number of design variables. We are trying to obtain 
the globally minimal price of pile foundations treating 
all piles as a separate design variables. In [1], [2] and 
[3] the idealizations of real grillages are introduced, 
which are taken in the present mathematical model as 
well. In the last paper the problem under discussion 
served as a benchmark for comparison of different 
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global optimization algorithms: modified random 
search meta-heuristics (genetic algorithms and 
simulated annealing), and local optimization combi-
ned with random search. Ten practical grillages of 
small-to-medium scale (17 to 55 design variables) 
were optimized; data on these grillages were obtained 
from the Dutch design bureaus. In this paper we 
optimize again the same grillages with the suggested 
algorithm BAcoor and compare obtained results. 

2. Optimization algorithm 

2.1. Outline 

The traditional numerical analysis considers 
optimization algorithms that guarantee some accuracy 
for all functions to be optimized. To limit maximal 
errors, one needs computational efforts that often 
increase exponentially with the size of the problem. This 
is the main disadvantage of this approach. This is the 
main reason to justify the heuristic methods which 
developed using the expert knowledge. This includes 
meta-heuristics such as Genetic Algorithm (GA) [6], 
Simulated Annealing (SA) [9], and Simplex [12]. 

The alternative is the average case analysis. Here 
an average error is not limited but is made as small as 
possible. The average is taken over a set of functions 
to be optimized. In [5, 10], the average case analysis is 
called the Bayesian Approach (BA). 

The Bayesian Approach (BA) is defined by fixing 
a prior distribution P  on a set of functions )(xf  and 
by minimizing the Bayesian risk function )(xR  which 
defines approximately the expected deviation of )(xf
from the global minimum at a fixed point x . The 
distribution P  is considered as a stochastic model of 

)(xf , mRx� , where )(xf  might be a deterministic 
or a stochastic function. The objective of BA is to 
provide as small average error as possible while 
keeping convergence conditions.  

2.2. Simplified Bayesian Approach 

In [8, 15, 16], the Wiener process was used as a 
stochastic model when 1�m . In [10, 11], the 
simplified models were designed and the simple 
expression of )(xR  was obtained by replacing the 
traditional Kolmogorov consistency conditions when 

1�m . However, the simplified stochastic models [10, 
11] can be preferable in one-dimensional cases, too, 
since they offer some computational advantages by 
providing explicit solutions and the Wiener model is just 
an approximation of actual functions )(xf .

The aim of BA is to reduce the expected deviation. 
In addition, BA has some good asymptotic properties, 
too. It is shown in [10] that 
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Here *d  is a density of points xi around the global 
optimum. da is an average density of ix in the feasible 

area. af  is an average value of f (x) in this area. *f  is 
an average value of f (x) around the global minimum. 
�  is the correction parameter, and n is a number of 
observations (function f (xi) evaluations). That means 
that BA provides convergence to the global minimum for 
any continuous f (x) and a greater density of 
observations xi around the global optimum, if n is 
large. 
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Figure 1. Illustrates the points of observations ix ,

5,4,3,2,1�i  and the solutions *
ix , 4,3,2,1�i , ax �1 ,

bx �5 , where a and b define the interval of feasible x. 

The points satisfying both (3) and (4) are 
determined as follows 
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According to expression (1), large �  defines
global, nearly uniform search. Using small � , most of 
the observations are performed around global minima. 
The global convergence is provided at any 0�� .

2.4. Coordinate Optimization (BAcoor) 

The one-dimensional model is applied for 
coordinate optimization when jxx (� , ),...,1 mj � .
We start from some initial point )0(xx �  and apply 
one-dimensional search by this sequential procedure:

The first cycle of  BAcoor is defined by these 
expressions:  
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where �� � ��� �� ���  are the feasible intervals. If 
some improvement is achieved, the second cycle starts 
in a similar way. The search stops if no improvement 
occurs.

The coordinate optimization converges to global 
minimum along each coordinate and is a convenient 
tool of visualization by providing a set of one-
dimensional projections. However, to guarantee the 
global convergence, BAcoor should be repeated many 
times from different initial points x(0).  

3. Idealizations and mathematical formulation 
of benchmark problem 

The initial data for the grillage optimization 
problem are as follows:  

� The geometrical scheme of connecting beams;  
� Cross-section data of all beams (area, moments 

of inertia);  
� Material data of all beams (material in one 

beam is treated as isotropic);  
� Positions of immovable piles (if any);  
� Maximum allowable reactive force at any pile 

(all piles are homogeneous);  
� Minimum possible distance between adjacent 

piles;  

� Vertical and two rotational stiffnesses (along 
the beam and normal to the beam) of pile;  

� Loading data. Active forces can be applied in 
the form of concentrated loads and moments at 
any point on beam, or in the form of distributed 
trapezoidal loadings at any segment of beam.  

The results of optimization are appropriate posi-
tions of piles under connecting beams at which the 
reactive forces in piles do not exceed the carrying 
capacity of piles. In an ideal grillage, reactive forces at 
all piles are identical. Practically this is hardly feasi-
ble, particularly when a designer introduces the so-
called “immovable supports” that have to retain their 
positions and cannot change them during optimization 
process. Some technological constraints may also 
make the ideal scheme non-achievable, for example, 
the distance between adjacent piles cannot be too 
small due to the specific capacities of a pile driver. In 
the present work we do not consider the immovable 
supports and allow for a pile to take whatever position 
in the grillage, thus typically the piles are not placed at 
the joints of grillage. This fact confines the pile 
placement problem scope to a low-rise buildings 
without significant overturning moments due to 
horizontal thrust, e.g. due to earthquake loading or 
wind loads. 

The objective function for minimization can be 
formulated in several alternative forms, e.g. the 
maximal vertical reactive force at a pile, the difference 
between the maximal and minimal reactive forces in 
the whole grillage, or the maximal difference between 
the reactive force and carrying capacity of a pile (for 
piles with different carrying capacities). We assume 
that the characteristics of all piles are equal and use 
the first form of objective function: 

)(min* xff
Dx�

�  (13) 

where )(xf  is a nonlinear objective function of conti-

nuous variables ���m:f , m  is the number of 
design parameters x  defining positions of piles, 

mD ��  is a feasible region of design parameters. No 
assumptions on unimodality are included into 
formulation of the problem. The maximal vertical 
reactive force at a pile is considered as the objective 
function: 

)(max)(
,...,1

xFxf iNi a�
�  (14) 

where aN  is the number of piles, )x(Fi  is the 
reactive force at the i-th pile.  

Since a supporting pile may reside only under 
connecting beams, there are evident restrictions on the 
positions of piles: during the optimization process the 
piles can move only along the connecting beams. 
Therefore, a two-dimensional beam structure of the 
grillage is “unfolded” to a one-dimensional construct, 
and the piles are allowed to range through this space 
freely. Unfortunately, in such a formulation, small 
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variation of the design variable may correspond to a 
finite variation of the position of the pile in the 
physical space, what leads to discontinuity of the 
problem. One possibility to overcome this is to use 
multilevel optimization where the upper level 
combinatorial problem assigns piles to beams, while 
the lower level continuous problems aim to position 
the piles in the assigned beams. Another possibility is 
to divide search space avoiding jumps of piles from 
one beam to another and perform searches in such 
separate spaces. However we do not know what piles 
and how many piles to assign to particular connecting 
beams because sometimes very different topologies of 
placement schemes lead to close values of objective 
function. Thus, the parameterization that would not 
introduce discontinuities and lead to simpler optimiza-
tion problem is not applicable to the problem. 

One design parameter corresponds to a position of 
one pile in the one-dimensional construct )( aNn � .
The backward transformation restores the positions of 
piles in the original beam structure of the grillage. The 
constraints for the design parameters are as follows: 

Lxi ��0 , aNi ,...,1�  (15) 

where ix  is a design parameter defining the position 
of the i-th pile. L  is the total length of all beams in the 
grillage. If the minimal possible distance �  between 
adjacent piles is specified, there are additional 
constraints 

� � ji xx , ji �  (16) 

where ix  are two-dimensional coordinates of piles 

and ji xx �  denotes the distance between piles. To 

cope with this constraint, a penalty is included in the 
objective function. 

A finite element program is used as a “black-box” 
routine to the optimization program for solution of 
direct problem to find reactive forces in the grillage. 
In the direct problem that is solved via finite element 
analysis, the connecting beams in the grillage are 
idealized as the beam elements, while the piles are 
treated as supports, i.e. finite element mesh nodes with 
given elastic boundary conditions. Since time of 
optimization crucially depends on time of solution of 
the direct problem, fast problem-oriented original 
FORTRAN programs with a special mesh pre-
processor have been developed and used. 

The beam elements have 2 nodes with 6 degrees of 
freedom each (3 displacements along the coordinate 
axes and 3 rotations about these axes). The 
expressions of structural matrices of element can be 
found in many textbooks on finite elements. 

The main statics equation is 

! "# $ # $PuK �  (17) 

where ! "K  is the stiffness matrix of the ensemble of 
elements, # $u  are the nodal displacements, and # $P
are the active forces.  

The reactive forces at piles are available after 
obtaining the nodal displacements: 

! "��
j

jiji uKF  (18) 

Sensitivity analysis may be used if an optimization 
algorithm requires information about derivatives. 

4. Numerical results and discussion 
The pile placement schemes of 10 practical 

grillages possessing from 17 to 55 piles (design 
variables) were optimized in [1] using 7 different 
optimization algorithms. Data for these problems 
(Appendix 1) are obtained from several Dutch design 
bureaus (courtesy of Consultancy W. F. O. B.V., 
Paauw B.V. Aannemingsbedrijf, Aannemingsbedrijf V. 
Dijk, Bouwtectuur West Friesland, Stabo Bouw B.V., 
Aannemingsbedrijf A. Tuin Den Helder and others) 
which use the professional software package 
MatrixFrame (http://www.matrix-software.com/uk/ 
structuralengineering/matrixframe/index.html) for 
structural engineering. It is intended for an analysis 
and design of steel and concrete erections. All those 
problems chosen for comparison of algorithms have 
one common trait: the proportion between the total 
loading and the allowable reaction is such that the 
engineering solution (i.e., when the actual reactive 
forces do not exceed the allowable reaction at any 
pile) requires achieving almost the ideal solution. 

In each algorithm the total number of objective 
function evaluations was the same: 5000. Three 
stochastic global optimization algorithms were 
investigated: the Modified Random Search (MRS) [1], 
Simulated Annealing (SA) [9], Genetic Algorithm 
(GA) [6]. In addition, three local methods with 
random initial points were regarded including the 
Simplex Method of Nelder & Mead (SM) [12] and the 
variable metric method NEWUOA [13]. 28 
independent runs of each algorithm were launched. 
The current optimization routine of MatrixFrame was
not capable to yield even a rational scheme of pile 
placement for the problems considered in this paper.  

 
Figure 2. The best values of seven algorithms MRS,SA, 
GA, SM, VM, NEWUOA, and BAcoor found in 28 runs 

normalized to Rideal (deviations in %). 
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In [1], only for two problems the engineering 
solution was achieved in 5000 objective function 
evaluations. However, in six problems the 
discrepancies between obtained and engineering 
solutions are 2.2 – 5.5 %. 
Figure 2 illustrates the comparison of the new BAcoor 
algorithm with six well-known methods. The exact 
global solutions were not found. However, in seven 
examples, the deviations of obtained results from 
exact solutions do not exceed 5% and can be regarded 
as insignificant for engineering purposes. In three 
examples, the deviations of the best algorithms reach 
20-47%. The differences of computing times were 
about 20-30 %.  

Thus, the simulated annealing (SA) and NEWUOA 
outperform all the other algorithms in orderly 
problems; genetic algorithm (GA) is not far behind. 

In this investigation ten pile placement schemes 
were optimized using BAcoor. To have a fair 
comparison of the results, objective functions were 
evaluated 5000 times, and 28 independent runs of the 
algorithm were performed. BAcoor has a clear 
advantage compared, for example, with GA: it has the 
only parameter �  to be adjusted numerically to the 
particular problem. Thus, for the problems No 2 and 6 
it was found that 710��� , while for the remaining 
problems its favorable magnitude is 10-5. All 
numerical results of 28 independent experiments are 
rendered in Appendix 2. 

Thus, BAcoor is less efficient than SA, GA, and 
NEWUOA, but outperforms the remaining algorithms. 
However, in the awkward problems No. 8 and 6, 
BAcoor achieves better solutions. In the most 
awkward problem No. 8, it reduces the deviation to 
21% (the best deviation 38% of the remaining 
methods was achieved by NEWUOA). A closer view 
to the topologies of grillages No. 8 and 6 reveals that 
there the piles tend to group unevenly under few 
connecting beams while under some beams there are 

Table 1. Summary of numerical results 

any supporting piles. Possibly, BAcoor better copes 
with the problem of physical discontinuity mentioned 
in Section 3 of the paper. Generally, in 5000 
evaluations of the objective function the satisfactory 
solution is not achieved for all problems; more 
evaluations or more independent runs of an algorithm 
from random starting points are needed. 

Summing-up of numerical results is given in Table 
1 which illustrates the advantages and disadvantages 
of BAcoor among other explored algorithms. 
Appendix 3 presents graphical schemes of best pile 
placement schemes found with BAcoor (piles shown 
in red) and found in [1] (shown in blue). 

5. Conclusions 
In some special cases, mainly for awkward 

schemes where distribution of piles is very uneven 
BAcoor outperforms all other explored optimization 
algorithms. Additional advantages of the algorithm are 
that it converges for any function, provides higher 
density of observations around the global minimum, 
and can be adjusted numerically to a problem by 
controlling the single parameter. However, in orderly 
pile placement schemes BAcoor yields inferior results 
as compared with well-known algorithms such as SA, 
GA, and NEWUOA. Thus, BAcoor can be regarded 
just as a new useful member in the family of global 
optimization algorithms. 

Appendixes 

Appendix 1. Characteristics of problems. 

Problem 
No Na L Rallw Rideal 

1 25 172.9 325 307.47 
2 18 52.9 110 104.12 
3 31 84.1 105 101.85 
4 31 84.9 105 101.24 
5 30 63.9 100 97.51 
6 37 80.1 100 97.53 
7 23 129.1 300 287.35 
8 34 137.9 250 236.28 
9 17 97.6 250 244.71 

10 55 315.61 350 349.05 

 

Experiment 
No 

Best 
value 
found 

Best value 
found in 

[1] 

Exact 
solution 

Place of 
BAcoor 
among 

algorithms 

1 381.39 339.30 307.47 4 
2 113.47 106.36 104.12 4 
3 116.43 107.25 101.85 4 
4 117.16 106.80 101.24 4 
5 110.91 101.05 97.51 4 
6 115.45 117.26 97.53 1 
7 333.77 298.11 287.35 4 
8 286.22 346.94 236.28 1 
9 278.86 253.00 244.71 4 

10 493.53 463.34 349.05 3 
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1
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Appendi
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422.70 
422.32 
381.39 
411.51 
419.50 
407.47 
385.21 
400.56 
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422.51 
431.72 
396.67 
416.00 
393.81 
388.31 
414.56 
423.10 
397.76 
510.10 
441.61 
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398.30 
398.01 
396.72 
390.79 
406.33 
398.35 
420.52 
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123.61 1
127.64 1
118.58 1
126.89 1
121.59 1
124.19 1
122.56 1
123.45 1
128.72 1
124.55 1
125.16 1
118.55 1
130.47 1
124.77 1
113.47 1
128.69 1
122.23 1
125.79 1
127.75 1
125.65 1
121.69 1
120.43 1
116.11 1
123.88 1
120.11 1
120.66 1
124.23 1
122.32 1
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33.19 118.

hemes found w
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