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A novel solution for Laplacian source coding based on the three-level restricted quantization is proposed 
in this paper. The restricted quantization provides the reduction of granular distortion with the proper 
choice of the support region. We use the combination of two three-level restricted quantizers having unequal 
support regions, which are selected based on the lower distortion. The quantizers are designed using the 
Lloyd-Max’s algorithm, by assuming the restricted Laplacian distribution of the input signal. The outputs 
are encoded using the Huffman code. In order to improve the performance the forward adaptive algorithm 
was employed, where the adaptation to the signal variance (power) was performed on frame-by-frame basis. 
Theoretical analysis has shown that in this manner the robustness and adaptability of the proposed solution 
is enabled. The experimental results prove that the proposed switched three-level restricted quantizer is 
superior in comparison to the three-level unrestricted quantizer, and outperforms the one-bit (two-level) 
Lloyd-Max’s quantizer, while offering performance comparable to the two-bit (four-level) Lloyd-Max’s base-
line with large savings in bit rate.
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1. Introduction
Quantization is the most important step in ana-
log-to-digital (A/D) signal conversion. It implies ap-
proximating a continuous range of values with a finite 
(preferably small) range of discrete values known as 
codewords. In an optimal quantizer design, the task is 
to design a quantizer, for the assumed probability den-
sity function (pdf ) of the signal, such that the quanti-
zation error is minimal. While there is no restriction 
imposed on the chosen pdf, if it deviates from the one 
for which the optimal quantizer is designed for, the 
performance of the quantizer decreases.
Lloyd-Max’s algorithm is extensively used in optimal 
scalar quantizer design (minimizes the mean squared 
error) [4, 10, 11, 20]. It iteratively computes the quan-
tization parameters (representative levels and de-
cision thresholds) starting from some initial values, 
and converging to the optimal ones in a finite number 
of steps [8]. It works fast when the number of levels N 
is low, but can be time-consuming for high N.
The asymptotic theory (high-resolution quantiza-
tion) considers the issue of reduced complexity of de-
sign and implementation using the optimal compand-
ing quantization [4, 10, 11, 20], which has been widely 
applied in signal processing either for fixed length [16, 
18, 19] or for variable length coding [6]. 
The quality of the quantized signal is influenced by 
the width of the quantizer’s support region and if the 
input signal exceeds this support region, the clipping 
occurs, which introduces the error known as the over-
load distortion. If the quantizer’s support region is de-
creased, the space between its output values (i.e. the 
granular region) is also decreased, leading to smaller 
granular distortion, but at the same time increasing 
the overload distortion. Hence, the quantizer design 
requires determining a balance between granular and 
overload distortion [13].
When the bounds of the support region are infinite, we 
consider the case of unrestricted quantizer. Restrict-
ing the bounds to finite values defines the restricted 
quantizer. The main idea behind the use of restricted 
instead of unrestricted quantization lies in the fact 
that it provides reduction of the granular distortion 
(improves the signal quality) with the decrease of 
the support region for a fixed number of quantization 
levels N (the levels density is increased). The proper 

choice of bounds for the support region is of extreme 
importance [13, 14].
Recently, restricted quantization was analyzed in 
[18] and [19]. Forward adaptive restricted and unre-
stricted scalar compandors with the same compres-
sion function and the same number of representative 
levels were introduced in [18] for Laplacian sources, 
where the restricted compandor was used whenev-
er all the signal amplitudes within the frame were 
inside the support region, else the unrestricted one 
was used. In this way, the granular distortion was de-
creased, while the overload distortion was completely 
eliminated. A similar analysis for the Gaussian sourc-
es was conducted in [16]. 
The systems exploiting three-valued alphabet have 
been reported in [1, 2, 5, 21, 22]. In [1] and [2], it was 
applied in ECG compression and sensor network sys-
tems, respectively, while in [5], it was efficiently used 
in delta modulation system for Laplacian source cod-
ing. The steganography method known as LSB match-
ing was studied in [21] and [22], where the three-val-
ued alphabet has been added to the pixel values of the 
cover image. 
In this paper, we developed the three-level quantizer 
with a goal to upgrade the one-bit quantizer solution. 
Note that the asymptotic theory does not apply here, 
since the optimal performance could not be achieved. 
It is designed employing the Lloyd-Max’s algorithm, 
while its outputs are encoded using the Huffman code 
[7, 20]. We propose the use of switched quantization, 
choosing between two restricted quantizers with dif-
ferent support regions, unlike [16, 18, 19], where the 
combination of restricted and unrestricted quantiz-
er was used. Moreover, we use a different switching 
rule, with minimal distortion being the criterion for 
switching. 
The quantizers use the forward adaptation technique 
[11, 15, 17], which is an efficient way to improve the 
performance in terms of adaptability and robust-
ness [3, 9]. Moreover, it gives better performance in 
the wide variance range of the input signal than the 
backward adaptation [17], and it is less sensitive to 
transmission errors [11]. However, unlike the back-
ward adaptation, it requires the transmission of side 
information to the receiving part. In contrast to the 
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solutions in [16] and [18] where the authors want to 
achieve the maximization in the signal quality, the 
proposed solution offers high data compression.
The performances of the proposed codec are eval-
uated using the Signal to Quantization Noise Ratio 
(SQNR) and bit rate. The effectiveness of the pro-
posed algorithm has been proven theoretically and 
experimentally. The experimental results are com-
pared with the baselines including three-level unre-
stricted quantization, one-bit and two-bit Lloyd-Max 
quantization [4, 10, 11, 20]. 
The reminder of the paper is organized as follows: 
in Section 2 we present a detailed description of de-
sign of the restricted three-level quantizer and the 
switched quantizer with the forward adaptive coding 
scheme. In Section 3 we present and discuss the ex-
perimental results and finally we give concluding re-
marks in Section 4.

2. Scalar Quantizer Design

2.1. Restricted Three-Level Scalar Quantizer
The restricted three-level scalar quantizer QR is spec-
ified by the parameters referred to as decision thresh-
olds ti such that -tmax = t0 < t1 < t2 < t3 = tmax, where tmax is 
the upper bound and ti∈ R, and representative levels 
Y = {y1, y2, y3} ⊂ R, such that      y1 < y2 < y3, where N = 3 
is a codebook size. 
Quantization cells denoted with αi are defined as αi = 
(ti-1, ti], i = 1, 2, 3. Each cell αi is represented by the level 
yi∈αi. If the input signal value x falls into the interval 
αi, that value is quantized by the level yi. Therefore,  
a scalar quantizer can be defined as a function QR:  
R → Y that maps value x into level yi where QR (x) = yi, for  
x∈αi. The cells αi constitute the granular region, 
hence the name granular cells. 
In Figure 1, we present the symmetrical three-level 
quantizer involving zero level y2. Due to the symme-

try, the following equations will hold: −t1 = t2 and −y1 = 
y3. Therefore, the design of the proposed quantizer in-
cludes finding the parameters t2 and y3 for a given tmax.
We presume that information source that needs to be 
quantized is memoryless and zero-mean restricted 
Laplacian with probability density function (pdf ) [4, 
10, 11, 20]:
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where σ is the standard deviation.
Lloyd-Max’s algorithm was applied in the following 
steps: 
Step1. Initialization of the threshold t2

(0) = 0.71σref  and  
level y3

(0) = 1.42σref  [5].
Step2. Computation of new values of level y3 and 
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Step3. Interruption of the Lloyd-Max’s algorithm 
when next iteration does not produce any 
change in distortion. 

The mean squared distortion D, which is used as a
measure of the error introduced by the restricted 
quantizer, is given by [4, 10, 11, 20]:
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SQNR, which is used as a measure of the quality of 
the quantized signal, is given by [4, 10, 11, 20]:
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where Psor(σ) is the power of the input source defined 
as [11]:
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Let p1, p2 and p3 denote probabilities that a sample of 
the input signal belongs to the first, second or third 
quantization cell, respectively:
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The quantizer representative levels are encoded using 
the Huffman code. The level having the highest 
probability is encoded with codeword ‘0’ and the other 
two levels are encoded with the codewords ‘10’ and 
‘11’. 

The bit rate is defined as [20]:
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where li is the length of the Huffman codeword 
corresponding to the level yi.
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Figure 2. SQNR dependence on the upper bound threshold 
tmax for the proposed three-level restricted quantizer

In Figure 2, we illustrate the dependence of SQNR of 
the restricted quantizer QR, which is designed for 
different values of the support region upper bound tmax
(using Lloyd-Max’s algorithm) and σ = σref = 1. We 
observe the gain in performance in terms of SQNR 
compared to the unrestricted quantizer QUR (tmax → ∞) 
[5], especially when QUR is designed for smaller tmax
values. Note that designing for larger tmax (e.g. for 
6σref) provides the SQNR score close to the one of 
QUR.
The dependence of the probability that a sample of the 
input signal belongs to a particular quantization cell 
on tmax is depicted in Figure 3, demonstrating that p2
representing the cell α2 = (-t2, t2) is more probable 
than the other two. The probability p2 increases for 
higher tmax.
We can guarantee that the restricted quantization is a 
suitable solution for the sources bounded by the 
amplitude, but the situation changes when we deal 
with the unrestricted ones. This effect is visible in 
Figure 4, where the higher probability that the sample 
occurs outside the restricted quantizer support region  
indicates the higher amplitude mismatch (between the 
designed range of the quantizer and the input infinite 
range), leading to larger quantization error.
In order to eliminate this drawback, we propose the 
switched quantization that will be described in the 
next subsection.

(2)
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tmax for the proposed three-level restricted quantizer

In Figure 2, we illustrate the dependence of SQNR of 
the restricted quantizer QR, which is designed for 
different values of the support region upper bound tmax
(using Lloyd-Max’s algorithm) and σ = σref = 1. We 
observe the gain in performance in terms of SQNR 
compared to the unrestricted quantizer QUR (tmax → ∞) 
[5], especially when QUR is designed for smaller tmax
values. Note that designing for larger tmax (e.g. for 
6σref) provides the SQNR score close to the one of 
QUR.
The dependence of the probability that a sample of the 
input signal belongs to a particular quantization cell 
on tmax is depicted in Figure 3, demonstrating that p2
representing the cell α2 = (-t2, t2) is more probable 
than the other two. The probability p2 increases for 
higher tmax.
We can guarantee that the restricted quantization is a 
suitable solution for the sources bounded by the 
amplitude, but the situation changes when we deal 
with the unrestricted ones. This effect is visible in 
Figure 4, where the higher probability that the sample 
occurs outside the restricted quantizer support region  
indicates the higher amplitude mismatch (between the 
designed range of the quantizer and the input infinite 
range), leading to larger quantization error.
In order to eliminate this drawback, we propose the 
switched quantization that will be described in the 
next subsection.

(3)

Step3. Interruption of the Lloyd-Max’s algorithm 
when next iteration does not produce any change in 
distortion. 
The mean squared distortion D, which is used as a 
measure of the error introduced by the restricted 
quantizer, is given by [4, 10, 11, 20]:
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symmetry, the following equations will hold: −t1 = t2
and −y1 = y3. Therefore, the design of the proposed 
quantizer includes finding the parameters t2 and y3 for 
a given tmax.
We presume that information source that needs to be 
quantized is memoryless and zero-mean restricted 
Laplacian with probability density function (pdf) [4,
10, 11, 20]:
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where σ is the standard deviation.
Lloyd-Max’s algorithm was applied in the following 
steps: 

Step1. Initialization of the threshold t2
(0) = 0.71σref

and  level y3
(0) = 1.42σref [5].

Step2. Computation of new values of level y3 and 
threshold t2 using [11]: 
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quantized signal, is given by [4, 10, 11, 20]: 
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Step3. Interruption of the Lloyd-Max’s algorithm 
when next iteration does not produce any 
change in distortion.  

The mean squared distortion D, which is used as a 
measure of the error introduced by the restricted 
quantizer, is given by [4, 10, 11, 20]: 
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SQNR, which is used as a measure of the quality of 
the quantized signal, is given by [4, 10, 11, 20]:  
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where Psor(σ) is the power of the input source defined 
as [11]:  
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Let p1, p2 and p3 denote probabilities that a sample of 
the input signal belongs to the first, second or third 
quantization cell, respectively:  
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The quantizer representative levels are encoded using 
the Huffman code. The level having the highest 
probability is encoded with codeword ‘0’ and the other 
two levels are encoded with the codewords ‘10’ and 
‘11’.  

The bit rate is defined as [20]: 

( ) ( )
3

1

N

i i
i

R p lσ σ
=

=

= ∑ , (9) 

where li is the length of the Huffman codeword 
corresponding to the level yi.  
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Figure 2. SQNR dependence on the upper bound threshold 

tmax for the proposed three-level restricted quantizer  

 
In Figure 2, we illustrate the dependence of SQNR of 
the restricted quantizer QR, which is designed for 
different values of the support region upper bound tmax 
(using Lloyd-Max’s algorithm) and σ = σref = 1. We 
observe the gain in performance in terms of SQNR 
compared to the unrestricted quantizer QUR (tmax → ∞) 
[5], especially when QUR is designed for smaller tmax 
values. Note that designing for larger tmax (e.g. for 
6σref) provides the SQNR score close to the one of 
QUR. 
The dependence of the probability that a sample of the 
input signal belongs to a particular quantization cell 
on tmax is depicted in Figure 3, demonstrating that p2 
representing the cell α2 = (-t2, t2) is more probable 
than the other two. The probability p2 increases for 
higher tmax. 
We can guarantee that the restricted quantization is a 
suitable solution for the sources bounded by the 
amplitude, but the situation changes when we deal 
with the unrestricted ones. This effect is visible in 
Figure 4, where the higher probability that the sample 
occurs outside the restricted quantizer support region  
indicates the higher amplitude mismatch (between the 
designed range of the quantizer and the input infinite 
range), leading to larger quantization error.  
In order to eliminate this drawback, we propose the 
switched quantization that will be described in the 
next subsection. 

(5)

where Psor(σ) is the power of the input source defined 
as [11]: 
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Step3. Interruption of the Lloyd-Max’s algorithm 
when next iteration does not produce any 
change in distortion.  

The mean squared distortion D, which is used as a 
measure of the error introduced by the restricted 
quantizer, is given by [4, 10, 11, 20]: 
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The quantizer representative levels are encoded using 
the Huffman code. The level having the highest 
probability is encoded with codeword ‘0’ and the other 
two levels are encoded with the codewords ‘10’ and 
‘11’.  

The bit rate is defined as [20]: 
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where li is the length of the Huffman codeword 
corresponding to the level yi.  
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tmax for the proposed three-level restricted quantizer  

 
In Figure 2, we illustrate the dependence of SQNR of 
the restricted quantizer QR, which is designed for 
different values of the support region upper bound tmax 
(using Lloyd-Max’s algorithm) and σ = σref = 1. We 
observe the gain in performance in terms of SQNR 
compared to the unrestricted quantizer QUR (tmax → ∞) 
[5], especially when QUR is designed for smaller tmax 
values. Note that designing for larger tmax (e.g. for 
6σref) provides the SQNR score close to the one of 
QUR. 
The dependence of the probability that a sample of the 
input signal belongs to a particular quantization cell 
on tmax is depicted in Figure 3, demonstrating that p2 
representing the cell α2 = (-t2, t2) is more probable 
than the other two. The probability p2 increases for 
higher tmax. 
We can guarantee that the restricted quantization is a 
suitable solution for the sources bounded by the 
amplitude, but the situation changes when we deal 
with the unrestricted ones. This effect is visible in 
Figure 4, where the higher probability that the sample 
occurs outside the restricted quantizer support region  
indicates the higher amplitude mismatch (between the 
designed range of the quantizer and the input infinite 
range), leading to larger quantization error.  
In order to eliminate this drawback, we propose the 
switched quantization that will be described in the 
next subsection. 

(6)

Let p1, p2 and p3 denote probabilities that a sample of 
the input signal belongs to the first, second or third 
quantization cell, respectively: 
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Step3. Interruption of the Lloyd-Max’s algorithm 
when next iteration does not produce any 
change in distortion.  

The mean squared distortion D, which is used as a 
measure of the error introduced by the restricted 
quantizer, is given by [4, 10, 11, 20]: 
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The quantizer representative levels are encoded using 
the Huffman code. The level having the highest 
probability is encoded with codeword ‘0’ and the other 
two levels are encoded with the codewords ‘10’ and 
‘11’.  

The bit rate is defined as [20]: 

( ) ( )
3

1

N

i i
i

R p lσ σ
=

=

= ∑ , (9) 

where li is the length of the Huffman codeword 
corresponding to the level yi.  
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In Figure 2, we illustrate the dependence of SQNR of 
the restricted quantizer QR, which is designed for 
different values of the support region upper bound tmax 
(using Lloyd-Max’s algorithm) and σ = σref = 1. We 
observe the gain in performance in terms of SQNR 
compared to the unrestricted quantizer QUR (tmax → ∞) 
[5], especially when QUR is designed for smaller tmax 
values. Note that designing for larger tmax (e.g. for 
6σref) provides the SQNR score close to the one of 
QUR. 
The dependence of the probability that a sample of the 
input signal belongs to a particular quantization cell 
on tmax is depicted in Figure 3, demonstrating that p2 
representing the cell α2 = (-t2, t2) is more probable 
than the other two. The probability p2 increases for 
higher tmax. 
We can guarantee that the restricted quantization is a 
suitable solution for the sources bounded by the 
amplitude, but the situation changes when we deal 
with the unrestricted ones. This effect is visible in 
Figure 4, where the higher probability that the sample 
occurs outside the restricted quantizer support region  
indicates the higher amplitude mismatch (between the 
designed range of the quantizer and the input infinite 
range), leading to larger quantization error.  
In order to eliminate this drawback, we propose the 
switched quantization that will be described in the 
next subsection. 
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Step3. Interruption of the Lloyd-Max’s algorithm 
when next iteration does not produce any 
change in distortion.  

The mean squared distortion D, which is used as a 
measure of the error introduced by the restricted 
quantizer, is given by [4, 10, 11, 20]: 
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The quantizer representative levels are encoded using 
the Huffman code. The level having the highest 
probability is encoded with codeword ‘0’ and the other 
two levels are encoded with the codewords ‘10’ and 
‘11’.  

The bit rate is defined as [20]: 
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In Figure 2, we illustrate the dependence of SQNR of 
the restricted quantizer QR, which is designed for 
different values of the support region upper bound tmax 
(using Lloyd-Max’s algorithm) and σ = σref = 1. We 
observe the gain in performance in terms of SQNR 
compared to the unrestricted quantizer QUR (tmax → ∞) 
[5], especially when QUR is designed for smaller tmax 
values. Note that designing for larger tmax (e.g. for 
6σref) provides the SQNR score close to the one of 
QUR. 
The dependence of the probability that a sample of the 
input signal belongs to a particular quantization cell 
on tmax is depicted in Figure 3, demonstrating that p2 
representing the cell α2 = (-t2, t2) is more probable 
than the other two. The probability p2 increases for 
higher tmax. 
We can guarantee that the restricted quantization is a 
suitable solution for the sources bounded by the 
amplitude, but the situation changes when we deal 
with the unrestricted ones. This effect is visible in 
Figure 4, where the higher probability that the sample 
occurs outside the restricted quantizer support region  
indicates the higher amplitude mismatch (between the 
designed range of the quantizer and the input infinite 
range), leading to larger quantization error.  
In order to eliminate this drawback, we propose the 
switched quantization that will be described in the 
next subsection. 
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The quantizer representative levels are encoded using 
the Huffman code. The level having the highest proba-
bility is encoded with codeword ‘0’ and the other two 
levels are encoded with the codewords ‘10’ and ‘11’. 
The bit rate is defined as [20]:
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Step3. Interruption of the Lloyd-Max’s algorithm 
when next iteration does not produce any 
change in distortion.  

The mean squared distortion D, which is used as a 
measure of the error introduced by the restricted 
quantizer, is given by [4, 10, 11, 20]: 
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In Figure 2, we illustrate the dependence of SQNR of 
the restricted quantizer QR, which is designed for 
different values of the support region upper bound tmax 
(using Lloyd-Max’s algorithm) and σ = σref = 1. We 
observe the gain in performance in terms of SQNR 
compared to the unrestricted quantizer QUR (tmax → ∞) 
[5], especially when QUR is designed for smaller tmax 
values. Note that designing for larger tmax (e.g. for 
6σref) provides the SQNR score close to the one of 
QUR. 
The dependence of the probability that a sample of the 
input signal belongs to a particular quantization cell 
on tmax is depicted in Figure 3, demonstrating that p2 
representing the cell α2 = (-t2, t2) is more probable 
than the other two. The probability p2 increases for 
higher tmax. 
We can guarantee that the restricted quantization is a 
suitable solution for the sources bounded by the 
amplitude, but the situation changes when we deal 
with the unrestricted ones. This effect is visible in 
Figure 4, where the higher probability that the sample 
occurs outside the restricted quantizer support region  
indicates the higher amplitude mismatch (between the 
designed range of the quantizer and the input infinite 
range), leading to larger quantization error.  
In order to eliminate this drawback, we propose the 
switched quantization that will be described in the 
next subsection. 
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where li is the length of the Huffman codeword corre-
sponding to the level yi. 
In Figure 2, we illustrate the dependence of SQNR of 
the restricted quantizer QR, which is designed for dif-
ferent values of the support region upper bound tmax 
(using Lloyd-Max’s algorithm) and σ = σref = 1. We ob-
serve the gain in performance in terms of SQNR com-

pared to the unrestricted quantizer QUR (tmax → ∞) [5], 
especially when QUR is designed for smaller tmax val-
ues. Note that designing for larger tmax (e.g. for 6σref) 
provides the SQNR score close to the one of QUR.
The dependence of the probability that a sample of 
the input signal belongs to a particular quantization 
cell on tmax is depicted in Figure 3, demonstrating that 
p2 representing the cell α2 = (-t2, t2) is more probable 
than the other two. The probability p2 increases for 
higher tmax.

Figure 2 
SQNR dependence on the upper bound threshold tmax for 
the proposed three-level restricted quantizer 
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Step3. Interruption of the Lloyd-Max’s algorithm 
when next iteration does not produce any 
change in distortion.  

The mean squared distortion D, which is used as a 
measure of the error introduced by the restricted 
quantizer, is given by [4, 10, 11, 20]: 
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SQNR, which is used as a measure of the quality of 
the quantized signal, is given by [4, 10, 11, 20]:  
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The quantizer representative levels are encoded using 
the Huffman code. The level having the highest 
probability is encoded with codeword ‘0’ and the other 
two levels are encoded with the codewords ‘10’ and 
‘11’.  

The bit rate is defined as [20]: 
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where li is the length of the Huffman codeword 
corresponding to the level yi.  
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tmax for the proposed three-level restricted quantizer  

 
In Figure 2, we illustrate the dependence of SQNR of 
the restricted quantizer QR, which is designed for 
different values of the support region upper bound tmax 
(using Lloyd-Max’s algorithm) and σ = σref = 1. We 
observe the gain in performance in terms of SQNR 
compared to the unrestricted quantizer QUR (tmax → ∞) 
[5], especially when QUR is designed for smaller tmax 
values. Note that designing for larger tmax (e.g. for 
6σref) provides the SQNR score close to the one of 
QUR. 
The dependence of the probability that a sample of the 
input signal belongs to a particular quantization cell 
on tmax is depicted in Figure 3, demonstrating that p2 
representing the cell α2 = (-t2, t2) is more probable 
than the other two. The probability p2 increases for 
higher tmax. 
We can guarantee that the restricted quantization is a 
suitable solution for the sources bounded by the 
amplitude, but the situation changes when we deal 
with the unrestricted ones. This effect is visible in 
Figure 4, where the higher probability that the sample 
occurs outside the restricted quantizer support region  
indicates the higher amplitude mismatch (between the 
designed range of the quantizer and the input infinite 
range), leading to larger quantization error.  
In order to eliminate this drawback, we propose the 
switched quantization that will be described in the 
next subsection. 
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2.2. Switched Quantization

In this subsection, we propose a model of switched 
quantizer (denoted by Qs) that instead of just one 
employs two restricted three-level quantizers. Let tmax1
and tmax2 = tmax1 + Δ be the upper bounds of the three-
level restricted quantizers having smaller (QR1) and 
wider support region (QR2), respectively. Note that Δ
should be determined such that all amplitudes of the 
input signal outside the support region of QR1 belong 
to the support region of QR2. Ideally, the upper bound 
of tmax2 should be tmax2→∞ [5] and in that case Qs
provides amplitude matching for any source. 
However, we distinct from that scenario and design 
QR2 with limited upper bound, in order to exploit the 
benefit in SQNR that offers restricted quantization 
compared to the unrestricted one (see Figure 2). 
Figure 4 shows that tmax2 ≥ 3σref is a reasonable 
choice of the upper bound. Moreover, it can be shown 
that for Laplacian pdf, 98.6% of all samples lay in the 
interval (-3σref, 3σref).  The following switching rule is 
implemented to select the desired quantizer: the 
switched quantizer uses QR1 if it produces smaller 
value of distortion than QR2.
The total distortion Dt introduced by the proposed 
switched quantizer can be expressed as [18]:

( ) ( ) ( )1 2(1 )tD wD w Dσ σ σ= + − , (10)

where D1(σ) and D2(σ) are given by (4) and denote 
distortions inserted by QR1 and QR2, respectively, 
while w is the weight that determines the proportion of
QR1.
Signal to quantization noise ratio in this case can be 
determined as [11]:
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The bit rate of the switched quantizer can be 
calculated as:

( ) ( ) ( ) ( )1 21sR wR w Rσ σ σ= + − . (12)

where R1 and R2 are given by (9) and represent bit 
rates of QR1 and QR2, respectively.

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1

2

3

4

5

6

7

8

9

R [bit / sample]

SQ
N

R
 [d

B
]

w = 0.7
w = 0.1

Figure 5. SQNR vs. R for the Lloyd-Max quantizers

Let us consider the special case of Qs when it 
combines QR1 (tmax1 = 2σref) and QR2 (tmax2 = 4σref), 
where w is assumed to be 0.1 and 0.7. To determine 
the potential benefit of the given Qs, we use as 
baselines one-bit and two-bit Lloyd-Max’s quantizer 
[11, 20], since the number of quantization levels of the 
proposed quantizer is in-between the two baselines. 
The achieved performance is shown in Figure 5. It can 
be seen that it provides 3.48 dB (w = 0.7) and 1.95 dB 
(w = 0.1) higher SQNR value compared to the one 
(specified by a point on a curve) attained by the 
baseline quantizer having the same bit rate. Observe 
that SQNR increases by more frequent selection of 
QR1 (w = 0.7).

2.3. Forward Adaptive Quantization

Both restricted quantizers used in the switched 
quantization scheme described in Section 2.2 are 
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We can guarantee that the restricted quantization is a 
suitable solution for the sources bounded by the am-
plitude, but the situation changes when we deal with 
the unrestricted ones. This effect is visible in Figure 
4, where the higher probability that the sample occurs 
outside the restricted quantizer support region  indi-
cates the higher amplitude mismatch (between the 
designed range of the quantizer and the input infinite 
range), leading to larger quantization error. 
In order to eliminate this drawback, we propose the 
switched quantization that will be described in the 
next subsection.

Figure 4 
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2.2. Switched Quantization

In this subsection, we propose a model of switched 
quantizer (denoted by Qs) that instead of just one 
employs two restricted three-level quantizers. Let tmax1
and tmax2 = tmax1 + Δ be the upper bounds of the three-
level restricted quantizers having smaller (QR1) and 
wider support region (QR2), respectively. Note that Δ
should be determined such that all amplitudes of the 
input signal outside the support region of QR1 belong 
to the support region of QR2. Ideally, the upper bound 
of tmax2 should be tmax2→∞ [5] and in that case Qs
provides amplitude matching for any source. 
However, we distinct from that scenario and design 
QR2 with limited upper bound, in order to exploit the 
benefit in SQNR that offers restricted quantization 
compared to the unrestricted one (see Figure 2). 
Figure 4 shows that tmax2 ≥ 3σref is a reasonable 
choice of the upper bound. Moreover, it can be shown 
that for Laplacian pdf, 98.6% of all samples lay in the 
interval (-3σref, 3σref).  The following switching rule is 
implemented to select the desired quantizer: the 
switched quantizer uses QR1 if it produces smaller 
value of distortion than QR2.
The total distortion Dt introduced by the proposed 
switched quantizer can be expressed as [18]:

( ) ( ) ( )1 2(1 )tD wD w Dσ σ σ= + − , (10)

where D1(σ) and D2(σ) are given by (4) and denote 
distortions inserted by QR1 and QR2, respectively, 
while w is the weight that determines the proportion of
QR1.
Signal to quantization noise ratio in this case can be 
determined as [11]:
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The bit rate of the switched quantizer can be 
calculated as:
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where R1 and R2 are given by (9) and represent bit 
rates of QR1 and QR2, respectively.
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Let us consider the special case of Qs when it 
combines QR1 (tmax1 = 2σref) and QR2 (tmax2 = 4σref), 
where w is assumed to be 0.1 and 0.7. To determine 
the potential benefit of the given Qs, we use as 
baselines one-bit and two-bit Lloyd-Max’s quantizer 
[11, 20], since the number of quantization levels of the 
proposed quantizer is in-between the two baselines. 
The achieved performance is shown in Figure 5. It can 
be seen that it provides 3.48 dB (w = 0.7) and 1.95 dB 
(w = 0.1) higher SQNR value compared to the one 
(specified by a point on a curve) attained by the 
baseline quantizer having the same bit rate. Observe 
that SQNR increases by more frequent selection of 
QR1 (w = 0.7).

2.3. Forward Adaptive Quantization

Both restricted quantizers used in the switched 
quantization scheme described in Section 2.2 are 

2.2. Switched Quantization
In this subsection, we propose a model of switched 
quantizer (denoted by Qs) that instead of just one em-
ploys two restricted three-level quantizers. Let tmax1 
and tmax2 = tmax1 + Δ be the upper bounds of the three-lev-
el restricted quantizers having smaller (QR1) and wider 
support region (QR2), respectively. Note that Δ should 
be determined such that all amplitudes of the input 
signal outside the support region of QR1 belong to the 
support region of QR2. Ideally, the upper bound of tmax2 
should be tmax2→∞ [5] and in that case Qs provides am-
plitude matching for any source. However, we distinct 
from that scenario and design QR2 with limited upper 
bound, in order to exploit the benefit in SQNR that 
offers restricted quantization compared to the unre-

stricted one (see Figure 2). Figure 4 shows that tmax2 ≥ 
3σref is a reasonable choice of the upper bound. More-
over, it can be shown that for Laplacian pdf, 98.6% of 
all samples lay in the interval (-3σref, 3σref). The follow-
ing switching rule is implemented to select the desired 
quantizer: the switched quantizer uses QR1 if it produc-
es smaller value of distortion than QR2. 
The total distortion Dt introduced by the proposed 
switched quantizer can be expressed as [18]:
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2.2. Switched Quantization

In this subsection, we propose a model of switched 
quantizer (denoted by Qs) that instead of just one 
employs two restricted three-level quantizers. Let tmax1
and tmax2 = tmax1 + Δ be the upper bounds of the three-
level restricted quantizers having smaller (QR1) and 
wider support region (QR2), respectively. Note that Δ
should be determined such that all amplitudes of the 
input signal outside the support region of QR1 belong 
to the support region of QR2. Ideally, the upper bound 
of tmax2 should be tmax2→∞ [5] and in that case Qs
provides amplitude matching for any source. 
However, we distinct from that scenario and design 
QR2 with limited upper bound, in order to exploit the 
benefit in SQNR that offers restricted quantization 
compared to the unrestricted one (see Figure 2). 
Figure 4 shows that tmax2 ≥ 3σref is a reasonable 
choice of the upper bound. Moreover, it can be shown 
that for Laplacian pdf, 98.6% of all samples lay in the 
interval (-3σref, 3σref).  The following switching rule is 
implemented to select the desired quantizer: the 
switched quantizer uses QR1 if it produces smaller 
value of distortion than QR2.
The total distortion Dt introduced by the proposed 
switched quantizer can be expressed as [18]:

( ) ( ) ( )1 2(1 )tD wD w Dσ σ σ= + − , (10)

where D1(σ) and D2(σ) are given by (4) and denote 
distortions inserted by QR1 and QR2, respectively, 
while w is the weight that determines the proportion of
QR1.
Signal to quantization noise ratio in this case can be 
determined as [11]:

( ) ( )
2

10SQNR 10logs
tD
σσ
σ

 
=   

 
. (11)

The bit rate of the switched quantizer can be 
calculated as:

( ) ( ) ( ) ( )1 21sR wR w Rσ σ σ= + − . (12)

where R1 and R2 are given by (9) and represent bit 
rates of QR1 and QR2, respectively.
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Let us consider the special case of Qs when it 
combines QR1 (tmax1 = 2σref) and QR2 (tmax2 = 4σref), 
where w is assumed to be 0.1 and 0.7. To determine 
the potential benefit of the given Qs, we use as 
baselines one-bit and two-bit Lloyd-Max’s quantizer 
[11, 20], since the number of quantization levels of the 
proposed quantizer is in-between the two baselines. 
The achieved performance is shown in Figure 5. It can 
be seen that it provides 3.48 dB (w = 0.7) and 1.95 dB 
(w = 0.1) higher SQNR value compared to the one 
(specified by a point on a curve) attained by the 
baseline quantizer having the same bit rate. Observe 
that SQNR increases by more frequent selection of 
QR1 (w = 0.7).

2.3. Forward Adaptive Quantization

Both restricted quantizers used in the switched 
quantization scheme described in Section 2.2 are 
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2.2. Switched Quantization

In this subsection, we propose a model of switched 
quantizer (denoted by Qs) that instead of just one 
employs two restricted three-level quantizers. Let tmax1
and tmax2 = tmax1 + Δ be the upper bounds of the three-
level restricted quantizers having smaller (QR1) and 
wider support region (QR2), respectively. Note that Δ
should be determined such that all amplitudes of the 
input signal outside the support region of QR1 belong 
to the support region of QR2. Ideally, the upper bound 
of tmax2 should be tmax2→∞ [5] and in that case Qs
provides amplitude matching for any source. 
However, we distinct from that scenario and design 
QR2 with limited upper bound, in order to exploit the 
benefit in SQNR that offers restricted quantization 
compared to the unrestricted one (see Figure 2). 
Figure 4 shows that tmax2 ≥ 3σref is a reasonable 
choice of the upper bound. Moreover, it can be shown 
that for Laplacian pdf, 98.6% of all samples lay in the 
interval (-3σref, 3σref).  The following switching rule is 
implemented to select the desired quantizer: the 
switched quantizer uses QR1 if it produces smaller 
value of distortion than QR2.
The total distortion Dt introduced by the proposed 
switched quantizer can be expressed as [18]:

( ) ( ) ( )1 2(1 )tD wD w Dσ σ σ= + − , (10)

where D1(σ) and D2(σ) are given by (4) and denote 
distortions inserted by QR1 and QR2, respectively, 
while w is the weight that determines the proportion of
QR1.
Signal to quantization noise ratio in this case can be 
determined as [11]:
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calculated as:
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where R1 and R2 are given by (9) and represent bit 
rates of QR1 and QR2, respectively.
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Let us consider the special case of Qs when it 
combines QR1 (tmax1 = 2σref) and QR2 (tmax2 = 4σref), 
where w is assumed to be 0.1 and 0.7. To determine 
the potential benefit of the given Qs, we use as 
baselines one-bit and two-bit Lloyd-Max’s quantizer 
[11, 20], since the number of quantization levels of the 
proposed quantizer is in-between the two baselines. 
The achieved performance is shown in Figure 5. It can 
be seen that it provides 3.48 dB (w = 0.7) and 1.95 dB 
(w = 0.1) higher SQNR value compared to the one 
(specified by a point on a curve) attained by the 
baseline quantizer having the same bit rate. Observe 
that SQNR increases by more frequent selection of 
QR1 (w = 0.7).

2.3. Forward Adaptive Quantization

Both restricted quantizers used in the switched 
quantization scheme described in Section 2.2 are 
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2.2. Switched Quantization

In this subsection, we propose a model of switched 
quantizer (denoted by Qs) that instead of just one 
employs two restricted three-level quantizers. Let tmax1
and tmax2 = tmax1 + Δ be the upper bounds of the three-
level restricted quantizers having smaller (QR1) and 
wider support region (QR2), respectively. Note that Δ
should be determined such that all amplitudes of the 
input signal outside the support region of QR1 belong 
to the support region of QR2. Ideally, the upper bound 
of tmax2 should be tmax2→∞ [5] and in that case Qs
provides amplitude matching for any source. 
However, we distinct from that scenario and design 
QR2 with limited upper bound, in order to exploit the 
benefit in SQNR that offers restricted quantization 
compared to the unrestricted one (see Figure 2). 
Figure 4 shows that tmax2 ≥ 3σref is a reasonable 
choice of the upper bound. Moreover, it can be shown 
that for Laplacian pdf, 98.6% of all samples lay in the 
interval (-3σref, 3σref).  The following switching rule is 
implemented to select the desired quantizer: the 
switched quantizer uses QR1 if it produces smaller 
value of distortion than QR2.
The total distortion Dt introduced by the proposed 
switched quantizer can be expressed as [18]:

( ) ( ) ( )1 2(1 )tD wD w Dσ σ σ= + − , (10)

where D1(σ) and D2(σ) are given by (4) and denote 
distortions inserted by QR1 and QR2, respectively, 
while w is the weight that determines the proportion of
QR1.
Signal to quantization noise ratio in this case can be 
determined as [11]:
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calculated as:
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where R1 and R2 are given by (9) and represent bit 
rates of QR1 and QR2, respectively.
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Let us consider the special case of Qs when it 
combines QR1 (tmax1 = 2σref) and QR2 (tmax2 = 4σref), 
where w is assumed to be 0.1 and 0.7. To determine 
the potential benefit of the given Qs, we use as 
baselines one-bit and two-bit Lloyd-Max’s quantizer 
[11, 20], since the number of quantization levels of the 
proposed quantizer is in-between the two baselines. 
The achieved performance is shown in Figure 5. It can 
be seen that it provides 3.48 dB (w = 0.7) and 1.95 dB 
(w = 0.1) higher SQNR value compared to the one 
(specified by a point on a curve) attained by the 
baseline quantizer having the same bit rate. Observe 
that SQNR increases by more frequent selection of 
QR1 (w = 0.7).

2.3. Forward Adaptive Quantization

Both restricted quantizers used in the switched 
quantization scheme described in Section 2.2 are 
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2.2. Switched Quantization

In this subsection, we propose a model of switched 
quantizer (denoted by Qs) that instead of just one 
employs two restricted three-level quantizers. Let tmax1
and tmax2 = tmax1 + Δ be the upper bounds of the three-
level restricted quantizers having smaller (QR1) and 
wider support region (QR2), respectively. Note that Δ
should be determined such that all amplitudes of the 
input signal outside the support region of QR1 belong 
to the support region of QR2. Ideally, the upper bound 
of tmax2 should be tmax2→∞ [5] and in that case Qs
provides amplitude matching for any source. 
However, we distinct from that scenario and design 
QR2 with limited upper bound, in order to exploit the 
benefit in SQNR that offers restricted quantization 
compared to the unrestricted one (see Figure 2). 
Figure 4 shows that tmax2 ≥ 3σref is a reasonable 
choice of the upper bound. Moreover, it can be shown 
that for Laplacian pdf, 98.6% of all samples lay in the 
interval (-3σref, 3σref).  The following switching rule is 
implemented to select the desired quantizer: the 
switched quantizer uses QR1 if it produces smaller 
value of distortion than QR2.
The total distortion Dt introduced by the proposed 
switched quantizer can be expressed as [18]:

( ) ( ) ( )1 2(1 )tD wD w Dσ σ σ= + − , (10)

where D1(σ) and D2(σ) are given by (4) and denote 
distortions inserted by QR1 and QR2, respectively, 
while w is the weight that determines the proportion of
QR1.
Signal to quantization noise ratio in this case can be 
determined as [11]:

( ) ( )
2

10SQNR 10logs
tD
σσ
σ

 
=   

 
. (11)

The bit rate of the switched quantizer can be 
calculated as:

( ) ( ) ( ) ( )1 21sR wR w Rσ σ σ= + − . (12)

where R1 and R2 are given by (9) and represent bit 
rates of QR1 and QR2, respectively.
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Let us consider the special case of Qs when it 
combines QR1 (tmax1 = 2σref) and QR2 (tmax2 = 4σref), 
where w is assumed to be 0.1 and 0.7. To determine 
the potential benefit of the given Qs, we use as 
baselines one-bit and two-bit Lloyd-Max’s quantizer 
[11, 20], since the number of quantization levels of the 
proposed quantizer is in-between the two baselines. 
The achieved performance is shown in Figure 5. It can 
be seen that it provides 3.48 dB (w = 0.7) and 1.95 dB 
(w = 0.1) higher SQNR value compared to the one 
(specified by a point on a curve) attained by the 
baseline quantizer having the same bit rate. Observe 
that SQNR increases by more frequent selection of 
QR1 (w = 0.7).

2.3. Forward Adaptive Quantization

Both restricted quantizers used in the switched 
quantization scheme described in Section 2.2 are 
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2.3. Forward Adaptive Quantization
Both restricted quantizers used in the switched quan-
tization scheme described in Section 2.2 are realized 
using the forward adaptive technique, as shown in 
Figure 6. It consists of a buffer, a variance estimator, 
an L-levels log-uniform quantizer QLU and an encoder 
with two adaptive restricted quantizers (QR1 and QR2). 
The output of the restricted quantizer is encoded us-
ing the Huffman code. The quantizers are adapted to 
the short-term estimate of the variance (power) for 
each frame of the input signal. Therefore, it is nec-
essary to adjust the quantizer’s codebook framewise. 
The following procedure is performed. 
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estimator, an L-levels log-uniform quantizer QLU and 
an encoder with two adaptive restricted quantizers 
(QR1 and QR2). The output of the restricted quantizer is 
encoded using the Huffman code. The quantizers are 
adapted to the short-term estimate of the variance 
(power) for each frame of the input signal. Therefore, 
it is necessary to adjust the quantizer’s codebook 
framewise. The following procedure is performed.  
Buffer is used for storage of frame with M samples. 
The samples within the buffer are denoted as xi, i = 1, 
2,…, M. The variance estimator calculates the 
variance σ2 within one frame. It is used for adaptation 
and has to be quantized since the information about it 
has to be available at the decoder side.  
For the variance quantization, we have used a log-
uniform scalar quantizer (QLU), since it attains better 
performance (more constant SQNR in a wide dynamic 
range) compared to the uniform one [15]. Particularly, 
the log-uniform quantizer having L levels is designed 
for quantizing the logarithmic variance                   
α[dB] = 10log10(σ2/σ0

2) in the range (-30dB, 30dB) 
with respect to referent variance (power) σ0

2. 
The thresholds and levels in the logaritmic domain are 
given by (13) and (14), respectively: 

[dB] 30i Ll i= − + ∆ , 0,...,i L= ,                       (13) 

1ˆ [dB] 30
2i Ll i = − + − ∆ 

 
, 1,...,i L= , (14) 

where ΔL = 60/L [dB] is the step size.  
In the linear domain, they are given by (15) and 

(16), respectively:  
/102

0 10 il
ir σ= , 0,...,i L= , (15) 

ˆ /102
0ˆ 10 il

ir σ= , 1,...,i L= . (16) 

The quantization rule is given by QLU (σ2) = r̂ i for 
σ2∈ (ri-1, ri).  
The parameters of the k-th adaptive quantizer, k = 1, 2, 
are updated according to the quantized value of the 
frame variance, and for σ2 ∈ (ri-1, ri), they can be 
respectively determined as: tmax,k

a
 = gi ⋅ tmax,k (σref),   

t2,k
a

 = gi ⋅ t2,k (σref), y3,k
a

 = gi ⋅ y3,k (σref), where 
ˆi ig r= . These parameters are constant inside the 

current frame. With tmax,k (σref), t2,k (σref) and y3,k(σref) 
we denote maximal amplitude, threshold and level of 
the non-adaptive (designed for σref) restricted 
quantizer, respectively.  
Quantization for the particular frame is performed 
using both quantizers and distortions are estimated. 
The encoder makes a selection of the quantizer based 
on lower distortion.  
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Buffer is used for storage of frame with M samples. 
The samples within the buffer are denoted as xi, i = 
1, 2,…, M. The variance estimator calculates the vari-
ance σ2 within one frame. It is used for adaptation and 
has to be quantized since the information about it has 
to be available at the decoder side. 
For the variance quantization, we have used a log-uni-
form scalar quantizer (QLU), since it attains better 
performance (more constant SQNR in a wide dy-
namic range) compared to the uniform one [15]. Par-
ticularly, the log-uniform quantizer having L levels 
is designed for quantizing the logarithmic variance  
α[dB] = 10log10(σ2/σ0

2) in the range (-30dB, 30dB) 
with respect to referent variance (power) σ0

2.
The thresholds and levels in the logaritmic domain 
are given by (13) and (14), respectively:
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estimator, an L-levels log-uniform quantizer QLU and 
an encoder with two adaptive restricted quantizers 
(QR1 and QR2). The output of the restricted quantizer is 
encoded using the Huffman code. The quantizers are 
adapted to the short-term estimate of the variance 
(power) for each frame of the input signal. Therefore, 
it is necessary to adjust the quantizer’s codebook 
framewise. The following procedure is performed.  
Buffer is used for storage of frame with M samples. 
The samples within the buffer are denoted as xi, i = 1, 
2,…, M. The variance estimator calculates the 
variance σ2 within one frame. It is used for adaptation 
and has to be quantized since the information about it 
has to be available at the decoder side.  
For the variance quantization, we have used a log-
uniform scalar quantizer (QLU), since it attains better 
performance (more constant SQNR in a wide dynamic 
range) compared to the uniform one [15]. Particularly, 
the log-uniform quantizer having L levels is designed 
for quantizing the logarithmic variance                   
α[dB] = 10log10(σ2/σ0

2) in the range (-30dB, 30dB) 
with respect to referent variance (power) σ0

2. 
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given by (13) and (14), respectively: 
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In the linear domain, they are given by (15) and 
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The quantization rule is given by QLU (σ2) = r̂ i for 
σ2∈ (ri-1, ri).  
The parameters of the k-th adaptive quantizer, k = 1, 2, 
are updated according to the quantized value of the 
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current frame. With tmax,k (σref), t2,k (σref) and y3,k(σref) 
we denote maximal amplitude, threshold and level of 
the non-adaptive (designed for σref) restricted 
quantizer, respectively.  
Quantization for the particular frame is performed 
using both quantizers and distortions are estimated. 
The encoder makes a selection of the quantizer based 
on lower distortion.  
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estimator, an L-levels log-uniform quantizer QLU and 
an encoder with two adaptive restricted quantizers 
(QR1 and QR2). The output of the restricted quantizer is 
encoded using the Huffman code. The quantizers are 
adapted to the short-term estimate of the variance 
(power) for each frame of the input signal. Therefore, 
it is necessary to adjust the quantizer’s codebook 
framewise. The following procedure is performed.  
Buffer is used for storage of frame with M samples. 
The samples within the buffer are denoted as xi, i = 1, 
2,…, M. The variance estimator calculates the 
variance σ2 within one frame. It is used for adaptation 
and has to be quantized since the information about it 
has to be available at the decoder side.  
For the variance quantization, we have used a log-
uniform scalar quantizer (QLU), since it attains better 
performance (more constant SQNR in a wide dynamic 
range) compared to the uniform one [15]. Particularly, 
the log-uniform quantizer having L levels is designed 
for quantizing the logarithmic variance                   
α[dB] = 10log10(σ2/σ0
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σ2∈ (ri-1, ri).  
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current frame. With tmax,k (σref), t2,k (σref) and y3,k(σref) 
we denote maximal amplitude, threshold and level of 
the non-adaptive (designed for σref) restricted 
quantizer, respectively.  
Quantization for the particular frame is performed 
using both quantizers and distortions are estimated. 
The encoder makes a selection of the quantizer based 
on lower distortion.  
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estimator, an L-levels log-uniform quantizer QLU and 
an encoder with two adaptive restricted quantizers 
(QR1 and QR2). The output of the restricted quantizer is 
encoded using the Huffman code. The quantizers are 
adapted to the short-term estimate of the variance 
(power) for each frame of the input signal. Therefore, 
it is necessary to adjust the quantizer’s codebook 
framewise. The following procedure is performed.  
Buffer is used for storage of frame with M samples. 
The samples within the buffer are denoted as xi, i = 1, 
2,…, M. The variance estimator calculates the 
variance σ2 within one frame. It is used for adaptation 
and has to be quantized since the information about it 
has to be available at the decoder side.  
For the variance quantization, we have used a log-
uniform scalar quantizer (QLU), since it attains better 
performance (more constant SQNR in a wide dynamic 
range) compared to the uniform one [15]. Particularly, 
the log-uniform quantizer having L levels is designed 
for quantizing the logarithmic variance                   
α[dB] = 10log10(σ2/σ0

2) in the range (-30dB, 30dB) 
with respect to referent variance (power) σ0

2. 
The thresholds and levels in the logaritmic domain are 
given by (13) and (14), respectively: 
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where ΔL = 60/L [dB] is the step size.  
In the linear domain, they are given by (15) and 
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The quantization rule is given by QLU (σ2) = r̂ i for 
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Quantization for the particular frame is performed 
using both quantizers and distortions are estimated. 
The encoder makes a selection of the quantizer based 
on lower distortion.  
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estimator, an L-levels log-uniform quantizer QLU and 
an encoder with two adaptive restricted quantizers 
(QR1 and QR2). The output of the restricted quantizer is 
encoded using the Huffman code. The quantizers are 
adapted to the short-term estimate of the variance 
(power) for each frame of the input signal. Therefore, 
it is necessary to adjust the quantizer’s codebook 
framewise. The following procedure is performed.  
Buffer is used for storage of frame with M samples. 
The samples within the buffer are denoted as xi, i = 1, 
2,…, M. The variance estimator calculates the 
variance σ2 within one frame. It is used for adaptation 
and has to be quantized since the information about it 
has to be available at the decoder side.  
For the variance quantization, we have used a log-
uniform scalar quantizer (QLU), since it attains better 
performance (more constant SQNR in a wide dynamic 
range) compared to the uniform one [15]. Particularly, 
the log-uniform quantizer having L levels is designed 
for quantizing the logarithmic variance                   
α[dB] = 10log10(σ2/σ0

2) in the range (-30dB, 30dB) 
with respect to referent variance (power) σ0

2. 
The thresholds and levels in the logaritmic domain are 
given by (13) and (14), respectively: 
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where ΔL = 60/L [dB] is the step size.  
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(16), respectively:  
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The quantization rule is given by QLU (σ2) = r̂ i for 
σ2∈ (ri-1, ri).  
The parameters of the k-th adaptive quantizer, k = 1, 2, 
are updated according to the quantized value of the 
frame variance, and for σ2 ∈ (ri-1, ri), they can be 
respectively determined as: tmax,k
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ˆi ig r= . These parameters are constant inside the 

current frame. With tmax,k (σref), t2,k (σref) and y3,k(σref) 
we denote maximal amplitude, threshold and level of 
the non-adaptive (designed for σref) restricted 
quantizer, respectively.  
Quantization for the particular frame is performed 
using both quantizers and distortions are estimated. 
The encoder makes a selection of the quantizer based 
on lower distortion.  
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The quantization rule is given by QLU (σ2) = r̂i for σ2∈
(ri-1, ri). 
The parameters of the k-th adaptive quantizer, k = 1, 
2, are updated according to the quantized value of the 
frame variance, and for σ2∈ (ri-1, ri), they can be re-
spectively determined as: tmax,k

a
 = gi ⋅ tmax,k (σref),   t2,k

a
 = 

gi ⋅ t2,k (σref), y3,k
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 = gi ⋅ y3,k (σref), where ˆi ig r= . These 
parameters are constant inside the current frame. 
With tmax,k (σref), t2,k (σref) and y3,k(σref) we denote max-
imal amplitude, threshold and level of the non-adap-
tive (designed for σref) restricted quantizer, respec-
tively. 
Quantization for the particular frame is performed 
using both quantizers and distortions are estimated. 
The encoder makes a selection of the quantizer based 
on lower distortion. 

Indices I, J and K in Figure 6a are transmitted to the 
receiver. Index I carries the information about the 
encoded signal samples, while index J denotes the 
selected restricted quantizer and it is encoded with 
one-bit codeword ‘0’ or ‘1’. Information about the 
quantized variance used for adaptation is transmitted 
with index K using the fixed length codewords of log2L 
bits. J and K are transmitted as side information for 
each frame. 
Decoder is shown in Figure 6b. It consists of inverse 
encoder with two inverse restricted quantizers QR1 
and QR2, and inverse log-uniform quantizer QLU. Based 
on index J, the encoder determines which quantizer 
is used for the current frame. Using index K, side in-
formation is decoded and parameters of the inverse 
quantizer are adapted. Using index I, the decoded 
samples in the current frame are reconstructed. 
Figure 7 shows the theoretical results in the entire 
input variance range of interest for SQNR of the for-
ward adaptive quantizer QR with two different upper 
bounds and the switched quantizer Qs that combines 
these quantizers (w = 0.7). The results are obtained 
according to (5) for QR and (11) for Qs, for L=32 levels 
log-uniform quantizer and σ0

2 = 2 × 10-3. In Figure 8, 
we illustrate the dependence of bit rate of the Qs in the 
same range of variance, using (12). 
Note that SQNR(α) and R(α) are periodic functions, 
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variance for L = 32 levels log-uniform quantizer

6

Indices I, J and K in Figure 6a are transmitted to the 
receiver. Index I carries the information about the 
encoded signal samples, while index J denotes the 
selected restricted quantizer and it is encoded with 
one-bit codeword ‘0’ or ‘1’.
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Information about the quantized variance used for 
adaptation is transmitted with index K using the fixed 
length codewords of log2L bits. J and K are 
transmitted as side information for each frame. 
Decoder is shown in Figure 6b. It consists of inverse 
encoder with two inverse restricted quantizers QR1 and 
QR2, and inverse log-uniform quantizer QLU. Based on 
index J, the encoder determines which quantizer is 
used for the current frame. Using index K, side 
information is decoded and parameters of the inverse 
quantizer are adapted. Using index I, the decoded 
samples in the current frame are reconstructed. 
Figure 7 shows the theoretical results in the entire 
input variance range of interest for SQNR of the 
forward adaptive quantizer QR with two different 
upper bounds and the switched quantizer Qs that 
combines these quantizers (w = 0.7). The results are 
obtained according to (5) for QR and (11) for Qs, for 
L=32 levels log-uniform quantizer and σ0

2 = 2 × 10-3.
In Figure 8, we illustrate the dependence of bit rate of 
the Qs in the same range of variance, using (12). 
Note that SQNR(α) and R(α) are periodic functions, 
and the number of periods corresponds to the number 
of levels of the log-uniform quantizer.  
In order to obtain the average values of these functions
inside one period (α1, α2), we use the following 
expressions [18]:
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α α
α α
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− ∫ , (17)
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σ σ
σ σ
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− ∫ , (18)

where 1 /20
1 010ασ σ= and 2 /20

2 010ασ σ= .
Based on Figures 7 and 8, we observe that the average 
values of SQNRs,av and Rs,av obtained for the switched 
quantizer Qs comply with the results presented in 
Figure 5. 
Now, we can define the average bit rate for the 
adaptive switched quantizer as:

2
, ,

log 1a
s av s av

LR R
M

+
= + , (19)

where the second term is the side information.

3. Experimental Results and Discussion
The performance of the proposed codec is tested for 
speech signal, as it was shown that Laplacian pdf 
accurately models speech for frames shorter than 200 
ms [12]. Moreover, the speech is an example where 
the small amplitude values are more likely than large 
ones, which is beneficial since we deal with restricted 
quantization.
Training sequence of approximately one million 
speech samples (Serbian language, male speaker, 
sampled at 16 kHz) was used to determine the weight 
w, which denotes the proportion of QR1 (see Section 
2.2). The proposed codec was then applied to test 
speech signal that was not included in the training 
sequence. This test speech contains 66 500 samples 
spoken in Serbian language and sampled at 16 kHz.
As an objective measure of quality the segmental 
SQNR is used [4, 10, 11, 20], which is calculated 
separately over all speech frames and then averaged. It 
was observed that classical SQNR is not a good 
measure of speech quality as it averages the ratio over 
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and the number of periods corresponds to the number 
of levels of the log-uniform quantizer.    
In order to obtain the average values of these func-
tions inside one period (α1, α2), we use the following 
expressions [18]:
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encoded signal samples, while index J denotes the 
selected restricted quantizer and it is encoded with 
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Information about the quantized variance used for 
adaptation is transmitted with index K using the fixed 
length codewords of log2L bits. J and K are 
transmitted as side information for each frame. 
Decoder is shown in Figure 6b. It consists of inverse 
encoder with two inverse restricted quantizers QR1 and 
QR2, and inverse log-uniform quantizer QLU. Based on 
index J, the encoder determines which quantizer is 
used for the current frame. Using index K, side 
information is decoded and parameters of the inverse 
quantizer are adapted. Using index I, the decoded 
samples in the current frame are reconstructed. 
Figure 7 shows the theoretical results in the entire 
input variance range of interest for SQNR of the 
forward adaptive quantizer QR with two different 
upper bounds and the switched quantizer Qs that 
combines these quantizers (w = 0.7). The results are 
obtained according to (5) for QR and (11) for Qs, for 
L=32 levels log-uniform quantizer and σ0

2 = 2 × 10-3.
In Figure 8, we illustrate the dependence of bit rate of 
the Qs in the same range of variance, using (12). 
Note that SQNR(α) and R(α) are periodic functions, 
and the number of periods corresponds to the number 
of levels of the log-uniform quantizer.  
In order to obtain the average values of these functions
inside one period (α1, α2), we use the following 
expressions [18]:

( ) ( )
2

1

,
2 1

1SQNR SQNRs av s d
α

α

α α
α α

=
− ∫ , (17)

( ) ( )
2

1

,
2 1

1
s av sR R d

σ

σ

σ σ
σ σ

=
− ∫ , (18)

where 1 /20
1 010ασ σ= and 2 /20

2 010ασ σ= .
Based on Figures 7 and 8, we observe that the average 
values of SQNRs,av and Rs,av obtained for the switched 
quantizer Qs comply with the results presented in 
Figure 5. 
Now, we can define the average bit rate for the 
adaptive switched quantizer as:
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where the second term is the side information.

3. Experimental Results and Discussion
The performance of the proposed codec is tested for 
speech signal, as it was shown that Laplacian pdf 
accurately models speech for frames shorter than 200 
ms [12]. Moreover, the speech is an example where 
the small amplitude values are more likely than large 
ones, which is beneficial since we deal with restricted 
quantization.
Training sequence of approximately one million 
speech samples (Serbian language, male speaker, 
sampled at 16 kHz) was used to determine the weight 
w, which denotes the proportion of QR1 (see Section 
2.2). The proposed codec was then applied to test 
speech signal that was not included in the training 
sequence. This test speech contains 66 500 samples 
spoken in Serbian language and sampled at 16 kHz.
As an objective measure of quality the segmental 
SQNR is used [4, 10, 11, 20], which is calculated 
separately over all speech frames and then averaged. It 
was observed that classical SQNR is not a good 
measure of speech quality as it averages the ratio over 
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Indices I, J and K in Figure 6a are transmitted to the 
receiver. Index I carries the information about the 
encoded signal samples, while index J denotes the 
selected restricted quantizer and it is encoded with 
one-bit codeword ‘0’ or ‘1’.
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used for the current frame. Using index K, side 
information is decoded and parameters of the inverse 
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Information about the quantized variance used for 
adaptation is transmitted with index K using the fixed 
length codewords of log2L bits. J and K are 
transmitted as side information for each frame. 
Decoder is shown in Figure 6b. It consists of inverse 
encoder with two inverse restricted quantizers QR1 and 
QR2, and inverse log-uniform quantizer QLU. Based on 
index J, the encoder determines which quantizer is 
used for the current frame. Using index K, side 
information is decoded and parameters of the inverse 
quantizer are adapted. Using index I, the decoded 
samples in the current frame are reconstructed. 
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where w is the share of the frames processed with the 
restricted quantizer QR1, SQNRseg,1 is SQNR for 
frames processed with QR1 and SQNRseg,2 is SQNR 
for frames processed with QR2.
Figure 9 presents the share of frames processed with 
the restricted quantizer QR1 obtained on the training 
sequence for different frame sizes. Note that w slightly 
decreases as the frame size increases, i.e. the quantizer 
QR1 with smaller support region is used less often for 
longer frames.
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The set of restricted quantizers is designed in the 
range tmax ∈ (σref, 6σref), and the performance of the 
switched quantization scheme that combines the two 
quantizers (QR1 and QR2) from a given set is evaluated 
for test speech signal. The performed experiment 
reveals that the proposed coding algorithm with Qs
achieves the highest segmental SQNR value when the 
non-adaptive quantizer parameters are chosen as 
follows, QR1: tmax1 = 1.1σref and QR2: tmax2 = 3σref.
Indeed, if we observe in Figure 10 the distribution of 
the upper support bound determined over all speech 
signal frames and normalized by the standard 
deviation for the particular frame (tmax / σ), we see that 
the majority of frames have 1.1 ≤ tmax / σ ≤ 3, with 
most of the frames having tmax /σ = 3. This justifies the 
choice of the upper support bounds for QR1 and QR2.
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Figure 11. SQNR across the frames of length M = 320, for 
the forward adaptive Qs (tmax1 = 1.1σ ref and tmax2 = 3σ ref) and
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In Figure 11, we present the signal to quantization 
noise ratio accross all signal frames (M = 320) for 
configuration with the switched Qs and unrestricted 
three-level quantizer QUR. It can be seen that, both in 
active and in inactive speech frames, higher values of 
the SQNR are obtained for the switched restricted 
compared to the unrestricted quantizer.
Table 1 summarizes the performance measured by 
segmental SQNR and bit rate, for different frame sizes 
(M = 80, 160, 240 and 320 samples). The unrestricted 
three-level quantizer QUR, the two-level Lloyd-Max 
QN=2 and the four-level Lloyd-Max quantizer QN=4 are 
used as baselines. Based on the results in Table 1, one 
can perceive that the proposed switched quantizer Qs

(20)

where w is the share of the frames processed with the 
restricted quantizer QR1, SQNRseg,1 is SQNR for frames 
processed with QR1 and SQNRseg,2 is SQNR for frames 
processed with QR2. 
Figure 9 presents the share of frames processed with 
the restricted quantizer QR1 obtained on the training 
sequence for different frame sizes. Note that w slight-
ly decreases as the frame size increases, i.e. the quan-
tizer QR1 with smaller support region is used less often 
for longer frames. 
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sequence for different frame sizes. Note that w slightly 
decreases as the frame size increases, i.e. the quantizer 
QR1 with smaller support region is used less often for 
longer frames.
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The set of restricted quantizers is designed in the 
range tmax ∈ (σref, 6σref), and the performance of the 
switched quantization scheme that combines the two 
quantizers (QR1 and QR2) from a given set is evaluated 
for test speech signal. The performed experiment 
reveals that the proposed coding algorithm with Qs
achieves the highest segmental SQNR value when the 
non-adaptive quantizer parameters are chosen as 
follows, QR1: tmax1 = 1.1σref and QR2: tmax2 = 3σref.
Indeed, if we observe in Figure 10 the distribution of 
the upper support bound determined over all speech 
signal frames and normalized by the standard 
deviation for the particular frame (tmax / σ), we see that 
the majority of frames have 1.1 ≤ tmax / σ ≤ 3, with 
most of the frames having tmax /σ = 3. This justifies the 
choice of the upper support bounds for QR1 and QR2.
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In Figure 11, we present the signal to quantization 
noise ratio accross all signal frames (M = 320) for 
configuration with the switched Qs and unrestricted 
three-level quantizer QUR. It can be seen that, both in 
active and in inactive speech frames, higher values of 
the SQNR are obtained for the switched restricted 
compared to the unrestricted quantizer.
Table 1 summarizes the performance measured by 
segmental SQNR and bit rate, for different frame sizes 
(M = 80, 160, 240 and 320 samples). The unrestricted 
three-level quantizer QUR, the two-level Lloyd-Max 
QN=2 and the four-level Lloyd-Max quantizer QN=4 are 
used as baselines. Based on the results in Table 1, one 
can perceive that the proposed switched quantizer Qs
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the entire signal, which is not stationary. Speech 
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the SQNR are obtained for the switched restricted 
compared to the unrestricted quantizer.
Table 1 summarizes the performance measured by 
segmental SQNR and bit rate, for different frame sizes 
(M = 80, 160, 240 and 320 samples). The unrestricted 
three-level quantizer QUR, the two-level Lloyd-Max 
QN=2 and the four-level Lloyd-Max quantizer QN=4 are 
used as baselines. Based on the results in Table 1, one 
can perceive that the proposed switched quantizer Qs
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can perceive that the proposed switched quantizer 
Qs attains the highest segmental SQNR at the frame 
length of M = 80 samples. Notice in that case that it 
offers SQNR comparable to QN=4, with reduction in bit 
rate of 0.562 bit/sample, while outperforming config-
uration with QN=2 by 3.26 dB with only 0.438 bit/sam-
ple higher bit rate. 
The gain over QUR is approximatelly 1.43 dB, indicat-
ing the superiority of the proposed switched restrict-
ed quantizer over QUR.
Let us emphasize that the complexity of the proposed 
algorithm remains unchanged compared to the base-
lines, equal to O(n2), where n is the size of the input 
data set.

Table 1
Experimental results of different quantizers applied in the configuration in Figure 6, for various frame lengths

QS(tmax1=1.1σref,tmax2=3σref) QUR (tmax → ∞) QN=2 QN=4

SQNRseg 
[dB]

Ra 
[b/s]

SQNRseg 
[dB]

Ra 
[b/s]

SQNRseg 
[dB]

Ra 
[b/s]

SQNRseg 
[dB]

Ra 
[b/s]

M=80 7.856 1.500 6.417 1.429 4.597 1.062 7.857 2.062

M=160 7.465 1.459 6.279 1.398 4.385 1.031 7.872 2.031

M=240 7.309 1.446 6.389 1.387 4.318 1.021 7.972 2.021

M=320 7.167 1.439 6.346 1.382 4.227 1.016 7.928 2.016

Figure 12 
Theoretical results for Qs: SQNR in a wide dynamic range 
of the input signal variance and for L = 32-levels QLU 
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Let us emphasize that the complexity of the proposed 
algorithm remains unchanged compared to the 
baselines, equal to O(n2), where n is the size of the 
input data set.
Note that the theoretical results shown in Figure 12
with the same parameters (w = 0.132, tmax1 = 1.1σref,
tmax2 = 3σref) as in Table 1 are in agreement with the 
experimental ones (M = 80).

4. Conclusion
The switched restricted three-level quantization 
employing Huffman coding and its implementation to 
the forward adaptive algorithm was proposed in this 
paper. The algorithm performs frame-by-frame 
processing of the input signal, and the appropriate 
quantizer for each signal frame is chosen according to 
the criterion of lower distortion. Segmental SQNR and 
bit rate are used as a measure of performance. It was 
proved theoretically that the proposed algorithm offers 
high performance in terms of adaptability and 
robustness. The real speech signal was used to 
determine the upper bound thresholds of the involved 

restricted quantizers, while the effectiveness of the 
proposed algorithm was proven in comparison to three 
baselines: the three-level unrestricted quantizer and 
the Lloyd-Max quantizers with N = 2 and N = 4 levels.
The experimental results have shown that the 
proposed solution provides SQNR performance 
comparable to the N = 4 levels Lloyd-Max’s baseline, 
with savings in bit rate of 0.562 bits/sample, while it 
significantly outperforms other observed quantizers.
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