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. This work presents several effective approaches for linear combination of multiple artificial neural 
networks based on the extreme learning machine (ELM) algorithm. Given a learning task, a large set of neural 
networks are firstly trained by ELM. Then, these trained machines are efficiently ranked and the useless models are 
effectively discarded in order to provide an ensemble system with better generalization performance. The ensemble 
system is constructed using an automatic and fast forward model selection by minimizing the leave-one-out error, 
without user intervention. Experiments on an artificial regression dataset and three real-world engineering problems are 
discussed. According to the obtained results, the weighted linear combination of ELMs improves predictions by 
exploiting model diversity in the ensemble system with fast learning speed. 

: Artificial neural network (ANN); Extreme learning machine (ELM); Linear combination; Ensembles; 
Regression. 

Artificial neural networks (ANN) have been 
successfully applied to many engineering and science 
fields [1]. Thus, they have been used to solve 
problems in industrial applications as control 
processes, fault detection and quality evaluation; in 
security applications based on biometric recognition; 
in medical applications as diagnosis, detection and 
evaluation of medical phenomena; in financial 
applications as stock market prediction, credit  
worthiness, credit rating, bankrupt prediction, and 
prices forecasts; and finally, in many others fields of 
the science as biological systems analysis, botanical 
recognition, recipes and chemical formulation 
optimization, and ecosystem evaluation.

ANN modelling often entails the construction of 
multiple networks with different architectures, 
learning procedures and training parameters in order 
to obtain an accurate model. Typically, one of the 
trained ANNs is usually chosen as the ‘best’ model 
and the remaining networks are discarded. Instead of 
using an individual network, it is widely known that 
combining the estimates of multiple models can 
improve the performance of the best network in the 
ensemble [2]–[5].

In general, a neural network ensemble is 
constructed in two main steps: training a number of 

component neural networks and, then, combining the 
component predictions. One of the major drawbacks 
in the first step is that traditional training methods do 
not provide an efficient implementation. It is due to 
the many parameters to be properly tuned by slow 
(often gradient-based) algorithms for obtaining a good 
enough model. Besides, a large number of models 
with different complexity have to be trained for 
exploiting model diversity in the ensemble system. 
Due to this, this work makes use of the extreme 
learning machine (ELM) algorithm, which has been 
introduced to solve the speed limitation in the learning 
process of single layer feedforward neural networks 
(SLFNs) [6]–[9]. Different from the common 
understanding of learning, the hidden layer of SLFNs 
does not need to be tuned using the ELM algorithm: it 
applies random computational nodes in the hidden 
layer and, then, analytically determines the output 
weights using the Moore-Penrose generalized inverse. 
The ELM algorithm tends to provide good 
generalization performance at extremely fast learning 
speed. However, the optimal network size is usually 
unknown and tedious experimentation becomes 
necessary to find a good model. Several automatic 
growing and pruning approaches have been proposed 
for ELM architectures, being the Optimally Pruned 
ELM (OP-ELM) methodology one of the most 



appropiate techniques for robust and fast design of 
ELM networks [10].

With respect to the second stage of the ensemble 
construction, the output of the ensemble system is 
computed by combining the outputs of each model, 
being simple averaging or weighted averaging the 
most prevailing approaches for regression tasks. At 
this point, it is important to remark that, in practice, 
most ensemble approaches use all of those trained 
networks to design the ensemble system and assign 
weight values according to its contribution to the 
ensemble. Some recent works have proposed adaptive 
ensembling approaches for neural networks [4], but 
their major drawbacks are that they are sensitive to 
random subsampling of validation sets and, also, they 
require to tune a threshold parameter for performing 
model selection. In this work, the most useful/accurate 
models for the ensemble are fast automatically chosen 
and it is done without user intervention. Particularly, 
after the different networks have been trained, their 
outputs are ranked according to the multiresponse 
sparse regression (MRSR) method, which determines 
the contribution of each individual model in the 
ensemble to the global prediction of the target 
variable. Once the candidate networks are ranked, the 
better models are chosen following an incremental 
forward selection methodolody by fast minimization 
of the leave-one-out (LOO) error, which is exactly 
measured with the predicted residual sums of squares 
(PRESS) statistic. As it is described in next sections, 
the model selection is not sensitive to random 
subsampling of validations sets (all samples are used 
for training and validation) and there is not any 
tuneable parameter for perform model selection.

Finally, it is widely known that the success of an 
ensemble system relies upon the diversity among the 
individual models, i.e. hypotheses disagree with each 
other in many of the individual model predictions. 
Diversity is a key aspect since it may determine 
whether the ensemble will perform better than its 
individual components. In this work, model diversity 
is exploited by varying the input layer of the 
individual models. Three different scenarios are 
evaluated: the original feature input space, the 
resulting reduced feature subset by forward selection 
and random input subspaces.

The rest of this paper is organized as follows: 
Section 2 gives an overview of the ELM algorithm for 
training SLFNs and some of its extensions for 
automatic design of the neural architecture. The 
ensemble approaches for ELM networks are described 
in Section 3 and Section 4 gives experimental results 
on four well-known regression problems. Finally, the 
main conclusions and future works are reported in 
Section 5.

Consider a dataset defined by samples (  , ), 
where = , , … , is the j-th input
vector and is its corresponding target value. 
This dataset is learned using a SLFN with M hidden 
neurons and activation function (·) , which is 
mathematically modeled as

= + = , = 1, … , ; (1)

where = [ , , … , ] is the weight vector
connecting the i-th hidden neuron and the input units,

is the weight connecting the i-th hidden neuron and
the output unit, and is the threshold of the i-th
hidden neuron. Besides, is the i-th hidden output 
for . Note that the network output unit is linear. 
Figure 1 shows a scheme of a SLFN architecture with 
single hidden layer of neurons. One of the most 
popular activaction function is the sigmoid and, in this 
case, the SLFN is widely known as multi-layer 
perceptron (MLP). The learning objective is that 

 with a good generalization capability.

Standard neural architecture of a SLFN with 
single hidden layer of neurons. The input layer is 

composed of and the output layer has one unit

The standard ELM method is based on the concept 
that if input weights w and biases are randomly 
assigned, then a SLFN can be considered as a linear 
system and the output weight vector, v , can be 
analytically determined through simple generalized 
inverse operation of the hidden layer output matrices 
[6]–[8]. For fixed w and b , thetraining of a SLFN is 
simply equivalent to find a leastsquares solution, v, for 
the linear system = , where

=
( + ) … ( + )

…
( + ) ( + )

×

(2)

From [7], [8], the solution is analytically given by 
= , where is the Moore-Penrose generalized 

inverse of , [11]. In particular, the implementation of 
ELM uses singular value decomposition (SVD) to 



calculate for faster computations and numerical 
stability. ELM is a batch learning approach much 
simpler and faster than traditional learning algorithms 
for SLFN. Without iteratively tuning parameters as in 
standard training procedures, the learning speed of 
ELM can be thousands of times faster than the 
gradient based learning algorithms. Given enough 
hidden neurons, the performance of this simple 
learning algorithm is comparable to traditional 
gradient based algorithms in terms of predictive 
accuracy results.

A. Automatic design of neural networks based on 
ELM

As it have been already mentioned, the ELM 
algorithm provides an analytical training procedure for 
a SLFN with a fixed architecture (i.e., a predefined 
hidden layer size, ) and randomly assigned hidden 
parameters. However, the optimal network size is 
usually unknown and tedious experimentation 
becomes necessary to find a good network. It means 
that an exhaustive search of is done by means of a 
cross-validation procedure [1], which may imply an 
excesive computational cost in large datasets. 
Although the advantages of the ELM algorithm have 
been proved in many scientific areas, it has been 
found that the obtained networks tend to require more 
hidden nodes than traditional training methods 
because the random assignment of parameters may 
introduce inappropriate values for them. Several 
growing [12]–[14] and pruning [10], [15], [16] 
improvements for the ELM algorithm have been 
proposed in order to obtain a more compact network 
and to avoid an extensive search of the optimal hidden 
layer size. It has been shown that, in general, the 
growing techniques are more sentitive to the random 
weight initialization than prunning procedures and, 
then, they can be trapped in a sub-optimal solution. 
From the different pruning approaches, the optimally 
pruned ELM (OP-ELM) methodology stands out as a 
robust and fast technique for automatic design of ELM 
networks [10].

The OP-ELM method [10] improves the standard 
ELM algorithm by pruning inappropiate hidden nodes 
using an exact and efficient ranking criterion, which is 
based on the multiresponse sparse regression (MRSR) 
algorithm and the prediction sum of squares (PRESS) 
statistic. As it is shown in [10], OP-ELM provides 
extremely fast accurate models and achieves roughly 
the same level of accuracy as that of other well known 
machine learning methods, such as support vector 
machines (SVM) or gaussian processes (GP). In what 
follows, the three main stages of the OPELM method 
are outlined.

1. Random initialization of a large SLFN. This 
first step is performed using the standard 
ELM algorithm for a large enough number of 
neurons, . From a practical point of view, it 
is advised to set clearly above the number 
of input features: . For sigmoid 
functions, the weights are drawn randomly 

from an uniform distribution in an interval 
that covers the input data range (previously 
normalized to zero mean and unit variance) 
[10].

2. Ranking of hidden units. In a second stage, 
the MRSR algorithm is applied in order to 
rank the hidden neurons according to their 
accuracy. This method is based on a 
regularization approach inspired by the 
LASSO methodology [17], which minimizes 
the residual sum of squares while bounding 
the L1-norm of the weight vector by a 
specified value. MRSR is in essence an 
extension of the wellknown least angle 
regression (LARS) algorithm and, hence, it is 
a variable ranking technique [18], rather than 
a selection one. It must be outlined that the 
obtained ranking by MRSR is exact for linear 
problems [17]. Since the output of an ELM 
network is linear with respect to the 
randomly initialized hidden units, the 
obtained ranking of neurons by MRSR is 
exact [10]. More details of the MRSR 
method can be found in [17].

3. Selection of hidden units. Once the ranking 
of the hidden neurons has been obtained and 

is consequently ordered, the best 
hidden units for the ELM model are chosen 
using the LOO error, which can be exactly 
calculated for linear models by using the 
PRESS statistic [19]. Consider that ( ) is the 
least-squares error solution when the j-th
sample (j-th row of ) is omitted, i.e.,

( ) = ( ) ( ), (3)

where ( ) and ( ) are, respectively, 
without its j-th row and t without its j-th 
component vector.
Then, the LOO error is given by

=
1

( ) ( ) , (4)

where h is the j-th row of . To select a 
model by using the LOO error as criterion, 
the for each model is computed and 
the model with a minimal is chosen. 
Directly using the previous formula the 
computation of _PRESS would be extremely 
inefficient and computationally prohibitive 
since the model has been computed as many 
times as the number of samples. However, it 
is well-known that there is a non-iterative and 
exact formula giving the PRESS statistic as:

=
1

( ) ( ) , (5)

with  =  , is the identity matrix and 
where ( ) keeps only the diagonal entries 
of the square matrix . In this work, 



denotes the matrix Frobenius norm of . A 
proof of formula (5) is given in [20].
For OP-ELM networks, the PRESS statistic 
is iteratively computed by adding a hidden 
node (which are previously ranked in ) to 
the model. The model with hidden 
neurons obtains the lowest PRESS statistic 
and this model is considered optimal, i.e.,

 <  , (1, 2, … , ). (6)
On the contrary to the standard ELM algorithm, 

OPELM does not need to divide learning set into 
training and validation subsets because it directly 
determines the optimal hidden layer size by 
computing the LOO error with the PRESS statistic. 
Therefore, OP-ELM is faster than the standard 
ELMalgorithm and it uses more trainingsamples. Note 
that OP-ELM provides a SLFN with different hidden 
layer size for each input weight initialization.

It is widely known that the performance of a SLFN 
can be improved by combining several solutions to the 
same task, i.e., by combining the outputs of different 
individual ELMs. Rather than generating a population 
of modelsand using a single ’best’ model in 
isolation, a combinationof these networks would 
exploit, rather than ignore, the information contained 
in the redundant models. Such combination of models 
is sometimes called committees or ensembles. Two 
main issues arise when considering the ensemble 
approach: first, the creation of  models to be 
combined in an ensemble; and second, the method by 
which the outputs of the members are combined [2]. 
In the first step, note that when the trained networks 
which all generalised identically are combined in a 
ensemble system, there will be no improvement in 
performance between the outputs from the individual 
models and the ensemble of them. In order to the 
models generalize differently, they must each have 
their initial conditions varied prior to creation (for 
example, by varying initialweights or topology) or 
different training data set (forexample, by varying 
training sets or input features). Withrespect to the 
second issue, the simplest way to constructa commitee 
is to average the predictions of a set of individual 
ELM models (with the same number of hidden 
neurons and different weight initializations) [21], but 
other combination schemes are also possible.

Liu and Wang presented an ensemble ELM method 
which uses a cross-validation scheme in order to 
increase the diversity between the individual models 
[22]. This procedure trains ELM networks on 
different R pairsof data sets which are generated by 
cross-validation. Whereas, [22] uses the same hidden 
layer size for all  ×  ELMs and it does not 
perform a selection of appropiate candidate networks 
for the ensemble. In order to discard inaccurate 
individual models, Chen et al. [23] measure the 

diversity between individual models (with a 
predefined hidden layer size) and the ensemble output 
using the Pearson correlation coefficient and then 
computes its product with the mean square error 
(MSE) of each model. In particular, it discards a 
network from the ensemble if its corresponding 
product is greater than the mean value of all product 
results [23], which means that discarded models have 
large MSE and small diversity. Heeswijk et al. [24] 
introduce an adaptive ensemble of random ELM 
networks for time series prediction where its ensemble 
weights (with positivity constraints) are iteratively 
updated according to a predefined learning rate. This 
procedure can be very expensive in computational 
terms. For solving this inconvenient, Heeswijk et al. 
[25] implement the ELM algorithm using GP 
(Graphics Processing) computing (instead of standard 
CPU implementation) in order to reduce the training 
time. Nevertheless, this technique is quite sensitive on 
the correct choice of the validation set and its results 
vary if the analysis is repeated with different random 
splits.

This section presents robust and fast approaches 
for ensembling ELMs by exploiting model diversity. 
In particular, consider a linear combination scheme of 

ELM networks,   

= , (7)

where is the ensemble output and is -th ensemble 
weight. Thus, given the input vectors, the following 
problem must be solved:

= , = 1, … , ; (8)

where ojl is the prediction of the -th model given 
and is the ensemble weight vector connecting the -
th model and the output units. The ensemble weights 
can be obtained by the least-squares solution of (8): 

= , where denotes the Moore-Penrose 
generalized inverse of the network output matrix ,
whose -th column is the l-th network’s ouput vector 
for the input vectors. Here, this ensembling 
procedure is known as least-squares combination of 
ELMs (LSC-ELM).

Instead of using all the models, the networks 
(with ) whose linear combination provides 
better generalization capability are chosen. From the 
basis of the OP-ELM methodology, a direct and exact 
linear combination of the chosen networks is 
obtained and, then, the useless networks are 
effectively discarded. Besides, in order to exploit 
diversity, this work analyzes three different 
alternatives to construct the initial models: (1) to 
train all networks with the same initial input features; 
(2), to train all networks with a subset of input 
variables which is obtained by forward feature 
selection; and (3), to train each ELM network with 



different random subsets of features. Each candidate 
network for the ensemble system is trained using the 
OP-ELM algorithm, as in [24]. On the contrary to 
other ensembling methods, this procedure has more 
diversity and independence in the individual ELM 
networks because they are trained with different 
hidden layer sizes and subsets of input features. As far 
as it is concerned, there is not any previous work that 
analyzes the influence of the input feature space on 
combining extreme learning machines. The selection 
of ELMs in the ensemble is fast and exact thanks to 
the advantages of the MRSR algorithm and the 
PRESS statistic, without influence to the random 
subsampling for obtaining a validation set.

A. Initial construction of ELM networks
The first stage is to construct L different SLFNs 

using the OP-ELM algorithm and three different 
alternatives are analyzed in order to exploit diversity:

1. The first approach is to consider that all 
SLFNs are trained using the features that 
define the input dataset. In this case, the 
diversity is given by the different SLFNs 
(with different hidden layer sizes) obtained 
with OP-ELM for each random input weight 
initialization. It is known as OC-ELM 
(Optimal Combination of ELMs) and it is a 
direct enhancement of LSC-ELMs and OP-
ELM.

2. Feature selection is a useful approach where 
the irrelevant inputs, which can be harmful 
for modeling the target data, are discarded. 
Following this, a second alternative is to 
obtain a subset of input variables through 
forward feature selection (without a previous 
ranking), in which features are sequentially 
added to an empty candidate set until the 
addition of further features does not decrease 
the LOO error in each individual model. Note 
that several repetitions ( ) of the OP-ELM 
algorithm have to be done for averaging the 
LOO error in each possible feature subset. 
Once the convergence is reached, different 
SLFNs are obtained (with different hidden 

layer sizes), which have been trained using 
OP-ELM in the best subset of inputs. It is 
known as OC-ELM-FFS (Optimal 
Combination of ELMs based on Forward 
Feature Selection). This procedure gives the 
best subset of inputs but it entails a 
significant computational cost due to the 
incremental forward search.

3. In order to an ensemble achieves better 
accuracy than individual networks, it is 
critical that there should be enough 
independence or disimilarity (i.e., diversity) 
among the models. Thirdly, in order to 
increase the diversity, a good alternative is to 
consider different random subsets of features 
during the OP-ELM training of each network. 
Thus, it gives different SLFNs which are 
composed of different number of hidden 
units and input features. It is known as OC-
ELM-RFS (Optimal Combination of ELMs 
based on Random Feature Subsets). In this 
case, it may be required an enough large set 
of network candidates with random input 
subsets because inaccurate models can be 
obtained from certain feature subsets. Due to 
this, high-dimensional datasets require a 
larger number of random networks. It should 
be outlined that these inappropiate models
(i.e., inappropiate random feature subsets) 
will be automatically omitted in the next 
prunning stage.

Figure 2 shows the linear combination scheme of 
neural networks trained by OP-ELM. Note that the 
networks have different hidden layer sizes and, in this
approach, the feature input space is the same for all
networks. The most appropiate models (with the same 
input feature space) are effectively chosen using OC-
ELM. Whereas, when the OC-ELM-FFS approach is 
used, the input feature space is composed of the best 
attributes, with  <  . Finally, in the case of the OC-
ELM-RFS approach, the models have different 
random input subsets.

Linear combination of multiple extreme learning machines



B. Ensemble design
Once the different ELMs have been trained, their 

network ouputs ( ) are previously ranked using the 
MRSR method [17] and the network output matrix 
is consequently ordered. Then, the better models are 
chosen by minimizing the LOO error, which can be 
exactly measured with the PRESS statistic [20]. The 
inappropriate and useless models are discarded from 
the ensemble. This ensemble pruning reduces the
storage needs, speeds up the operation stage and has 
the potential of improving the performance of the 
single neural architecture. It should be noted that the 
obtained ensemble system is fast and exact. Note that 
this stage is the same for the above three alternatives.

Finally, it should be noted that the model selection 
is exact and automatic. It is insensitive to random 
subsampling of validations sets (all samples are used 
for training and validation) and there is not any 
tuneable parameter.

A. Datasets
In order to evaluate the performance of the ELM 

methods discussed in this work, four well-known 
regression problems are studied. Table 1 summarizes 
these datasets.

Regression datasets used in the experiments

Friedman 27179 13589 10
Stocks 634 316 9 

Parkinsons 3525 2350 16
Tecator 172 44 100

The first two datasets (Friedman and Stocks) are 
from L. Torgo’s website [26], the Parkinsons dataset is 
obtained from UCI Machine Learning Repository [27] 
and the Tecator dataset is from the StatLib archive 
[28]. Except for Tecator (which is originally divided), 
each dataset is randomly splitted up into training 
( ) and test sets ( ). These regression problems 
have been selected trying to cover different 
complexities, such as large datasets or high 
dimensional data. The first dataset, Friedman, is an 
artificial problem and the three remaining benchmark 
prediction problems belong to different realworld
scientific areas (economics, biomedical engineering
and chemometrics).

Friedman is a synthetic benchmark dataset. The 
input vectors are composed of ten attributes which 
have been independently generated following 
uniform distribution between 0 and 1. The target 
variable is computed by

10 ( ) + 20
1

2
+ 10 + 5 + , 

where is a Gaussian white random noise with
zero mean and unit variance. Then, the last five
attributes are not relevant for predictions.

Stocks data contain daily stock prices from 
January 1988 through October 1991 for ten 
aerospace companies. The task is to predict the 
price of the 10th company given the prices of the 
rest.
Parkinsons dataset is composed of a range of 
biomedical voice measurements from 42 people 
with early-stage Parkinson’s disease recruited to a 
sixmonth trial of a telemonitoring device for 
remote symptom progression monitoring. There 
are 5785 voice recordings and each input vector 
has sixteen biomedical voice measures. From 
these variables, the main aim is to predict the 
UPDRS score, which is a rating scale used to 
follow the longitudinal course of Parkinson’s 
disease.
Tecator database consists of 215 near-infrared 
absorbance spectra of meat samples. Each 
observation consists of a 100-channel absorbance 
spectrum in the wave length range 850-1050 nm. 
The task is to predict the fat content of a meat 
sample on the basis of its near infrared absorbance 
spectrum.

B. Experimental results
Initially, the standard ELM algorithm and the OP-

ELM method have been used for training individual 
SLFNs by considering that the hidden layer size ( ) is 
between 1 and 150. The learning and testing phases 
are repeated times ( different weight initializations) 
in which the sigmoid function is selected as the 
activation function. In particular, = 50 different 
repetitions have been done in all problems, except for 
Tecator because this highdimensional dataset requires 
more trials ( = 100 ) in order to OC-ELM-FFS 
obtains different random networks with enough input 
feature diversity, as it has been already mentioned in 
the previous section. After that, the ensemble based 
approaches are validated. In particular, the trained 
OP-ELM networks are firstly combined by the least-
squares solution of (8), i.e., the LSE-ELM method. 
Next, the three ensemble procedures (OC-ELMs, OC-
ELM-FFS and OC-ELM-RFS) are evaluated. Note 
that the OC-ELM method makes use of the same 
previously trained models with OP-ELM. In the 
experiments, all approaches use the LOO cross-
validation technique, except for the standard ELM 
algorithm that uses 10-fold CV for selecting the 
hidden layer size. All simulations have been carried 
out in MATLAB 7.11(R2010b) environment running 
in the same machine with 4 GB of memory and 2.67 
GHz processor.

Table 2 shows the obtained experimental results 
using the five aforementioned ELM-based approaches. 
In particular, for each method and dataset, this table 
shows the total computational training time, the test 
RMSE results from trials and the model size. Note 



that the RMSE of the ELM and OP-ELM methods are 
the best results of trials and, meanwhile, the results 
of the remaining approaches are given by the different 
ensemble schemes of the networks. In the last 
column of Table 2, the hidden layer sizes for the ELM 
and OP-ELM methods are shown and, meanwhile, the 
number of chosen networks is shown for the 
remaining ensemble-based approaches.

Experimental results on four regression datasets

Friedman ELM
OP-ELM

2.67
2.64

7.87e+4
2.18e+3

139
99

LSE-ELM
OC-ELM

OC-ELM-FFS
OC-ELM-RFS 

2.38
2.38
1.44
1.28

2.26e+3
2.20e+3
5.47e+4
2.02e+3

50
30
16
33

Stocks ELM
OP-ELM

1.11
1.11

2.46e+3
1.18e+2

141
101

LSE-ELM
OC-ELM

OC-ELM-FFS
OC-ELM-RFS 

0.81
0.78
0.74
0.72

1.19e+2
1.19e+2
2.30e+3
1.03e+2

50
24
16
18

Parkinsons ELM
OP-ELM

9.02
9.59

1.07e+4
1.22e+3

139
85

LSE-ELM
OC-ELM

OC-ELM-FFS
OC-ELM-RFS 

8.97
8.95
9.02
8.87

1.23e+3
1.23e+3
6.40e+4
1.16e+3

50
20
9 

39
Tecator ELM

OP-ELM
4.88
3.57

8.25e+3
5.34e+2

76
67

LSE-ELM
OC-ELM

OC-ELM-FFS
OC-ELM-RFS 

2.45
2.28
1.28
2.04

5.40e+2
5.42e+2
1.07e+4
5.28e+2

100
43
15
29

With respect to relation between the dataset size 
and the required training time, two datasets can be 
compared: Tecator is a high dimensional dataset with 
a reduced number of samples and, in contrast, 
Friedman is defined by a large sample set with fewer 
input features. As it can be seen from Table 2, the 
required training time with Friedman (a large sample 
dataset) is longer than with Tecator (a small sample 
dataset). Therefore, according to these results, it can 
be said that the number of training samples is more 
determined on training time than the number of input 
features.

As it can be observed from Table 2, OP-ELM 
outperforms the ELM method by using more compact 
networks and less training time, except for Parkinsons 
dataset. With respect to the ensemble-based 
approaches, all of them provide better generalization 
capabilities than ELM and OP-ELM in all problems.

It is worthy of remark that these advantages are 
obtained with a negligible increment of the total 
training time with OP-ELM, except for the OC-ELM-
FFS procedure which is based on incremental forward 
feature selection and, thus, it needs more 

computational efforts. In all simulations, the OC-
ELM-FFS and OC-ELM-RFS provide better results 
than the ensemble procedures based on the original 
input feature space. From these results, the use of 
random feature subsets is benefitial to the ensemble 
construction. This approach may be better than 
performing a previous forward feature selection, 
except for Tecator dataset. For example, in Tecator,
the input data space is successfully reduced from one 
hundred to only five features with OC-ELM-FFS. 
Whereas, in Friedman dataset, although OC-ELM-
FFS chooses the relevant features (which are 
previously known by the definition of this artificial 
dataset), this method achieves worse performance 
results than OC-ELM-RFS, which uses random 
feature subsets (including different combinations of 
relevant and irrelevant features). For the Parkinsons 
data, OC-ELM-FFS entails a high computational 
increment but the RMSE results are not improved. In 
this case, OC-ELM-RFS provides the best solution in 
terms of prediction accuracy. Note that OC-ELM-RFS 
requires, as expected, more networks to construct the 
ensemble than OC-ELM-FFS in all problems.

Therefore, according to these experimental results, 
it is recommended to exploit diversity in the ELM 
ensemble system by varying the input data space with 
random subsets and, also, a feature selection is clearly 
useful for high-dimensional datasets, prior to 
ensemble construction.

5
This work presents effective procedures for linear 

combination of multiple neural networks based on the 
ELM algorithm. These approaches exploit the 
diversity among the different neural networks in the 
ensemble system in order to improve predictions. 
Useless models are discarded from the ensemble 
system using the basis of the OP-ELM methodology 
and, thus, an optimal combination of networks is 
achieved. ELM networks have been automatically 
constructed with different input feature spaces: the 
original input feature space, the input subset obtained 
by forward feature selection and the random feature 
subsets. The experimental results show that an 
ensemble approach of ELM models outperforms an 
individual ELM model in terms of generalization 
capability. The ensemble diversity is increased by 
varying the input feature space and it produces a 
performance improvement. It should be emphasized 
that the model selection is performed exactly and 
fastly without any tuneable parameter. As a future 
work, it is intended to explore the data editing 
techniques in order to generate different learning 
subsets for training the individual ELM networks. 
Other ongoing works are to check different ranking 
measures for model selection, such as the Akaike 
information criterion [29] and to use parallel and GPU 
programming for achieving training speed 
enhancement.
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