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Intrusion detection is a major concern in Cyber-Physical Systems (CPSs). In this paper, an algorithm based on 
Petri Net (PN) is proposed that simultaneously detects misuse and anomaly behavior of the system. The pro-
posed anomaly detection method is applicable to Supervisory Control and Data Acquisition (SCADA) system at 
the highest level of CPSs. Neural First Order Hybrid Petri Net model (NFOHPN) with online fast Independent 
Component Analysis (ICA) is proposed for anomaly detection. It is shown that the use of distributed and mul-
tidisciplinary intrusion detection methods in different layers of CPSs increases security of the net against co-
ordinated cyber-attacks. Simulation results and comparative studies based on the Defense Advanced Research 
Projects Agency (DARPA) evaluation datasets demonstrate that the proposed model can detect normal or ma-
licious behavior with satisfying accuracy and at surprisingly high convergence speed.
KEYWORDS: intrusion detection, Petri net, cyber-physical systems, neural network, independent component 
analysis.

1. Introduction
A cyber physical system (CPS) can be thought of a 
system that is comprised of sensors, actuators, and 
networking modules, which are applicable to areas 
such as energy, automotive, manufacturing, civil in-
frastructure, healthcare, and many others [31]. A high 
level view of CPSs is shown in Fig. 1 [34].   
CPSs are complex systems where physical operations 

and cyber domain are supported coordinately. Even 
though Information and Communication Technology 
(ICT) has made a significant progress in CPSs, cyber se-
curity is still a big challenge in critical systems [36]. One 
of the most serious vulnerabilities in CPSs is intrusion 
attacks. Since early 21st century, significant attentions 
have been devoted to enhance security in CPSs [31, 15].
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Intrusion detection is a critical task for improving 
security in CPSs. To perform such a task, an intru-
sion detection system (IDS) is needed [30]. The idea 
of intrusion detection (ID) was first proposed by An-
derson in 1980 [5]. Since then, plenty of research has 
been devoted on IDS [28, 33].
Intrusion detection schemes can be classified into 
two main classes of misuse and anomaly detection. In 
the first scenario, features of known attacks or system 
vulnerabilities are exploited for detection of misuses. 
When performing misuse detection, the audited data 
are compared with the database, and any compliance 
will be reported as an intrusion. Misuse detectors 
produce very few false positives; however, these types 
of detectors have their own shortcomings as well. For 
instance, creating and upgrading a comprehensive 
database is a cumbersome task. Moreover, they can 
only detect previously known attacks. Several tech-
niques have been proposed for misuse detection.
Abbes et al. have proposed a novel protocol analysis ap-
proach to improve the performance of pattern match-
ing [1]. Pattern matching based intrusion detection has 
been evaluated by Kreibich and Crowcroft [6]. Rule-
based expert system is applied for misuse detection [4, 
32]. Genetic algorithm is also used for misuse detec-
tion [13]. In recent years, data mining techniques have 
been applied to networks for building misuse detection 
models [24, 11, 27]. An overview of intrusion detection 

Figure 1 
Architecture of cyber physical systems

system using genetic algorithm and data mining is pre-
sented in [22]. Some efforts have been focused on clas-
sification and detection of computer intrusions using 
Colored Petri-nets [23, 12, 16].
Anomaly detectors pursue the normal behavior of the 
system. Any considerable deviation from usual op-
eration of the system is labeled as an intrusion. The 
main advantage of these detectors is the ability to 
discover the attacks which are previously unknown. 
In contrast to the former, they generate many false 
positives, and hence, their accuracy is typically low. 
Many researches have been carried out by following 
this approach.
Some detection frameworks are based on clustering 
techniques [17, 35, 40]. In recent years, artificial lean-
ing techniques have been widely used in anomaly de-
tection. Some anomaly detection techniques in this 
category can be outlined as neural network [25, 8, 39], 
genetic algorithm [26, 37], and wavelet [3].
Early researches on intrusion detection systems con-
sider both misuse detection as well as anomaly detec-
tion. As mentioned before, both misuse and anomaly 
detection systems have limitations and shortcomings. 
Most of existing intrusion detection structures can 
only identify either misuse or anomaly attacks. Si-
multaneous misuse and anomaly IDS have been pro-
posed to overcome such shortages [21, 10].
Petri net is a powerful, fascinating, and graphical tool 
allowing to the operator to communicate effectively 
with the graphical programming environment. Theo-
retical calculations of PN are to a great extent simpler 
than other approaches leading to a much faster pro-
cessing time which is so vital for IDS.
In this paper, PN is used for both misuse and anomaly 
detection in CPSs. Fundamentals of First Order Hy-
brid Petri Net (FOHPN) are described in Section 2. In 
Section 3, a PN model is proposed for misuse detec-
tion and its performance is validated. Neural network 
based FOHPN model along with experimental results 
are suggested in Section 4. Finally, conclusions are 
drawn in Section 5. 

2.  FOHPN Fundamentals 
FOHPN is broad enough to model classes of systems 
of practical interest [7]. For a more comprehensive 
discussion on FOHPN, the reader is referred to [7] 
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and the formulation and notation that follow in this 
section are taken from there.
An FOHPN model and its structure are denoted by 

0, ( )N m τ  and = ( , , , , , ),N P T Pre Post D C  where N and 
0( )m τ  represent FOHPN system and initial marking 

of the net respectively. P is the set of places that is 
partitioned into a set of discrete places Pd (represent-
ed as circles) and a set of continuous places cP  (rep-
resented as double circles), i.e. = d cP P P∪ , and T is 
the set of transitions that is partitioned into a set of 
discrete transitions Td and a set of continuous transi-
tions Tc (represented as double boxes), i.e. = c dT T T∪ . 
Furthermore, the set Td is partitioned into a set of im-
mediate transitions TI (represented as bars), a set of 
deterministic timed transitions TD (represented as 
black boxes), and a set of exponentially distributed 
timed transitions TE (represented as white boxes), i.e. 

= .d I D ET T T T∪ ∪  The cardinality of T, Td, Tc  is de-
noted by n, nd, nc, respectively.
The function 0: cC T R R+ +

∞→ ×  shows the firing 
speeds of continuous transitions. The pre- and 
post-incidence functions are as follows:

0 0

: :
.

d d

c c

P T N P T N
pre post

P T R P T R+ +

× → × → 
 × → × → 

(1)

for all ct T∈  and dp P∈  , ( , ) = ( , )Pre p t Post p t .
: /d ID T T R+→  shows the timing associated with 

the timed discrete transitions. A constant firing delay 
= ( )i iD tδ  is set for each deterministic timed transi-

tion i Dt T∈ . We assign an average firing rate = ( )i iD tλ  
for an exponentially distributed timed transition 

i Et T∈ , and consequently, the average firing delay is 
1/ iλ  , where iλ  is the parameter of the corresponding 
exponential distribution.

0: cC T R R+ +
∞→ ×  defines the firing speeds relat-

ed to continuous transitions, where { }0 = 0R R+ + ∪ , 
{ }=R R+ +

∞ ∪ ∞ . For any continuous transition i ct T∈ , 
let ( ) = ( , )i i iC t V V′ , with i iV V′≤ . Here iV ′  and iV  stand 
for the minimum firing speed (mfs), and the maxi-
mum firing speed (MFS), respectively.

The marking 
0

: d

c

P N
m

P R+

→
 →

 is a function that assigns 

to each discrete place a nonnegative number of to-
kens, and assigns to each continuous place a fluid vol-
ume; mp denotes the marking of place p. The value of a 

marking at time τ  is denoted by ( )m τ . The notations 
md and mc  show discrete and continuous marking, re-
spectively.
Some advantages of using FOHPN are as follows:  
 _ Petri net is a powerful and fascinating graphical 

tool and its application in modeling allows the op-
erator to communicate effectively with the graph-
ical programming environment and establishes a 
proper understanding of the model and the compo-
nents of the system. 

 _ Parallel, synchronous, and concurrent operations 
can be modeled fairly easy using PN. 

 _ Mathematics and theoretical calculations of PN are 
to a great extent simpler than existing approaches 
and this usually leads to a much faster processing 
time that is so needed in IDS. 

 _ CPSs have both continuous and discrete event 
signals and the interactions between these two 
cannot be ignored. HPN is an excellent tool for 
integrating these two dynamics together. 

3.  Misuse Detection in CPSs  
Based on Petri Net
In this section, a PN model for misuse detection is 
proposed. Using simulations, efficiency of the pro-
posed model and its capabilities are demonstrated. 
Fig. 2 shows the proposed PN model of IDS.
In the proposed model, three different types of users 
are defined: “normal user or user 1”, “emergency user 
or user 2” that is politically and socially sensitive, and 
an “unknown user or user 3”. This model has some 
specific capabilities that are listed below:  
 _ For each user type, an allowable number of failed 

login attempts (num_failed_logins) can be as-
signed by supervisor. When the number of failed 
attempts reaches the pre-assigned number, then 
an alarm will be raised. 

 _ For each user type, once the failed login attempts 
alarm is raised, the user must wait a certain amount 
of time before he/she is allowed to login. 

 _ For each user type, the user must login within a 
certain amount of time after user name entry. 
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 _ Number of connections to a particular service 
(count number) is limited. It can be considered in 
the PN model. Priority for login can be set by su-
pervisor for each user. 

 _ Various rules can be set in the model. For example, 
in the proposed model, if emergency user is con-
nected to a service to transmit crucial data, any 
other user can be blocked. 

 _ To improve security of data transmission, an alarm 
is raised if data are not received after specific time 
interval. For example, 10 minutes. 

 _ Maximum number of transferred data bytes be-
tween source and destination and vice versa (src or 
dst bytes) can be fixed for each user. 

 _ Limited buffer space for sending or receiving can 
be considered in the proposed model. 

 _ Supervisor can set allowable usage time for any 
specific service that may be different related to the 
users’ needs. 

Figure 2 
The proposed PN model for misuse detection

 

 

   Normal 
user 

Emergency 
user 

Unknown 
user 

num_failed_logins  3  4  2  

Password guessing 
time delay  3 min  5 min  2 min  

allowable login time  1 hour    Not limited    30 min  

Count  2

Login priority  2  1   3  

src bytes  100000    Not limited 50000  

dst bytes  100000    Not limited  50000  

Table 1
 Imposed constraints in the proposed model

Any constraint can be considered in PN model as 
well. For example, some constraints are listed in 
Table 1. They are considered in the proposed model 
(Fig. 2) as a sample and simulation results are pre-
sented later.
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3.1  Simulation Results
The proposed model in Fig. 2 is simulated using 
MATLAB toolbox, and some results are presented 
in order to demonstrate the ability of PN in misuse 
detection. Violation from the defined constraints 
listed in Table 1, is considered as misuse, and the PN 
model can detect it as soon as possible. For instance, 
Fig. 3 shows the status of emergency user and un-

Figure 3 
The status of emergency user and unknown user

Figure 4 
Number of users that are connected to Service1 at any given 
time

Fig. 3. The status of emergency user and unknown user

Fig. 4 illustrates the number of users that are connected to Service 1 at any given time. As can be seen 
from the figure, no more than two users are connected to Service 1 simultaneously and this is exactly 
what is expected based on the constraints that are imposed on the system. The jumps in Fig. 4 can be 
ignored and occur because of the delay between requesting from the third unpermitted user to be 
connected and firing of inhibitor arcs in order to block him.

Fig. 4. Number of users that are connected to Service1 at any given time

Fig. 5 shows the number of times that a normal user is allowed to enter an incorrect password in a period 
of 180 seconds. As can be seen in the figure, the user is only allowed to attempt three incorrect 
passwords. In the proposed PN model (Fig. 2), if a normal user tries entering with wrong password more 
than three times that is shown in Fig.2 by firing of the transition “wrong password 1”, the inhibitor arc 
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Fig. 5 shows the number of times that a normal user is allowed to enter an incorrect password in a period 
of 180 seconds. As can be seen in the figure, the user is only allowed to attempt three incorrect 
passwords. In the proposed PN model (Fig. 2), if a normal user tries entering with wrong password more 
than three times that is shown in Fig.2 by firing of the transition “wrong password 1”, the inhibitor arc 

“Block user 1”, will fire and block the corresponding service for 10 minutes.

Fig. 5. Password entry status by normal user

As was stated earlier, in the proposed model, one can limit the time interval that each user is allowed to 
use a specific service according to a predefined constraint. When this time interval expires, a transition 
that is shown with timeout in Fig. 2, will fire and the user will be disconnected from service. Fig. 6 shows 
the status of using the service by normal user. As can be seen, a normal user can only use the service for 
1 hour continuously before he is disconnected from the network.

Fig. 6. Status of normal user in terms of connecting to a specific service

Simulation results (Figs. 4-6) illustrate the capability of the proposed PN model in misuse detection for 
CPSs. In the next section, neural FOHPN models are proposed for anomaly detection in SCADA system 
which is the center of security and decision making at the highest level of CPSs.

known user. Whenever emergency user attempts to 
log in, the unknown user is blocked by supervisor in 
order to increase security.
Fig. 4 illustrates the number of users that are con-
nected to Service 1 at any given time. As can be seen 
from the figure, no more than two users are connected 
to Service 1 simultaneously and this is exactly what is 
expected based on the constraints that are imposed 
on the system. The jumps in Fig. 4 can be ignored and 
occur because of the delay between requesting from 
the third unpermitted user to be connected and firing 
of inhibitor arcs in order to block him.
Fig. 5 shows the number of times that a normal user 
is allowed to enter an incorrect password in a period 
of 180 seconds. As can be seen in the figure, the user is 
only allowed to attempt three incorrect passwords. In 
the proposed PN model (Fig. 2), if a normal user tries 
entering with wrong password more than three times 
that is shown in Fig.2 by firing of the transition “wrong 
password 1”, the inhibitor arc “Block user 1”, will fire 

and block the corresponding service for 10 minutes.
As was stated earlier, in the proposed model, one can 
limit the time interval that each user is allowed to use 
a specific service according to a predefined constraint. 
When this time interval expires, a transition that is 
shown with timeout in Fig. 2, will fire and the user will 
be disconnected from service. Fig. 6 shows the status 
of using the service by normal user. As can be seen, a 
normal user can only use the service for 1 hour contin-
uously before he is disconnected from the network.
Simulation results (Figs. 4-6) illustrate the capabili-
ty of the proposed PN model in misuse detection for 
CPSs. In the next section, neural FOHPN models are 
proposed for anomaly detection in SCADA system 
which is the center of security and decision making at 
the highest level of CPSs.

Figure 5 
Password entry status by normal user
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“Block user 1”, will fire and block the corresponding service for 10 minutes.
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As was stated earlier, in the proposed model, one can limit the time interval that each user is allowed to 
use a specific service according to a predefined constraint. When this time interval expires, a transition 
that is shown with timeout in Fig. 2, will fire and the user will be disconnected from service. Fig. 6 shows 
the status of using the service by normal user. As can be seen, a normal user can only use the service for 
1 hour continuously before he is disconnected from the network.
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Simulation results (Figs. 4-6) illustrate the capability of the proposed PN model in misuse detection for 
CPSs. In the next section, neural FOHPN models are proposed for anomaly detection in SCADA system 
which is the center of security and decision making at the highest level of CPSs.

4.  Anomaly Detection in CPSs 
Based on Neural FOHPN
In this section, neural FOHPN is used for anomaly 
detection in CPSs. The 10% KDD 99 dataset is used 
for evaluating the proposed method. KDD training 
dataset consists of approximately 4,900,000 single 
connection vectors, which is so huge dataset for on-
line detection. For order reduction and eliminating 
unnecessary records, first, KDD 99 dataset is encod-
ed, and then the redundant records are omitted from 
the dataset. To extract independent features of such 
a large and complex dataset, FastAdaptiveOgICA 
[41] is implemented in order to reduce dimension of 
the dataset and make it more desirable for real time 
anomaly detection. Here, three neural FOHPN mod-
els are proposed for anomaly detection. The structure 
of the proposed approach is shown in Fig. 7.   

Figure 6 
Status of normal user in terms of connecting to a specific 
service

Figure 7 
The structure of the proposed anomaly detection approach
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In this section, neural FOHPN is used for anomaly detection in CPSs. The 10% KDD 99 dataset is used 
for evaluating the proposed method. KDD training dataset consists of approximately 4,900,000 single 
connection vectors, which is so huge dataset for online detection. For order reduction and eliminating 
unnecessary records, first, KDD 99 dataset is encoded, and then the redundant records are omitted from 
the dataset. To extract independent features of such a large and complex dataset, FastAdaptiveOgICA 
[41] is implemented in order to reduce dimension of the dataset and make it more desirable for real time 
anomaly detection. Here, three neural FOHPN models are proposed for anomaly detection. The structure 
of the proposed approach is shown in Fig. 7.

Fig. 7. The structure of the proposed anomaly detection approach

4.1  Feature Dataset
 
The KDD 99 dataset has around two million connection records in the two weeks of test. Each 
connection is labeled as either normal, or as an attack, with exactly one specific attack type, and contains 
41 features (such as duration, protocol type, service, flag, source bytes, ...). Attacks fall into four main 
categories: DOS (denial of service), R2L (unauthorized access from a remote machine), U2R 
(unauthorized access to local superuser (root) privileges), and probing (surveillance and other probing) 
[18].
At the International Knowledge Discovery and Data Mining Tools Competition (IKDDMTC), “10% 
KDD 99” dataset is employed for the purpose of training. The attack categories along with the number of 
records that were attacked are listed in Table 2.

Table 2 10% KDD 99 intrusion detection dataset [18]

4.1.  Feature Dataset
The KDD 99 dataset has around two million connec-
tion records in the two weeks of test. Each connection 
is labeled as either normal, or as an attack, with exact-
ly one specific attack type, and contains 41 features 
(such as duration, protocol type, service, flag, source 
bytes, ...). Attacks fall into four main categories: DOS 
(denial of service), R2L (unauthorized access from a 
remote machine), U2R (unauthorized access to local 
superuser (root) privileges), and probing (surveil-
lance and other probing) [18].
At the International Knowledge Discovery and Data 

Mining Tools Competition (IKDDMTC), “10% KDD 
99” dataset is employed for the purpose of training. 
The attack categories along with the number of re-
cords that were attacked are listed in Table 2.
Based on [38], KDD 99 intrusion detection datasets 
suffer from large amount of redundant records in the 
train set. This causes the training operation to be time 
consuming and consequently ineligible for cyber se-
curity use. In the proposed intrusion detection algo-
rithm, only distinct records in the KDD train set, list-
ed in Table 3, are considered. 
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Table 2 
10% KDD 99 intrusion detection dataset [18] 

Category Number of 
record Atack Number of 

record

DOS 391 458

Smurf 280790

neptune 107201

back 2203

teardrop 979

pod 264

land 21

R21 1126

warezclient 1020

guess_passwd 53

warezmaster 20

imap 12

ftp_write 8

multihop 7

phf 4

spy 2

U2R 52

buffer_overflow 30

rootkit 10

loadmodule 9

perl 3

Probe 4107

satan 1589

ipsweep 1247

portsweep 1040

nmap 231

Normal 97277

4.2.  Fast Independent Component  
Analysis (ICA)
Fast adaptive ICA algorithm is used in this paper in 
order to extract independent components of sampled 
data. ICA attempts to decompose a multivariate sig-
nal into independent non-Gaussian signals. ICA has 
been considered as a fundamental tool in the field of 
data analysis, feature extraction, and so on. The KDD 
99 intrusion detection database includes non-Gauss-
ian distribution, so ICA techniques are suitable for 
feature extraction in this field. Feature reduction 
plays an important role in case of improving ID per-
formance and reducing the computational complexi-
ty, especially in an online detection.
The detailed formulation of FastAdaptiveOgICA is 
given in [41]. Not only is this method fast and adap-
tive with iterative neural network algorithm, it can 
also instantly separate mixture of sub-Gaussian and 
super-Gaussian signals. It has fast convergence speed 
and high separation performance.
Dimension reduction reduces the complexity of the 
proposed IDS significantly leading to less computa-
tional complexity and also fast and accurate intru-
sion detection. Implementation of fast adaptive ICA 
algorithm on the distinct KDD sample set leads to 
extraction of independent component of the dataset, 
and as a result, a new dataset with fewer dimensions 
is constructed. The new dataset is then used for neu-
ral network training in order to obtain Instantaneous 
Firing Speeds (IFSs) and the arc weights of the pro-
posed FOHPN models. Table 4 shows the number of 
records before ICA and after implementing fast adap-
tive ICA algorithm. 

Category  Normal  Probe  U2R  R2L DOS  

Distinct 
Train 
Records  

2996  11656  52  995  45927  

Distinct 
Test 
Records  

9711  1106  37  2199  5741  

Table 3 
Number of distinct records in the KDD train set

Table 4 
Number of data after implementing fast adaptive ICA 
algorithm in each category

Category  Normal  Probe  U2R  R2L DOS  

Dimension 
before ICA  2996  11656  52  995  45927  

Reduced 
dimension 138 132 30 86 138

4.3.  Proposed Neural FOHPN
Petri net has many similarities with neural networks 
in characteristics and rules [9]. Novel neural Petri net 
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models have been considered by some researchers in 
the late 90’s [9, 2]. A viable approach to detect cyber 
threats in CPSs appears to be neural FOHPN, since 
CPSs are event driven systems comprised of both dis-
crete event and continuous dynamics. This is, in fact, 
the approach that is proposed in this paper. 

4.3.1.  Feedforward Neural FOHPN Architecture
For the purpose of anomaly detection, the FOHPN 
network shown in Fig. 8 consisting of the following 
three layers: input layer, rule layer, and output layer, 
are considered.   
Define tj as the set of transitions of the jth layer of the 
neural FOHPN, which the corresponding weights are 
assumed to be 1 2, ,...,j j jw w wη . In the sequel, first the 
formulation for the discrete transitions is approved. 
The net dynamic of FOHPN varies when a macro 
event occurs. In this situation, a discrete transition 
fires. This may change the discrete marking or en-
abling/disabling a continuous transition.

In the proposed model, when a discrete transition be-
comes firable, it just may change the marking of dis-
crete transitions. Let ( )σ κ  be the firing count vector 
at time instant κ . The macro-behavior of the FOHPN 
is defined during the thκ  macro-period by [7]:

( 1) = ( ) . ( 1), ( 1) = ( ).d d c c
ddm m C m mκ κ σ κ κ κ+ + + +

( 1) = ( ) . ( 1), ( 1) = ( ).d d c c
ddm m C m mκ κ σ κ κ κ+ + + +

(2)

The output of the jth layer can be written as: 

=1
= = ( ) ,j T j j

i i
i

X W M m p w
η

∑

( ) = ( ) = ( ),j j TY X F X F W M

where m is the marking of the net as defined in (2). 
Now, the learning algorithm formulation in the rule 
layer is presented. Here, the back propagation meth-
od, which is the most common training method for 

Figure 8 
Framework of neural FOHPN

Fig. 8. Framework of neural FOHPN

We consider a neural FOHPN model having k rule layers. We therefore have a total of 2k + layers 
including input and output layers that are numbered as 0,..., 1k + .
The number of input and output places are r and L , respectively. There exist N places in the hidden 
layers. The training data for a feedforward network consist of q input-output data pairs. n denotes 
training instance. So, we define the input vector X  and the output vector Y as follows:

1( ) = [ ( ),..., ( )] ,T
kX n x n x n  

1 1
1( ) = [ ( ),..., ( )] ,k k T

LY n y n y n+ +

Therefore, for the jth layer one can write:

1

=1,...,

( ) = ( . ( ))j j
i i

jN

y n F w x nβ β
β

+ ∑ (3)

1 1
1( ) = [ ( ),..., ( )] ,k k T

LY n y n y n+ +
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feedforward networks, is used. Useful information 
about neural network and recurrent neural network 
is invoked from [19].
We consider a neural FOHPN model having k  rule 
layers. We therefore have a total of k + 2 layers in-
cluding input and output layers that are numbered as   
0, ..., k + 1.
The number of input and output places are r and L, re-
spectively. There exist N places in the hidden layers. 
The training data for a feedforward network consist 
of q input-output data pairs. n denotes training in-
stance. So, we define the input vector X ˚  and the out-
put vector Y as follows:

1( ) = [ ( ),..., ( )] ,T
kX n x n x n  

1 1
1( ) = [ ( ),..., ( )] ,k k T

LY n y n y n+ +

Therefore, for the jth layer one can write:

1

=1,...,

( ) = ( . ( ))j j
i i

jN

y n F w x nβ β
β

+ ∑

1 1
1( ) = [ ( ),..., ( )] ,k k T

LY n y n y n+ +

(3)

where iw β  is the arc weight between i and β  places 
in different layers. In order to find the arc weights of 
the network, an optimization problem must be solved. 
The following summed square error is considered as 
an objective function:

2

=1,..., =1,...,
= ( ) ( ) = ( ).

n q n q
E Y n Y n E n-∑ ∑ (4)

Minimization of the cost function is done using gra-
dient concept:

=1,...,

( )= .j j
t qi i

E E n
w wβ β

∂ ∂
∂ ∂∑

By using a small learning rate γ , one can write:

( )( 1) = ( ) .j j
i i j

i

E nw w
wβ β

β

w w γ ∂
+ -

∂

All training samples are used to update the new 
weights. One such pass through all samples is called 

an epoch. Arc weights should be initialized, typically 
to small random numbers, before the first epoch.

The gradient ( )
j

i

E n
w β

∂
∂

 can be computed as follows:

( ) ( ) ( )= *
( )j j

i i

E n E n Y n
w Y n wβ β

∂ ∂ ∂
∂ ∂ ∂

=1,...,

( )= ( ) ( ) * * .
j j

j j
n q i

F X XY n Y n
X w β

∂ ∂
-

∂ ∂∑

To each discrete transitions i Dt T∈  in FOHPN, we as-
sign an average firing rate = ( )i iD tλ  for an exponen-
tially distributed timed transition i Et T∈ , hence:

( ) =
1 exp( ( ))

j j

j j j
F X

X b X
μ

λ
∂

∂ + - -

2
*exp( ( )) ,

[1 exp( ( ))]

j j j j
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X b b X

b X
μ λ

λ
- -

+
+ - -
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i
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Afterward, the iterative Algorithm 1 is proposed to 
minimize the error using back propagation method in 
each epoch for the discrete net of the proposed neural 
FOHPN model:
Algorithm 1:
Step 0: set ω = 0, ρ = P (ρ is a predetermined maximal 
number of epochs), and error = ε.
Step 1: initialize weights to some small random num-
bers.
Step 2: for each sample n, compute intermediate layers 
outputs, except for input layer, from (3).
Step 3: compute error propagation term of the output 
layer

( )j
i nΔ  backward through j = k + 1, k,...,1.

1

1=

( ) = [ ( ) ( )]k
i i i

kX zi

Fn y n y n
X

+

+

∂
Δ -

∂
,

where 
1

1 1

=1
( ) = ( )

jN
j j j

i iz n x n wα α
α

-
- -∑ .

Step 4: compute error propagation term of the rule lay-
ers as follows:
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1
1

=1 =

( ) =
jN

j j j
i i

mX zi

Fn w
Xϕ ϕ

ϕ

+
+ ∂

Δ Δ
∂∑ .

Step 5: update the weights according to

1 1 1

=1
( 1) = ( ) ( ) ( ).

q
j j j j

i i i
n

w w n x nβ β βw w γ- - -+ + Δ∑

Step 6: after each epoch, error should be computed 
based on (4). If error >ε, or ω < P, then set ω = ω +1  
and go to step 1; else go to step 7.
Step 7: End.
Subsequently, the same formulation for continuous 
transitions of the proposed neural FOHPN model will 
be derived. The whole framework of the new formu-
lation is similar to previous one with the following 
differences.
The IFS of time transition ti ∈ Tc  is denoted by ( )iv τ . 
The marking of a place p ∈ Pc is represented by 

( ) = ( ) . ( ) ( ),m d m w v dτ τ τ τ τ+ +

( ) ( ) = . ( ).
( )

m d m w v
d

τ τ τ τ
τ

+ -

It is assumed that at time τ, no discrete transition is 
fired and all speeds are continuous. So, we have:

( ) = ( , ). ( ).i i
t Ti c

dm C p t v
d

τ τ
τ ∈

∑ (5)

A macro-event occurs by firing of a discrete transition 
or when a continuous place becomes empty. Firing of 
a discrete transition changes the discrete marking 
or enables/disables a continuous transition. The en-
abling state of a continuous transition changes from 
strong to weak, when a continuous place becomes 
empty. Let 1,k kτ τ +  be the occurrence times of mac-
ro-events; the time interval is called macro-period. 
Furthermore, it is assumed that during a macro-pe-
riod the IFS of continuous transitions are constant, 
and 0τ  is the initial time, ( > 0)k kτ  is the instants in 
which macro-events occur, and ( )kv τ  is the IFS vec-
tor during the macro-period of length kΔ . The mac-
ro-behavior of an FOHPN during the kth macro-peri-
od is defined as follows [7]:

( ) = ( ) . ( ).( ), ( ) = ( ).c c d d
k cc k k km m C v m mτ τ τ τ τ τ τ+ -

( ) = ( ) . ( ).( ), ( ) = ( ).c c d d
k cc k k km m C v m mτ τ τ τ τ τ τ+ -

(6)

In this case, the jth layer output of the FOHPN can be 
written as

( ) = ( ) = ( ),j j TY X F X F W M

where M is continuous marking defined by (6), and  
F= v(t). The rest of the formulation is the same as pre-
viously proposed algorithm for discrete net and can 
be derived directly.
A typical time delay neural FOHPN is implemented 
as a feedforward neural FOHPN. It has three layers 
as introduced: input, hidden and output layers. Just a 
set of delays are added to the inputs. Time delay can 
be easily implemented in the PN by considering delay 
in the firing time of the transitions. Time delay neural 
FOHPN is applied in order to detect anomaly and the 
performance comparison is provided in Section 4.4. 

4.3.2.  Recurrent Neural FOHPN Architecture
Recurrent neural network has lots of similarities with 
feedforward neural network, but in the former struc-
ture, at least one cyclic path exists. Since cyclic path 
can easily be incorporated by FOHPN model, the re-
current neural network structure can be applied in or-
der to update the weights in the FOHPN. Fig. 9 shows 
a simple recurrent neural network FOHPN structure. 
This net with two cyclic arcs has one input place, two 
hidden places, and one output place.   
Suppose that the recurrent neural FOHPN model has 
k  input, N  internal, and L output places represented by 

Figure 9 
An example of FOHPN with recurrent structure
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where M is continuous marking defined by (6), and = ( )F v t . The rest of the formulation is the same 
as previously proposed algorithm for discrete net and can be derived directly.
A typical time delay neural FOHPN is implemented as a feedforward neural FOHPN. It has three layers 
as introduced: input, hidden and output layers. Just a set of delays are added to the inputs. Time delay can 
be easily implemented in the PN by considering delay in the firing time of the transitions. Time delay 
neural FOHPN is applied in order to detect anomaly and the performance comparison is provided in 
Section 4.4.

4.3.2  Recurrent Neural FOHPN Architecture

Recurrent neural network has lots of similarities with feedforward neural network, but in the former 
structure, at least one cyclic path exists. Since cyclic path can easily be incorporated by FOHPN model, 
the recurrent neural network structure can be applied in order to update the weights in the FOHPN. Fig. 9
shows a simple recurrent neural network FOHPN structure. This net with two cyclic arcs has one input 
place, two hidden places, and one output place.   

Fig. 9. An example of FOHPN with recurrent structure

Suppose that the recurrent neural FOHPN model has k input, N internal, and L output places 
represented by 1( ) = [ ( ),..., ( )] ,T

kX n x n x n  

1( ) = [ ( ),..., ( )] ,T
NX n x n x n 1 1

1( ) = [ ( ),..., ( )]k k T
LY n y n y n+ + ,

respectively. Furthermore, let , , ,in out backW W W W be input ( ),N K× internal ( )N N× , output 
( ( ))L K N× + , and back projection ( )N L× connection weight matrices; respectively. outF indicates a 
given activation function of the output layer. As a whole structure, we have:

( 1) = ( ( 1) ( ) ( ))in backX n F W X n WX n W Y n+ + + +

( )( )( 1) = ( 1), ( 1) .out outY n F W X n X n+ + +

Discrete and continuous marking are the same as (1) and (5). Activation function F was defined for two 
cases of macro events occurrence. Back propagation algorithm is applied in the rule layer. The learning 
procedure is the same as previous one, but a new algorithm (based on [19]) must be proposed to 
iteratively update the weights:
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1( ) = [ ( ),..., ( )] ,T
kX n x n x n    1( ) = [ ( ),..., ( )] ,T

NX n x n x n  
1 1

1( ) = [ ( ),..., ( )]k k T
LY n y n y n+ + , respectively. Further-

more, let , , ,in out backW W W W  be input ( ),N K×  in-
ternal ( )N N× , output ( ( ))L K N× + , and back 
projection ( )N L×  connection weight matrices; re-
spectively. outF  indicates a given activation function 
of the output layer. As a whole structure, we have:

( 1) = ( ( 1) ( ) ( ))in backX n F W X n WX n W Y n+ + + +

( )( )( 1) = ( 1), ( 1) .out outY n F W X n X n+ + +

Discrete and continuous marking are the same as (1) 
and (5). Activation function F  was defined for two 
cases of macro events occurrence. Back propagation 
algorithm is applied in the rule layer. The learning 
procedure is the same as previous one, but a new algo-
rithm (based on [19]) must be proposed to iteratively 
update the weights:
Algorithm 2
Step 0: set ω = 0, ρ = P (ρ is a predetermined maximal 
number of epochs), and  error = ε.
Step 1: first of all, weights should be initialized to small 
random numbers.
Step 2: for forward path, weights can be computed 
based on Algorithm 1.
Step 3: compute error propagation term of the output 
layer Δi(n) by proceeding backward through n = q,...,1, 
for each sample n:
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L

i i i
j X z qi
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Step 4: compute error propagation term of the rule lay-
ers as follows: 
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Step 5: update weights according to 
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∑



Step 6: after each epoch, error should be comput-
ed based on (4) if If error > ε, or ω < P  or . Then, set  
ω = ω +1 , and go to step 1;else go to step 7.
Step 7: End. 

4.4.  Validation of the Approach and 
Simulation Results

Using the proposed feedforward neural FOHPN, time 
delay neural FOHPN, and recurrent neural FOHPN, 
three novel models were introduced for anomaly de-
tection in CPSs. Measured features in KDD 99 dataset 
are defined as the initial conditions of the input plac-
es in the proposed models. A complete list of features 
defined for the connection records is given in Table 5.  
As can be seen, some features of KDD 99 intrusion 
detection dataset are continuous and some are dis-
crete. Consequently, the FOHPN is proposed in order 
to capture both feature types. All 41 features listed in 
Table 5 are used as the initial marking of the proposed 
neural FOHPN models. Based on the previously pro-
posed training algorithms, appropriate unknown pa-
rameters such as arc weights, firing speeds, and time 
delays can be computed. After the training procedure, 
these parameters are set in the proposed models, and 
validation is done based on the test dataset.
In order to identify the normal behavior or cyber at-
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Table 5 
Basic features of KDD 99 intrusion detection dataset [18] 

tacks in the CPSs, three different methods, namely 
feedforward back propagation neural FOHPN, time 
delay neural FOHPN, and recurrent neural FOHPN 
have been used. Each model leads to a different ac-

curacy and speed. Fig. 10 illustrates the performance 
of three different proposed FOHPN models. Perfor-
mance comparison of these models, in terms of run-
ning time and accuracy, is provided in Table 6.
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A comparison of detection rate (DR) for the DARPA 
test dataset using the proposed models is presented 
in Table 7.

Figure 10 
Performance evaluation of the (a) feedforward back propagation 
neural FOHPN, (b) recurrent neural FOHPN, (c) time delay 
neural FOHPN

Table 6 
Performance comparison of the proposed neural FOHPN 
models

   Running 
time (s)  

Accuracy (norm 
of error)  

Feedforward back 
propagation neural FOHPN  6 0.470

Recurrent neural FOHPN  149 0.224

time delay neural FOHPN  48 0.332

Fig. 10 Performance evaluation of the (a) feedforward back propagation neural FOHPN, (b) recurrent 
neural FOHPN, (c) time delay neural FOHPN
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Feedforward back propagation neural FOHPN 98.2 99.8 99.5 99.0 96.2
Recurrent neural FOHPN 97.9 99.4 98.7 98.5 94.0
Time delay neural FOHPN 99.2 98.5 99.2 98.9 96.0

Based on these results, all three models are accurate enough, but the running time of feedforward back 
propagation neural FOHPN is considerably smaller than others. Since the time of cyber detection is 
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Table 7 
Detection rate comparison of the proposed FOHPN models

   Normal Dos Probe U2R R2L

Feedforward 
back propagation 
neural FOHPN  

98.2 99.8 99.5 99.0 96.2

Recurrent neural 
FOHPN  97.9 99.4 98.7 98.5 94.0

Time delay neural 
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Figure 11 
Anomaly detection error based on feedforward neural FOHPN 
model

critically important, feedforward back propagation neural FOHPN seems to be more useful. Fig. 11
indicates anomaly detection errors based on feedforward neural FOHPN in all four attack categories and 
normal condition. As can be seen, the error on the test dataset is driven to a very small value.

Fig. 11 Anomaly detection error based on feedforward neural FOHPN model

To verify the effectiveness of the proposed model against existing neural-network-based approaches, a 
performance comparison of detection rate (DR) and false positive rate (FPR)1 is provided in Table 8. All 
methods are implemented using MATLAB toolbox in the same PC.
Based on the result shown in Table 8, it is evident that the proposed feedforward back propagation neural 
FOHPN model is accurate enough to enhance acceptable detection rate. Its accuracy is better than [14], 
[42], and [20], and fairly close to [29], however, its running time is much smaller than the others. This 
factor is very critical in cyber intrusion detection concept. The speed of the proposed method is 13 times 
faster than the fastest one. As a result, one can conclude that not only feedforward back propagation 
neural FOHPN is satisfactorily accurate, but also the required time to detect abnormal or malicious 
behavior is much less than other methods. This efficiency is indeed expected based on Petri net 
properties. 

Table 8 Performance comparison of the proposed FOHPN model with other approaches
Normal Dos Probe U2R R2L Running

DR FPR DR FPR DR FPR DR FPR DR FPR Time (s)
feedforward back
propagation neural FOHPN

98.2 2.9 100 1.6 99.5 1.2 99 0.6 96.2 0.4 0.1228

BPNN [14] 79.8 - 97.5 - 99.1 - 34.5 - 98.9 - 2.5
RBF [42] - - 98.8 1.6 98 1.6 - - 97.2 1.6 1.6
HPCANN [29] - - 100 0.7 100 0.5 - - 97.2 0.6 -
MLP [20]

- -
99.9

-
48.1

-
48.3

-
93.2

-
30

                                                      
1 It occurs when it is normal while IDS detects it attack.
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Table 8 
Performance comparison of the proposed FOHPN model with other approaches

  
 

Normal Dos Probe U2R R2L Running

DR FPR DR FPR DR FPR DR FPR DR FPR Time (s)

Feedforward back 
propagation neural 
FOHPN 

98.2 2.9 100 1.6 99.5 1.2 99 0.6 96.2 0.4 0.1228

BPNN [14] 79.8 - 97.5 - 99.1 - 34.5 - 98.9 - 2.5

RBF [42] - - 98.8 1.6 98 1.6 - - 97.2 1.6 1.6

HPCANN [29] - - 100 0.7 100 0.5 - - 97.2 0.6 -

MLP [20] -- -- 99.9 -- 48.1 -- 48.3 -- 93.2 -- 30

Based on these results, all three models are accurate 
enough, but the running time of feedforward back 
propagation neural FOHPN is considerably smaller 
than others. Since the time of cyber detection is crit-
ically important, feedforward back propagation neu-
ral FOHPN seems to be more useful. Fig. 11 indicates 
anomaly detection errors based on feedforward neu-
ral FOHPN in all four attack categories and normal 
condition. As can be seen, the error on the test dataset 
is driven to a very small value.
To verify the effectiveness of the proposed model 
against existing neural-network-based approaches, a 
performance comparison of detection rate (DR) and 
false positive rate (FPR)1 is provided in Table 8. All 
methods are implemented using MATLAB toolbox in 
the same PC.
Based on the result shown in Table 8, it is evident 
that the proposed feedforward back propagation 
neural FOHPN model is accurate enough to enhance 
acceptable detection rate. Its accuracy is better than 
[14], [42], and [20], and fairly close to [29], howev-
er, its running time is much smaller than the others.  
This factor is very critical in cyber intrusion detec-
tion concept. The speed of the proposed method is 
13 times faster than the fastest one. As a result, one 
can conclude that not only feedforward back prop-
agation neural FOHPN is satisfactorily accurate, 
but also the required time to detect abnormal or ma-

1  It occurs when it is normal while IDS detects it attack.

licious behavior is much less than other methods. 
This efficiency is indeed expected based on Petri net 
properties. 

5.  Conclusion
In this paper, an intrusion detection method based on 
Petri net was proposed that was efficient in both real 
time misuse and anomaly detection. Petri net based 
misuse detection model was proposed in order to de-
tect malicious behavior in physical or customer layer 
in CPSs. By implementing anomaly detection in SCA-
DA layer of CPSs, one can monitor the overall systems 
and discover anomalous behavior. This phenomenon 
was implemented in this paper by using the proposed 
online neural FOHPN model. New extracted dataset 
was used in this paper based on DARPA evaluation 
dataset for implementing fast online intrusion de-
tection. Simultaneous misuse and anomaly detection 
were proposed and implemented based on Petri net 
in CPSs. Furthermore, the convergence speed of the 
proposed model makes it suitable specially in intru-
sion detection of sensitive CPSs. Simulations were 
carried out to demonstrate the performance of the 
proposed model on DARPA evaluation datasets. The 
results illustrate significant improvement in speed 
and also a satisfactory accuracy compared to other 
existing intrusion detection approaches.
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