
Information Technology and Control 2017/2/46228

A Note on the Use of Step 
Responses Matrix and Lambert 
W Function in the Dynamics 
Analysis of Time Delay Systems

ITC 2/46
Journal of Information Technology  
and Control
Vol. 46 / No. 2 / 2017
pp. 228-234

© Kaunas University of Technology

A Note on the Use of Step Responses Matrix and Lambert W 
Function in the Dynamics Analysis of Time Delay Systems

Received  2016/09/07 Accepted after revision  2017/06/06

    

Corresponding author: irma.ivanoviene@yahoo.com

Irma Jankauskienė, Jonas Rimas
Kaunas University of Technology, Department of Applied Mathematics, Studentų st. 50, LT-51368, Kaunas, Lithuania; 
e-mails: irma.ivanoviene@yahoo.com, jonas.rimas@ktu.lt

For investigation of the dynamics  of linear time-delay system, we propose to use the step responses matrix of 
the system and apply the Lambert W function method. The elements of this matrix in the first stage are being 
found on the interval [0, τ] (here τ is a fixed delay). For this, it is sufficient to solve an ordinary matrix differential 
equation. After that, using obtained solution as initial vector-function, elements of the step responses matrix 
are being found on the interval (τ, +∞) by solving a linear homogeneous matrix delay differential equation.  The 
well known Lambert W function method can be used for solution of this equation. The proposed method is 
illustrated on concrete time-delay systems.
KEYWORDS: differential equations, delayed arguments, Lambert W function.

Introduction
Using mathematical models that more exactly describe 
the behavior of the control  system it is necessary to 
consider delays of the signal, transferred along the sys-
tem. Such systems (with delays) are called time delay 
systems (TDS) [14]. In this article, we examine TDS, 
described by linear delay differential equations (DDEs) 

(differential equations with delayed argument).  Due to 
delays TDS are infinite dimensional and for this reason 
their investigation is rather complicated.  A compre-
hensive review of the results of investigation of TDS 
can be found in [19]. Several methods have been pro-
posed to investigate stability and control problems of 
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TDS, to find the absolute stability regions and investi-
gate their dependence on delays [15, 20]. Methods have 
been proposed to optimize the dominant root of the 
characteristic equation of TDS to guarantee a certain 
performance of the system [13]. The delay indepen-
dent and delay dependent stabilities were considered 
in [3, 7, 9, 21, 25]. The delay independent stability of 
TDS (that is the stability maintained for all positive de-
lays) was examined, and necessary and sufficient con-
ditions for such stability can be found in [3, 7, 21]. The 
delay dependent stability of TDS (which corresponds 
to the case where TDS is stable for only a certain range 
of delay values) was investigated in [9, 25]. Recently a 
method for solution of linear DDEs, using Lambert W 
function was developed [14]. Some special cases in the 
stability analysis of multidimensional TDS, using the 
matrix Lambert W function, were dealt in [2,4]. 

Formulation of the problem
Let us consider time-delay system described by a 
linear  inhomogeneous  system of  delay differential 
equations presented in a matrix-vector form [1]: 
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here ( )Tn txtxtx )()(=)( 1   is the vector function, T 
here and further in the text denotes the operation of 
transposition, τ is a constant time-delay, )(tφ  is an ini-
tial  vector-function, z(t) is a term depending on the  
initial conditions, A and B are nn×  ( Nn∈ ) numerical 
matrices ( )nnRBA ×∈, .
One can obtain important information about tran-
sients in system by analysing reactions of the system 
to special types of impacts. Below, we shall use the 
unit leep  as such an impact and apply Lambert W 
function method in the dynamics analysis of the TDS.
Next we present brief information on the Lambert W 
function (for detailed information about this function 
see, for example, [6]).

Lambert W function

The Lambert W function )(zW  is defined as the solu-
tion of a transcendental equation
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The function is broadly used in theoretical and ap-
plied sciences [5, 8, 10, 23, 24].
The Lambert W function, with a complex argument 
z, is a complex multi-valued function; that is, for any 

Cz ∈   there are infinite number of solutions to (2). We 
denote by )(zWk  the k -th branch of the Lambert W 
function of z ( ,...2,1,0 ±±=k ).
The comprehensive explanation of the branch cuts 
and the ranges of separate branches is given in [6].
Only two of the branches of Lambert W function 
have real values: )(0 xW  and )(1 xW− . As can be seen 
in Fig. 1, the branch )(1 xW−  is defined in the interval 
[–e–1, 0) and has a negative singularity for −→ 0x . 
The branch )(0 xW  is defined in the interval [–e–1, +∞). 
The range of the branch )(0 xW  is the interval [-1, + ∞) 
and that of the branch )(1 xW−  is the interval (-∞, -1].
If Hz =  is a square matrix in (2), then the solution of 
(2) is a matrix Lambert W function )(HW .

Figure 1 
The two real branches of Lambert W function :W0(x) (…..) 
and W–1(x) (------).
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Step responses matrix  
of the system
Let delay system  be described by (1) and ( )Tn txtxtx )()(=)( 1 

( )Tn txtxtx )()(=)( 1   be a solution of (1). The matrix h(t)= 
(hij(t)) we shall call the step responses matrix of the 
system if hij(t) ),1,()( njithij =  is a response of xi(t) to a unit 
leap in xj(t) [16]. It should be emphasized that the step 



Information Technology and Control 2017/2/46230

responses matrix gives the possibility to investigate 
reaction of the system to various interferencies. We 
shall determine the elements of h(t).
When the change of the j-th component  of the vector  
x(t) takes form of the unit leap, the change of the free 
term of the equation (1) has the folowing form: 
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here )( jI  is the matrix-column all elements of which 
are zeros except the j-th element, which is equal to 1, 

)(tδ  is the Dirac delta-function. Differential equation 
for step responses hij(t) = {hj(t)}i ),1,()( njithij =  of the sys-
tem (1) has the form:
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here ( )Tnjjjj thththth )()()(=)( 21  is the j-th 
column of h(t).

The components of )( τ−th j  on the interval [0, τ] are 
zeros, consequently expression (4) on this interval 
can be presented as follows: 
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The solution of (5) is a vector-function [22]:
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here 1(t) is the Heaviside step function. The compo-
nents of the vector-function hj(t) are: 
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The differential equation (4) on the interval [τ, + ∞)  
will be a linear homogeneous matrix delay differential 
equation:
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here )(tjϕ  is the initial vector-function. The compo-
nents of the vector-function )(tjϕ  will have values 
(see (7)):
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Let the matrices A and B in (8)  commute. In that case, 
the solution of (8) on the interval [τ, + ∞), got applying 
the Lambert function method, will be (see, for exam-
ple, [14]):
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here 
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)( ττ A
k eBW −  is the significance of the k-th branch 

)(HWk  of the matrix Lambert function )(HW  at 
ττ AeBH −= , )( jCk  are the complex valued vectors 

corresponding to the initial vector function )(tjϕ  (see 
(8) and (9)). The instructions  for computing )( jCk  
and )(HWk  can be found in [14].  From (10), the ap-
proximate expression for hj(t) on the interval [τ, + ∞) 
follows:
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here N is a sufficiently big natural number.
Remark 1. Let the matrix H in AHWS kk −)(1= τ

 
( )ττ AeBH −= , ,Zk ∈  have s eigenvalues  sλλ ,,1   with 
multiplicities snn ,,1  , respectively. Then the Jordan 
form of the matrix H will be (see [11, 12]):
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here ( )λnJ  is the  nn×  Jordan block corresponding to 
eigenvalue λ . By similarity transformation we have 

1−= TJTH  and the Lambert W function of the matrix 
H can be defined as follows:
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Remark 2. Let the matrix ττ AeBH −=  have zero ei-
genvalue: .(0))( kik WW =λ  It is known that [6]:
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and 
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We change the values of (0)kW  at 0≠k  as follows: 
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(15)

This replacement is made by using known property of 
the Lambert W function:
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if we apply (13), and ,00(0) 0(0) == eeW kW
k  if we use  

(15).
Our presumption: the replacement 
( −   ∞=(0)kW , if 0≠k ) ⇒ ( 0(0) =kW , if 0≠k ) 
does not affect all the set of eigenvalues (it may af-
fect only the order of elements in this set). It must 
be proved that this presumption is correct in general 
case. For the special case, given in the second example 
of Section 4, it is confirmed. 

The illustrative examples
Example 1
In the first example, we shall illustrate the proposed 
method of investigation of dynamics of linear delay 

systems on the mutual synchronization system of the 
communication network [16]. Let the synchroniza-
tion system be composed of n ( )Nn ∈  mutually syn-
chronized identical oscillators joined into a ring and 
its mathematical model be the matrix delay differen-
tial equation (1), in which EA κ= , κ  is some coeffi-
cient, E is the identity matrix,  UB

2
κ

−=  (note that A 

and B in this example are commuting matrices),  
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Figure  2:  Dependence of the step response 

)(11 th  on a delay  . 

The matrix U defines the structure of the internal 
links of the system (unmarked elements in U are equal 
to zero). In this case, the symbol xi(t) in (1) means  the 
phase of oscillation of the i–th oscillator. We shall find 
the step responses matrix h(t)= hij(t) of the synchroni-
zation system; here
hij(t) ( nji ,1, = ) is the response of the i–th oscillator 
oscillation phase to a unit leap in the j–th oscillator 
oscillation phase.
From (7), we get the expression for )(thi j  on the inter-
val [0, τ]:
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Figure  2:  Dependence of the step response 

)(11 th  on a delay  . 

(16)

(we have taken into account the fact that the matrix 
exponential eaE with identity matrix E and Ra ∈  can 
be expressed as follows: eaE= eaE  [22]).
We obtain  the expression of hij(t) on the interval   
by taking into account the relation { }

iji j thth )()( =  and  
solving  matrix linear homogeneous delay differential 
equation (8) with initial function )(tjϕ . This func-
tion is equal to hj(t) in the interval [0, τ] (see (16)): 

( ) ( ),1=)( )( tIetth jt
jj

κϕ −= nj 1  ,= , [ ]τ,0∈t . The solu-
tion of (8) is presented in (10). In the real calcula-
tions, we use the approximate formula (12) obtained 
from (10) with finite N (2N +1 denotes  the number of 
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branches of the Lambert W function, which are used 
in the calculation of the solution).
The curves of step responses h11(t) and h21(t), calculat-
ed by (16) on the interval [0, τ] and by the approximate 
formula (12) on the interval ( )+  ∞ ,τ , are presented in 
Figures 2 and 3. The curves in these figures are ob-
tained with N = 50. The corresponding curves, got  by 
the  method  of consequent integration (see [17]) and 
by dde23 program in MATLAB, are not presented in 
these figures, since these curves and the curves ob-
tained by the approximate formula (12) with N = 50 
visually coincide.

Figure 2

Dependence of the step response h11(t) on a delay τ

Figure 3  

Dependence of the step response h21(t) on the number of 
oscillators in the system 
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Example 2
The second example deals with forced synchroniza-
tion system of the communication network [18]. 
Let the forced synchronization system be composed  
of n  ( )Nn ∈  identical oscillators joined into a chain 
and its mathematical model be the matrix  delay dif-
ferential equation (1), in which EA κ= , κ  is some co-
efficient, and E is the identity matrix, ,

2
UB κ

−=  
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(matrix U defines the structure of the internal links 
of the system; unmarked elements in U are equal to 
zero). Note that A and B in this example, as well, are 
commuting matrices.  
The symbol xi(t) in (1) means the phase of oscillation 
of  the  i–th oscillator. We shall find the step responses 
matrix )(thth i j=( )  of the synchronization system. 
From (7) we get the expression  for hij(t) on the interval 
[0, τ]. It will be the same as in the first example (see  (16)).

Figure 4  
Curves of the step response )(2  2 th κ  calculated by three 
methods: 1) the Lambert W function method with different 
values of N, 2) numerical method using dde23 program 
in MATLAB, 3) exact method of consequent integration 
(method of “steps”)
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We  obtain  the expression of  hij(t) on the interval   ( )+  ∞,τ  
by taking into account the relation { }

iji j thth )()( =  and  
solving  matrix linear homogeneous delay differential 
equation (8) with initial function )(tjϕ . This function 
is equal to )(thj , found  on the interval [0, τ] (see  (16)):  

( ) ( ),1=)( )( tIetth jt
jj

κϕ −= nj 1  ,= , [ ]τ,0∈t .  The solu-
tion of  (8) is presented in (10). In this case, the matrix 

ττ AeBH −=  in AHWS kk −)(1=
τ

 has zero eigenvalue, 
therefore, we perform the replacement  according to 
Remark 2. 
 The curves of the step responses, calculated by (16) on 
the interval [0, τ] and by the approximate formula (12) 
on the interval ( )+  ∞,τ , are presented in Figures 4 and 
5. The curves in Figure 4 are obtained with different 
values of N:  N = 5, N = 15 and N = 50. The correspond-
ing curves, obtained by the  method  of  “steps” (see 
[18]) and by dde23 program, in Figure 4 are present-

Figure 5
Curves of the step responses

ed as well. As we see from this figure, step responses, 
calculated by the Lambert W function method, ap-
proach the exact curves if the number of branches, 
used in calculations, is increasing. This result  proves  
the supposition, which was made in Remark 2. The 
curves in Figure 5 are produced by taking  N = 50.

Conclusions
1 This article presents a method for the investiga-

tion of  linear time-delay system, based on the ap-
plication of step responses matrix of the system 
and on the use of the Lambert W function method 
for solution of linear homogeneous matrix delay 
differential equations. According to the proposed 
method, in the first stage, the elements of the step 
responses matrix are found on the interval [0, τ]. 
For this, an ordinary matrix differential equation 
must be solved. Using the obtained solution as the 
initial vector function for the homogeneous delay 
differential equation, the elements of the step re-
sponses matrix, applying the Lambert W function 
method, are found on the interval ( )+  ∞,τ .

2 If the matrix H (the argument of the Lambert W 
function) has zero eigenvalue, it is proposed in this 
paper to change the value of the k-th branch ( )0≠k  
of the Lambert W function at zero argument to 
zero. This replacement, as it is shown in Example 
2, leads to good results.

3 The adduced  examples show the applicability of 
the proposed method for investigation of the dy-
namics of linear delay systems.
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Summary / Santrauka

For investigation of the dynamics  of linear time-delay system, we propose to use the step responses matrix of 
the system and apply the Lambert W function method. The elements of this matrix in the first stage are being 
found on the interval [0, τ] (here τ is a fixed delay). For this, it is sufficient to solve an ordinary matrix differential 
equation. After that, using obtained solution as initial vector-function, elements of the step responses matrix are 
being found on the interval (τ, +∞) by solving a linear homogeneous matrix delay differential equation.  The well 
known Lambert W function method can be used for solution of this equation. The proposed method is illustrated 
on concrete time-delay systems.

Straipsnyje tiriant tiesinių sistemų su vėlavimais dinamiką pasiūlyta naudoti sistemų pereinamųjų funkcijų ma-
tricas ir Lamberto W funkciją. Taikant šį metodą, pirmame etape randamos pereinamosios funkcijos vėlavimo 
ilgio intervale[0, τ], sprendžiant paprastąją tiesinę matricinę diferencialinę lygtį. Toliau, tariant, kad surastas 
sprendinys yra pradinė funkcija, sistemos pereinamosios funkcijos intervale ( )+  ∞,τ  randamos sprendžiant tie-
sinę homogeninę matricinę diferencialinę lygtį su vėluojančiu argumentu. Šiai lygčiai spręsti gali būti taikomas 
žinomas metodas, paremtas Lamberto W funkcijos taikymu. Pateikti pasiūlytą metodą iliustruojantys pavyzdžiai.




