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This paper presents a novel proxy convertible multi-authenticated encryption (multi-AE) scheme and its vari-
ant with message linkages. The proposed scheme allows two or more original signers to cooperatively delegate 
their signing power to an authorized proxy signer, such that the proxy signer can generate a valid authenticated 
ciphertext on behalf of the original signing group and only a designated recipient is capable of decrypting the 
ciphertext and verifying its embedded proxy multi-signature. Its variant with message linkages further ben-
efits the encryption of a large message by dividing it into many smaller message blocks. The proposed proxy 
convertible multi-AE scheme and its variant can simultaneously fulfill the security requirements of confiden-
tiality and authenticity. Thus, they are applicable to those group-oriented confidential applications with proxy 
delegation, e.g., proxy on-line auction, proxy contract signing and so on. In case of a later dispute over repudi-
ation, our proposed scheme also allows a designated recipient to convert the ciphertext into an original proxy 
multi-signature for public verification. In addition, the security of confidentiality against indistinguishability 
under adaptive chosen-ciphertext attacks (IND-CCA2) and that of unforgeability against existential forgery 
under adaptive chosen-message attacks (EF-CMA) are proved in the random oracle model.
KEYWORDS: proxy multi-signature, convertible, authenticated encryption, message linkage.

1. Introduction
With the rapid development of electronic commerce 
(eCommerce), the security of on-line transactions has 
received the great attention. Generally speaking, cryp-
tographic techniques can be adopted to protect the 
communication content over the Internet. Public key 
encryptions [4] and digital signature schemes [5, 30] 
are two fundamental cryptographic mechanisms which 

primarily aim for providing confidentiality [9, 15] and 
authenticity [30], respectively. The digital signature 
scheme can further satisfy the requirement of non-re-
pudiation [31] to prevent the signer’s dishonesty.
Some applications, however, like the contract signing, 
the savings withdrawal, on-line auctions and credit 
card transactions require all the above security re-
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quirements simultaneously be achieved. A straight-
forward way would be sign-then-encrypt [36]. Yet, 
the approach is costly in terms of computation efforts 
and communication overheads. In some special cir-
cumstances, a proxy might be properly delegated to 
conduct these confidential transactions, e.g., proxy 
auctions and the contract signing by an authorized 
proxy signer. Consider group-oriented applications 
such as the joint account owned by two or more in-
dividuals. To withdraw money from such account, all 
owners must cooperatively sign the withdrawal form 
which can only be verified by the bank teller. In case 
that account owners are unable to sign personally, 
they can delegate their signing power to a proxy signer 
who can legitimately conduct transactions on behalf 
of them. It thus can be seen that the design of efficient 
and provably secure cryptographic schemes fulfilling 
such requirements is crucial and benefits to the prac-
tical implementation.

1.2. Related Work
In 1996, Mambo et al. [25, 26] extended the concept 
of digital signature and introduced the notion of proxy 
signatures. A proxy signature scheme allows the orig-
inal signer to delegate his signing power to an autho-
rized person called proxy signer, such that the proxy 
signer can generate a valid proxy signature on behalf 
of the original one. As to the proxy delegation, it can be 
categorized into four different kinds as follows:
(i). Full delegation [25, 26]: The proxy signer uses the 

private key which is the same as the one of the 
original signer so that all (proxy) signatures are 
signed with the same private key. Consequent-
ly, it is difficult for a verifier to identify the real 
signer from a given signature. That is to say, it 
cannot provide secure mechanisms to protect 
any one of the original and the proxy signers 
from being framed by the other.

(ii). Partial delegation [25, 26]: The proxy private 
key is further derived from the original signer’s 
one based on some cryptographic assumptions, 
e.g., the factorization and the discrete logarithm 
problems. It is infeasible to compute the original 
signer’s private key from the proxy one. Yet, it 
needs an additional revocation protocol as no in-
formation (e.g., the period of validity) is bonded 
to the delegation. Moreover, a malicious original 
signer can easily impersonate the proxy signer 

by deriving the corresponding proxy private key. 
(iii). Delegation by warrant [28, 37]: A warrant which 

contains necessary proxy information, e.g., the 
period of validity and the identifiers of the orig-
inal and the proxy signers, could be regarded as 
the delegation authorization. The warrant is 
then delivered to the proxy signer for convincing 
anyone. However, transmitting and verifying the 
certificate will incur extra computational and 
communicational costs.

(iv). Partial delegation with warrant [16]: This ap-
proach integrates the merits of partial delega-
tion and delegation by warrant. It is also compu-
tationally infeasible for a proxy signer to derive 
the original signer’s private key from the proxy 
one. Besides, to certify the warrant and validate 
the signature can be simultaneously carried out 
within a single step, which helps reducing the 
computational and communicational costs. 

Obviously, the fourth approach, partial delegation with 
warrant, is more flexible and secure as compared to the 
first three. Because of its efficiency and security com-
pared with the others, we also adopt partial delegation 
with warrant to implement the proposed scheme. Up to 
the present, lots of variations of proxy signatures have 
been proposed [10, 12-14, 16, 23, 33, 34, 36]. 
In 1994, Horster et al. [8] proposed an authenticated 
encryption (AE) scheme which further provides dig-
ital signature schemes with the property of confiden-
tiality and only the designated recipient can verify the 
signature instead of everyone. Since only the desig-
nated recipient has the ability to decrypt the cipher-
text and verify the corresponding signature, there 
might be a potential drawback that the signer repudi-
ates his signature. In such a circumstance, it is even 
difficult for an arbitrator to judge who is lying. 
To deal with the case of a later dispute over repudi-
ation, Araki et al. [1] proposed a convertible limited 
verifier signature scheme. However, the signature 
conversion of their scheme requires the assistance of 
the signer and incurs additional computation efforts, 
which is considered to be inefficient and unworkable 
if the signer is unwilling to cooperate with. More-
over, Zhang and Kim [48] also pointed out that their 
scheme can not withstand a universal forgery attack 
on an arbitrary chosen message. 
In 2002, Wu and Hsu [40] proposed a convertible au-
thenticated encryption (CAE) scheme, in which the 



Information Technology and Control 2017/4/46532

signature conversion is rather simple and can be solely 
done by the recipient without any computation effort 
or communication overhead. Huang and Chang [11] 
proposed an enhanced scheme in the next year. How-
ever, both the Wu-Hsu and the Huang-Chang schemes 
cannot fulfill the security requirement of confidential-
ity, i.e., the ciphertext is computationally distinguish-
able with respect to two candidate messages. To elim-
inate such a security weakness, Lv et al. [24] proposed 
a secure and practical solution. In 2005, Wu et al. [41] 
proposed generalized CAE schemes and adapted these 
schemes based on elliptic curves [17, 25] for facilitat-
ing gradually popular applications like smart cards [7], 
mobile phones and PDAs. Since then, lots of related 
works [6, 21, 35, 39, 43] have been proposed. 
In 2008, Chien [3] proposed a selectively CAE scheme 
allowing either the signer or the designated recipient 
to perform the signature conversion. In the next year, 
Lee et al. [19] addressed a CAE scheme based on the 
ElGamal cryptosystem. Considering the RSA crypto-
system, Wu and Lin [44] also presented a CAE scheme 
based on RSA in 2009. Nevertheless, these schemes are 
not suitable for the environment of multi-user setting. 
To fulfill group-oriented application requirements, Wu 
et al. [42] proposed a convertible multi-authenticated 
encryption (CMAE) scheme which enables a signing 
group composed of multiple signers to generate a valid 
authenticated ciphertext. In 2010, Tsai et al. [34] re-
moved the necessity of using one-way hash functions. 
Based on Wu et al.’s scheme, Chang [2] addressed an-
other variant with shared verification of multiple des-
ignated recipients. In 2012, Lu et al. [22] presented a 
provably CMAE scheme for generalized group com-
munications. Later, Wu et al. [46] addressed a publicly 
verifiable PCAE scheme for confidential applications 
with proxy delegation. In 2014, Wu and Lin [45] pro-
posed a proxy CAE scheme based on RSA. In 2015, a re-
vocable CAE scheme [20] is also introduced. Yet, none 
of the above group-oriented CAE schemes can deal 
with the issue of proxy delegation. Although Lai and 
Singh [18] had proposed a similar scheme called ID-
based multi-proxy multi-signcryption could solve the 
same problem, their scheme incurred time-consuming 
bilinear pairing operations and required extra key es-
crow mechanism.

1.3. Our Contribution
In this paper, we elaborate on the merits of CAE 
schemes and proxy multi-signature schemes to pro-

pose a novel proxy convertible multi-AE scheme 
and its variant with message linkages. The proposed 
scheme allows a delegated proxy signer to generate a 
valid authenticated ciphertext on behalf of the origi-
nal signing group, such that only a designated recipi-
ent can recover the message and verify its embedded 
proxy multi-signature. When the case of a later dis-
pute over repudiation occurs, a designated recipient 
can solely convert the authenticated ciphertext into 
a publicly verifiable proxy multi-signature without 
extra computation or communication cost. Besides, 
we further propose a variant with message linkages 
to benefit the encryption of a large message. We also 
prove that the proposed scheme achieves the secu-
rity requirement of confidentiality against indistin-
guishability under adaptive chosen-ciphertext at-
tacks (IND-CCA2) and that of unforgeability against 
existential forgery under adaptive chosen-message 
attacks (EF-CMA) in the random oracle model. As 
compared with related works, the proposed scheme 
not only provides better functionalities, but also has 
the provable security.

2. Preliminaries
In this section, we first describe the parties partic-
ipating in the proposed scheme and define the com-
posed algorithms.

2.1. Parties
Without loss of generality, there are (n + 2) parties 
participating in a PCMAE scheme including a signing 
group (composed of n original signers), an authorized 
proxy signer and an intended recipient. All parties act 
as probabilistic polynomial-time Turing machines 
(PPTM). The original signers will deliver proxy cre-
dentials to the proxy signer. The latter is responsible 
for producing an authenticated ciphertext on behalf 
of the former. Yet, a dishonest proxy signer might re-
pudiate his ciphertext. Finally, the intended recipient 
has the ability to decrypt the ciphertext and verify the 
embedded proxy multi-signature. A PCMAE scheme 
is said to be correct if the authorized proxy signer can 
generate a valid authenticated ciphertext and only the 
intended recipient is capable of decrypting it and ver-
ifying the proxy multi-signature.
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2.2.  Algorithms
The proposed PCMAE scheme has the following four 
algorithms:
 _ Setup: Initially, the Setup algorithm will generate 

public parameters utilized in the system. Let k 
be a security parameter. Taking as input 1k, the 
algorithm outputs the parameter params.

 _ Credential-gen (CG): The CG algorithm is used for 
producing the proxy credential for an authorized 
proxy signer. The input information of it is 
composed of the identity of proxy signer along with 
the private keys of all original signers. The resulted 
output is the corresponding proxy credentials.

 _ Proxy-sign (PS): With the PS algorithm, an 
authorized proxy signer is able to generate a valid 
ciphertext on behalf of the original signing group. 
Thus, the input parameter includes a message 
m, n proxy credentials, the intended recipient’s 
public key and the proxy signer’s private key. 
The corresponding output is an authenticated 
ciphertext d.

 _ Uncover-verify (UV): The UV algorithm is used for 
decrypting authenticated ciphertexts and checking 
the validity of embedded proxy multi-signature. It 
takes as input a ciphertext d, a decryption key and 
all public keys of original and proxy signers. If the 
inputted ciphertext d is valid, it returns the signed 
message m and its converted proxy multi-signature 
W which is publicly verifiable. Otherwise, an error 
symbol ¶ is returned instead.

3. The Proposed PCMAE Schemes
We give a concrete construction of our PCMAE 
scheme in this section. Also, a variant with message 
linkage for manipulating a large message will be pre-
sented. The used notations are stated as Table 1. De-
tailed steps for each algorithm are shown as follows:

3.1. Basic Construction
 _ Setup: Taking as input a security parameter k, the 

system authority (SA) selects two large primes 
(p, q) and a generator g of order q, where |q| = k 
and q | (p - 1). Let h1: {0, 1}k × Zp*→ Zq, h2: {0, 1}k 

× Zp*× Zp*× Zp*→ Zq and h3: Zp*→ {0, 1}k be collision 
resistant hash functions. The system’s public 

Table 1 
The used notations

Zp integers modulo p

Zp* multiplicative group of integers modulo p

x∈ Zp* element x in set Zp*

x ←Zp* sampling element x uniformly in set Zp*

a mod b modulo operation: reminder of a divided by b

a | b integer b is divisible by integer a

|x| bit-length of integer x, also absolute value of x

∑∑
∈= Si

i

n

i
i vv ,

1
sum of values vi for i = 1, 2, …, n, or for i∈S

∏∏
∈= Si

i

n

i
i vv ,

1
product of values vi for i = 1, 2, …, n, or for i∈S

⊗ logical operation XOR

 ¬ logical operation NOT

 ∧ logical operation AND

 ∨ logical operation OR

 ∀ for all

Pr[E] probability of event E occurring

parameters params = {p, q, g, h1, h2, h3}. Each user 
Ui chooses his private key xi ∈ Zq and computes the 
public key as .mod pgy ix

i =
 _ Credential-gen (CG): Let O = {U1, U2, …, Un} be the 

group of n original users delegating their signing 
power to the proxy signer Up. With the following 
steps, Ui ∈ O distributes the proxy share to Up:

Step 1 Ui ∈O first chooses ti ∈R Zq to compute
  

 Ti = itg mod p,  (1) 

 and then sends Ti to Up and Uj  O, for j 
 i.  
Step 2 Upon receiving all Tj’s, Ui computes 

   pTT j
n
j mod1 , (2) 

 i = ti  xi h1(mw, T) mod q, (3) 
where mw is the warrant consisting of the 
identifier of the original and proxy 
signers, the delegation duration and so on. 
(i, mw, T) is then sent to Up.  

Step 3 Upon receiving (i, mw, T), Up verifies 

 )(mod),(1 pygT Tmh
ii wi . (4) 

If it does not hold, (i, mw, T) is 
requested to be sent again.  

 
We show that the verification of Eq. (4) works 

correctly. From the right-hand side of Eq. (4), we 
have 

),(1 Tmh
i wi yg  

 ),(),( 11 Tmh
i

Txhxt wwii yg   

 itg  

 )(mod pTi  (by Eq. (1)) 
which leads to the left-hand side of Eq. (4). 
 
– Proxy-sign (PS): For signing a message mR{0, 

1}k on behalf of the original signing group O, Up 
chooses r R Zq to compute 

 R = gr mod p,   (5) 

  = ,
1



n

i
i    (6) 

 C =


n

i

Tmh
i py w

1

),( ,mod1  (7) 
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 S = r + (  xph2(m, C, K, R)) mod q, (9) 
 Q = h3(K)  m,   (10) 

 and then delivers the warrant mw and the 
authenticated ciphertext  = (Q, S, R, T) to the 
designated recipient Uv. 

 
– Uncover-verify (UV): Upon receiving , Uv first 

computes C as Eq. (7) and derives K as 

 .mod)( 1 pTCK vx  (11) 
He then recovers the message as 

 m = Q  h3(K),   (12) 
 and checks the redundancy embedded in m. Uv can 

further verify the proxy multi-signature by checking 
if 

 ).(mod),,,(2 pCygRT RKCmh
p

S  (13) 

The correctness of Eqs. (12) and (13) can be easily 
confirmed. From the right-hand side of Eq. (12), 
we have 

Q  h3(K) 

 = Q  h3( pTC vx mod)( 1 ) (by Eq. (11)) 

 = Q  h3( pg vx mod)(  ) 
  (by Eqs. (4), (6) and (7)) 
 = m (by Eq. (8) and (10)) 

which leads to the left-hand side of Eq. (12). 
If the authenticated ciphertext (Q, S, R, T) is 

correctly generated, it will pass the test of Eq. (13). 
From the right-hand side of Eq. (13), we have 

Cyg RKCmh
p

S ),,,(2  

 Cyg RKCmh
p

RKCmhxr p ),,,(),,,( 22   

  (by Eq. (9)) 

(1)
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Cyg RKCmh
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 Cyg RKCmh
p

RKCmhxr p ),,,(),,,( 22   

  (by Eq. (9)) 

(3)

where mw is the warrant consisting of the identifier 
of the original and proxy signers, the delegation du-
ration and so on. (si, mw, T) is then sent to Up. 
Step 3 Upon receiving (si, mw, T), Up verifies
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)(mod),(1 pygT Tmh
ii wiσ= . (4)

If it does not hold, (si, mw, T) is requested to be sent 
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We show that the verification of Eq. (4) works cor-
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CRgσ= (by Eq. (5))

)(mod pRT= (by Eqs. (2), (4) and (6))
which leads to the left-hand side of Eq. (13).

When a later dispute over repudiation occurs, Uv
can reveal the converted proxy multi-signature Ω = (S,
R, T, K), the warrant mw and the original message m
to prove the proxy signer’s dishonesty without any 
additional cost. Thus, anyone can verify the converted 
proxy multi-signature with the assistance of Eqs. (7)
and (13). 

3.2 Variant with Message Linkages

Consider the practical implementation that the 
original message may be large. It therefore will cause 
the difficulty in encryption. In the subsection, we 
propose a variant with message linkages to benefit the 
encryption of a large message by dividing it into lots 
of small message blocks. The construction is similar 
as that in Section 3.1. We only describe the different 
parts as follows:

– Proxy-sign (PS): For signing a large message m on
behalf of the original signing group O, Up first 
divides the message m into n pieces, i.e., m = m1 ||
m2 || … || mn, mi’s ∈GF(p), and then chooses r ∈R
Zq and w0 = 0 to compute R, σ, C, K and S as Eqs. 
(5) to (9). Up further computes 

wi = mi ⋅ h3(wi − 1 ⊕ h3(K)) mod p,
for i = 1, 2,…, n, (10*)

and delivers the warrant mw along with δ = (S, R, T,
w1, w2, …, wn) to the designated recipient Uv.

– Uncover-verify (UV): Upon receiving it, Uv first 
derives C and K as Eqs. (7) and (11), respectively.
He then computes

mi = wi ⋅ h3(wi − 1 ⊕ h3(K))−1 mod p,
for i = 1, 2,…, n, (12*)

and recovers the original message m as m1 || m2 || …
|| mn. Uv can further verify the proxy 
multi-signature by checking Eq. (13).

We show that with the authenticated ciphertext 
(S, R, T, w1, w2, …, wn) and the warrant mw, the 
designated recipient Uv can recover the message m
and check its validity with Eq. (12*). From the 
right-hand side of Eq. (12*), we have

wi ⋅ h3(wi − 1 ⊕ h3(K))−1

= mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1

(by Eq. (10*))
= mi (mod p)

which leads to the left-hand side of Eq. (12*).

4. Security Proof and Comparison

In this section, we briefly review the security notions, 
state the security model and prove the security of our 
proposed scheme. Some comparisons with related
schemes are also made.

4.1 Security Notions

Discrete Logarithm Problem; DLP
Let p and q be two large primes satisfying q | p −

1, and g a generator of order q over GF(p). The 
discrete logarithm problem is, given an instance (y, p,
q, g), where y = gx mod p for some x ∈ Zq, to derive
x.

Discrete Logarithm (DL) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I

is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the DLP with the advantage at 
most 1/P(k), i.e.,

Pr[A(y, p, q, g) = Log p, q, g(y), 

(p, q, g) ← Ik, y ← *
pZ ] ≤ 1/P(k).

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A.

Definition 1. The (t, ε)-DL assumption holds if there 
is no polynomial-time adversary that can solve the 
DLP in time at most t and with the advantage ε.

Computational Diffie-Hellman Problem; CDHP
Let p and q be two large primes satisfying that q |

p − 1, and g a generator of order q over GF(p). The 
computational Diffie-Hellman problem is, given an 
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive 
gab mod p.

Computational Diffie-Hellman (CDH) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I

is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the CDHP with the advantage 
at most 1/P(k), i.e.,

Pr[A(p, q, g, ga, gb) = gab,
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k).

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A.
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right-hand side of Eq. (12*), we have

wi ⋅ h3(wi − 1 ⊕ h3(K))−1

= mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1

(by Eq. (10*))
= mi (mod p)

which leads to the left-hand side of Eq. (12*).

4. Security Proof and Comparison

In this section, we briefly review the security notions, 
state the security model and prove the security of our 
proposed scheme. Some comparisons with related
schemes are also made.

4.1 Security Notions

Discrete Logarithm Problem; DLP
Let p and q be two large primes satisfying q | p −

1, and g a generator of order q over GF(p). The 
discrete logarithm problem is, given an instance (y, p,
q, g), where y = gx mod p for some x ∈ Zq, to derive
x.

Discrete Logarithm (DL) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I

is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the DLP with the advantage at 
most 1/P(k), i.e.,

Pr[A(y, p, q, g) = Log p, q, g(y), 

(p, q, g) ← Ik, y ← *
pZ ] ≤ 1/P(k).

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A.

Definition 1. The (t, ε)-DL assumption holds if there 
is no polynomial-time adversary that can solve the 
DLP in time at most t and with the advantage ε.

Computational Diffie-Hellman Problem; CDHP
Let p and q be two large primes satisfying that q |

p − 1, and g a generator of order q over GF(p). The 
computational Diffie-Hellman problem is, given an 
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive 
gab mod p.

Computational Diffie-Hellman (CDH) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I

is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the CDHP with the advantage 
at most 1/P(k), i.e.,

Pr[A(p, q, g, ga, gb) = gab,
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k).

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A.

by Eqs. (2), (4) and (6)

which leads to the left-hand side of Eq. (13).
When a later dispute over repudiation occurs, Uv 
can reveal the converted proxy multi-signature 
W = (S, R, T, K), the warrant mw and the original 
message m to prove the proxy signer’s dishonesty 
without any additional cost. Thus, anyone can ver-
ify the converted proxy multi-signature with the 
assistance of Eqs. (7) and (13). 

3.2. Variant with Message Linkages
Consider the practical implementation that the orig-
inal message may be large. It therefore will cause the 
difficulty in encryption. In the subsection, we propose 
a variant with message linkages to benefit the encryp-
tion of a large message by dividing it into lots of small 
message blocks. The construction is similar as that 
in Section 3.1. We only describe the different parts as 
follows:
 _ Proxy-sign (PS): For signing a large message m 

on behalf of the original signing group O, Up first 
divides the message m into n pieces, i.e., m = m1 || 
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m2 || … || mn, mi’s ∈GF(p), and then chooses r ∈R Zq 
and w0 = 0 to compute R, s, C, K and S as Eqs. (5) to 
(9). Up further computes 

wi = mi ⋅ h3(wi − 1 ⊕ h3(K)) mod p,  
 for i = 1, 2,…, n,   (10*) 

 

mi = wi ⋅ h3(wi − 1 ⊕ h3(K))−1 mod p,  
 for i = 1, 2,…, n,   (12*) 

 and recovers the original message m as m1 || m2 || … 
|| mn. Uv can further verify the proxy 
multi-signature by checking Eq. (13). 

We show that with the authenticated ciphertext 
(S, R, T, w1, w2, …, wn) and the warrant mw, the 
designated recipient Uv can recover the message m 
and check its validity with Eq. (12*). From the 
right-hand side of Eq. (12*), we have 

wi ⋅ h3(wi − 1 ⊕ h3(K))−1 

 = mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1   

  (by Eq. (10*)) 
 = mi (mod p) 

which leads to the left-hand side of Eq. (12*). 

4. Security Proof and Comparison 

In this section, we briefly review the security notions, 
state the security model and prove the security of our 
proposed scheme. Some comparisons with related 
schemes are also made. 

4.1 Security Notions 

Discrete Logarithm Problem; DLP 
Let p and q be two large primes satisfying q | p − 

1, and g a generator of order q over GF(p). The 
discrete logarithm problem is, given an instance (y, p, 
q, g), where y = gx mod p for some x ∈ Zq, to derive 
x.  
 
Discrete Logarithm (DL) Assumption 

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I 
is the universe of all instances and |p| represents the 
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the DLP with the advantage at 
most 1/P(k), i.e., 

Pr[A(y, p, q, g) = Log p, q, g(y),  

(p, q, g) ← Ik, y ← *
pZ ] ≤ 1/P(k). 

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A. 
 
Definition 1. The (t, ε)-DL assumption holds if there 
is no polynomial-time adversary that can solve the 
DLP in time at most t and with the advantage ε. 
 
Computational Diffie-Hellman Problem; CDHP 

Let p and q be two large primes satisfying that q | 
p − 1, and g a generator of order q over GF(p). The 
computational Diffie-Hellman problem is, given an 
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive 
gab mod p. 
 
Computational Diffie-Hellman (CDH) Assumption 

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I 
is the universe of all instances and |p| represents the 
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the CDHP with the advantage 
at most 1/P(k), i.e., 

Pr[A(p, q, g, ga, gb) = gab,  
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k). 

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A. 

(10*)

and delivers the warrant mw along with d = (S, R, T, w1, 
w2, …, wn) to the designated recipient Uv.
 _ Uncover-verify (UV): Upon receiving it, Uv first 

derives C and K as Eqs. (7) and (11), respectively. 
He then computes

wi = mi ⋅ h3(wi − 1 ⊕ h3(K)) mod p,  
 for i = 1, 2,…, n,   (10*) 

 

mi = wi ⋅ h3(wi − 1 ⊕ h3(K))−1 mod p,  
 for i = 1, 2,…, n,   (12*) 

 and recovers the original message m as m1 || m2 || … 
|| mn. Uv can further verify the proxy 
multi-signature by checking Eq. (13). 

We show that with the authenticated ciphertext 
(S, R, T, w1, w2, …, wn) and the warrant mw, the 
designated recipient Uv can recover the message m 
and check its validity with Eq. (12*). From the 
right-hand side of Eq. (12*), we have 

wi ⋅ h3(wi − 1 ⊕ h3(K))−1 

 = mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1   

  (by Eq. (10*)) 
 = mi (mod p) 

which leads to the left-hand side of Eq. (12*). 

4. Security Proof and Comparison 

In this section, we briefly review the security notions, 
state the security model and prove the security of our 
proposed scheme. Some comparisons with related 
schemes are also made. 

4.1 Security Notions 

Discrete Logarithm Problem; DLP 
Let p and q be two large primes satisfying q | p − 

1, and g a generator of order q over GF(p). The 
discrete logarithm problem is, given an instance (y, p, 
q, g), where y = gx mod p for some x ∈ Zq, to derive 
x.  
 
Discrete Logarithm (DL) Assumption 

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I 
is the universe of all instances and |p| represents the 
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the DLP with the advantage at 
most 1/P(k), i.e., 

Pr[A(y, p, q, g) = Log p, q, g(y),  

(p, q, g) ← Ik, y ← *
pZ ] ≤ 1/P(k). 

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A. 
 
Definition 1. The (t, ε)-DL assumption holds if there 
is no polynomial-time adversary that can solve the 
DLP in time at most t and with the advantage ε. 
 
Computational Diffie-Hellman Problem; CDHP 

Let p and q be two large primes satisfying that q | 
p − 1, and g a generator of order q over GF(p). The 
computational Diffie-Hellman problem is, given an 
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive 
gab mod p. 
 
Computational Diffie-Hellman (CDH) Assumption 

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I 
is the universe of all instances and |p| represents the 
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the CDHP with the advantage 
at most 1/P(k), i.e., 

Pr[A(p, q, g, ga, gb) = gab,  
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k). 

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A. 

(12*)

and recovers the original message m as m1 || m2 || … 
|| mn. Uv can further verify the proxy multi-signa-
ture by checking Eq. (13).
We show that with the authenticated ciphertext 
(S, R, T, w1, w2, …, wn) and the warrant mw, the desig-
nated recipient Uv can recover the message m and 
check its validity with Eq. (12*). From the right-
hand side of Eq. (12*), we have

wi ⋅ h3(wi − 1 ⊕ h3(K))−1 

mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1 

(b E (10*

by Eq. 
(10*)

  
wi ⋅ h3(wi − 1 ⊕ h3(K))−1 

 = mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1   

  (by Eq. (10*)) 
 = mi (mod p) 

which leads to the left-hand side of Eq. (12*). 

4. Security Proof and Comparison 

In this section, we briefly review the security notions, 
state the security model and prove the security of our 
proposed scheme. Some comparisons with related 
schemes are also made. 

4.1 Security Notions 

Discrete Logarithm Problem; DLP 
Let p and q be two large primes satisfying q | p − 

1, and g a generator of order q over GF(p). The 
discrete logarithm problem is, given an instance (y, p, 
q, g), where y = gx mod p for some x ∈ Zq, to derive 
x.  
 
Discrete Logarithm (DL) Assumption 

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I 
is the universe of all instances and |p| represents the 
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the DLP with the advantage at 
most 1/P(k), i.e., 

Pr[A(y, p, q, g) = Log p, q, g(y),  

(p, q, g) ← Ik, y ← *
pZ ] ≤ 1/P(k). 

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A. 
 
Definition 1. The (t, ε)-DL assumption holds if there 
is no polynomial-time adversary that can solve the 
DLP in time at most t and with the advantage ε. 
 
Computational Diffie-Hellman Problem; CDHP 

Let p and q be two large primes satisfying that q | 
p − 1, and g a generator of order q over GF(p). The 
computational Diffie-Hellman problem is, given an 
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive 
gab mod p. 
 
Computational Diffie-Hellman (CDH) Assumption 

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I 
is the universe of all instances and |p| represents the 
bit-length of p. For every probabilistic 
polynomial-time algorithm A, every positive 
polynomial P(⋅) and all sufficiently large k, the 
algorithm A can solve the CDHP with the advantage 
at most 1/P(k), i.e., 

Pr[A(p, q, g, ga, gb) = gab,  
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k). 

The probability is taken over the uniformly and 
independently chosen instance with a given security 
parameter k and over the random choices of A. 

which leads to the left-hand side of Eq. (12*).

4. Security Proof and Comparison
In this section, we briefly review the security notions, 
state the security model and prove the security of our 
proposed scheme. Some comparisons with related 
schemes are also made.

4.1. Security Notions
Discrete Logarithm Problem; DLP
Let p and q be two large primes satisfying q | p - 1, and 
g a generator of order q over GF(p). The discrete loga-
rithm problem is, given an instance (y, p, q, g), where y 
= gx mod p for some x ∈ Zq, to derive x. 

Discrete Logarithm (DL) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I is 

the universe of all instances and |p| represents the bit-
length of p. For every probabilistic polynomial-time 
algorithm A, every positive polynomial P(×) and all 
sufficiently large k, the algorithm A can solve the DLP 
with the advantage at most 1/P(k), i.e.,

 

 
Pr[A(y, p, q, g) = Log p, q, g(y),  

(p, q, g) ← Ik, y ← *
pZ ] ≤ 1/P(k). 

 
Pr[A(p, q, g, ga, gb) = gab,  

(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k). 

The probability is taken over the uniformly and inde-
pendently chosen instance with a given security pa-
rameter k and over the random choices of A.
Definition 1. The (t, e)-DL assumption holds if there is 
no polynomial-time adversary that can solve the DLP 
in time at most t and with the advantage e.

Computational Diffie-Hellman Problem; CDHP
Let p and q be two large primes satisfying that q | p - 1, 
and g a generator of order q over GF(p). The compu-
tational Diffie-Hellman problem is, given an instance 
(p, q, g, ga, gb) for some a, b ∈ Zq, to derive gab mod p.

Computational Diffie-Hellman (CDH) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I is 
the universe of all instances and |p| represents the 
bit-length of p. For every probabilistic polynomi-
al-time algorithm A, every positive polynomial P(×) 
and all sufficiently large k, the algorithm A can solve 
the CDHP with the advantage at most 1/P(k), i.e.,

 

 
Pr[A(y, p, q, g) = Log p, q, g(y),  

(p, q, g) ← Ik, y ← *
pZ ] ≤ 1/P(k). 

 
Pr[A(p, q, g, ga, gb) = gab,  
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k). 

The probability is taken over the uniformly and inde-
pendently chosen instance with a given security pa-
rameter k and over the random choices of A.
Definition 2. The (t, e)-CDH assumption holds if there 
is no polynomial-time adversary that can solve the 
CDHP in time at most t and with the advantage e.

4.2. Security Model
The security requirements of the proposed PCMAE 
scheme and its variant are message confidentiality 
and unforgeability. The widely accepted notion for 
the security of message confidentiality comes from 
the definition of indistinguishability-based security, 
i.e., the adversary attempts to distinguish a target ci-
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phertext with respect to two candidate messages. We 
define these notions as follows:
Definition 3. (Confidentiality) A PCMAE scheme 
is said to achieve the security requirement of confi-
dentiality against indistinguishability under adap-
tive chosen-ciphertext attacks (IND-CCA2) if there 
is no probabilistic polynomial-time adversary A with 
non-negligible advantage in the following game played 
with a challenger B:
Setup: The challenger B first runs the Setup(1k) al-
gorithm and sends the system’s public parameters 
params to the adversary A.
Phase 1: The adversary A can issue several kinds of 
queries adaptively, i.e., each query might be based on 
the result of previous queries:
 _ Credential-gen (CG) queries: A makes a CG query 

with respect to the identity of target proxy signer. B 
returns the corresponding proxy credentials.

 _ Proxy-sign (PS) queries: A chooses a message m and 
then gives it to B who will return a corresponding 
authenticated ciphertext d with the warrant mw.

 _ Uncover-verify (UV) queries: A submits an 
authenticated ciphertext d along with the warrant 
mw to B. If d is valid, B returns the recovered 
message m and its converted proxy multi-signature 
W; else, the error symbol ¶ is outputted as a result.

Challenge: The adversary A produces two messages, 
m0 and m1, of the same length. The challenger B flips a 
coin l ← {0, 1} and generates an authenticated cipher-
text d* for ml. The ciphertext d* is then delivered to A 
as a target challenge.
Phase 2: The adversary A can issue new queries as 
those in Phase 1 except the UV query for the target 
ciphertext.
Guess: At the end of the game, A outputs a bit l′. The 
adversary A wins this game if l′ = l. We define A’s ad-
vantage as Adv(A) = | Pr[l′ = l] − 1/2 |.
Definition 4. (Unforgeability) A PCMAE scheme is 
said to achieve the security requirement of unforge-
ability against existential forgery under adaptive 
chosen-message attacks (EF-CMA) if there is no prob-
abilistic polynomial-time adversary A with non-neg-
ligible advantage in the following game played with a 
challenger B:
Setup: B first runs the Setup(1k) algorithm and 
sends the system’s public parameters params to the 

adversary A.
Phase 1: The adversary A adaptively makes CG and 
PS queries as those in Phase 1 of Definition 3.
Forgery: Finally, A produces an authenticated ci-
phertext d* which is not outputted by the PS query. 
The adversary A wins if d* is valid.

4.3. Security Proofs

We prove the security of our proposed scheme in the 
random oracle model as Theorems 1 and 2, respec-
tively. The security proofs can be also applied to its 
variant with message linkages, since they have almost 
the same structure.
Theorem 1. (Proof of Confidentiality) The proposed 
scheme is (t, qh1

, qh2
, qh3

, qCG, qPS, qUV, e)-secure against 
indistinguishability under adaptive chosen-cipher-
text attacks (IND-CCA2) in the random oracle model 
if there is no probabilistic polynomial-time adversary 
that can (t’, e’)-break the CDHP, where

ε' ≥ (qh2
 + qh3

)−1(2ε − k
hhUV qqq

2

)1(
32
++

), 

t' ≈ t + tλ(2qCG + 4qPS + 3qUV). 

 

Here tl is the time for performing a modular exponen-
tiation over a finite field.
Proof: Fig. 1 depicts the proof structure of this The-
orem. Suppose that a probabilistic polynomial-time 
adversary A can (t, qh1

, qh2
, qh3

, qCG, qPS, qUV, e)-break 
the proposed scheme with non-negligible advantage 
e under the adaptive chosen- ciphertext attack af-
ter running in time at most t and asking at most qhi

 
hi random oracle (for i = 1 to 3), qCG CG, qPS PS and 
qUV UV queries. Then we can construct another algo-
rithm B that (t’, e’)-breaks the CDHP by taking A as a 
subroutine. Let all involved parties and parameters 
be defined the same as those in Section 3.1. The ob-
jective of B is to obtain (gxpxv mod p) by taking (p, q, g, 
yp, yv) as inputs. In this proof, B simulates a challeng-
er to A in the following game.
Setup: The challenger B runs the Setup(1k) algorithm 
and sends the system’s public parameters params = 
{p, q, g, yo, yp, yv} to the adversary A.
Phase 1: A issues the following kinds of queries adap-
tively:
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 _ h1 oracle: When A makes an h1 oracle of (mw, T), B 
returns O-Sim_h1(mw, T). The simulated random 
oracle O-Sim_h1 operates as Fig. 2. Note that the 
function insert(N, b) will insert the value b into the 
array N.

 _ h2 oracle: When A makes an h2 oracle of (m, C, K, 
R), B returns O-Sim_h2(m, C, K, R). The simulated 
random oracle O-Sim_h2 operates as Fig. 3. 

 _ h3 oracle: When A makes an h3 oracle of K, B returns 
O-Sim_h3(K). The simulated random oracle 
O-Sim_h3 operates as Fig. 4.

 _ CG queries: When A makes a CG query, B chooses 

Figure 1 
The proof structure of confidentiality in Theorem 1

Figure 2 
Algorithm of the simulated random oracle O-Sim_h1

Fig. 1. The proof structure of confidentiality in 
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random 
oracle O-Sim_h1 operates as Fig. 2. Note that the 
function insert(N, b) will insert the value b into the 
array N.

Fig. 2. Algorithm of the simulated random oracle 
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated 
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle 
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses 
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on 
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle 
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle 
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle 
O-Sim_CG

– PS queries: When A makes a PS query for some 
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig. 
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query. 

4: insert(Q_h1, (mw, T)); 
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for;  // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then 
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then 
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T)); 
7: insert(A_h1, v1);  

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

Fig. 1. The proof structure of confidentiality in 
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random 
oracle O-Sim_h1 operates as Fig. 2. Note that the 
function insert(N, b) will insert the value b into the 
array N.

Fig. 2. Algorithm of the simulated random oracle 
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated 
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle 
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses 
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on 
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle 
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle 
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle 
O-Sim_CG

– PS queries: When A makes a PS query for some 
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig. 
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query. 

4: insert(Q_h1, (mw, T)); 
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for;  // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then 
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then 
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T)); 
7: insert(A_h1, v1);  

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

Figure 3 
Algorithm of the simulated random oracle O-Sim_h2

Figure 4 
Algorithm of the simulated random oracle O-Sim_h3

Fig. 1. The proof structure of confidentiality in 
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random 
oracle O-Sim_h1 operates as Fig. 2. Note that the 
function insert(N, b) will insert the value b into the 
array N.

Fig. 2. Algorithm of the simulated random oracle 
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated 
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle 
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses 
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on 
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle 
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle 
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle 
O-Sim_CG

– PS queries: When A makes a PS query for some 
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig. 
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query. 

4: insert(Q_h1, (mw, T)); 
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for;  // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then 
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then 
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T)); 
7: insert(A_h1, v1);  

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

Fig. 1. The proof structure of confidentiality in 
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random 
oracle O-Sim_h1 operates as Fig. 2. Note that the 
function insert(N, b) will insert the value b into the 
array N.

Fig. 2. Algorithm of the simulated random oracle 
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated 
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle 
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses 
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on 
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle 
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle 
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle 
O-Sim_CG

– PS queries: When A makes a PS query for some 
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig. 
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query. 

4: insert(Q_h1, (mw, T)); 
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for;  // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then 
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then 
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T)); 
7: insert(A_h1, v1);  

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

a proper mw and then returns (mw, O-Sim_CG(mw)) 
as the result. The simulated CG oracle O-Sim_CG 
operates as Fig. 5. Note that the function check(N, 
b) will return a Boolean value depending on 
whether the value b is stored in the array N.

 _ PS queries: When A makes a PS query for some 
message m, B returns O-Sim_PS(m) as the result. 
The simulated PS oracle O-Sim_PS operates as 
Fig. 6. 

 _ UV queries: When A makes a UV query for some 
authenticated ciphertext d with the warrant mw, 
B returns O-Sim_UV(d, mw) as the result. The 
simulated UV oracle O-Sim_UV operates as Fig. 7. 

Challenge: A generates two messages, m0 and m1, of 
the same length. The challenger B flips a coin l ← {0, 
1} and produces an authenticated ciphertext d* = (Q*, 
S*, R*, T*) for ml by running the simulated Sim_Chal-
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Figure 5 
Algorithm of the simulated CG oracle O-Sim_CG

Fig. 1. The proof structure of confidentiality in 
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random 
oracle O-Sim_h1 operates as Fig. 2. Note that the 
function insert(N, b) will insert the value b into the 
array N.

Fig. 2. Algorithm of the simulated random oracle 
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated 
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle 
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses 
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on 
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle 
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle 
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle 
O-Sim_CG

– PS queries: When A makes a PS query for some 
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig. 
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query. 

4: insert(Q_h1, (mw, T)); 
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for;  // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then 
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then 
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T)); 
7: insert(A_h1, v1);  

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

Figure 6 
Algorithm of the simulated PS oracle O-Sim_PS
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Fig. 7. Algorithm of the simulated UV oracle 
O-Sim_UV 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 8. Algorithm of the simulated Sim_Challenge 
 

oracle O-Sim_PS(m) 
1: Choose a proper mw;  
2: (T, T1, T2, ..., Tn, σ1, σ2, ..., σn) ←  
  O-Sim_PS(mw); 

3: Compute v1 ← O-Sim_h1(mw, T); σ =∑
=

n

i
i

1
σ ;  

4: Compute C =∏
=

n

i

v
i py

1
mod1 ; K = yvσ mod p; 

5: do 
6:  Choose S, v2 ∈R Zq; 
7: ;mod12 pCTygR v

p
S −=  

8: while (check(Q_h2, (m, C, K, R)) = true) 
9: insert(Q_h2, (m, C, K, R));  
10: insert(A_h2, v2); // define h2(m, C, K, R) = v2 
11: Q = O-Sim_h3(K) ⊕ m; 
12: return δ = (Q, S, R, T) and mw; 

algorithm Sim_Challenge(mλ) 
1: Choose a proper mw; v3 ∈R{0, 1}k and 

S*, σ, v1, v2 ∈R Zq; 

2: C =∏
=

n

i

v
i py

1
mod1 ; T* = ypσ C mod p;  

3: insert(Q_h1, (mw, T*)); insert(A_h1, v1);  
// define h1(mw, T*) = v1 

4: ;mod** 1* 2 pCTygR v
p

S −=  

5: insert(Q_h2, (mλ, C, null, R*));  
6: insert(A_h2, v2); 

  // Implicitly define h2(mλ, C, K*, R*) = v2, 
where K* = (yvσ)xv mod p and B does not 
know it. 

7: Q* = v3 ⊕ m;  // Implicitly define h3(K*) = v3 
8: return δ = (Q*, S*, R*, T*) and mw; 

oracle O-Sim_UV(δ, mw) // δ = (Q, S, R, T) 

1: v1 = O-Sim_h1(mw, T); C =∏
=

n

i

v
i py

1
mod1 ; 

2: if (check(Q_h2, (*, C, *, R)) = true) then  
//h2(*, C, *, R) has ever been queried. 

3: for j = 0 to qh2
 − 1 

4:  if (Q_h2[j][1] = C) and  
    (Q_h2[j][3] = R) then  
5:   m = Q_h2[j][0]; 
6:   K = Q_h2[j][2];  
7:   v2 = A_h2[j]; exit for; 
8:  end if 
9: next j 
10: v3 = O-Sim_h3(K); 
11: if (m = Q ⊕ v3) and  
  ( pCygRT v

p
S mod2= )) then  

12:  return (m, R, S, T, K) and mw; 
13: else 
14:  return ¶; 
15: end if 
16: else // h2(*, C, *, R) has never been queried. 
17:  return ¶; 
18: end if 

Figure 7 
Algorithm of the simulated UV oracle O-Sim_UV

lenge(ml). The algorithm of Sim_Challenge operates 
as Fig. 8.
Phase 2: A makes new queries as those stated in Phase 
1 except the UV query for the target ciphertext d*. 
Analysis of the game: Consider the above simu-
lations of CG and PS queries. One can see that the 
simulated proxy credentials si’s and authenticated 
ciphertext d are computationally indistinguishable 
from those generated by the real scheme. We refer the 
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Fig. 7. Algorithm of the simulated UV oracle 
O-Sim_UV 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 8. Algorithm of the simulated Sim_Challenge 
 

oracle O-Sim_PS(m) 
1: Choose a proper mw;  
2: (T, T1, T2, ..., Tn, σ1, σ2, ..., σn) ←  
  O-Sim_PS(mw); 

3: Compute v1 ← O-Sim_h1(mw, T); σ =∑
=

n

i
i

1
σ ;  

4: Compute C =∏
=

n

i

v
i py

1
mod1 ; K = yvσ mod p; 

5: do 
6:  Choose S, v2 ∈R Zq; 
7: ;mod12 pCTygR v

p
S −=  

8: while (check(Q_h2, (m, C, K, R)) = true) 
9: insert(Q_h2, (m, C, K, R));  
10: insert(A_h2, v2); // define h2(m, C, K, R) = v2 
11: Q = O-Sim_h3(K) ⊕ m; 
12: return δ = (Q, S, R, T) and mw; 

algorithm Sim_Challenge(mλ) 
1: Choose a proper mw; v3 ∈R{0, 1}k and 

S*, σ, v1, v2 ∈R Zq; 

2: C =∏
=

n

i

v
i py

1
mod1 ; T* = ypσ C mod p;  

3: insert(Q_h1, (mw, T*)); insert(A_h1, v1);  
// define h1(mw, T*) = v1 

4: ;mod** 1* 2 pCTygR v
p

S −=  

5: insert(Q_h2, (mλ, C, null, R*));  
6: insert(A_h2, v2); 

  // Implicitly define h2(mλ, C, K*, R*) = v2, 
where K* = (yvσ)xv mod p and B does not 
know it. 

7: Q* = v3 ⊕ m;  // Implicitly define h3(K*) = v3 
8: return δ = (Q*, S*, R*, T*) and mw; 

oracle O-Sim_UV(δ, mw) // δ = (Q, S, R, T) 

1: v1 = O-Sim_h1(mw, T); C =∏
=

n

i

v
i py

1
mod1 ; 

2: if (check(Q_h2, (*, C, *, R)) = true) then  
//h2(*, C, *, R) has ever been queried. 

3: for j = 0 to qh2
 − 1 

4:  if (Q_h2[j][1] = C) and  
    (Q_h2[j][3] = R) then  
5:   m = Q_h2[j][0]; 
6:   K = Q_h2[j][2];  
7:   v2 = A_h2[j]; exit for; 
8:  end if 
9: next j 
10: v3 = O-Sim_h3(K); 
11: if (m = Q ⊕ v3) and  
  ( pCygRT v

p
S mod2= )) then  

12:  return (m, R, S, T, K) and mw; 
13: else 
14:  return ¶; 
15: end if 
16: else // h2(*, C, *, R) has never been queried. 
17:  return ¶; 
18: end if 
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Fig. 8. Algorithm of the simulated Sim_Challenge 
 

oracle O-Sim_PS(m) 
1: Choose a proper mw;  
2: (T, T1, T2, ..., Tn, σ1, σ2, ..., σn) ←  
  O-Sim_PS(mw); 

3: Compute v1 ← O-Sim_h1(mw, T); σ =∑
=

n

i
i

1
σ ;  

4: Compute C =∏
=

n

i

v
i py

1
mod1 ; K = yvσ mod p; 

5: do 
6:  Choose S, v2 ∈R Zq; 
7: ;mod12 pCTygR v

p
S −=  

8: while (check(Q_h2, (m, C, K, R)) = true) 
9: insert(Q_h2, (m, C, K, R));  
10: insert(A_h2, v2); // define h2(m, C, K, R) = v2 
11: Q = O-Sim_h3(K) ⊕ m; 
12: return δ = (Q, S, R, T) and mw; 

algorithm Sim_Challenge(mλ) 
1: Choose a proper mw; v3 ∈R{0, 1}k and 

S*, σ, v1, v2 ∈R Zq; 

2: C =∏
=

n

i

v
i py

1
mod1 ; T* = ypσ C mod p;  

3: insert(Q_h1, (mw, T*)); insert(A_h1, v1);  
// define h1(mw, T*) = v1 

4: ;mod** 1* 2 pCTygR v
p

S −=  

5: insert(Q_h2, (mλ, C, null, R*));  
6: insert(A_h2, v2); 

  // Implicitly define h2(mλ, C, K*, R*) = v2, 
where K* = (yvσ)xv mod p and B does not 
know it. 

7: Q* = v3 ⊕ m;  // Implicitly define h3(K*) = v3 
8: return δ = (Q*, S*, R*, T*) and mw; 

oracle O-Sim_UV(δ, mw) // δ = (Q, S, R, T) 

1: v1 = O-Sim_h1(mw, T); C =∏
=

n

i

v
i py

1
mod1 ; 

2: if (check(Q_h2, (*, C, *, R)) = true) then  
//h2(*, C, *, R) has ever been queried. 

3: for j = 0 to qh2
 − 1 

4:  if (Q_h2[j][1] = C) and  
    (Q_h2[j][3] = R) then  
5:   m = Q_h2[j][0]; 
6:   K = Q_h2[j][2];  
7:   v2 = A_h2[j]; exit for; 
8:  end if 
9: next j 
10: v3 = O-Sim_h3(K); 
11: if (m = Q ⊕ v3) and  
  ( pCygRT v

p
S mod2= )) then  

12:  return (m, R, S, T, K) and mw; 
13: else 
14:  return ¶; 
15: end if 
16: else // h2(*, C, *, R) has never been queried. 
17:  return ¶; 
18: end if 

Figure 8 
Algorithm of the simulated Sim_Challenge



539Information Technology and Control 2017/4/46

simulations of CG and PS queries to be perfect. Then 
we evaluate the simulation of UV queries. From the 
algorithms of O-Sim_UV, we find out that it is pos-
sible for an UV query of some valid d = (Q, S, R, T) to 
return the error symbol ¶ on condition that A has the 
ability to produce d without asking the corresponding 
h2(ml, C, K, R) or h3(K) random oracles in advance. Let 
UV_ERR be the event that an UV query returns the er-
ror symbol ¶ for some valid d during the entire game, 
AC-V an event that the authenticated ciphertext d of a 
UV query made by A is valid. QH2 and QH3 separately 
denote the events that A has ever asked h2(ml, C, K, R) 
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The computational time required for B is t' ≈ t +
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If we apply their techniques to prove our scheme, we 
can also obtain the generic result as follows.
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proposed scheme. We therefore have 

ε = | Pr[λ′ = λ] − 1/2 | 
 ≤ (1/2)Pr[¬GP]   (by Eq. (18)) 
 = (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR]) 

 ≤ (1/2)(Pr[QH2*] + Pr[QH3*]  
 + Pr[UV_ERR])  

Combining Eq. (14) and rewriting the above 
inequality, we get 

(Pr[QH2*] + Pr[QH3*]) ≥ 2ε − Pr[UV_ERR] 
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to output vp xxgK =
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*σ  and solve the CDHP. 
The computational time required for B is t' ≈ t + 
tλ(2qCG + 4qPS + 3qUV). 

 Q.E.D. 
 
In 2000, Pointcheval and Stern introduced the 

Forking lemma [29] to prove the security for generic 
digital signature schemes in the random oracle model. 
If we apply their techniques to prove our scheme, we 
can also obtain the generic result as follows. 
 
(The Forking Lemma) In the random oracle mode, 
let (G, Σ, V) be a generic signature scheme and A a 
probabilistic polynomial-time Turing machine whose 
input only consists of public data. We denote 
respectively by N1 and N2 the number of queries that 
A can ask to the random oracle and the number of 
queries that A can ask to the signer. Assume that, 
within a time bound T, A produces, with probability ε 
≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, σ1, h, 
σ2) where σ1 = (mw, R, T, K), h = (h2(m, C, K, R), 
h1(mw, T)) and σ2 = S. If the triples (σ1, h, σ2) can be 
simulated without knowing the private key with an 
indistinguishable distribution probability, then there 
is another machine which has control over the 
machine obtained from A replacing interaction with 
the signer by simulation and produces two valid 
signatures (m, σ1, h, σ2) and (m, σ1, h', σ2') such that 
h2(m, C, K, R) ≠ h'2(m, C, K, R) in the expected time 
T ' ≤ 120686T/ε. 

More concretely, in our scheme, we can first 
obtain two equations below: 

RT = gS
 yp

h2(m, C, K, R)C mod p, 

RT = gS'
 yp

h'2(m, C, K, R)C mod p. 
By combining the above two equalities, we can 
further derive the private key xp as 

xp = (S − S')/(h'2(m, C, K, R) − h2(m, C, K, R)). 

(18)

Recall that in Definition 3, A’s advantage is defined 
as Adv(A) = | Pr[l′ = l] − 1/2 |. By assumption, A has 
non-negligible probability e to break the proposed 
scheme. We therefore have

ε = | Pr[λ′ = λ] − 1/2 | 
≤ (1/2)Pr[¬GP]   
= (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR]) 
 (1/2)(Pr[QH2*] + Pr[QH3*]  

 + Pr[UV_ERR])  by Eq. (18)
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digital signature schemes in the random oracle model. 
If we apply their techniques to prove our scheme, we 
can also obtain the generic result as follows. 
 
(The Forking Lemma) In the random oracle mode, 
let (G, , V) be a generic signature scheme and A a 
probabilistic polynomial-time Turing machine whose 
input only consists of public data. We denote 
respectively by N1 and N2 the number of queries that 
A can ask to the random oracle and the number of 
queries that A can ask to the signer. Assume that, 
within a time bound T, A produces, with probability  
 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, 1, h, 
2) where 1 = (mw, R, T, K), h = (h2(m, C, K, R), 
h1(mw, T)) and 2 = S. If the triples (1, h, 2) can be 
simulated without knowing the private key with an 
indistinguishable distribution probability, then there 
is another machine which has control over the 
machine obtained from A replacing interaction with 
the signer by simulation and produces two valid 
signatures (m, 1, h, 2) and (m, 1, h', 2') such that 
h2(m, C, K, R)  h'2(m, C, K, R) in the expected time 
T '  120686T/. 

More concretely, in our scheme, we can first 
obtain two equations below: 

RT = gS
 yp

h2(m, C, K, R)C mod p, 

RT = gS'
 yp

h'2(m, C, K, R)C mod p. 
By combining the above two equalities, we can 
further derive the private key xp as 

xp = (S  S')/(h'2(m, C, K, R)  h2(m, C, K, R)). 

If the event (QH2* ∨ QH3*) happens, we claim that  
K* = (yv

s)xv mod p will be stored in some entry of the 
Q_h2 or the Q_h3 array. Consequently, B has non-neg-
ligible probability
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*  and solve the CDHP. 
The computational time required for B is t'  t + 
t(2qCG + 4qPS + 3qUV). 

 Q.E.D. 
 
In 2000, Pointcheval and Stern introduced the 

Forking lemma [29] to prove the security for generic 
digital signature schemes in the random oracle model. 
If we apply their techniques to prove our scheme, we 
can also obtain the generic result as follows. 
 
(The Forking Lemma) In the random oracle mode, 
let (G, , V) be a generic signature scheme and A a 
probabilistic polynomial-time Turing machine whose 
input only consists of public data. We denote 
respectively by N1 and N2 the number of queries that 
A can ask to the random oracle and the number of 
queries that A can ask to the signer. Assume that, 
within a time bound T, A produces, with probability  
 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, 1, h, 
2) where 1 = (mw, R, T, K), h = (h2(m, C, K, R), 
h1(mw, T)) and 2 = S. If the triples (1, h, 2) can be 
simulated without knowing the private key with an 
indistinguishable distribution probability, then there 
is another machine which has control over the 
machine obtained from A replacing interaction with 
the signer by simulation and produces two valid 
signatures (m, 1, h, 2) and (m, 1, h', 2') such that 
h2(m, C, K, R)  h'2(m, C, K, R) in the expected time 
T '  120686T/. 

More concretely, in our scheme, we can first 
obtain two equations below: 

RT = gS
 yp

h2(m, C, K, R)C mod p, 

RT = gS'
 yp

h'2(m, C, K, R)C mod p. 
By combining the above two equalities, we can 
further derive the private key xp as 

xp = (S  S')/(h'2(m, C, K, R)  h2(m, C, K, R)). 

to output vp xxgK =
−1

*σ  and solve the CDHP. The 
computational time required for B is t′ ≈ t + tl(2qCG + 
4qPS + 3qUV).
 Q.E.D.
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In 2000, Pointcheval and Stern introduced the Fork-
ing lemma [29] to prove the security for generic dig-
ital signature schemes in the random oracle model. 
If we apply their techniques to prove our scheme, we 
can also obtain the generic result as follows.
(The Forking Lemma) In the random oracle model, 
let (G, S, V) be a generic signature scheme and A a prob-
abilistic polynomial-time Turing machine whose in-
put only consists of public data. We denote respectively 
by N1 and N2 the number of queries that A can ask to 
the random oracle and the number of queries that A can 
ask to the signer. Assume that, within a time bound T, 
A produces, with probability e ≥ 10(N2 + 1)(N2 + N1)/2k, 
a valid signature (m, s1, h, s2) where s1 = (mw, R, T, K),  
h = (h2(m, C, K, R), h1(mw, T)) and s2 = S. If the triples 
(s1, h, s2) can be simulated without knowing the pri-
vate key with an indistinguishable distribution proba-
bility, then there is another machine which has control 
over the machine obtained from A replacing interac-
tion with the signer by simulation and produces two 
valid signatures (m, s1, h, s2) and (m, s1, h′, s2′) such 
that h2(m, C, K, R) ≠ h′2(m, C, K, R) in the expected time 
T ′ ≤ 120686T/e.
More concretely, in our scheme, we can first obtain 
two equations below:
RT = gS

 yp
h2(m, C, K, R)C mod p,

RT = gS’
 yp

h’2(m, C, K, R)C mod p.
By combining the above two equalities, we can further 
derive the private key xp as
xp = (S - S′)/(h′2(m, C, K, R) - h2(m, C, K, R)).
Still, to give a tight reduction from the hardness of 
DLP to our proposed scheme, we present another 
more detailed security proof and the advantage anal-
ysis as Theorem 2.
Theorem 2. (Proof of Unforgeability) The proposed 
scheme is (t, qh1

, qh2
, qh3

, qCG, qPS, e)-secure against exis-
tential forgery under adaptive chosen-message attacks 
(EF-CMA) in the random oracle model if there is no 
probabilistic polynomial-time adversary that can (t′, 
e′)-break the DLP, where
e′ ≥4-1(e - 2-2k)3(qh2

-1),
t′ ≈ t + tl(4qCG + 8qPS).
Here tl is the time for performing a modular exponen-
tiation over a finite field.
Proof: Fig. 9 depicts the proof structure of this The-

orem. Suppose that A is a probabilistic polynomi-
al-time adversary A can (t, qh1

, qh2
, qh3

, qCG, qPS, e)-break 
the proposed scheme with non-negligible advantage 
e under the adaptive chosen-message attack after 
running in time at most t and asking at most qhi

 hi ran-
dom oracle (for i = 1 to 3), qCG CG and qPS PS queries. 
Then we can construct another algorithm B that (t′, 
e′)-breaks the DLP by taking A as a subroutine. Let all 
involved parties and notations be defined the same as 
those in Section 3.1, h3 a collision resistant hash func-
tion and (h1, h2) random oracles. The objective of B is 
to obtain )log( pgp yx =  by taking (p, q, g, yp) as inputs. 
In this proof, B simulates a challenger to A in the fol-
lowing game.
Setup: The challenger B runs the Setup(1k) algorithm 
to obtain the system’s public parameters params = {p, 
q, g} and comes up with a random tape composed of a 
long sequence of random bits. Then B simulates two 
runs of the proposed scheme to the adversary A on in-
put params, yo, yp, yv = gα mod p where α ∈ R Zq, and the 
random tape.
Phase 1: A adaptively asks h1 and h2 random oracles, 
CG and PS queries as those defined in Theorem 1.
Analysis of the game: According to the analyses of 
Theorem 1, the simulations of CG and PS queries are 
perfect. Namely, the adversary A can not distinguish 

Figure 9
The proof structure of unforgeability in Theorem 2
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CG and PS queries 
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whether he is playing in either a simulation or a real 
scheme. Let AC-V be the event that A forges a valid 
authenticated ciphertext d = (Q, S, R, T) for his arbi-
trarily chosen message m. Since A has non-negligible 
probability e to break the proposed scheme under 
the adaptive chosen-message attack by the initial as-
sumption, we know that 
Pr[AC-V] = e. 
Now we further consider the situation where A is able 
to output a valid d without asking h1 and h2 random 
oracles in advance. Let NR be the event that A guesses 
correct output values of h1(mw, T) and h2(m, C, K, R) 
without asking the random oracles, i.e., Pr[NH] ≤ 2-2k. 
Then, we can express the probability that A outputs 
a valid forgery d = (Q, S, R, T) after asking the corre-
sponding random oracles as
Pr[AC-V ∧ ¬NH] ≥ (e - 2-2k).
With the initially selected private key α, B can recov-
ers m and obtain the multi-proxy signature (S, R, T, K) 
along with mw.
Then B launches the second simulation. He again 
runs A on input params, yo, yp, yv = gα mod p where α 
∈ R Zq, and the same random tape. Since the adversary 
A is given the same sequence of random bits, we can 
anticipate that the i-th random query A asks will al-
ways be the same as the one in the first simulation. In 
the second simulation, B returns identical results as 
those he responds in the first time until A makes the 
h2(m, C, K, R) query. At this time, B directly gives an-
other answer v2*∈R Zq rather than original v2. Mean-
while, A is then supplied with a different random tape 
which also consists of a long sequence of random bits. 
From the statement of “Forking lemma”, we can learn 
that when A finally makes another valid forgery d* = 
(Q*, S*, R, T*) where h2(m, C, K, R) ≠ h2*(m, C, K, R), B 
could solve the DLP with non-negligible probability. 
To analyze B’s success probability, we use the “Split-
ting lemma” [29] described below: 
Let X and Y be the sets of possible sequences of ran-
dom bits and random function values provided to A 
before and after the h2(m, C, K, R) query is issued, res-
pectively. It follows that on inputting a random value 
(x || y) for any x ∈ X and y ∈ Y, A returns a valid forgery 
with the non-negligible probability e, i.e., 
Pr x∈X, y∈Y [AC-V] = e.
By the “Splitting lemma”, there exists a subset D ∈ X 
such that

(a) Pr[x ∈ D] = |D| × |X|-1 ≥ 2-1e.
(b) ∀x ∈ D, Pr y∈Y [AC-V] ≥ 2-1e.
If we let ρ ∈ D and y′ ∈ Y separately be the supplied 
sequences of random bits and random function values 
before and after A makes the h2(m, C, K, R) query, A is 
able to make a valid forgery in the second simulation 
with the probability of at least (2-1e)2 = 4-1e2, i.e., 
Prρ ∈D, y'∈Y [AC-V] ≥ 4-1e2. 
Since we have known that A eventually returns anoth-
er valid d* = (Q*, S*, R, T*) with h2(m, C, K, R) ≠ h2*(m, 
C, K, R) is qh2

-1, the probability of B to solve the DLP in 
the second simulation can be represented as
e‘ ≥ (e - 2-2k)(4-1(e - 2-2k)2)(qh2

-1)
 4-1(e - 2-2k)3(qh2

-1).
Moreover, the computational time required for B in 
one simulation is
t' ≈ t + tl(4qCG + 8qPS).
 Q.E.D.
According to Theorem 2, the proposed scheme is se-
cure against existential forgery attacks. That is, the 
proxy private key can not be forged and the delegated 
proxy signer can not repudiate having generated his 
authenticated ciphertext. Hence, we obtain the fol-
lowing corollary.
Corollary 1. The proposed scheme satisfies the securi-
ty requirement of non-repudiation.

4.4. Comparisons
We compare the proposed scheme with some relat-
ed works including Lv et al.’s (LWK for short) [24], 
Tso et al.’ (TOO for short) [35], Araki et al.’ (AUI for 
short) [1], the Wu-Hsu (WH for short) [40], Wu et 
al.’s (WHT for short) [42], Chang’s (Cha for short) 
[2], Tsai’s (Tsa for short) [34] and the Lin-Yeh (LY for 
short) [22] schemes in terms of functionalities and 
security proofs. Detailed comparisons are demon-
strated as Table 2. Since WHT and Cha schemes also 
have provable security, we further compare our work 
with them in terms of computational efforts which 
is evaluated by the number of required modular ex-
ponentiation operations. The performance compar-
ison is demonstrated as Table 3. From these tables, it 
can be seen that the proposed scheme provides not 
only better functionalities, but also lower computa-
tional costs.
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5. Conclusions
In this paper, we have proposed a novel PCMAE 
scheme to solve the group-oriented delegation prob-
lem for confidential transactions. The proposed 
scheme allows the proxy signer to produce an au-
thenticated ciphertext on behalf of the original sign-
ing group and only the designated recipient is capa-
ble of recovering the message and verifying its proxy 
multi-signature for guaranteeing the confidentiality. 
Its variant with message linkages further benefits 
the transmission of a large message by dividing it 
into many smaller message blocks. It is not neces-
sary to establish a session key in advance between 
a proxy signer and a designated recipient. Without 
revealing the private key, a designated recipient can 
independently convert the authenticated ciphertext 
into an ordinary proxy multi-signature for the public 
arbitration in case of a later repudiation. Since the 
converted proxy multi-signature is obtained during 
the message recovery and signature verification pro-

Table 2 
Comparisons in terms of functionalities and security proofs

                      Scheme
Item LWK TOO

WH AUI WHT
Cha

Tsa
LY Ours

Multi-User Environment No No No Yes Yes Yes

Proxy Delegation No No No No No Yes

Message Linkages Yes No No No No Yes

Signature Conversion Yes Yes Yes Yes Yes Yes

No Conversion Cost Yes Yes No Yes Yes Yes

Proof of Confidentiality No No No Yes No Yes

Proof of Unforgeability No No No Yes No Yes

Table 3 
Comparisons in number of required modular exponentiation operations

                  Scheme
Item WHT Cha Ours

Computational Costs* 3n2 - n + 5 3n2 - n + 5 3n + 7

Remark *: Let n be the size of original signing group. The computational costs include those executed by each original signer, proxy 
signer and the designated recipient.

cess, the signature conversion process requires no 
extra computation efforts and communication over-
heads. In addition, we also proved that the proposed 
scheme achieves the security requirement of confi-
dentiality against indistinguishability under adaptive 
chosen-ciphertext attacks (IND-CCA2) and that of 
unforgeability against existential forgery under adap-
tive chosen-message attacks (EF-CMA) in the ran-
dom oracle model. As compared with related works, 
ours not only provides better functionalities, but also 
has provable security. 
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This paper presents a novel proxy convertible multi-authenticated encryption (multi-AE) scheme and its vari-
ant with message linkages. The proposed scheme allows two or more original signers to cooperatively delegate 
their signing power to an authorized proxy signer, such that the proxy signer can generate a valid authenticated 
ciphertext on behalf of the original signing group and only a designated recipient is capable of decrypting the 
ciphertext and verifying its embedded proxy multi-signature. Its variant with message linkages further ben-
efits the encryption of a large message by dividing it into many smaller message blocks. The proposed proxy 
convertible multi-AE scheme and its variant can simultaneously fulfill the security requirements of confiden-
tiality and authenticity. Thus, they are applicable to those group-oriented confidential applications with proxy 
delegation, e.g., proxy on-line auction, proxy contract signing and so on. In case of a later dispute over repudi-
ation, our proposed scheme also allows a designated recipient to convert the ciphertext into an original proxy 
multi-signature for public verification. In addition, the security of confidentiality against indistinguishability 
under adaptive chosen-ciphertext attacks (IND-CCA2) and that of unforgeability against existential forgery 
under adaptive chosen-message attacks (EF-CMA) are proved in the random oracle model.

Straipsnyje pristatoma nauja konvertuojama tarpinio serverio multi-autentifikuota šifravimo (multi-AE) 
schema ir jos variantas su pranešimų ryšiais. Siūloma schema leidžia dviem ar daugiau pirminių pasirašiu-
siųjų bendrai perduoti įgaliojimą autorizuotam tarpinio serverio įgaliotiniui pasirašyti. Tokiu būdu, tarpinio 
serverio įgaliotinis gali pirminės pasirašymo grupės vardu sukurti pagrįstą autentifikuotą šifruotą tekstą ir tik 
paskirtasis gavėjas gali iššifruoti šifro tekstą bei patikrinti jame esančius daugiapakopius tarpinio serverio pa-
rašus. Schemos variantas su pranešimų sąsajomis dar labiau pagerina didelės žinutės šifravimą, dalindamas ją 
į daugybę mažesnių pranešimo blokų. Siūloma konvertuojama multi-AE tarpinio serverio schema ir jos varian-
tas vienu metu gali atitikti ir konfidencialumo ir autentiškumo saugumo reikalavimus. Taigi, jie gali būti panau-
dojami į grupes orientuotuose konfidencialiuose taikymo atvejuose su tarpinio serverio įgaliojimu, pavyzdžiui, 
internetiniuose aukcionuose ar sutarčių pasirašyme tarpiniuose serveriuose ir pan. Jei kyla ginčas dėl atsisa-
kymo, autorių siūloma schema paskirtam gavėjui leidžia konvertuoti šifro tekstą į originalų daugiapakopį tarpi-
nio serverio parašą viešam patvirtinimui.  Atsitiktinio orakulo modelyje įrodyta konfidencialumo apsauga nuo 
neatpažįstamumo adaptyvių pasirinktų šifruotų tekstų atakų (IND-CCA2) ir nuo neatskiriamumo adaptyvių 
pasirinktų žinučių atakų (EF-CMA) metu.  

Summary / Santrauka


