
345Information Technology and Control 2017/3/46

An Efficient Certificate-
Based Authenticated
Key Agreement Protocol
Without Bilinear Pairing

ITC 3/46
Journal of Information Technology
and Control
Vol. 46 / No. 3 / 2017
pp. 345-359
DOI 10.5755/j01.itc.46.3.14968
© Kaunas University of Technology

An Efficient Certificate-Based Authenticated Key Agreement
Protocol Without Bilinear Pairing

Received 2016/05/13 Accepted after revision 2017/07/03

 http://dx.doi.org/10.5755/j01.itc.46.3.14968

Corresponding author: luyangnsd@163.com

Yang Lu, Quanling Zhang, Jiguo Li
College of Computer and Information, Hohai University, No. 8, Focheng Xi Road, Jiangning District, Nanjing, China
e-mails: luyangnsd@163.com, zhangquanling99@163.com, lijiguo@hhu.edu.cn

Jian Shen
School of Computer and Software, Nanjing University of Information Science and Technology, No. 219, Ningliu
Road, Nanjing, China, e-mail: s_shenjian@126.com

An authenticated key agreement (AKA) protocol is extremely essential to secure communications over insecure
public networks. It enables the communication parties to securely set up a shared session key in present of the
malicious attackers. Certificate-based cryptography (CBC) is a novel public-key cryptographic primitive that
has many attractive merits. It solves the certificate revocation problem in conventional public-key cryptog-
raphy and the key-escrow problem in identity-based cryptography. Until now, four AKA protocols have been
proposed in the setting of CBC. However, all of them adopt the costly bilinear pairings and are not suitable for
the devices which have limited computing resources and battery power. Therefore, it is interesting and worth-
while to design a certificate-based AKA protocol without using the bilinear pairings. In this paper, we develop
a pairing-free certificate-based AKA protocol. The proposed protocol is proven secure under the classic com-
putational Diffie-Hellman assumption in the random oracle model. Compared with the previous pairing-based
certificate-based AKA protocols, the proposed protocol enjoys obvious advantage in the computation efficiency.
KEYWORDS: wireless sensor network, authenticated key agreement protocol, certificate-based cryptography,
random oracle model, bilinear pairing.

Information Technology and Control 2017/3/46346

1. Introduction
To provide secure communications over insecure
public networks, privacy and confidentiality should
be guaranteed. An authenticated key agreement
(AKA) protocol enables the communication parties to
authenticate each other and securely set up a shared
session key for their communications over an unreli-
able communication channel. Therefore, it can assure
the privacy and data confidentiality of the later com-
munications.
The famous Diffie-Hellman key-exchange proto-
col [8] is the first practical key agreement protocol.
However, Diffie-Hellman protocol suffers from the
man-in-the-middle (MITM) attack due to the reason
that it does not provide authentication to the proto-
col participants. The protocols that can provide the
authentication mechanism have attracted great at-
tention from the research commnity (e.g. [14-17]).
Over the years, many AKA protocols have been pro-
posed. However, most of the previous AKA protocols
were constructed over either conventional public-key
cryptography (PKC) [4, 11, 13, 20, 25] or identity-ba-
sed cryptography (IBC) [5-7, 36, 41, 44]. It is well-
known that conventional PKC suffers from the heavy
certificate management problem while IBC has the
key escrow and key distribution problems.
To solve the key escrow problem, Al-Riyami and Pat-
erson [1] presented the concept of certificateless AKA
(CL-AKA) protocol by extending AKA protocol into
certificateless PKC. In a CL-AKA protocol, a partially
trusted key generation center (KGC) is employed to
assist every user to produce a private key from a secret
value selected by the user. In this way, KGC does not
know any user’s private key. As a result, CL-AKA pro-
tocols avoid the key escrow problem while reserving
the certificateless property. Since the introduction of
CL-AKA protocol, many CL-AKA protocols have been
proposed [12, 19, 26, 40, 42, 47, 48]. However, KGC has
to distribute a partial private key to every user over
secure channels. This feature limits the application of
CL-AKA protocols in the untrusted network environ-
ments, because setting up a secure channel in those
environments is usually expensive.
In Eurocrypt 2003, Gentry [10] put forward a new
public-key cryptographic paradigm called certifi-
cate-based cryptography (CBC). This new cryptog-
raphy lies between conventional PKC and IBC. When

using CBC, every user should produce a pair of private
key and public key independently and then apply for
a certificate from a trusted certification authority
(CA). The certificate is sent to its owner and serves as
a partial decryption key or a partial signing key. This
functionality of the certificate supplies an implicit
certificate property so that a user can execute some
cryptographic operations (e.g., decryption and sign-
ing) correctly only when both his certificate and pri-
vate key are known, while this user’s communication
parties need not obtain the current status of his cer-
tificate. Therefore, CBC solves the certificate revo-
cation problem in conventional PKC. Furthermore,
CBC eliminates both the key escrow problem (as CA
has no knowledge of users’ private keys) and the key
distribution problem (as CA can send the certificates
to their owners publicly). Since its invention, CBC
has obsorbed great interest from the cryptography
community and numerous CBC schemes have been
published, including certificate-based encryption
(e.g. [9, 28, 31, 32, 39, 46]), certificate-based signature
(e.g. [2, 18, 21, 22, 27, 30]) and certificate-based sign-
cryption (e.g. [23, 29, 34]).

To overcome the problems imposed on the previous
AKA protocols, Wang and Cao [45] proposed the
notion of certificate-based AKA (CB-AKA) protocol
following the idea of CBC. Compared with previous
types of AKA protocol, CB-AKA protocol enjoys many
attractive merits. Table 1 summarizes the properties
of the different types of AKA protocol, including
conventional AKA protocol over conventional PKC,

Table 1
Properties of AKA protocols over different public-key
cryptography.

Types of AKA
Protocol

Implicit
Certificate

Key-Escrow
Free

Secure-
Channel Free

Traditional
AKA protocol

× √ √

IB-AKA
protocol

√ × ×

CL-AKA
protocol

√ √ ×

CB-AKA
protocol

√ √ √

347Information Technology and Control 2017/3/46

identity-based AKA (IB-AKA) protocol over IBC, CL-
AKA protocol and CB-AKA protocol.
To our knowledge, there exist four CB-AKA protocols
[24, 33, 35, 45] in the literature so far. In [45], Wang and
Cao proposed the first CB-AKA protocol that is based
on Gentry’s certificate-based encryption scheme [10]
and Smart’s AKA protocol [41]. Unfortunately, Lim
et al. [24] point out that Wang-Cao’s CB-AKA proto-
col is insecure against ephemeral secret leakage. To
fix the weakness in Wang-Cao’s protocol, Lim et al.
[24] proposed an improved CB-AKA protocol. They
claim that the improved protocol is secure against all
non-trivial secret leakages. However, no formal secu-
rity proof is given in [24]. In [35], Luo et al. provide a
security model for constructing provably secure CB-
AKA protocols. They also present a CB-AKA protocol
that can be proven secure in the random oracle model
[3]. Recently, Lu et al. [33] pointed out that the CB-
AKA protocols in [24, 35, 45] can not resist the public
key replacement (PKR) attack. To fight against PKR
attack, Lu et al. [33] designed a new CB-AKA protocol
with provable security in the random oracle model.
The motivation of this paper is to design a CB-AKA
protocol without costly bilinear pairing. In practice,
the cryptographic operations are often performed on
some devices which have very constrained resources,
such as smart phone or PDA. Due to the limited com-
putation or the constrained battery power, only the li-
ghtweight or power-saving cryptographic schemes can
be emplyed on these devices. All the previous CB-AKA
protocols [24, 33, 35, 45] are constructed with bilinear
pairings. Compared with other common cryptographic
operations such as scalar multiplications in the ellip-
tic curve group, the bilinear pairing may be the most
expensive one. Our experiment results show that the
average computation cost of a bilinear pairing is about
nine times as much as that of a scalar multiplication in
elliptic curve group under the 1024-bit RSA security
level. Since the computationally-heavy pairing opera-
tions will greatly aggravate the computation load of a
device, they are extremely disliked by the computati-
on-limited or power-constrained devices. Therefore,
as far as the efficiency, the cryptographic schemes wi-
thout bilinear pairing would be more attractive.
Inspired by Schnorr’s signature scheme [37], we de-
velop a practical CB-AKA protocol without bilin-
ear pairing. Under the classic complexity assump-

tion computational Diffie-Hellman assumption, the
proposed protocol is proven secure in the random
oracle model. Without costly bilinear pairing oper-
ations, the proposed CB-AKA protocol significantly
decreases the computation cost. Compared with the
previous pairing-based CB-AKA protocols [24, 33, 35,
45], it enjoys obvious advantage in the computational
efficiency and is more suitable for the power-con-
strained and computation-limited devices.

2. Preliminaries

2.1 Computational assumption
The security of our CB-AKA protocol is based on the
computational Diffie-Hellman (CDH) assumption.
Definition 1. Let G be a cyclic group of prime order q.
The CDH problem over G is, given a tuple (P, xP, yP) ∈
G3 for unknown values x, y ∈ *

qZ , to compute xyP. The
CDH assumption holds if for any polynomial-time
algorithm A, the advantage Adv(A) = Pr{A(G, q, P, xP,
yP) = xyP} is negligible.

2.2 Bilinear pairing
Assume that G and GT are two cyclic groups of prime
order q. A bilinear pairing e: G × G → GT is a map that
satisfies the following properties:
1 Bilinearity: e(xU, yV) = e(U, V)xy for all U, V ∈ G and

x, y ∈ *
qZ .

2 Non-degeneracy: There exists U, V ∈ G such that
e(U, V) ≠ 1.

3 Computability: There exists an efficient algorithm
to compute (,)e U V for all ,U V G∈ .

Note that the construction of our CB-AKA protocol
does not depend on the bilinear pairing. We only use
this notion in the security proofs.

3. Formal model of CB-AKA protocol

3.1 Definition of CB-AKA protocol
Usually, a CB-AKA protocol consists of four algo-
rithms: (1) System setup algorithm Setup, which is

Information Technology and Control 2017/3/46348

performed by a CA to produce a master secret key and
a set of system public parameters; (2) User key gene-
ration algorithm UserKeyGen, which is performed by
each user to produce a private key and a partial public
key; (3) Certificate generation algorithm CertGen,
which is performed by a CA to produce a full public
key and a certificate for each user; (4) Key agreement
algorithm KeyAgreement, which is performed by two
communication users (an initiator and a responder)
to generate a session key.
Figure 1 gives a more concrete functional description
of a CB-AKA protocol.

3.2 Security model of CB-AKA protocol
As introduced in [33, 35], a CB-AKA protocol should
satisfy some commonly desired security properties,
including known-key security, unknown key-share
resilience, basic impersonation attacks resilience,
forward secrecy, key compromise impersonation re-
silience and key control security.
To capture these security properties, Luo et al. pre-
sented a formal security model for CB-AKA protocols
in [35]. However, Lu et al. [33] show that Luo et al.’s
CB-AKA protocol is insecure against the PKR attacks,
although it was proven secure in their proposed secu-
rity model. To fix this problem, Lu et al. [33] improved
Luo et al.’s security model to capture the adversaries’
PKR actions.
There are two types of adversaries against the secu-

Figure 1
Functional description of a CB-AKA protocol

rity of CB-AKA protocols. They are the Type 1 adver-
sary and the Type 2 adversary. The Type 1 adversary
who acts as a malicious uncertified user is able to
replace any user’s public key, but does not know the
target user’s certificate. The Type 2 adversary who
acts as an honest-but-curious CA possesses the CA’s
master secret key, but does not know the target user’s
private key and is disallowed to replace public keys.
The security model of a CB-AKA protocol can be
defined via an adversarial game which is played be-
tween a challenger with a Type 1 adversary or a Type
2 adversary (denoted by

). In the description of
the adversarial game, the symbol ,

n
A B∏ denotes an

oralce that represents the n-th session between two
participants A and B, where A is the initiator and B
is the responder. Let IDS = (AID , BID , ,

n
A BM , ,

n
B AM) be

the session identity of the session ,
n
A B∏ , where ,

n
B AM

and ,
n
A BM are the incoming protocol message and the

outgoing protocol message, respectively, in the n-th
session of the protocol. Two sessions are said to have
matching conversation with each other if they have
the same session identity.
The security model is formally described as follows:
Setup. The challenger simulates the algorithm Setup
to produce msk and params. Then the adversary

 is
given params if it is a Type 1 adversary or both msk
and params if it is a Type 2 adversary.
Phase 1. The challenger answers the adversary

 ’s
various oralce queries as follows:

349Information Technology and Control 2017/3/46

1 CreateUser(IDi): On receiving an identity IDi, the
challenger outputs a public key PKi. If there is no
public key associated with IDi, the challenger pro-
duces a key pair (SKi, PKi) and a certificate Certi for
IDi, and then outputs PKi. In this case, the identi-
ty IDi is said to be created. For simplicity, it is as-
sumed that an identity can be responded by other
oracles only when it has been created.

2 ReplacePublicKey(IDi, iPK ′): On receiving an iden-
tity IDi and a false public key iPK ′, the challenger
sets iPK ′ as the user i’s current public key. Such an
oracle is merely queried by the Type 1 adversary.
It models the Type 1 adversary’s ability to replace
public keys and thus captures the PKR attacks.

3 Corrupt(IDi): On receiving an identity IDi, the chal-
lenger outputs a private key iSK . For the Type 1 ad-
versary, if it has made an oracle query ReplacePub-
licKey(IDi, iPK ′), then it is disallowed to request the
user i’s private key.

4 Certificate(IDi): On receiving an identity IDi, the
challenger outputs a certificate Certi. Such an or-
acle is merely queried by the Type 1 adversary. If
it has made an oracle query ReplacePublicKey(IDi,

iPK ′), then it is disallowed to request the user i’s
certificate.

5 Send(,
n
i j∏ , M): On receiving an oracle ,

n
i j∏ and a mes-

sage M, the challenger initiates a protocol session
between the users i and j if M = λ or responds with
an outgoing message according to the specification
of the protocol otherwise. If the first message re-
ceived by an oracle is λ, then ,

n
i j∏ is called an initia-

tor; otherwise it is a responder oracle.
6 Reveal(,

n
i j∏): On receiving an oracle ,

n
i j∏ , the

challenger responds with the shared session key
associated with ,

n
i j∏ .

Test. Once Phase 1 is over, the adversary

 makes
one Test query on an oracle ,

T
I J∏ which is fresh (see

the following Definition 2). To respond, the challeng-
er picks a random bit {0,1}b ∈ . It outputs the shared
session key ,

T
I JSK associated with ,

T
I J∏ if 0b = or a ran-

dom key chosen from the session key space otherwise.
Phase 2.

 continues to make a sequence of adaptive
queries.
Guess.

 outputs its guess {0,1}b′∈ . It wins the game
if and only if b b′= and the following constraints are
satisfied: (1)

 is unable to query the oracle Reveal on
the oracle ,

T
I J∏ and its matching conversation ,

T
J I∏ ; (2)

 is unable to make a oracle query Certificate(IDJ) if
it is a Type 1 adversary or a oracle query Corrupt(IDJ)
if it is a Type 2 adversary.
The advantage of the adversary

 in winning the
game is defined to be Adv

 = Pr{ } 1/ 2b b′= - .
Definition 2. An oracle ,

n
A B∏ is fresh if (1) It has estab-

lished a shared session key; (2) The adversary

 has
not queried the oracle Reveal on it and its matching
conversation; (3) The adversary

 has not queried
the oracle Certificate on the identity IDB if it is a Type
1 adversary or the oracle Corrupt on the identity IDB if
it is a Type 2 adversary.
Definition 3. We say that a CB-AKA protocol is se-
cure if the following two conditions are both satisfied:
(1) Two oracles ,

n
i j∏ and ,

m
j i∏ always establish the same

session key in the presence of a benign adversary, and
the session key is distributed uniformly at random in
the session key space; (2) Adv(

) is negligible for any
adversary

 .

4. The proposed CB-AKA protocol
The proposed CB-AKA protocol is described as
follows:
Setup(k): On input a security parameter k, this algo-
rithm generates a cyclic group G of prime order q with
generator P. It then chooses a random integer *

qs Z∈
as the CA’s master secret key msk and calculates the
master public key Ppub = sP. Furthermore, it choos-
es two cryptographic hash functions H1: {0,1}* × G ×
G → *

qZ and H2: {0,1}* × {0,1}* × G8 → {0,1}k. Finally, it
outputs msk = s and params = {k, q, G, P, Ppub, H1, H2}.
UserKeyGen(params): On input params, this algo-
rithm chooses a random integer *

U qx Z∈ as a private
key USK for a user U with identity UID and then com-
putes a partial public key U UPPK x P= .
CertGen(params, msk, UID , UPPK): On input
params, msk s= and a user U’s identity UID and partial
public key UPPK , this algorithm sets (1)

U UPK PPK= .
It then chooses a random integer *

U qy Z∈ and com-
putes (2) =U UPK y P . Finally, it sets the user U’s public
key (1) (2)(,)U U UPK PK PK= and certificate CertU = yU +
sH1(UID , UPK).
KeyAgreement(params, IDA, PKA, SKA, CertA, IDB,
PKB, SKB, CertB): Assume that two participants A and
B want to establish a shared session key, where the

Information Technology and Control 2017/3/46350

participant A is the initiator with identity IDA, public
key PKA, private key SKA and certificate CertA, while
the participant B is the responder with identity IDB,
public key PKB, private key SKB and certificate CertB.
As described in Figure 2, they can do as follows:
1 The participant A chooses a random integer *

A qt Z∈ ,
computes A AT t P= and then sends a message

(,)A A AM ID T= to B.
2 After receiving AM , the participant B chooses a

random integer *
B qt Z∈ , computes B BT t P= and

sends a message MB = (IDB, TB) to A.
3 A and B, respectively, calculate four shared secrets

as follows:
A calculates

(1) (1)()()AB A A B BAK Cert t PK WSK= + + + ,
(2) ()()AB A A B BAK CerSK t t T W= + + + ,
(3) =ABK (1)

AA B Bt PK SK T+ ,
(4)
AB A BK t T= ,

(1)

where (2)
1(,)B B B B pubW PK H ID PK P= + .

B calculates

(1) ()BA B B AK SK Cert W= + ,
(2) ()BA B B AK t Cert W= + ,

(2)

(3) (1)
BA B A B AK t PK SK T= + ,
(4)
BA B AK t T= ,

(3)

where (1) (2)
1(,)A A A A A pub AW PK PK H ID PK P T= + + + .

4 A and B, respectively, compute the shared session
key as follows:

2 (, , , , , ,AB A B A B A BK H ID ID PK PK T T= (1) (2) (3) (4), , ,)AB AB AB ABK K K K

2 (, , , , , ,BA A B A B A BK H ID ID PK PK T T= (1) (2) (3) (4), , ,)BA BA BA BAK K K K

(4)

For the correctness of the proposed protocol, we can
deduce that

(1)
ABK = (1)()()A A A B BSK Cert t PK W+ + +

= ()()A A A B BSK Cert t SK Cert P+ + +

= (1)()B B A BASK Cert W K+ = ,
(5)

(2)
ABK = ()()A A A B BSK Cert t T W+ + +

= ()()A A A B BSK Cert t t Cert P+ + +

= (2)()B B A BAt Cert W K+ = ,
(3) (1)
AB A B A BK t PK SK T= + = (1) (3)

B A B A BASK T t PK K+ = ,
(4) (4)
AB A B B A BAK t T t T K= = = .

(6)

Thus, we have = AB BAK K .
Figure 2
Key agreement phase of the proposed CB-AKA protocol

*
B qt Z

B BT t P(,)B B BM ID T

(1)
ABK 
(2) ()()AB A A B BAK CerSK t t T W   

(1) (2)
1 (,)A A A A A pub AW PK PK H ID PK P T   

(1) ()BA B B AK SK Cert W 
(2) ()BA B B AK t Cert W 

(3) (1)
AB A B BAK t PK SK T 

(3) (1)
BA B A B AK t PK SK T 

*
A qt Z

A AT t P

(,)A A AM ID T

(4)
AB A BK t T

(4)
BA B AK t T

(1) (2) (3) (4)
2 (, , , , , , , , ,)AB A B A B A B AB AB AB ABK H ID ID PK PK T T K K K K

(1) (2) (3) (4)
2 (, , , , , , , , ,)BA A B A B A B BA BA BA BAK H ID ID PK PK T T K K K K

(1)()()A A BA BCertSK t PK W  

(2)
1(,)B B B B pubW PK H ID PK P 

351Information Technology and Control 2017/3/46

5. Security analysis
The security of the proposed CB-AKA protocol can
be formally proved by combining the following three
theorems.
Theorem 1. In the presence of a benign adversary,
any two oracles ,

n
i j∏ and ,

m
j i∏ always establish the same

shared session key that is distributed uniformly at ran-
dom.
Proof. According to the correctness verification of the
proposed protocol in Section 4, we can see that if two
oracles ,

n
i j∏ and ,

m
j i∏ are matching, then they must es-

tablish the same shared session key. In addtion, since
the values tA, tB are randomly picked and TA, TB can be
viewed as the random input of the hash function H2,
the shared session key can be viewed as the output of
H2. Thus, the session key is uniformly distributed due
to the properties of hash functions.
Theorem 2. Suppose that H1 and H2 are two random
oracles. If there is a Type 1 adversary

 1 against the
security of our CB-AKA protocol with advantage e
when running in time τ, making at most qcu queries to
the oracle CreateUser, qrp queries to the oracle Replace-
PublicKey, qco queries to the oracle Corrupt, qce queries
to the oracle Certificate, qse queries to the oracle Send,
qre queries to the oracle Reveal and qi queries to the
random oracles Hi (1 ≤ i ≤ 2), then there exists an algo-
rithm  to solve the CDH problem in G with advantage

2
2s cun q q
εε ′ ≥

and running time τ ′ ≤ τ + (q1 + qrp + qco +

qce)O(1) + q2(4τm + 9τp + O(1)) + qcu(3τm + O(1)) + qse(τm +
O(1)) + qre(10τm + 2τp + O(1)), where ns denotes the max-
imal number of the protocol sessions that each partici-
pant participates in, τp and τm, respectively, denote the
time for computing a pairing and a scalar multiplica-
tion in G.
Proof. Suppose that the algorithm  takes as input a
random CDH instance (q, G, P, uP, vP), where u, v ∈ *

qZ are unknown to the algorithm  . To compute uvP, 
interacts with the adversary

 1 as below:
At the beginning of the game, the algorithm  chooses
at random pubP G∈ as the system master public key
and sends params = {k, q, G , P, Ppub, H1, H2} to

 1.
Furthermore, it picks three different indices I, J ∈ {1,
2,…, qcu} and T ∈ {1, 2,…, ns} at random.
In Phase 1 and Phase 2, the algorithm  answers the
adversary

 1’s queries as below:

H1(IDi, PKi): The algorithm  keeps a list L1 of tuples
<IDi, PKi, hi>. Upon receiving a H1 query on (IDi, PKi),
it returns hi if a tuple <IDi, PKi, hi> is already in the list
L1. Otherwise, it randomly chooses *

i qh Z∈ , adds a new
tuple <IDi, PKi, hi> to the list L1 and returns hi.
H2(A

iID , B
iID , A

iPK , B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK):

The algorithm  keeps a list L2 of tuples < A
iID , B

iID ,
A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , hi>. Upon
receiving a H2 query on (A

iID , B
iID , A

iPK , B
iPK , A

iT , B
iT ,

(1)
iK , (2)

iK , (3)
iK , (4)

iK), it returns hi if a tuple < A
iID , B

iID ,
A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , hi> is already in
the list L2. Otherwise,  does as below:
1 If there exists a tuple < ,

n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT ,

,
n
j iT , ,

n
i jK > in the list Ls (maintained by the oracle

Send) such that ,
n
i jK ≠⊥ , =i JID ID and

 _ Case 1: ,
n
i j∏ is an initiator,  searches for the list

L2 to see if there exists a tuple < A
iID , B

iID , A
iPK ,

B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > such that

iID = A
iID , jID = B

iID , A
iPK = iPK , B

iPK = jPK , ,
n

i jT = A
iT

and ,
n
j iT = B

iT . If it does,  computes (2) (2) (2)
, ,= ()(+)n n

i i i i j i i i pub i j iK K SK Cert T PK h P t T- + + -
(2) (2) (2)

, ,= ()(+)n n
i i i i j i i i pub i j iK K SK Cert T PK h P t T- + + - and checks

whether the following equations hold given a
proper bilinear map e for the group G:

(2) (2)
,(+ ,) (,)n

i i pub i j ie PK h P T e K P= ,
(1) (1) (2)

,(+)(n
i i i i j j jK SK Cert t PK PK= + +

 1(,))j j pubH ID PK P+ ,
(3) (1)

,
n n

i i j j i j,iK t PK SK T= + ,
(4)

, ,
n n

i i j j iK t T= .

(7)

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validati-
ons, then  sets hi = ,

n
i jK , adds a new tuple < A

iID ,
B
iID , A

iPK , B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > to

the list L2 and returns hi.

 _ Case 2: ,
n
i j∏ is a responder,  searches for the

list L2 to see if there exists a tuple < A
iID , B

iID ,
A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > such
that jID = A

iID , iID = B
iID , A

iPK = jPK , B
iPK = iPK ,

,
n

i jT = B
iT and ,

n
j iT = A

iT . If it does,  computes
(2)
iK = (2) (1) (2)

,(+)n
i i j j j pub j iK Cert PK PK h P T- + + -

, ,
n n

j i j i j iSK T t T- and checks whether the following
equations hold given a proper bilinear map e for
the group G:

(2) (2)
,(+ ,) (,)n

i i pub i j ie PK h P T e K P= ,
(1) (1) (2)

,(+) (n
i i i i j j jK SK Cert t PK PK= + ⋅ +

 1(,))j j pubH ID PK P+ ,

(8)

Information Technology and Control 2017/3/46352

(3) n
i i j,iK SK T= (1)

,
n
i j jt PK+ ,

 (4)
, ,
n n

i i j j iK t T= .

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validations,
then  sets ih = ,

n
i jK , puts a new tuple < A

iID , B
iID , A

iPK ,
B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in the list L2

and returns ih .
2 Else, if there exists a tuple < ,

n
i j∏ , IDi, IDj, PKi, PKj,

,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > on sL such that ,

n
i jK ≠⊥ , i JID ID≠

and the following equations hold given a proper bi-
linear map e for the group G:

(1) (1) (2)
1 ,(,) ((,) ,n

i i i i i pub i je K P e PK PK H ID PK P T= + + +
 (1) (2)

1(,))j j j j pubPK PK H ID PK P+ + ,

(2) (1) (2)
1 ,(,) ((,) ,n

i i i i i pub i je K P e PK PK H ID PK P T= + + +

(2)

, 1 (,))n
j i j j j pubT PK H ID PK P+ + ,

(3) (1) (1)
, ,(,) (,) (,)n n

i i j j i j ie K P e T PK e PK T= ,

(4)
, ,(,) (,)n n

i i j j ie K P e T T= , (9)

then  sets ,
n

i i jh K= , puts a new tuple < A
iID , B

iID ,
A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > in the
list L2 and returns ih .

3 Otherwise, the algorithm  picks a random value
{0,1}k

ih ∈ , puts a new tuple < A
iID , B

iID , A
iPK , B

iPK ,
A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in the list L2 and

returns ih .
CreateUser(iID): The algorithm  keeps a list Lc
of tuples , , ,i i i iID SK PK Cert< > . Upon receiving a
CreateUser query on ()iID , it returns iPK if a tuple

, , ,i i i iID SK PK Cert< > is already in the list Lc.
Otherwise, it performs as below:
1 If iID is the J-th identity submitted to this oracle

(i.e., iID = JID), it randomly chooses *
i qx Z∈ , com-

putes (,)i i i pubPK x P uP h P= - and sets iCert =⊥
and i iSK x= respectively. It then adds new tuples

, , ,i i iPID Kx< ⊥> and , ,i i iID PK h< > to the lists Lc
and L1, respectively, and returns iPK .

2 Otherwise, it randomly chooses *, ,i i qis x h Z∈ , com-
putes (,)ii i i pubPK x P P h Ps= - and sets iCert =⊥
and i iSK x= respectively. It then adds new tuples

, , ,ii i iPD KI x s< > and <IDi, PKi, hi> to the lists Lc
and L1, respectively, and returns iPK .

Certificate(iID): Upon receiving a Certificate query

on (iID), the algorithm  aborts the game if i JID ID= .
Otherwise, it searches for the list Lc to get a tuple

, , ,i i i iID SK PK Cert< > and returns iCert .
Corrupt(iID): Upon receiving a Corrupt query on (iID),
the algorithm  searches for the list Lc to get a tuple

, , ,i i i iID SK PK Cert< > and returns iSK .
ReplacePublicKey(iID , iPK ′): Upon receiving a query
on (iID , iPK ′), the algorithm  searches for the list
Lc to get a tuple , , ,i i i iID SK PK Cert< > and replaces it
with , , ,i iID PK ′< ⊥ ⊥>.
Send(,

n
i j∏ , M): The algorithm  keeps a list sL of tu-

ples < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK >. Upon

receiving a Send query on (,
n
i j∏ , M) ( sets ,

n
j iT M= if

M ≠ λ),  returns ,
n

i jT if a tuple < ,
n
i j∏ , IDi, IDj, PKi, PKj,

,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > is already in the list Ls. Otherwise, 

does as follows:
1 If , ,

n T
i j I J∏ = ∏ , it sets , ,

n n
i j i jK t= =⊥, ,

n
i jT vP= , ,

n
j iT M= ,

then puts a new tuple < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt ,

,
n

i jT , ,
n
j iT , ,

n
i jK > in the list Ls and returns ,

n
i jT .

2 Otherwise, it randomly chooses , {0,1}n k
i jK ∈ ,

*
,
n
i j qt Z∈ and sets , ,

n n
i j i jT t P= , then puts a new tuple <

,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > in the list Ls

and returns ,
n

i jT .
Reveal(,

n
i j∏): Upon receiving a Reveal query on (,

n
i j∏),

the algorithm  aborts the game if , ,
n T
i j I J∏ = ∏ or ,

n
i j∏

is a matching conversation of ,
T
I J∏ . Otherwise, it

searches for a tuple < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT ,

,
n
j iT , ,

n
i jK > in the list Ls and does the following:

1 If < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > is on the

list Ls and ,
n
i jK ≠⊥ ,  returns ,

n
i jK .

2 Else if < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > is

on the list Ls and ,
n
i jK =⊥ ,  searches for a tuple

, , ,i i i iID SK PK Cert< > in the list Lc and performs
as follows:

 _ Case 1: i JID ID= , ,
n
i j∏ is an initiator and there

exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT ,
(1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > in the list L2 such that
A
iiID ID= , B

j iID ID= , A
i iPK PK= , B

iPK = jPK ,
,
n A

i j iT T= and ,
n B
j i iT T= . If it does,  computes (2)

iK =
(2) (2)

, , ,()(+)n n n
i i i j i i i pub i j j iK SK Cert T PK h P t T- + + - and

 checks whether the following equations hold:

(2) (2)
,(+ ,) (,)n

i i pub i j ie PK h P T e K P= ,
(1) (1) (2)

,(+)(n
i i i i j j jK SK Cert t PK PK= + + +

 1(,))j j pubH ID PK P ,

(10)

353Information Technology and Control 2017/3/46

(3)
iK = (1)

,
n n
i j j i j,it PK SK T+ ,

(4)
, ,
n n

i i j j iK t T= .

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validati-
ons, then  sets ,

n
i j iK h= and returns ih .

 _ Case 2: i JID ID= , ,
n
i j∏ is a responder and

there exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT ,

B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in the list L2 such

that jID = A
iID , iID = B

iID , A
iPK = jPK , B

iPK = iPK ,
,
n

i jT = B
iT and ,

n
j iT = A

iT . If so,  computes (2)
iK =

(2) (1) (2)
, ,(+)n n

i i j j j pub j i j i jK Cert PK PK h P T SK T- + + - , ,
n n
i j j it T- and checks whether the following equations hold:

(2) (2)
,(+ ,) (,)n

i i pub i j ie PK h P T e K P=
(1) (1) (2)

,(+)(n
i i i i j j jK SK Cert t PK PK= + + +

 1(,))j j pubH ID PK P ,
(3) (1)

,
n

i i j jK t PK= + n
i j,iSK T ,

(4)
, ,
n n

i i j j iK t T= .

(11)

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validati-
ons, then  sets ,

n
i j iK h= and returns ih .

 _ Case 3: i JID ID≠ , ,
n
i j∏ is an initiator and there

exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK ,
(3)
iK , (4)

iK , ih > in the list L2 such that iID = A
iID , jID =

B
iID , A

iPK = iPK , B
iPK = jPK , ,

n
i jT = A

iT and ,
n
j iT = B

iT . If
it does,  checks whether the following equations
hold:

(1) (1) (2)
,()(n

i i i i j j jK SK Cert t PK PK= + + + +

 1(,))pj ubjH ID PK P ,
(2) (2)

,()(n n
i i i i j j,i jK SK Cert t T PK= + + + +

 1(,))pj ubjH ID PK P ,
(3)
iK = (1)

,
n n
i j j i j,it PK SK T+ ,

(4)
,
n n

i i j j,iK t T= .

(12)

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validati-
ons, then  sets ,

n
i j iK h= and returns ih .

 _ Case 4: i JID ID≠ , ,
n
i j∏ is a responder and there

exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK ,
(3)
iK , (4)

iK , ih > in the list L2 such that jID = A
iID , iID

= B
iID , A

iPK = jPK , B
iPK = iPK , ,

n
i jT = B

iT and ,
n
j iT = A

iT . If
it does,  checks whether the following equations
hold:

(1) (1) (2)()(i i i j jK SK Cert PK PK= + + +

 1 ,(,) +)n
j j j ipubPH ID PK T ,

(2) (1) (2)
,()(n

i i j i j jK t Cert PK PK= + + +
 1 ,(,) +)n

j j j ipubPH ID PK T ,
(3) (1)

,= n n
i i j j i j,iK t PK SK T+ ,
(4)

,
n n

i i j j,iK t T= .

(13)

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validati-
ons, then  sets ,

n
i j iK h= and returns ih .

3 Otherwise,  randomly chooses , {0,1}n k
i jK ∈ and

returns ,
n
i jK .

At the test phase, if

 1 does not ask a Test query on
the oracle ,

T
I J∏ , then  aborts the game. Otherwise, 

returns a random value {0,1}kx ∈ .
Once

 1 finishes its queries, it returns its guess.
Clearly, if

 1 can win the game with non-negligible
advantage ε , there must exist a tuple < ,

T
I J∏ , IID , JID ,

IPK , JPK , =⊥, ,
T

I JT , ,
T

J IT , =⊥> in the list Ls. According to
the above simulation, if ,

T
I J∏ is an initiator, then there

exists a tupe < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK ,
(3)
iK , (4)

iK , ih > in the list L2 such that A
iT = ,

T
I JT = vP and

,
B T

i J IT T M= = (Note that if M is an incoming message,
then M = ,

T
J IT).  computes

Z = (2) (2)
,()(T

i I I J I JK SK Cert T PK- + + +

1 ,(,)) T T
J J pub I,J J IH ID PK P t T-

= ,()() (T T
I I I,J J I ISK Cert t T U SK+ + + - +

(4)
,)()T

I J I ICert T U K+ -
= =T

I,Jt uP uvP ,

(14)

where (4)
,

T T
I I,J J IK t T= which can be found in the list L2.

Else if ,
T
I J∏ is a responder, then there exists a tuple

< A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > in
the list L2 such that ,

B
i

T
I JT T vP= = and A

iT = ,
T

J IT M=
(Note that if M is an incoming message, then ,

T
J IM T=).

 computes

Z = (2) (1) (2)(i I J JK Cert PK PK- + +

 1 , ,(,))T T T
J J pub J I J I,J J IH ID PK P T SK V t T+ - -

(15)

Information Technology and Control 2017/3/46354

 = (1)
,()(+)T T

I,J I J J It Cert PK U T+ + -

(1) (4)

,()T
I J J I J ICert PK U T SK V K+ + - -

 = =T
I,Jt uP uvP ,

where (4)
,

T T
I I,J J IK t T= which can be found in the list L2.

For both cases, we have that =Z uvP . Therefore, the
algorithm  can return Z as the solution to the given
CDH problem.
To derive the algorithm  ’s advantage in solving the
CDH problem, we define the following events: (1) E1:

 1 does not choose ,
T
I J∏ as the test oracle; (2) E2:

 1

makes an oracle query Certificate(JID); (3) E3:

 1
makes an oracle query Reveal (,

T
I J∏).

According to the above simulation, the algorithm 
aborts the game only when one of the above events
happens. It is clear that Pr[¬E1] ≥ 21/()s cun q as I, J ∈ {1,
2,…, qcu} and T ∈ {1, 2,…, ns}. In addition, because ¬E1
implies both ¬E2 and ¬E3, we get that Pr[¬E1 ∧ ¬E2 ∧
¬E3] ≥ 21/()s cun q .
Since the algorithm  selects the correct tuple from
the list L2 with probability 1/q2, it can correctly solve
the given CDH problem with advantage 2

2s cun q q
εε ′ ≥ .

The time complexity of the algorithm  is mainly
dominated by the running time τ of the adversary

 1

and the scalar multiplications and pairings performed
in the queries. From the simulation above, we obtain
that the time complexity of the algorithm  is bound-
ed by τ ′ ≤ τ + (q1 + qrp + qco + qce)O(1) + q2(4τm + 9τp + O(1))
+ qcu(3τm + O(1)) + qse(τm + O(1)) + qre(10τm + 2τp + O(1)).
Theorem 3. Suppose that H1 and H2 are two random
oracles. If there is a Type 2 adversary

 2 against the
security of our CB-AKA protocol with advantage e
when running in time τ, making at most qcu queries to
the oracle CreateUser, qco queries to the oracle Corrupt,
qse queries to the oracle Send, qre queries to the oracle
Reveal and qi queries to the random oracles Hi (1 ≤ i
≤ 2), then there exists an algorithm  to solve the CDH

problem in G with advantage 2
2s cun q q
εε ′ ≥ and running

time τ ′ ≤ τ + (q1 +qco)O(1) + q2(4τm + 9τp + O(1)) + qcu(3τm
+ O(1)) + qse(τm + O(1)) + qre(7τm + O(1)), where ns de-
notes the maximal number of the protocol sessions that
each participant participates in, τp and τm, respectively,
denote the time for computing a pairing and a scalar
multiplication in G.

Proof. Suppose that the algorithm  takes as input a
random CDH instance (q, G, P, aP, bP), where a, b ∈

*
qZ are unknown to the algorithm  . To compute abP ,
 interacts with the adversary

 2 as below:
At the beginning of the game, the algorithm  chooses
a random value *

qs Z∈ as the master key msk and
computes pubP sP= . It then outputs the public
parameters params = {k, q, G, P, Ppub, H1, H2} and the
master secret key msk = s to

 2. Furthermore, it
selects three different indices I, J ∈ {1, 2,…, qcu} and T
∈ {1, 2,…, ns} at random.
In Phase 1 and Phase 2, the algorithm  answers the
adversary

 2’s queries as below:
H1(iID , iPK): The algorithm  keeps a list L1 of tu-
ples < iID , iPK , ih >. Upon receiving a H1 query on
(iID , iPK), the algorithm  returns ih if there exists a
tuple < iID , iPK , ih > in the list L1. Otherwise, it selects
a random value *

i qh Z∈ , adds a new tuple < iID , iPK ,
ih > to the list L1 and returns ih .

H2(A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK ,
ih): The algorithm  keeps a list L2 of tuples < A

iID ,
B
iID , A

iPK , B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih >.

Upon receiving a H2 query on (A
iID , B

iID , A
iPK , B

iPK ,
A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK), the algorithm  re-

turns ih if there exists a tuple < A
iID , B

iID , A
iPK , B

iPK ,
A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in the list L2. Oth-

erwise, the algorithm  searches for a tuple < ,
n
i j∏ , IDi,

IDj, PKi, PKj, ,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > in the list Ls and per-

forms as follows:
1 If such a tuple exists and satisfies the equations:

(1) (1) (2)
1(,) ((,)i i i i i pube K P e PK PK H ID PK P= + +

 (1) (2)
, 1, (,))n

i j j j j j pubT PK PK H ID PK P+ + + ,
(2) (1) (2)

1(,) ((,)i i i i i pube K P e PK PK H ID PK P= + +
 (2)

, , 1, (,))n n
i j j i j j j pubT T PK H ID PK P+ + + ,

(3)
,(,) (,n

i i je K P e T= (1) (1)
,) (,)n

j i j iPK e PK T ,
(4)

, ,(,) (,)n n
i i j j ie K P e T T= ,

then the algorithm  obtains ,
n
i jK and sets ,

n
i i jh K= .

It adds a new tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT ,
(1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > to the list L2 and returns ih .
2 Otherwise,  randomly selects hi ∈{0,1}k , adds

a new tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK ,

(2)
iK , (3)

iK , (4)
iK , ih > to the list L2 and returns ih .

(16)

355Information Technology and Control 2017/3/46

CreateUser(iID): The algorithm  keeps a list Lc of
tuples , , ,i i i iID SK PK Cert< > . Upon receiving a Cre-
ateUser query on (iID), the algorithm  returns iPK
if a tuple , , ,i i i iID SK PK Cert< > is already in the list
Lc. Otherwise, it does as below:
1 If i JID ID= , it randomly selects *, qii hCert Z∈ , sets

(,)i i iPK aP Cert P h sP= - , adds a new tuple <IDi,
,, i iCPK ert⊥ > to the list Lc and returns iPK .

2 Otherwise, it randomly selects , ,i iSK Cert hi ∈ *
qZ ,

sets (,)i i i iPK SK P Cert P h sP= - , adds a new tuple
, , ,i i i iID SK PK Cert< > to the list Lc and returns

iPK .

Corrupt(iID): Upon receiving a Corrupt query on
(iID), the algorithm  aborts if i JID ID= . Otherwise,
it retrives a tuple , , ,i i i iID SK PK Cert< > in the list Lc
and returns iSK .
Send(,

n
i j∏ , M): The algorithm  keeps a list sL of tu-

ples < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK >. Upon

receiving a Send query on (,
n
i j∏ , M) ( sets ,

n
j iT M=

if M ≠ λ),  returns ,
n

i jT to

 2 if a tuple < ,
n
i j∏ , IDi, IDj,

PKi, PKj, ,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > is already in the list Ls.

Otherwise, it does as follows:
1 If , ,

n T
i j I J∏ = ∏ , it sets , ,

n n
i j i jK t= =⊥ , ,

n
i jT bP= and

,
n
j iT = M. Then it adds a new tuple < ,

n
i j∏ , IDi, IDj,

PKi, PKj, ,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > to the list Ls and returns

,
n

i jT .
2 Otherwise, it randomly chooses , {0,1}n k

i jK ∈ ,
*

,
n
i j qt Z∈ and sets , ,

n n
i j i jT t P= . Then it puts a new tu-

ple < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > in the

list Ls and returns ,
n

i jT .

Reveal(,
n
i j∏): Upon receiving a Reveal query on (,

n
i j∏),

the algorithm  aborts the game if , ,
n T
i j I J∏ = ∏ or ,

n
i j∏

is a matching conversation of ,
T
I J∏ . Otherwise, 

searches for a tuple < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT ,

,
n
i jK > in the list Ls.

1 If such a tuple exists and ,
n
i jK ≠⊥ , it returns ,

n
i jK .

2 Else if such a tuple exists and , =n
i jK ⊥ , it searches

for a tuple , , ,i i i iID SK PK Cert< > in the list Lc and
does as below:

 _ Case 1: ,
n
i j∏ is an initiator and a tuple < A

iID , B
iID ,

A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > can
be found in the list L2 such that iID = A

iID , jID = B
iID ,

 A
iPK = iPK , B

iPK = jPK , ,
n

i jT = A
iT and ,

n
j iT = B

iT . If it
does,  checks whether the following equations
hold:

(1) (1) (2)
,()(n

i i i i j j jK SK Cert t PK PK= + + + +

 1(,))pj ubjH ID PK P ,
(2) (2)

,=()(n n
i i i i j j,i jK SK Cert t T PK+ + + +

 1(,))pj ubjH ID PK P ,
(3) (1)

,= n n
i i j j i j,iK t PK SK T+ ,
(4)

,
n n

i i j j,iK t T= .

(17)

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validations,
then  sets ,

n
i j iK h= and returns ih .

 _ Case 2: ,
n
i j∏ is a responder and there exists a tuple

< A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih >
in the list L2 such that jID = A

iID , iID= B
iID , A

iPK =
jPK , B

iPK = iPK , ,
n

i jT = B
iT and ,

n
j iT = A

iT . If it does, 
checks whether the following equations hold:

(1) (1) (2)()(i i i j jK SK Cert PK PK= + + +
 1 ,(,) +)n

j j j ipubPH ID PK T ,
(2) (1) (2)

,()(n
i i j i j jK t Cert PK PK= + + +

 1 ,(,) +)n
j j j ipubPH ID PK T ,

(3) (1)
,= +n

i i j jK t PK n
i j,iSK T ,

(4)
,
n n

i i j j,iK t T= .

(18)

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validati-
ons, then  sets ,

n
i j iK h= and returns ih .

3 Otherwise, it randomly selects , {0,1}n k
i jK ∈ and re-

turns ,
n
i jK .

At the test phase, if the adversary

 2 does not ask a
Test query on the oracle ,

T
I J∏ , then the algorithm 

aborts the game. Otherwise, the algorithm  outputs
a random value {0,1}kx ∈ .
Once the adversary

 2 finishes its queries, it returns
its guess. Clearly, if the adversary

 2 can win the game
with non-negligible advantage ε , then there must be
a tuple < ,

T
I J∏ , IID , JID , IPK , JPK ,=⊥, bP , ,

T
J IT , =⊥ > in

the list Ls. According to the above simulation, if ,
T
I J∏

is an initiator oracle, then there exists a tuple < A
iID ,

B
iID , A

iPK , B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in

the list L2 such that B
iPK = JPK , where (1)

JPK aP= and
,

A T
i I JT T bP= = ; else if ,

T
I J∏ is a responder oracle, then

there exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK ,

Information Technology and Control 2017/3/46356

(2)
iK , (3)

iK , (4)
iK , ih > in the list L2 such that A

iPK =
JPK , where (1)

JPK aP= and ,
B T

i I JT T bP= = . For both
cases, the algorithm  returns (3)

,
T

i I J IZ K SK T= - as a
solution to the given CDH problem, where ISK can be
retrieved from the tuple , , ,i i i iID SK PK Cert< > in the
list Lc. We can easily deduce that (3)

,
T

i I J IabP K SK T= -
as (3) (1)

, ,
T T

i I J J I J IK t PK SK T= + .
To derive  ’s advantage, we define the following
events: (1) E1:

 2 does not select ,
T
I J∏ as the test or-

acle; (2) E2:

 2 makes an oracle query Corrupt(JID);
(3) E3:

 2 makes an oracle query Reveal(,
T
I J∏).

According to the above simulation,  aborts the game
only when one of the above events happens. It is clear
that Pr[¬E1] ≥ 21/()s cun q as I, J ∈ {1, 2,…, qcu} and T ∈
{1, 2,…, ns}. Because ¬E1 implies both ¬E2 and ¬E3, we
deduce that Pr[¬E1 ∧ ¬E2 ∧ ¬E3]≥ 21/()s cun q . Since 
selects the correct tuple from the list L2 with probabil-
ity 1/q2, it can solve the CDH problem with advantage

2
2s cun q q
εε ′ ≥ .

The time complexity of the algorithm  is mainly
dominated by the running time τ of the adversary

 2

and the scalar multiplications and pairings performed
in the queries. From the simulation above, we obtain
that the time complexity of the algorithm  is bound-
ed by τ ′ ≤ τ + (q1 +qco)O(1) + q2(4τm + 9τp + O(1)) + qcu(3τm
+ O(1)) + qse(τm + O(1)) + qre(7τm + O(1)).

6. Comparison and experimental
results
In this section, the computation cost comparison of
our protocol and the previous pairing-based CB-AKA
protocols [24, 33, 35, 45] is offered.
As described in Table 2, we consider five main
cryptographic operations in the comparison: bilinear
pairing, exponentiation in the group GT, scalar multi-
plication in the group G, map-to-point hash and ge-
neral hash. The computation costs of the compared
protocols are listed in Table 3.
To provide a clearer comparison, we implement all
the compared protocols by using the multiprecision
integer and rational arithmetic cryptographic libra-
ry (MIRACAL) [38]. The experimental platform is
a laptop running Windows XP with 3GHz Intel PIV
CPU and 512-MB memory. For the pairing-based
CB-AKA ptotocols in [24, 33, 35, 45], we use the Tate

Table 2
Cryptographic operations in the comparison

Table 3
Comparison of the compared protocols

Notations Descritions

Bp Bilinear pairing

Exp Exponentiation in the target group GT

Mul Scalar multiplication in the group G

Mtp Map-to-point hash

Ha General cryptographic hash

Protocols Bp Exp Mul Mtp Ha

Ours 0 0 6 0 2

[24] 2 0 4 1 1

[33] 1 0 8 0 2

[35] 2 1 3 1 1

[45] 2 0 3 1 1

pairing defined over the supersingular elliptic curve
E(Fp): y2 = x3 + x with embedding degree 2 where p is
a 512-bits Solinas prime, which achieves the 1024-
bits RSA equivalent security. Our CB-AKA protocol is
impletemented over the elliptic curve E(Fp): y2 = x3 +
ax + b, where a and b are two elements such that ∆ =
4a3 + 27b2 ≠ 0 in the finite field Fp. To achieve the same
1024-bits RSA security level, we use the security pa-
rameter secp160r1 recommended by the Standards
for Efficient Cryptography Group [43], where p =
2160 - 231 - 1, a = FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF 7FFFFFFC and b = 1C97BEFC
54BD7A8B 65ACF89F 81D4D4AD C565FA45.
We run each protocol ten times and calculate the
average running time required for each protocol par-

Table 4
Experiment results of the compared protocols

Protocols Running time (ms)

Ours 13.26

[24] 68.64

[33] 71.08

[35] 67.57

[45] 62.26

357Information Technology and Control 2017/3/46

ticipant. The experiment results are shown in Table 4.
The running time of our protocol is about 19.32% of
the protocol in [24], 18.66% of the protocol in [33],
19.62% of the protocol in [35] and 21.30% of the pro-
tocol in [45]. The comparison shows that our proto-
col outperforms the previous pairing-based CB-AKA
protocols in the computation efficiency. Therefore, it
is more suitable for the computation-limited devices.

7. Conclusion
In this paper, a practical CB-AKA protocol without
bilinear pairing is proposed. The proposed protocol
is proven secure under the classic CDH assumption
in the random oracle model. Due to avoiding the pai-
ring operations, it significantly reduces the computa-

tion cost. Compared with the previous pairing-based
CB-AKA protocols, it enjoys obvious advantage in the
computation performance.

Acknowledgments
We would like to present our thanks to the anony-
mous reviewers for their helpful comments. This
work is supported by the National Natural Science
Foundation of China (grant number 61672207), the
Fundamental Research Funds for the Central Uni-
versities (grant number 2016B10114) and the Natural
Science Foundation of Jiangsu Province (grant num-
ber BK20161511) and a Project Funded by Jiangsu
Collaborative Innovation Center on Atmospheric En-
vironment and Equipment Technology.

References
1. Al-Riyami, S. S., Paterson, K. G. Certificateless Public Key

Cryptography. In: Laih, C. S. (Eds.), Advances in Cryptol-
ogy – ASIACRYPT 2003, Lecture Notes in Computer Sci-
ence, 2894, Springer, Berlin-Heidelberg, 2003, 452-473.
http://dx.doi.org/10.1007/978-3-540-40061-5_29

2. Au, M. H., Liu, J. K., Susilo, W., Yuen, T. H. Certificate
Based (Linkable) Ring Signature. In: Dawson, E., Wong,
D. S. (Eds.), Information Security Practice and Ex-
perience, Lecture Notes in Computer Science, 4464,
Springer, Berlin-Heidelberg, 2007, 79-92. http://dx.doi.
org/10.1007/978-3-540-72163-5_8

3. Bellare, M., Rogaway, P. Random Oracles Are Practical: A
Paradigm for Designing Efficient Protocols. Proceedings
of 1st ACM Conference Computer and Communications
Security, Fairfax, Virginia, USA, November 03-05, 1993,
62-73. http://dx.doi.org/10.1145/168588.168596

4. Chang, C., Le, H., Chang, C. Novel Untraceable Authentica-
ted Key Agreement Protocol Suitable for Mobile Commu-
nication. Wireless Personal Communications, 2013, 71(1),
425-437. http://dx.doi.org/10.1007/s11277-012-0822-0

5. Chen, L., Cheng, F., Smart, N. P. Identity-Based Key
Agreement Protocols from Pairings. International Jour-
nal of Information Security, 2007, 6(4), 213-241. http://
dx.doi.org/10.1007/s10207-006-0011-9

6. Chen, L., Kudla, C. Identity Based Authenticated Key
Agreement Protocols from Pairings. Proceedings of 16th
IEEE Computer Security Foundations Workshop, Pa-
cific Grove, California, USA, June 30 - July 2, 2003, 219-
233. http://dx.doi.org/10.1109/CSFW.2003.1212715

7. Choie, Y., Jeong, E., Lee, E. Efficient Identity-Based Au-
thenticated Key Agreement Protocol from Pairings. Ap-

plied Mathematics and Computation, 2005, 162(1), 179-
188. http://dx.doi.org/10.1016/j.amc.2003.12.092

8. Diffie, W., Hellman, M. New Directions in Cryptography.
IEEE Transactions on Information Theory, 1976, 22(6),
644-654. http://dx.doi.org/10.1109/TIT.1976.1055638

9. Galindo, D., Morillo, P., Ràfols, C. Improved Certifi-
cate-Based Encryption in the Standard Model. Journal
of Systems and Software, 2008, 81(7), 1218-1226. http://
dx.doi.org/10.1016/j.jss.2007.09.009

10. Gentry, C. Certificate-Based Encryption and the Certifi-
cate Revocation Problem. In: Biham, E. (Eds.), Advances in
Cryptology (EUROCRYPT 2003), Lecture Notes in Com-
puter Science, 2656, Springer, Berlin-Heidelberg, 2003,
272-293. http://dx.doi.org/10.1007/3-540-39200-9_17

11. Hirose, S., Yoshida, S. An Authenticated Diffie-Hellman
Key Agreement Protocol Secure Against Active Attacks.
In: Imai, H., Zheng, Y. (Eds.), Public Key Cryptography,
Lecture Notes in Computer Science, 1431, Springer, Ber-
lin-Heidelberg, 1998, 135-148. http://dx.doi.org/10.1007/
BFb0054020

12. Islam, S. H., Singh, A. Provably Secure One-Round Cer-
tificateless Authenticated Group Key Agreement Pro-
tocol for Secure Communications. Wireless Personal
Communications, 2015, 85(3), 879-898. http://dx.doi.
org/10.1007/s11277-015-2815-2

13. Jeong, I. R., Katz, J., Lee, D. H. One-Round Protocols for
Two-Party Authenticated Key Exchange. In: Jakobsson,
M., Yung, M., Zhou, J. (Eds.), Applied Cryptography and
Network Security, Lecture Notes in Computer Science,
3089, Springer, Berlin-Heidelberg, 2004, 220-232. http://
dx.doi.org/10.1007/978-3-540-24852-1_16

Information Technology and Control 2017/3/46358

14. Jiang, Q., Khan, M., Lu, X., Ma, J., He, D. A Privacy Preserv-
ing Three-Factor Authentication Protocol for e-Health
Clouds. Journal of Supercomputing, 2016, 72(10), 3826-
3849. http://dx.doi.org/10.1007/s11227-015-1610-x

15. Jiang, Q., Ma, J., Li, G., Li, X. Improvement of Robust
Smart-Card-Based Password Authentication Scheme.
International Journal of Communication Systems, 2015,
28(2), 383-393. http://dx.doi.org/10.1002/dac.2644

16. Jiang, Q., Ma, J., Wei, F. On the Security of a Priva-
cy-Aware Authentication Scheme for Distributed Mo-
bile Cloud Computing Services. IEEE Systems Journal,
in press. http://dx.doi.org/10.1109/JSYST.2016.2574719.

17. Jiang, Q., Wei, F., Fu, S., Ma, J., Li, G., Alelaiwi, A. Robust
Extended Chaotic Maps-Based Three-Factor Authenti-
cation Scheme Preserving Biometric Template Privacy.
Nonlinear Dynamics, 2016, 83(4), 2085-2101. http://dx.
doi.org/10.1007/s11071-015-2467-5

18. Kang, B. G., Park, J. H., Hahn, S. G. A Certificate-Based
Signature Scheme. In: Okamoto, T. (Eds.), Topics in
Cryptology - CT-RSA 2004, Lecture Notes in Computer
Science, 2964, Springer, Berlin-Heidelberg, 2004, 99-
111. http://dx.doi.org/10.1007/978-3-540-24660-2_8

19. Kumar, A., Tripathi, S. A Pairing Free Anonymous Cer-
tificateless Group Key Agreement Protocol for Dynamic
Group. Wireless Personal Communications, 2015, 82(2),
1027-1045. http://dx.doi.org/10.1007/s11277-014-2264-3

20. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S. An
Efficient Protocol for Authenticated Key Agreement.
Designs, Codes and Cryptography, 2003, 28(2), 119-134.
http://dx.doi.org/10.1023/A:1022595222606

21. Li, J., Huang, X., Mu, Y., Susilo, W., Wu, Q. Constructions of
Certificate-Based Signature Secure Against Key Replace-
ment Attacks. Journal of Computer Security, 2010, 18(3),
421-449. http://dx.doi.org/10.3233/JCS-2009-0366

22. Li, J., Wang, Z., Zhang, Y. Provably Secure Certifi-
cate-Based Signature Scheme Without Pairings. Infor-
mation Sciences, 2013, 233(7), 313-320. http://dx.doi.
org/10.1016/j.ins.2013.01.013

23. Li, F., Xin, X., Hu, Y. Efficient Certificate-Based Signcryp-
tion Scheme from Bilinear Pairings. International Jour-
nal of Computers and Applications, 2008, 30(2), 129-133.
http://dx.doi.org/10.2316/Journal.202.2008.2.202-2061

24. Lim, M., Lee, S., Lee, H. An Improved Variant of Wang-
Cao’s Certificated-Based Authenticated Key Agreement
Protocol. Proceedings of 4th International Conference
on Networked Computing and Advanced Information
Management, Gyeongju, South Korea, September 2-4,
2008, 198-201. http://dx.doi.org/10.1109/NCM.2008.20

25. Lim, M., Yeoh, C., Lee, S., Lim, H., Lee, H. A Secure and
Efficient Three-Pass Authenticated Key Agreement Pro-
tocol Based on Elliptic Curves. In: Das, A., Pung, H., Lee,
F., Wong, L. (Eds.), Networking 2008 Ad Hoc and Sensor
Networks, Wireless Networks, Next Generation Inter-
net, Lecture Notes in Computer Science, 4982, Spring-

er, Berlin-Heidelberg, 2008, 170-182. http://dx.doi.org/
10.1007/978-3-540-79549-0_15

26. Lippold, G., Boyd, C., Nieto, J. Strongly Secure Certificate-
less Key Agreement. In: Shacham, H., Waters, B. (Eds.),
Pairing-Based Cryptography - Pairing 2009, Lecture
Notes in Computer Science, 5671, Springer, Berlin-Hei-
delberg, 2009, 206-230. http://dx.doi.org/ 10.1007/978-
3-642-03298-1_14

27. Liu, J. K., Baek, J., Susilo, W., Zhou, J. Certificate Based
Signature Schemes Without Pairings or Random Ora-
cles. In: Wu, T., Lei, C., Rijmen, V., Lee, D. (Eds.), Infor-
mation Security, Lecture Notes in Computer Science,
5222, Springer, Berlin-Heidelberg, 2008, 285-297. http://
dx.doi.org/10.1007/978-3-540-85886-7_20

28. Liu, J. K., Zhou, J. Efficient Certificate-Based Encryp-
tion in the Standard Model. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (Eds.), Security and Cryptography for
Networks, Lecture Notes in Computer Science, 5229,
Springer, Berlin-Heidelberg, 2008, 144-155. http://dx.doi.
org/10.1007/978-3-540-85855-3_10

29. Lu, Y., Li, J. Provably Secure Certificate-Based Signcryp-
tion Scheme Without Pairings. KSII Transactions on In-
ternet and Information Systems, 2014, 8(7), 2554-2571.
http://dx.doi.org/10.3837/tiis.2014.07.020

30. Lu, Y., Li, J. An Improved Certificate-Based Signature
Scheme Without Random Oracles. IET Information Se-
curity, 2016, 10(2), 80-86. http://dx.doi.org/10.1049/iet-
ifs.2015.0188

31. Lu, Y., Li, J. A Provably Secure Certificate-Based Encryp-
tion Scheme Against Malicious CA Attacks in the Stand-
ard Model. Information Sciences, 2016, 372, 745-757.
http://dx.doi.org/10.1016/j.ins.2016.08.082

32. Lu, Y., Li, J. A Pairing-Free Certificate-Based Proxy
Re-Encryption Scheme for Secure Data Sharing in Public
Clouds. Future Generation Computer Systems, 2016, 62,
140-147. http://dx.doi.org/10.1016/j.future.2015.11.012

33. Lu, Y., Zhang, Q., Li, J. Cryptanalysis of Three Certif-
icate-Based Authenticated Key Agreement Protocols
and a Secure Construction. Cryptology ePrint Archive.
http://eprint.iacr.org/2015/256.pdf. Accessed on March
19, 2015.

34. Luo, M., Wen, Y., Zhao, H. A Certificate-Based Signcryp-
tion Scheme. Proceedings of 2008 International Confer-
ence on Computer Science and Information Technology,
Singapore, August 29 - September 2, 2008, 17-23. http://
dx.doi.org/10.1109/ICCSIT.2008.14

35. Luo, M., Wen, Y., Zhao, H. A Certificate-Based Authen-
ticated Key Agreement Protocol for SIP-Based VoIP
Networks. Proceedings of 2008 IFIP International Con-
ference on Network and Parallel Computing, Shang-
hai, China, October 18-21, 2008, 3-10. http://dx.doi.
org/10.1109/NPC.2008.5

36. Ni, L., Chen, G., Li, J. H., Hao, Y. Strongly Secure Identi-
ty-Based Authenticated Key Agreement Protocols in the

359Information Technology and Control 2017/3/46

Escrow Mode. Science China Information Sciences, 2013,
56(8), 1-14. http://dx.doi.org/10.1007/s11432-011-4520-4

37. Schnorr, C. P. Efficient Signature Generation by Smart
Cards. Journal of Cryptology, 1991, 4(3), 161-174. http://
dx.doi.org/10.1007/BF00196725

38. Shamus Software Ltd. Multiprecision Integer and Ration-
al Arithmetic C/C++ Library, Version 5.2. http://certivox.
org/display/EXT/MIRACL. Accessed on June 26, 2012.

39. Shao, Z. Enhanced Certificate-Based Encryption from Pair-
ings. Computers and Electrical Engineering, 2011, 37, 136-
146. http://dx.doi.org/10.1016/j.compeleceng.2011.01.007

40. Shi, Y., Li, J. H. Two-Party Authenticated Key Agreement
in Certificateless Public Key Cryptography. Wuhan Uni-
versity Journal of Natural Sciences, 2007, 12(1), 71-74.
http://dx.doi.org/10.1007/s11859-006-0194-y

41. Smart, N. P. Identity-Based Authenticated Key Agree-
ment Protocol Based on Weil Pairing. Electronic Let-
ters, 2002, 38(13), 630-632. http://dx.doi.org/10.1049/
el:20020387

42. Sun, H., Q. Wen, Zhang, H., Jin, Z. A Novel Pairing-Free
Certificateless Authenticated Key Agreement Protocol
with Provable Security. Frontiers of Computer Science,
2013, 7(4), 544-557. http://dx.doi.org/10.1007/s11704-
013-2305-1

43. The Standards for Efficient Cryptography Group. SEC 2:

Recommended Elliptic Curve Domain Parameters, Ver-
sion 1.0. http://www.secg.org. Accessed on January 15, 2015.

44. Vivek, S. S., Selvi, S. S. D., Venkatesan, L. R., Rangan, C. P.
Efficient, Pairing-Free, Authenticated Identity Based Key
Agreement in a Single Round. In: Susilo, W., Reyhanitabar,
R. (Eds.), Provable Security, Lecture Notes in Computer
Science, 8209, Springer, Berlin-Heidelberg, 2013, 38-58.
http://dx.doi.org/10.1007/978-3-642-41227-1_3

45. Wang, S., Cao, Z. Escrow-Free Certificate-Based Authen-
ticated Key Agreement Protocol from Pairings. Wuhan
University Journal of Natural Science, 2007, 12(1), 63-
66. http://dx.doi.org/10.1007/s11859-006-0189-8

46. Wu, W., Mu, Y., Susilo, W., Huang, X., Xu, L. A Provably
Secure Construction of Certificate-Based Encryption
from Certificateless Encryption. The Computer Journal,
2012, 55(10), 1157-1168. http://dx.doi.org/10.1093/com-
jnl/bxr130

47. Xiong, H., Chen, Z., Li, F. Provably Secure and Efficient
Certificateless Authenticated Tripartite Key Agree-
ment Protocol. Mathematical and Computer Model-
ling, 2012, 55(3), 1213-1221. http://dx.doi.org/ 10.1016/j.
mcm.2011.10.001

48. Zhang, L., Zhang, F., Wu, Q., Domingo-Ferrer, J. Simu-
latable Certificateless Two-Party Authenticated Key
Agreement Protocol. Information Sciences, 2010, 180(6),
1020-1030. http://dx.doi.org/10.1016/j.ins.2009.11.036

Summary / Santrauka
An authenticated key agreement (AKA) protocol is extremely essential to secure communications over insecure
public networks. It enables the communication parties to securely set up a shared session key in present of the
malicious attackers. Certificate-based cryptography (CBC) is a novel public-key cryptographic primitive that has
many attractive merits. It solves the certificate revocation problem in conventional public-key cryptography and
the key-escrow problem in identity-based cryptography. Until now, four AKA protocols have been proposed in
the setting of CBC. However, all of them adopt the costly bilinear pairings and are not suitable for the devices
which have limited computing resources and battery power. Therefore, it is interesting and worthwhile to design
a certificate-based AKA protocol without using the bilinear pairings. In this paper, we develop a pairing-free cer-
tificate-based AKA protocol. The proposed protocol is proven secure under the classic computational Diffie-Hell-
man assumption in the random oracle model. Compared with the previous pairing-based certificate-based AKA
protocols, the proposed protocol enjoys obvious advantage in the computation efficiency.

Autentifikuotas rakto sutarties (AKA) protokolas yra itin svarbus siekiant apsaugoti pranešimus, persiunčiamus
neapsaugotais viešaisiais ryšio tinklais. Tai leidžia bendraujančiosioms pusėms saugiai sukurti bendrą sesijos
raktą, esant kenkėjiškų puolėjų pavojui. Sertifikatu pagrįsta kriptografija (CBC) yra naujas viešojo rakto kripto-
grafinis primityvas, turintis daug privalumų. Iki šiol, CBC sukūrimui buvo pasiūlyti keturi AKA protokolai. Tačiau,
jie visi priima brangius dvitiesius poravimus ir nėra tinkami prietaisams su ribotomis skaičiavimo galimybėmis
ir ribota baterijos galia. Dėl šios priežasties, įdomu ir verta sukurti sertifikatu pagrįstą AKA protokolą, kuriam ne-
reikalingi dvitiesiai poravimai. Straipsnyje autoriai pristato savo sukurtą sertifikatu pagrįstą AKA protokolą, ku-
riam nereikalingas poravimas. Remiantis klasikine Diffie-Hellman skaičiavimo prielaida, atsitiktiniame orakulo
modelyje taip pat įrodoma, kad siūlomas protokolas yra patikimas. Palyginus su ankstesniais sertifikatu pagrįstais
AKA protokolais, siūlomas protokolas yra aiškiai pranašesnis skaičiavimo efektyvumo aspektu.

