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An authenticated key agreement (AKA) protocol is extremely essential to secure communications over insecure 
public networks. It enables the communication parties to securely set up a shared session key in present of the 
malicious attackers. Certificate-based cryptography (CBC) is a novel public-key cryptographic primitive that 
has many attractive merits. It solves the certificate revocation problem in conventional public-key cryptog-
raphy and the key-escrow problem in identity-based cryptography. Until now, four AKA protocols have been 
proposed in the setting of CBC. However, all of them adopt the costly bilinear pairings and are not suitable for 
the devices which have limited computing resources and battery power. Therefore, it is interesting and worth-
while to design a certificate-based AKA protocol without using the bilinear pairings. In this paper, we develop 
a pairing-free certificate-based AKA protocol. The proposed protocol is proven secure under the classic com-
putational Diffie-Hellman assumption in the random oracle model. Compared with the previous pairing-based 
certificate-based AKA protocols, the proposed protocol enjoys obvious advantage in the computation efficiency. 
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1. Introduction
To provide secure communications over insecure 
public networks, privacy and confidentiality should 
be guaranteed. An authenticated key agreement 
(AKA) protocol enables the communication parties to 
authenticate each other and securely set up a shared 
session key for their communications over an unreli-
able communication channel. Therefore, it can assure 
the privacy and data confidentiality of the later com-
munications.
The famous Diffie-Hellman key-exchange proto-
col [8] is the first practical key agreement protocol. 
However, Diffie-Hellman protocol suffers from the 
man-in-the-middle (MITM) attack due to the reason 
that it does not provide authentication to the proto-
col participants. The protocols that can provide the 
authentication mechanism have attracted great at-
tention  from the research commnity (e.g. [14-17]). 
Over the years, many AKA protocols have been pro-
posed. However, most of the previous AKA protocols 
were constructed over either conventional public-key 
cryptography (PKC) [4, 11, 13, 20, 25] or identity-ba-
sed cryptography (IBC) [5-7, 36, 41, 44]. It is well-
known that conventional PKC suffers from the heavy 
certificate management problem while IBC has the 
key escrow and key distribution problems.
To solve the key escrow problem, Al-Riyami and Pat-
erson [1] presented the concept of certificateless AKA 
(CL-AKA) protocol by extending AKA protocol into 
certificateless PKC. In a CL-AKA protocol, a partially 
trusted key generation center (KGC) is employed to 
assist every user to produce a private key from a secret 
value selected by the user. In this way, KGC does not 
know any user’s private key. As a result, CL-AKA pro-
tocols avoid the key escrow problem while reserving 
the certificateless property. Since the introduction of 
CL-AKA protocol, many CL-AKA protocols have been 
proposed [12, 19, 26, 40, 42, 47, 48]. However, KGC has 
to distribute a partial private key to every user over 
secure channels. This feature limits the application of 
CL-AKA protocols in the untrusted network environ-
ments, because setting up a secure channel in those 
environments is usually expensive.
In Eurocrypt 2003, Gentry [10] put forward a new 
public-key cryptographic paradigm called certifi-
cate-based cryptography (CBC). This new cryptog-
raphy lies between conventional PKC and IBC. When 

using CBC, every user should produce a pair of private 
key and public key independently and then apply for 
a certificate from a trusted certification authority 
(CA). The certificate is sent to its owner and serves as 
a partial decryption key or a partial signing key. This 
functionality of the certificate supplies an implicit 
certificate property so that a user can execute some 
cryptographic operations (e.g., decryption and sign-
ing) correctly only when both his certificate and pri-
vate key are known, while this user’s communication 
parties need not obtain the current status of his cer-
tificate. Therefore, CBC solves the certificate revo-
cation problem in conventional PKC. Furthermore, 
CBC eliminates both the key escrow problem (as CA 
has no knowledge of users’ private keys) and the key 
distribution problem (as CA can send the certificates 
to their owners publicly). Since its invention, CBC 
has obsorbed great interest from the cryptography 
community and numerous CBC schemes have been 
published, including certificate-based encryption 
(e.g. [9, 28, 31, 32, 39, 46]), certificate-based signature 
(e.g. [2, 18, 21, 22, 27, 30]) and certificate-based sign-
cryption (e.g. [23, 29, 34]). 

To overcome the problems imposed on the previous 
AKA protocols, Wang and Cao [45] proposed the 
notion of certificate-based AKA (CB-AKA) protocol 
following the idea of CBC. Compared with previous 
types of AKA protocol, CB-AKA protocol enjoys many 
attractive merits. Table 1 summarizes the properties 
of the different types of AKA protocol, including 
conventional AKA protocol over conventional PKC, 

Table 1 
Properties of AKA protocols over different public-key 
cryptography.

Types of AKA 
Protocol

Implicit 
Certificate

Key-Escrow 
Free

Secure-
Channel Free

Traditional 
AKA protocol

× √ √

IB-AKA 
protocol

√ × ×

CL-AKA 
protocol

√ √ ×

CB-AKA 
protocol

√ √ √
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identity-based AKA (IB-AKA) protocol over IBC, CL-
AKA protocol and CB-AKA protocol.
To our knowledge, there exist four CB-AKA protocols 
[24, 33, 35, 45] in the literature so far. In [45], Wang and 
Cao proposed the first CB-AKA protocol that is based 
on Gentry’s certificate-based encryption scheme [10] 
and Smart’s AKA protocol [41]. Unfortunately, Lim 
et al. [24] point out that Wang-Cao’s CB-AKA proto-
col is insecure against ephemeral secret leakage. To 
fix the weakness in Wang-Cao’s protocol, Lim et al. 
[24] proposed an improved CB-AKA protocol. They 
claim that the improved protocol is secure against all 
non-trivial secret leakages. However, no formal secu-
rity proof is given in [24]. In [35], Luo et al. provide a 
security model for constructing provably secure CB-
AKA protocols. They also present a CB-AKA protocol 
that can be proven secure in the random oracle model 
[3]. Recently, Lu et al. [33] pointed out that the CB-
AKA protocols in [24, 35, 45] can not resist the public 
key replacement (PKR) attack. To fight against PKR 
attack, Lu et al. [33] designed a new CB-AKA protocol 
with provable security in the random oracle model. 
The motivation of this paper is to design a CB-AKA 
protocol without costly bilinear pairing. In practice, 
the cryptographic operations are often performed on 
some devices which have very constrained resources, 
such as smart phone or PDA. Due to the limited com-
putation or the constrained battery power, only the li-
ghtweight or power-saving cryptographic schemes can 
be emplyed on these devices. All the previous CB-AKA 
protocols [24, 33, 35, 45] are constructed with bilinear 
pairings. Compared with other common cryptographic 
operations such as scalar multiplications in the ellip-
tic curve group, the bilinear pairing may be the most 
expensive one. Our experiment results show that the 
average computation cost of a bilinear pairing is about 
nine times as much as that of a scalar multiplication in 
elliptic curve group under the 1024-bit RSA security 
level. Since the computationally-heavy pairing opera-
tions will greatly aggravate the computation load of a 
device, they are extremely disliked by the computati-
on-limited or power-constrained devices. Therefore, 
as far as the efficiency, the cryptographic schemes wi-
thout bilinear pairing would be more attractive.
Inspired by Schnorr’s signature scheme [37], we de-
velop a practical CB-AKA protocol without bilin-
ear pairing. Under the classic complexity assump-

tion computational Diffie-Hellman assumption, the 
proposed protocol is proven secure in the random 
oracle model. Without costly bilinear pairing oper-
ations, the proposed CB-AKA protocol significantly 
decreases the computation cost. Compared with the 
previous pairing-based CB-AKA protocols [24, 33, 35, 
45], it enjoys obvious advantage in the computational 
efficiency and is more suitable for the power-con-
strained and computation-limited devices.

2. Preliminaries

2.1 Computational assumption
The security of our CB-AKA protocol is based on the 
computational Diffie-Hellman (CDH) assumption.
Definition 1. Let G be a cyclic group of prime order q. 
The CDH problem over G is, given a tuple (P, xP, yP) ∈ 
G3 for unknown values x, y ∈ *

qZ , to compute xyP. The 
CDH assumption holds if for any polynomial-time 
algorithm A, the advantage Adv(A) = Pr{A(G, q, P, xP, 
yP) = xyP} is negligible.

2.2 Bilinear pairing
Assume that G and GT are two cyclic groups of prime 
order q. A bilinear pairing e: G × G  → GT is a map that 
satisfies the following properties:
1 Bilinearity: e(xU, yV) = e(U, V)xy for all U, V ∈ G and 

x, y ∈ *
qZ .

2 Non-degeneracy: There exists U, V ∈ G such that  
e(U, V) ≠ 1.

3 Computability: There exists an efficient algorithm 
to compute ( , )e U V  for all ,U V G∈ .

Note that the construction of our CB-AKA protocol 
does not depend on the bilinear pairing. We only use 
this notion in the security proofs.

3. Formal model of CB-AKA protocol

3.1 Definition of CB-AKA protocol
Usually, a CB-AKA protocol consists of four algo-
rithms: (1) System setup algorithm Setup, which is 
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performed by a CA to produce a master secret key and 
a set of system public parameters; (2) User key gene-
ration algorithm UserKeyGen, which is performed by 
each user to produce a private key and a partial public 
key; (3) Certificate generation algorithm CertGen, 
which is performed by a CA to produce a full public 
key and a certificate for each user;  (4) Key agreement 
algorithm KeyAgreement, which is performed by two 
communication users (an initiator and a responder) 
to generate a session key.
Figure 1 gives a more concrete functional description 
of a CB-AKA protocol.

3.2 Security model of CB-AKA protocol
As introduced in [33, 35], a CB-AKA protocol should 
satisfy some commonly desired security properties, 
including known-key security, unknown key-share 
resilience, basic impersonation attacks resilience, 
forward secrecy, key compromise impersonation re-
silience and key control security. 
To capture these security properties, Luo et al. pre-
sented a formal security model for CB-AKA protocols 
in [35]. However, Lu et al. [33] show that Luo et al.’s 
CB-AKA protocol is insecure against the PKR attacks, 
although it was proven secure in their proposed secu-
rity model. To fix this problem, Lu et al. [33] improved 
Luo et al.’s security model to capture the adversaries’ 
PKR actions. 
There are two types of adversaries against the secu-

Figure 1 
Functional description of a CB-AKA protocol

rity of CB-AKA protocols. They are the Type 1 adver-
sary and the Type 2 adversary. The Type 1 adversary 
who acts as a malicious uncertified user is able to 
replace any user’s public key, but does not know the 
target user’s certificate. The Type 2 adversary who 
acts as an honest-but-curious CA possesses the CA’s 
master secret key, but does not know the target user’s 
private key and is disallowed to replace public keys. 
The security model of a CB-AKA protocol can be 
defined via an adversarial game which is played be-
tween a challenger with a Type 1 adversary or a Type 
2 adversary (denoted by 

 

 ). In the description of 
the adversarial game, the symbol ,

n
A B∏ denotes an 

oralce that represents the n-th session between two 
participants A and B, where A is the initiator and B 
is the responder. Let IDS = ( AID , BID , ,

n
A BM , ,

n
B AM ) be 

the session identity of the session ,
n
A B∏ , where ,

n
B AM

and ,
n
A BM are the incoming protocol message and the 

outgoing protocol message, respectively, in the n-th 
session of the protocol. Two sessions are said to have 
matching conversation with each other if they have 
the same session identity.
The security model is formally described as follows:
Setup. The challenger simulates the algorithm Setup 
to produce msk and params. Then the adversary 

 

  is 
given params if it is a Type 1 adversary or both msk 
and params if it is a Type 2 adversary.
Phase 1. The challenger answers the adversary 

 

 ’s 
various oralce queries as follows:
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1 CreateUser(IDi): On receiving an identity IDi, the 
challenger outputs a public key PKi. If there is no 
public key associated with IDi, the challenger pro-
duces a key pair (SKi, PKi) and a certificate Certi for 
IDi, and then outputs PKi. In this case, the identi-
ty IDi is said to be created. For simplicity, it is as-
sumed that an identity can be responded by other 
oracles only when it has been created.

2 ReplacePublicKey(IDi, iPK ′): On receiving an iden-
tity IDi and a false public key iPK ′, the challenger 
sets iPK ′ as the user i’s current public key. Such an 
oracle is merely queried by the Type 1 adversary. 
It models the Type 1 adversary’s ability to replace 
public keys and thus captures the PKR attacks. 

3 Corrupt(IDi): On receiving an identity IDi, the chal-
lenger outputs a private key iSK . For the Type 1 ad-
versary, if it has made an oracle query ReplacePub-
licKey(IDi, iPK ′), then it is disallowed to request the 
user i’s private key. 

4 Certificate(IDi): On receiving an identity IDi, the 
challenger outputs a certificate Certi. Such an or-
acle is merely queried by the Type 1 adversary. If 
it has made an oracle query ReplacePublicKey(IDi,

iPK ′), then it is disallowed to request the user i’s 
certificate. 

5 Send( ,
n
i j∏ , M): On receiving an oracle ,

n
i j∏  and a mes-

sage M, the challenger initiates a protocol session 
between the users i and j if M = λ or responds with 
an outgoing message according to the specification 
of the protocol otherwise. If the first message re-
ceived by an oracle is λ, then ,

n
i j∏  is called an initia-

tor; otherwise it is a responder oracle. 
6 Reveal( ,

n
i j∏ ): On receiving an oracle ,

n
i j∏ , the 

challenger responds with the shared session key 
associated with ,

n
i j∏ . 

Test. Once Phase 1 is over, the adversary 

 

  makes 
one Test query on an oracle ,

T
I J∏  which is fresh (see 

the following Definition 2). To respond, the challeng-
er picks a random bit {0,1}b ∈ . It outputs the shared 
session key ,

T
I JSK  associated with ,

T
I J∏  if 0b =  or a ran-

dom key chosen from the session key space otherwise.
Phase 2. 

 

  continues to make a sequence of adaptive 
queries.
Guess. 

 

  outputs its guess {0,1}b′∈ . It wins the game 
if and only if b b′=  and the following constraints are 
satisfied: (1) 

 

  is unable to query the oracle Reveal on 
the oracle ,

T
I J∏  and its matching conversation ,

T
J I∏ ; (2) 

 

  is unable to make a oracle query Certificate(IDJ) if 
it is a Type 1 adversary or a oracle query Corrupt(IDJ) 
if it is a Type 2 adversary. 
The advantage of the adversary 

 

  in winning the 
game is defined to be Adv

 

  = Pr{ } 1/ 2b b′= - .
Definition 2. An oracle ,

n
A B∏  is fresh if (1) It has estab-

lished a shared session key; (2) The adversary 

 

  has 
not queried the oracle Reveal on it and its matching 
conversation; (3) The adversary 

 

  has not queried 
the oracle Certificate on the identity IDB if it is a Type 
1 adversary or the oracle Corrupt on the identity IDB if 
it is a Type 2 adversary. 
Definition 3. We say that a CB-AKA protocol is se-
cure if the following two conditions are both satisfied: 
(1) Two oracles ,

n
i j∏  and ,

m
j i∏  always establish the same 

session key in the presence of a benign adversary, and 
the session key is distributed uniformly at random in 
the session key space; (2) Adv(

 

 ) is negligible for any 
adversary 

 

 .

4. The proposed CB-AKA protocol
The proposed CB-AKA protocol is described as 
follows: 
Setup(k): On input a security parameter k, this algo-
rithm generates a cyclic group G of prime order q with 
generator P. It then chooses a random integer *

qs Z∈
as the CA’s master secret key msk and calculates the 
master public key Ppub = sP. Furthermore, it choos-
es two cryptographic hash functions H1: {0,1}* × G × 
G → *

qZ  and H2: {0,1}* × {0,1}* × G8 → {0,1}k. Finally, it 
outputs msk = s and params = {k, q, G, P, Ppub, H1, H2}.
UserKeyGen(params): On input params, this algo-
rithm chooses a random integer *

U qx Z∈  as a private 
key USK  for a user U with identity UID  and then com-
putes a partial public key U UPPK x P= .
CertGen(params, msk, UID , UPPK ): On input 
params, msk s=  and a user U’s identity UID  and partial 
public key UPPK , this algorithm sets (1)

U UPK PPK= . 
It then chooses a random integer *

U qy Z∈  and com-
putes (2) =U UPK y P . Finally, it sets the user U’s public 
key (1) (2)( , )U U UPK PK PK=  and certificate CertU = yU + 
sH1( UID , UPK ). 
KeyAgreement(params, IDA, PKA, SKA, CertA, IDB, 
PKB, SKB, CertB): Assume that two participants A and 
B want to establish a shared session key, where the 
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participant A is the initiator with identity IDA, public 
key PKA, private key SKA and certificate CertA, while 
the participant B is the responder with identity IDB, 
public key PKB, private key SKB and certificate CertB. 
As described in Figure 2, they can do as follows:
1 The participant A chooses a random integer *

A qt Z∈ , 
computes A AT t P=  and then sends a message  

( , )A A AM ID T=  to B.
2 After receiving AM , the participant B chooses a 

random integer *
B qt Z∈ , computes B BT t P=  and 

sends a message MB = (IDB, TB) to A.
3 A and B, respectively, calculate four shared secrets 

as follows:
A calculates

(1) (1)( )( )AB A A B BAK Cert t PK WSK= + + + ,
(2) ( )( )AB A A B BAK CerSK t t T W= + + + ,
(3) =ABK (1)

AA B Bt PK SK T+ ,
(4)
AB A BK t T= , 

(1)

where (2)
1( , )B B B B pubW PK H ID PK P= + .

B calculates

(1) ( )BA B B AK SK Cert W= + ,
(2) ( )BA B B AK t Cert W= + ,

(2)

(3) (1)
BA B A B AK t PK SK T= + ,
(4)
BA B AK t T= , 

(3)

where (1) (2)
1( , )A A A A A pub AW PK PK H ID PK P T= + + + .

4 A and B, respectively, compute the shared session 
key as follows:

2 ( , , , , , ,AB A B A B A BK H ID ID PK PK T T= (1) (2) (3) (4), , , )AB AB AB ABK K K K  

2 ( , , , , , ,BA A B A B A BK H ID ID PK PK T T= (1) (2) (3) (4), , , )BA BA BA BAK K K K

(4)

For the correctness of the proposed protocol, we can 
deduce that 

(1)
ABK = (1)( )( )A A A B BSK Cert t PK W+ + +

= ( )( )A A A B BSK Cert t SK Cert P+ + +

= (1)( )B B A BASK Cert W K+ = ,
(5)

(2)
ABK = ( )( )A A A B BSK Cert t T W+ + +

= ( )( )A A A B BSK Cert t t Cert P+ + +

= (2)( )B B A BAt Cert W K+ = ,
(3) (1)
AB A B A BK t PK SK T= + = (1) (3)

B A B A BASK T t PK K+ = ,
(4) (4)
AB A B B A BAK t T t T K= = = .

(6)

Thus, we have = AB BAK K .
Figure 2 
Key agreement phase of the proposed CB-AKA protocol

 

*
B qt Z

B BT t P( , )B B BM ID T

(1)
ABK 
(2) ( )( )AB A A B BAK CerSK t t T W   

(1) (2)
1 ( , )A A A A A pub AW PK PK H ID PK P T   

(1) ( )BA B B AK SK Cert W 
(2) ( )BA B B AK t Cert W 

(3) (1)
AB A B BAK t PK SK T 

(3) (1)
BA B A B AK t PK SK T 

*
A qt Z

A AT t P

( , )A A AM ID T

(4)
AB A BK t T

(4)
BA B AK t T

(1) (2) (3) (4)
2 ( , , , , , , , , , )AB A B A B A B AB AB AB ABK H ID ID PK PK T T K K K K

(1) (2) (3) (4)
2 ( , , , , , , , , , )BA A B A B A B BA BA BA BAK H ID ID PK PK T T K K K K

(1)( )( )A A BA BCertSK t PK W  

(2)
1( , )B B B B pubW PK H ID PK P 
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5. Security analysis
The security of the proposed CB-AKA protocol can 
be formally proved by combining the following three 
theorems.
Theorem 1. In the presence of a benign adversary, 
any two oracles ,

n
i j∏ and ,

m
j i∏ always establish the same 

shared session key that is distributed uniformly at ran-
dom.
Proof. According to the correctness verification of the 
proposed protocol in Section 4, we can see that if two 
oracles ,

n
i j∏ and ,

m
j i∏ are matching, then they must es-

tablish the same shared session key. In addtion, since 
the values tA, tB are randomly picked and TA, TB can be 
viewed as the random input of the hash function H2, 
the shared session key can be viewed as the output of 
H2. Thus, the session key is uniformly distributed due 
to the properties of hash functions.
Theorem 2. Suppose that H1 and H2 are two random 
oracles. If there is a Type 1 adversary 

 

 1 against the 
security of our CB-AKA protocol with advantage e 
when running in time τ, making at most qcu queries to 
the oracle CreateUser, qrp queries to the oracle Replace-
PublicKey, qco queries to the oracle Corrupt, qce queries 
to the oracle Certificate, qse queries to the oracle Send, 
qre queries to the oracle Reveal and qi queries to the 
random oracles Hi (1 ≤ i ≤ 2), then there exists an algo-
rithm   to solve the CDH problem in G with advantage

2
2s cun q q
εε ′ ≥

 
and running time τ ′ ≤ τ + (q1 + qrp + qco + 

qce)O(1) + q2(4τm + 9τp + O(1)) + qcu(3τm + O(1)) + qse(τm + 
O(1)) + qre(10τm + 2τp + O(1)), where ns denotes the max-
imal number of the protocol sessions that each partici-
pant participates in, τp and τm, respectively, denote the 
time for computing a pairing and a scalar multiplica-
tion in G.
Proof. Suppose that the algorithm   takes as input a 
random CDH instance (q, G, P, uP, vP), where u, v ∈ *

qZ  are unknown to the algorithm  . To compute uvP,   
interacts with the adversary 

 

 1 as below:
At the beginning of the game, the algorithm    chooses 
at random pubP G∈  as the system master public key 
and sends params = {k, q, G , P, Ppub, H1, H2} to 

 

 1. 
Furthermore, it picks three different indices I, J ∈ {1, 
2,…, qcu} and T ∈ {1, 2,…, ns} at random. 
In Phase 1 and Phase 2, the algorithm   answers the 
adversary 

 

 1’s queries as below:

H1(IDi, PKi): The algorithm   keeps a list L1 of tuples 
<IDi, PKi, hi>. Upon receiving a H1 query on (IDi, PKi), 
it returns hi if a tuple <IDi, PKi, hi> is already in the list 
L1. Otherwise, it randomly chooses *

i qh Z∈ , adds a new 
tuple <IDi, PKi, hi> to the list L1 and returns hi. 
H2( A

iID , B
iID , A

iPK , B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK ): 

The algorithm   keeps a list L2 of tuples < A
iID , B

iID , 
A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , hi>. Upon 
receiving a H2 query on ( A

iID , B
iID , A

iPK , B
iPK , A

iT , B
iT , 

(1)
iK , (2)

iK , (3)
iK , (4)

iK ), it returns hi if a tuple < A
iID , B

iID ,
A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , hi> is already in 
the list L2. Otherwise,   does as below:
1 If there exists a tuple < ,

n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , 

,
n
j iT , ,

n
i jK > in the list Ls (maintained by the oracle 

Send) such that ,
n
i jK ≠⊥ , =i JID ID and

 _ Case 1: ,
n
i j∏ is an initiator,   searches for the list 

L2 to see if there exists a tuple < A
iID , B

iID , A
iPK , 

B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > such that 

iID  = A
iID , jID = B

iID , A
iPK = iPK , B

iPK = jPK , ,
n

i jT = A
iT  

and ,
n
j iT = B

iT . If       it         does,   computes (2) (2) (2)
, ,= ( )( + )n n

i i i i j i i i pub i j iK K SK Cert T PK h P t T- + + - 
(2) (2) (2)

, ,= ( )( + )n n
i i i i j i i i pub i j iK K SK Cert T PK h P t T- + + -  and checks 

whether the following equations hold given a 
proper bilinear map e for the group G:

(2) (2)
,( + , ) ( , )n

i i pub i j ie PK h P T e K P= ,
(1) (1) (2)

,( + )(n
i i i i j j jK SK Cert t PK PK= + +     

              1( , ) )j j pubH ID PK P+ ,
(3) (1)

,
n n

i i j j i j,iK t PK SK T= + ,
(4)

, ,
n n

i i j j iK t T= . 

(7)

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validati-
ons, then   sets hi = ,

n
i jK , adds a new tuple < A

iID ,
B
iID , A

iPK , B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > to 

the list L2 and returns hi.

 _ Case 2: ,
n
i j∏ is a responder,   searches for the 

list L2 to see if there exists a tuple < A
iID , B

iID ,
A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > such 
that jID = A

iID , iID = B
iID , A

iPK = jPK , B
iPK = iPK , 

,
n

i jT = B
iT and ,

n
j iT = A

iT . If it does,   computes 
(2)
iK = (2) (1) (2)

,( + )n
i i j j j pub j iK Cert PK PK h P T- + + -  

, ,
n n

j i j i j iSK T t T-  and checks whether the following 
equations hold given a proper bilinear map e for 
the group G:

(2) (2)
,( + , ) ( , )n

i i pub i j ie PK h P T e K P= ,
(1) (1) (2)

,( + ) (n
i i i i j j jK SK Cert t PK PK= + ⋅ +   

          1( , ) )j j pubH ID PK P+ ,

(8)
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(3) n
i i j,iK SK T= (1)

,
n
i j jt PK+ ,

        (4)
, ,
n n

i i j j iK t T= .

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validations, 
then   sets ih = ,

n
i jK , puts a new tuple < A

iID , B
iID , A

iPK , 
B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in the list L2 

and returns ih .
2 Else, if there exists a tuple < ,

n
i j∏ , IDi, IDj, PKi, PKj,

,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > on sL  such that ,

n
i jK ≠⊥ , i JID ID≠

and the following equations hold given a proper bi-
linear map e for the group G:

(1) (1) (2)
1 ,( , ) ( ( , ) ,n

i i i i i pub i je K P e PK PK H ID PK P T= + + +  
                           (1) (2)

1( , ) )j j j j pubPK PK H ID PK P+ + ,

(2) (1) (2)
1 ,( , ) ( ( , ) ,n

i i i i i pub i je K P e PK PK H ID PK P T= + + +  

                            
(2)

, 1 ( , ) )n
j i j j j pubT PK H ID PK P+ + , 

(3) (1) (1)
, ,( , ) ( , ) ( , )n n

i i j j i j ie K P e T PK e PK T= ,

(4)
, ,( , ) ( , )n n

i i j j ie K P e T T= , (9)

then   sets ,
n

i i jh K= , puts a new tuple < A
iID , B

iID ,
A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > in the 
list L2 and returns ih .

3 Otherwise, the algorithm   picks a random value
{0,1}k

ih ∈ , puts a new tuple < A
iID , B

iID , A
iPK , B

iPK ,
A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in the list L2 and 

returns ih .
CreateUser( iID ): The algorithm   keeps a list Lc 
of tuples , , ,i i i iID SK PK Cert< > . Upon receiving a 
CreateUser query on ( )iID , it returns iPK if a tuple

, , ,i i i iID SK PK Cert< > is already in the list Lc. 
Otherwise, it performs as below: 
1 If iID  is the J-th identity submitted to this oracle 

(i.e., iID = JID ), it randomly chooses *
i qx Z∈ , com-

putes ( , )i i i pubPK x P uP h P= - and sets iCert =⊥  
and i iSK x= respectively. It then adds new tuples 

, , ,i i iPID Kx< ⊥>  and , ,i i iID PK h< > to the lists Lc 
and L1, respectively, and returns iPK . 

2 Otherwise, it randomly chooses *, ,i i qis x h Z∈ , com-
putes ( , )ii i i pubPK x P P h Ps= -  and sets iCert =⊥  
and i iSK x= respectively. It then adds new tuples 

, , ,ii i iPD KI x s< >  and <IDi, PKi, hi> to the lists Lc 
and L1, respectively, and returns iPK .

Certificate( iID ): Upon receiving a Certificate  query 

on ( iID ), the algorithm   aborts the game if i JID ID= . 
Otherwise, it searches for the list Lc to get a tuple

, , ,i i i iID SK PK Cert< > and returns iCert .
Corrupt( iID ): Upon receiving a Corrupt query on ( iID ), 
the algorithm   searches for the list Lc to get a tuple

, , ,i i i iID SK PK Cert< > and returns iSK .
ReplacePublicKey( iID , iPK ′): Upon receiving a query 
on ( iID , iPK ′ ), the algorithm   searches for the list 
Lc to get a tuple , , ,i i i iID SK PK Cert< >  and replaces it 
with , , ,i iID PK ′< ⊥ ⊥>.
Send( ,

n
i j∏ , M): The algorithm   keeps a list sL of tu-

ples < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK >. Upon 

receiving a Send query on ( ,
n
i j∏ , M) (  sets ,

n
j iT M= if 

M ≠ λ),   returns ,
n

i jT if a tuple < ,
n
i j∏ , IDi, IDj, PKi, PKj,

,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > is already in the list Ls. Otherwise,   

does as follows: 
1 If , ,

n T
i j I J∏ = ∏ , it sets , ,

n n
i j i jK t= =⊥, ,

n
i jT vP= , ,

n
j iT M= , 

then puts a new tuple < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt ,

,
n

i jT , ,
n
j iT , ,

n
i jK > in the list Ls and returns ,

n
i jT .

2 Otherwise, it randomly chooses , {0,1}n k
i jK ∈ , 

*
,
n
i j qt Z∈  and sets , ,

n n
i j i jT t P= , then puts a new tuple <

,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > in the list Ls 

and returns ,
n

i jT .
Reveal( ,

n
i j∏ ): Upon receiving a Reveal query on ( ,

n
i j∏ ), 

the algorithm   aborts the game if , ,
n T
i j I J∏ = ∏  or ,

n
i j∏

is a matching conversation of ,
T
I J∏ . Otherwise, it  

searches for a tuple < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT ,

,
n
j iT , ,

n
i jK > in the list Ls and does the following: 

1 If < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > is on the 

list Ls and ,
n
i jK ≠⊥ ,    returns ,

n
i jK . 

2 Else if < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > is 

on the list Ls and ,
n
i jK =⊥ ,   searches for a tuple

, , ,i i i iID SK PK Cert< >  in the list Lc and performs 
as follows:

 _ Case 1: i JID ID= , ,
n
i j∏  is an initiator and there 

exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , 
(1)
iK , (2)

iK , (3)
iK , (4)

iK , ih  > in the list L2 such that 
A
iiID ID= , B

j iID ID= , A
i iPK PK= , B

iPK  = jPK , 
,
n A

i j iT T=  and ,
n B
j i iT T= . If it does,   computes (2)

iK  =
(2) (2)

, , ,( )( + )n n n
i i i j i i i pub i j j iK SK Cert T PK h P t T- + + -  and 

 checks whether the following equations hold:

(2) (2)
,( + , ) ( , )n

i i pub i j ie PK h P T e K P= ,
(1) (1) (2)

,( + )(n
i i i i j j jK SK Cert t PK PK= + + +  

     1( , ) )j j pubH ID PK P ,

(10)
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(3)
iK = (1)

,
n n
i j j i j,it PK SK T+ ,

(4)
, ,
n n

i i j j iK t T= . 

If (1)
iK , (2)

iK , (3)
iK  and (4)

iK  pass the above validati-
ons, then   sets ,

n
i j iK h= and returns ih .

 _ Case 2: i JID ID= , ,
n
i j∏ is a responder and 

there exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , 

B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in the list L2 such 

that jID  = A
iID , iID  = B

iID , A
iPK  = jPK , B

iPK  = iPK , 
,
n

i jT  = B
iT  and ,

n
j iT  = A

iT . If so,   computes (2)
iK = 

(2) (1) (2)
, ,( + )n n

i i j j j pub j i j i jK Cert PK PK h P T SK T- + + - , ,
n n
i j j it T-  and checks whether the following equations hold:

(2) (2)
,( + , ) ( , )n

i i pub i j ie PK h P T e K P=  
(1) (1) (2)

,( + )(n
i i i i j j jK SK Cert t PK PK= + + +  

          1( , ) )j j pubH ID PK P , 
(3) (1)

,
n

i i j jK t PK= +  n
i j,iSK T  ,

(4)
, ,
n n

i i j j iK t T= . 

(11)

If (1)
iK , (2)

iK , (3)
iK and (4)

iK pass the above validati-
ons, then   sets ,

n
i j iK h= and returns ih .

 _ Case 3: i JID ID≠ , ,
n
i j∏  is an initiator and there 

exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , 
(3)
iK , (4)

iK , ih > in the list L2 such that iID  = A
iID , jID  = 

B
iID , A

iPK  = iPK , B
iPK  = jPK , ,

n
i jT = A

iT  and ,
n
j iT  = B

iT . If 
it does,   checks whether the following equations 
hold:

(1) (1) (2)
,( )(n

i i i i j j jK SK Cert t PK PK= + + + +   

          1( , ) )pj ubjH ID PK P ,
(2) (2)

,( )(n n
i i i i j j,i jK SK Cert t T PK= + + + +  

          1( , ) )pj ubjH ID PK P ,
(3)
iK = (1)

,
n n
i j j i j,it PK SK T+ ,

(4)
,
n n

i i j j,iK t T= . 

(12)

If (1)
iK , (2)

iK , (3)
iK  and (4)

iK  pass the above validati-
ons, then   sets ,

n
i j iK h=  and returns ih .

 _ Case 4: i JID ID≠ , ,
n
i j∏  is a responder and there 

exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , 
(3)
iK , (4)

iK , ih  > in the list L2 such that jID  = A
iID , iID  

= B
iID , A

iPK  = jPK , B
iPK  = iPK , ,

n
i jT = B

iT  and ,
n
j iT  = A

iT . If 
it does,   checks whether the following equations 
hold:

(1) (1) (2)( )(i i i j jK SK Cert PK PK= + + +  

          1 ,( , ) + )n
j j j ipubPH ID PK T ,

(2) (1) (2)
,( )(n

i i j i j jK t Cert PK PK= + + +  
           1 ,( , ) + )n

j j j ipubPH ID PK T ,
(3) (1)

,= n n
i i j j i j,iK t PK SK T+  ,
(4)

,
n n

i i j j,iK t T= .

(13)

If (1)
iK , (2)

iK , (3)
iK  and (4)

iK  pass the above validati-
ons, then   sets ,

n
i j iK h=  and returns ih .

3 Otherwise,   randomly chooses , {0,1}n k
i jK ∈  and 

returns ,
n
i jK .

At the test phase, if 

 

 1 does not ask a Test query on 
the oracle ,

T
I J∏ , then   aborts the game. Otherwise,   

returns a random value {0,1}kx ∈ .
Once 

 

 1 finishes its queries, it returns its guess. 
Clearly, if 

 

 1 can win the game with non-negligible 
advantage ε , there must exist a tuple < ,

T
I J∏ , IID , JID , 

IPK , JPK , =⊥, ,
T

I JT , ,
T

J IT , =⊥> in the list Ls. According to 
the above simulation, if ,

T
I J∏ is an initiator, then there 

exists a tupe < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , 
(3)
iK , (4)

iK , ih  > in the list L2 such that A
iT  = ,

T
I JT  = vP  and 

,
B T

i J IT T M= =  (Note that if M is an incoming message, 
then M = ,

T
J IT ).   computes

Z = (2) (2)
,( )( T

i I I J I JK SK Cert T PK- + + +  

1 ,( , ) ) T T
J J pub I,J J IH ID PK P t T-

= ,( )( ) (T T
I I I,J J I ISK Cert t T U SK+ + + - +  

(4)
,)( )T

I J I ICert T U K+ -  
= =T

I,Jt uP uvP , 

(14)

where (4)
,

T T
I I,J J IK t T=  which can be found in the list L2.

Else if ,
T
I J∏  is a responder, then there exists a tuple  

< A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > in 
the list L2 such that ,

B
i

T
I JT T vP= =  and A

iT =  ,
T

J IT M=  
(Note that if M is an incoming message, then ,

T
J IM T= ). 

  computes 

Z  = (2) (1) (2)(i I J JK Cert PK PK- + +

        1 , ,( , ) )T T T
J J pub J I J I,J J IH ID PK P T SK V t T+ - -  

(15)
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     = (1)
,( )( + )T T

I,J I J J It Cert PK U T+ + -

        
(1) (4)

,( )T
I J J I J ICert PK U T SK V K+ + - -

     = =T
I,Jt uP uvP , 

where (4)
,

T T
I I,J J IK t T=  which can be found in the list L2. 

For both cases, we have that =Z uvP . Therefore, the 
algorithm   can return Z as the solution to the given 
CDH problem.
To derive the algorithm  ’s advantage in solving the 
CDH problem, we define the following events: (1) E1: 

 

 1 does not choose ,
T
I J∏ as the test oracle; (2) E2: 

 

 1 

makes an oracle query Certificate( JID ); (3) E3: 

 

 1 
makes an oracle query Reveal ( ,

T
I J∏ ).

According to the above simulation, the algorithm   
aborts the game only when one of the above events 
happens. It is clear that Pr[¬E1] ≥ 21/( )s cun q  as I, J ∈ {1, 
2,…, qcu} and T ∈ {1, 2,…, ns}. In addition, because ¬E1 
implies both ¬E2 and ¬E3, we get that Pr[¬E1 ∧ ¬E2 ∧ 
¬E3] ≥ 21/( )s cun q .
Since the algorithm   selects the correct tuple from 
the list L2 with probability 1/q2, it can correctly solve 
the given CDH problem with advantage 2

2s cun q q
εε ′ ≥ .

The time complexity of the algorithm   is mainly 
dominated by the running time τ of the adversary 

 

 1 

and the scalar multiplications and pairings performed 
in the queries. From the simulation above, we obtain 
that the time complexity of the algorithm   is bound-
ed by τ ′ ≤ τ + (q1 + qrp + qco + qce)O(1) + q2(4τm + 9τp + O(1)) 
+ qcu(3τm + O(1)) + qse(τm + O(1)) + qre(10τm + 2τp + O(1)).
Theorem 3. Suppose that H1 and H2 are two random 
oracles. If there is a Type 2 adversary 

 

 2 against the 
security of our CB-AKA protocol with advantage e 
when running in time τ, making at most qcu queries to 
the oracle CreateUser, qco queries to the oracle Corrupt, 
qse queries to the oracle Send, qre queries to the oracle 
Reveal and qi queries to the random oracles Hi (1 ≤ i 
≤ 2), then there exists an algorithm   to solve the CDH 

problem in G with advantage 2
2s cun q q
εε ′ ≥  and running 

time τ ′  ≤ τ + (q1 +qco)O(1) + q2(4τm + 9τp + O(1)) + qcu(3τm 
+ O(1)) + qse(τm + O(1)) + qre(7τm + O(1)), where ns de-
notes the maximal number of the protocol sessions that 
each participant participates in, τp and τm, respectively, 
denote the time for computing a pairing and a scalar 
multiplication in G.

Proof. Suppose that the algorithm   takes as input a 
random CDH instance (q, G, P, aP, bP), where a, b ∈ 

*
qZ  are unknown to the algorithm  . To compute abP , 
  interacts with the adversary 

 

 2 as below:
At the beginning of the game, the algorithm   chooses 
a random value *

qs Z∈  as the master key msk and 
computes pubP sP= . It then outputs the public 
parameters params = {k, q, G, P, Ppub, H1, H2} and the 
master secret key msk = s to 

 

 2. Furthermore, it 
selects three different indices I, J ∈ {1, 2,…, qcu} and T 
∈ {1, 2,…, ns} at random.
In Phase 1 and Phase 2, the algorithm   answers the 
adversary 

 

 2’s queries as below:
H1( iID , iPK ): The algorithm   keeps a list L1 of tu-
ples < iID , iPK , ih >. Upon receiving a H1 query on  
( iID , iPK ), the algorithm   returns ih if there exists a 
tuple < iID , iPK , ih > in the list L1. Otherwise, it  selects 
a random value *

i qh Z∈ , adds a new tuple < iID , iPK , 
ih  > to the list L1 and returns ih .  

H2( A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , 
ih ): The algorithm   keeps a list L2 of tuples < A

iID ,
B
iID , A

iPK , B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih >. 

Upon receiving a H2 query on ( A
iID , B

iID , A
iPK , B

iPK , 
A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK ), the algorithm   re-

turns ih if there exists a tuple < A
iID , B

iID , A
iPK , B

iPK , 
A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in the list L2. Oth-

erwise, the algorithm   searches for a tuple < ,
n
i j∏ , IDi, 

IDj, PKi, PKj, ,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > in the list Ls and per-

forms as follows:
1 If such a tuple exists and satisfies the equations: 

(1) (1) (2)
1( , ) ( ( , )i i i i i pube K P e PK PK H ID PK P= + +

                (1) (2)
, 1, ( , ) )n

i j j j j j pubT PK PK H ID PK P+ + + ,
(2) (1) (2)

1( , ) ( ( , )i i i i i pube K P e PK PK H ID PK P= + +  
                (2)

, , 1, ( , ) )n n
i j j i j j j pubT T PK H ID PK P+ + + ,

(3)
,( , ) ( ,n

i i je K P e T= (1) (1)
,) ( , )n

j i j iPK e PK T ,
(4)

, ,( , ) ( , )n n
i i j j ie K P e T T= , 

then the algorithm   obtains ,
n
i jK  and sets ,

n
i i jh K= . 

It adds a new tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , 
(1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > to the list L2 and returns ih .
2 Otherwise,   randomly selects hi ∈{0,1}k , adds 

a new tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , 

(2)
iK , (3)

iK , (4)
iK , ih > to the list L2 and returns ih .

(16)
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CreateUser( iID ): The algorithm   keeps a list Lc of 
tuples , , ,i i i iID SK PK Cert< > . Upon receiving a Cre-
ateUser query on ( iID ), the algorithm   returns iPK
if a tuple , , ,i i i iID SK PK Cert< > is already in the list 
Lc. Otherwise, it does as below:
1 If i JID ID= , it  randomly selects *, qii hCert Z∈ , sets

( , )i i iPK aP Cert P h sP= - , adds a new tuple <IDi, 
,, i iCPK ert⊥ >  to the list Lc and returns iPK . 

2 Otherwise, it  randomly selects , ,i iSK Cert  hi ∈ *
qZ , 

sets ( , )i i i iPK SK P Cert P h sP= - , adds a new tuple
, , ,i i i iID SK PK Cert< >  to the list Lc and returns 

iPK .  

Corrupt( iID ): Upon receiving a Corrupt query on  
( iID ), the algorithm   aborts if i JID ID= . Otherwise, 
it retrives a tuple , , ,i i i iID SK PK Cert< >  in the list Lc 
and returns iSK .
Send( ,

n
i j∏ , M): The algorithm   keeps a list sL of tu-

ples < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK >. Upon 

receiving a Send query on ( ,
n
i j∏ , M) (  sets ,

n
j iT M=

if M ≠ λ),   returns ,
n

i jT  to 

 

 2 if a tuple < ,
n
i j∏ , IDi, IDj, 

PKi, PKj, ,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > is already in the list Ls. 

Otherwise, it does as follows: 
1 If , ,

n T
i j I J∏ = ∏ , it sets , ,

n n
i j i jK t= =⊥ , ,

n
i jT bP=  and

,
n
j iT  = M. Then it adds a new tuple < ,

n
i j∏ , IDi, IDj, 

PKi, PKj, ,
n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > to the list Ls and returns

,
n

i jT .
2 Otherwise, it randomly chooses , {0,1}n k

i jK ∈ , 
*

,
n
i j qt Z∈  and sets , ,

n n
i j i jT t P= . Then it puts a new tu-

ple < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , ,

n
i jK > in the 

list Ls and returns ,
n

i jT .

Reveal( ,
n
i j∏ ): Upon receiving a  Reveal query on ( ,

n
i j∏ ), 

the algorithm   aborts the game if , ,
n T
i j I J∏ = ∏  or ,

n
i j∏

is a matching conversation of ,
T
I J∏ . Otherwise,   

searches for a tuple < ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jt , ,

n
i jT , ,

n
j iT , 

,
n
i jK > in the list Ls. 

1 If such a tuple exists and ,
n
i jK ≠⊥ , it  returns ,

n
i jK . 

2 Else if such a tuple exists and , =n
i jK ⊥ , it searches 

for a tuple , , ,i i i iID SK PK Cert< > in the list Lc and 
does as below:

 _ Case 1: ,
n
i j∏ is an initiator and a tuple < A

iID , B
iID , 

A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih  > can 
be found in the list L2 such that iID  = A

iID , jID  = B
iID , 

 A
iPK  = iPK , B

iPK  = jPK , ,
n

i jT  = A
iT and ,

n
j iT = B

iT . If it 
does,   checks whether the following equations 
hold:

(1) (1) (2)
,( )(n

i i i i j j jK SK Cert t PK PK= + + + +  

          1( , ) )pj ubjH ID PK P ,
(2) (2)

,=( )(n n
i i i i j j,i jK SK Cert t T PK+ + + +  

          1( , ) )pj ubjH ID PK P ,
(3) (1)

,= n n
i i j j i j,iK t PK SK T+ ,
(4)

,
n n

i i j j,iK t T= .

(17)

If (1)
iK , (2)

iK , (3)
iK  and (4)

iK  pass the above validations, 
then   sets ,

n
i j iK h=  and returns ih .

 _ Case 2: ,
n
i j∏  is a responder and there exists a tuple  

< A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , (2)

iK , (3)
iK , (4)

iK , ih > 
in the list L2 such that jID  = A

iID , iID= B
iID , A

iPK  = 
jPK , B

iPK  = iPK , ,
n

i jT  = B
iT  and ,

n
j iT = A

iT . If it does,   
checks whether the following equations hold:

(1) (1) (2)( )(i i i j jK SK Cert PK PK= + + +  
         1 ,( , ) + )n

j j j ipubPH ID PK T ,
(2) (1) (2)

,( )(n
i i j i j jK t Cert PK PK= + + +  

         1 ,( , ) + )n
j j j ipubPH ID PK T ,

(3) (1)
,= +n

i i j jK t PK n
i j,iSK T ,

(4)
,
n n

i i j j,iK t T= .

(18)

If (1)
iK , (2)

iK , (3)
iK  and (4)

iK  pass the above validati-
ons, then   sets ,

n
i j iK h= and returns ih .

3 Otherwise, it randomly selects , {0,1}n k
i jK ∈  and re-

turns ,
n
i jK .

At the test phase, if the adversary 

 

 2 does not ask a 
Test query on the oracle ,

T
I J∏ , then the algorithm   

aborts the game. Otherwise, the algorithm   outputs 
a random value {0,1}kx ∈ .
Once the adversary 

 

 2 finishes its queries, it returns 
its guess. Clearly, if the adversary 

 

 2 can win the game 
with non-negligible advantage ε , then there must be 
a tuple < ,

T
I J∏ , IID , JID , IPK , JPK ,=⊥, bP , ,

T
J IT , =⊥ > in 

the list Ls. According to the above simulation, if ,
T
I J∏

is an initiator oracle, then there exists a tuple < A
iID , 

B
iID , A

iPK , B
iPK , A

iT , B
iT , (1)

iK , (2)
iK , (3)

iK , (4)
iK , ih > in 

the list L2 such that B
iPK = JPK , where (1)

JPK aP= and
,

A T
i I JT T bP= = ; else if ,

T
I J∏  is a responder oracle, then 

there exists a tuple < A
iID , B

iID , A
iPK , B

iPK , A
iT , B

iT , (1)
iK , 
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(2)
iK , (3)

iK , (4)
iK , ih > in the list L2 such that A

iPK =
JPK , where (1)

JPK aP=  and ,
B T

i I JT T bP= = . For both 
cases, the algorithm   returns (3)

,
T

i I J IZ K SK T= -  as a 
solution to the given CDH problem, where ISK can be 
retrieved from the tuple , , ,i i i iID SK PK Cert< >  in the 
list Lc. We can easily deduce that (3)

,
T

i I J IabP K SK T= -  
as (3) (1)

, ,
T T

i I J J I J IK t PK SK T= + .
To derive  ’s advantage, we define the following 
events: (1) E1: 

 

 2 does not select ,
T
I J∏ as the test or-

acle; (2) E2: 

 

 2 makes an oracle query Corrupt( JID ); 
(3) E3: 

 

 2 makes an oracle query Reveal( ,
T
I J∏ ).

According to the above simulation,   aborts the game 
only when one of the above events happens. It is clear 
that Pr[¬E1] ≥ 21/( )s cun q as I, J ∈ {1, 2,…, qcu} and T ∈ 
{1, 2,…, ns}. Because ¬E1 implies both ¬E2 and ¬E3, we 
deduce that Pr[¬E1 ∧ ¬E2 ∧ ¬E3]≥ 21/( )s cun q . Since   
selects the correct tuple from the list L2 with probabil-
ity 1/q2, it can solve the CDH problem with advantage

2
2s cun q q
εε ′ ≥ .

The time complexity of the algorithm   is mainly 
dominated by the running time τ of the adversary 

 

 2 

and the scalar multiplications and pairings performed 
in the queries. From the simulation above, we obtain 
that the time complexity of the algorithm   is bound-
ed by τ ′  ≤ τ + (q1 +qco)O(1) + q2(4τm + 9τp + O(1)) + qcu(3τm 
+ O(1)) + qse(τm + O(1)) + qre(7τm + O(1)).

6. Comparison and experimental 
results
In this section, the computation cost comparison of 
our protocol and the previous pairing-based CB-AKA 
protocols [24, 33, 35, 45] is offered.
As described in Table 2, we consider five main 
cryptographic operations in the comparison: bilinear 
pairing, exponentiation in the group GT, scalar multi-
plication in the group G, map-to-point hash and ge-
neral hash. The computation costs of the compared 
protocols are listed in Table 3.
To provide a clearer comparison, we implement all 
the compared protocols by using the multiprecision 
integer and rational arithmetic cryptographic libra-
ry (MIRACAL) [38]. The experimental platform is 
a laptop running Windows XP with 3GHz Intel PIV 
CPU and 512-MB memory. For the pairing-based 
CB-AKA ptotocols in [24, 33, 35, 45], we use the Tate 

Table 2 
Cryptographic operations in the comparison

Table 3 
Comparison of the compared protocols

Notations Descritions

Bp Bilinear pairing

Exp Exponentiation in the target group GT

Mul Scalar multiplication in the group G

Mtp Map-to-point hash 

Ha General cryptographic hash

Protocols Bp Exp Mul Mtp Ha

Ours 0 0 6 0 2

[24] 2 0 4 1 1

[33] 1 0 8 0 2

[35] 2 1 3 1 1

[45] 2 0 3 1 1

pairing defined over the supersingular elliptic curve 
E(Fp): y2 = x3 + x with embedding degree 2 where p is 
a 512-bits Solinas prime, which achieves the 1024-
bits RSA equivalent security. Our CB-AKA protocol is 
impletemented over the elliptic curve E(Fp): y2 = x3 + 
ax + b, where a and b are two elements such that ∆ = 
4a3 + 27b2 ≠ 0 in the finite field Fp. To achieve the same 
1024-bits RSA security level, we use the security pa-
rameter secp160r1 recommended by the Standards 
for Efficient Cryptography Group [43], where p = 
2160 - 231 - 1, a = FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF 7FFFFFFC and b = 1C97BEFC 
54BD7A8B 65ACF89F 81D4D4AD C565FA45.
We run each protocol ten times and calculate the 
average running time required for each protocol par-

Table 4 
Experiment results of the compared protocols

Protocols Running time (ms)

Ours 13.26

[24] 68.64

[33] 71.08

[35] 67.57

[45] 62.26
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ticipant. The experiment results are shown in Table 4. 
The running time of our protocol is about 19.32% of 
the protocol in [24],  18.66% of the protocol in [33], 
19.62% of the protocol in [35] and 21.30% of the pro-
tocol in [45]. The comparison shows that our proto-
col outperforms the previous pairing-based CB-AKA 
protocols in the computation efficiency. Therefore, it 
is more suitable for the computation-limited devices.

7. Conclusion
In this paper, a practical CB-AKA protocol without 
bilinear pairing is proposed. The proposed protocol 
is proven secure under the classic CDH assumption 
in the random oracle model. Due to avoiding the pai-
ring operations, it significantly reduces the computa-

tion cost. Compared with the previous pairing-based 
CB-AKA protocols, it enjoys obvious advantage in the 
computation performance.
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Summary / Santrauka
An authenticated key agreement (AKA) protocol is extremely essential to secure communications over insecure 
public networks. It enables the communication parties to securely set up a shared session key in present of the 
malicious attackers. Certificate-based cryptography (CBC) is a novel public-key cryptographic primitive that has 
many attractive merits. It solves the certificate revocation problem in conventional public-key cryptography and 
the key-escrow problem in identity-based cryptography. Until now, four AKA protocols have been proposed in 
the setting of CBC. However, all of them adopt the costly bilinear pairings and are not suitable for the devices 
which have limited computing resources and battery power. Therefore, it is interesting and worthwhile to design 
a certificate-based AKA protocol without using the bilinear pairings. In this paper, we develop a pairing-free cer-
tificate-based AKA protocol. The proposed protocol is proven secure under the classic computational Diffie-Hell-
man assumption in the random oracle model. Compared with the previous pairing-based certificate-based AKA 
protocols, the proposed protocol enjoys obvious advantage in the computation efficiency.

Autentifikuotas rakto sutarties (AKA) protokolas yra itin svarbus siekiant apsaugoti pranešimus, persiunčiamus 
neapsaugotais viešaisiais ryšio tinklais. Tai leidžia bendraujančiosioms pusėms saugiai sukurti bendrą sesijos 
raktą, esant kenkėjiškų puolėjų pavojui. Sertifikatu pagrįsta kriptografija (CBC) yra naujas viešojo rakto kripto-
grafinis primityvas, turintis daug privalumų. Iki šiol, CBC sukūrimui buvo pasiūlyti keturi AKA protokolai. Tačiau, 
jie visi priima brangius dvitiesius poravimus ir nėra tinkami prietaisams su ribotomis skaičiavimo galimybėmis 
ir ribota baterijos galia. Dėl šios priežasties, įdomu ir verta sukurti sertifikatu pagrįstą AKA protokolą, kuriam ne-
reikalingi dvitiesiai poravimai. Straipsnyje autoriai pristato savo sukurtą sertifikatu pagrįstą AKA protokolą, ku-
riam nereikalingas poravimas. Remiantis klasikine Diffie-Hellman skaičiavimo prielaida, atsitiktiniame orakulo 
modelyje taip pat įrodoma, kad siūlomas protokolas yra patikimas. Palyginus su ankstesniais sertifikatu pagrįstais 
AKA protokolais, siūlomas protokolas yra aiškiai pranašesnis skaičiavimo efektyvumo aspektu. 




