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This paper develops a novel nonlinear block-oriented model for the wind tunnel system. Based on the available 
signals, the wind tunnel system can be divided into three parts, namely, the exhaust valve loop, the choke finger loop 
and the flow field. Then the considered plant is described as a nonlinear block-oriented model. The exhaust valve 
subsystem and the flow field subsystem are both expressed by linear dynamic models, whereas the choke finger 
subsystem exhibits a nonlinear characteristics and is approximated by a pseudo-Hammerstein model. Based on 
the above parameterization model, the recursive identification algorithms are presented for three subsystems. 
Interestingly, the adaptive weighted recursive least squares algorithm is applied to the pseudo-Hammerstein 
model, and the hierarchical recursive least squares algorithm is used to reduce the computational complexities. 
Both simulations and experiments are carried out to verify the effectiveness of the proposed method.
KEYWORDS: Wind tunnel system, block-oriented model, pseudo-Hammerstein model, recursive identification.

1. Introduction
The 2.4m injector driven transonic wind tunnel is 
one of the major transonic facilities in China. It is one 
of the key tools for aerodynamic research on aircraft 
scale models. The aerodynamic data of scale models 
are used to study the effects of air moving past air-
craft. The goal of this work is to establish a mathemat-
ical model for this process.

Modeling of a wind tunnel system is a multi-disci-
plinary field. It combines techniques of several do-
mains such as aerodynamics, machines and electrical 
device. Due to complex internal structures, it is very 
difficult to obtain an accurate mechanism model for a 
wind tunnel [24]. On the other hand, some research-
ers have proposed data-driven methods to model 
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wind tunnel systems. For instance, Jin et al. [7] de-
veloped a feature subsets based ensemble neural net-
works (ENN) nonlinear model and Rui et al. [22] pre-
sented a BP neural network based NARMAX model. 
The above methods both suffer heavy computational 
complexity problems [10], which may narrow their 
applicability for real-time control tasks. Moreover, 
the prediction accuracy is also affected by the number 
of training samples, which is another drawback of the 
data-driven methods.
It may be a more economical and feasible way to mod-
el the wind tunnel system based on a grey-box mod-
eling scheme, for instance, a linear reduced order 
model with two inputs and two outputs is introduced 
for practical applications a decade ago [14]. However, 
with the development of space industry, more precise 
models are urgently needed since the simplified linear 
models cannot effectively capture dynamic behaviors 
of such complex processes.
In recent years, many researchers have devoted their 
efforts to accurate and fast modeling complex indus-
trial processes. In the literature, many techniques 
such as multi-model representations [1], NARMAX 
models [8], Gaussian models [21,23], PCA models 
[13], neural networks [26], kernel methods [12] and 
fuzzy logic systems [9,15,16,20] have turned out to be 
effective. 
As an alternative, the block-oriented models, which 
consist of the interconnection of linear dynamic sub-
systems and static nonlinear elements, have gradu-
ally attracted numerous attentions of researchers. 
The main merits are reflected in computation time, 
minimal parameterization, initial model parameter 
guessing and physical insight [25]. Among this class, 
the most well known models are Hammerstein (H) 
model, Wiener (W) model and Hammerstein-Wiener 
(H-W) model [19,30]. These block-oriented models 
have been proved to be useful in capturing the nonlin-
ear behavior of many physical systems [5]. 
Inspired by the above pioneering results, this paper 
develops a nonlinear block-oriented model for the 
wind tunnel system. The considered plant is firstly 
divided into three parts, namely, the exhaust valve 
loop, the choke finger loop and the flow field. By an-
alyzing the input-output characheristcs based on 
the available signals, the block-oriented model con-
sists of three parts: 1) the exhaust valve subsystem 
that can be described by a single-input single output 

(SISO) linear model and identified by the recursive 
least squares (RLS) algorithm; 2) the choke finger 
subsystyem that exhibits a nonlinear characteristics 
and can be approximated by a SISO pseudo-Ham-
merstein (pseudo-H) model. In order to cope with the 
hard nonlinearities, the adaptive weighted recursive 
least squares (AW-RLS) algorithm is applied based 
on the internal variable estimations. Moreover, by the 
use of an adaptive weighted factor, the convergence 
properties are also enhanced; 3) the flow field subsys-
tem that can be described by a two-input two-output 
(TITO) linear model. Since the computational burden 
deteriorates greatly along with larger dimensions, the 
hierarchical recursive least squares (H-RLS) algo-
rithm is used to address this problem. Based on the 
hierarchical concept, the flow field is simpilified  into 
several sub-models with fewer parameters and small-
er dimensions. Finally, numerical results are present-
ed to validate the modeling scheme and show its mer-
its over the previous ones.
The rest of the paper is organized as follows. Section 
2 introduces the structure and operation principle 
of the wind tunnel. In Section 3, the block-oriented 
model and structure for the wind tunnel system is 
introduced. The parameter identification algorithms 
are formulated in Section 4. Simulation results illus-
trating the performance of the model and the algo-
rithms are presented in Section 5. Finally, the conclu-
sions are summarized in Section 6.

2. Wind tunnel system description
In this section, the wind tunnel system structure is 
firstly introduced. Then the analysis of the input-out-
put characteristics of the exhaust valve loop, choke 
finger loop and flow field are presented, which lays a 
foundation for the nonlinear block-oriented model in 
Section 3.

2.1 The wind tunnel system structure 
The simplified schematic structure of the 2.4m wind 
tunnel is shown in Fig. 1. The storage tank is the high 
pressure air source and supply power for wind tunnel 
testing. The main pressure regulating valve is used to 
ensure the constant of the gas entering the wind tun-
nel. Thus there exists a closed control loop for main 
injector pressure. The scale model to be tested is set 
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in the test section. The aerodynamic parameters of 
scale models are measured at given stagnation pres-
sures and Mach numbers. The angle attack of scale 
model will change according to the test requirements 
after the flow field approaches steady, which will lead 
to the stagnation pressure and Mach number deviates 
from the set point. At the same time, the high-preci-
sion flow field is expected to recover by adjusting the 
main exhaust valve and the choke finger. 
The high-speed air flow in the test section is generat-
ed and controlled by the wind tunnel. Some of the gas 
is exhausted through the main exhaust valve, while 
the rest continues to circle in the tunnel. Fig. 2 illus-
trates the inputs and outputs in wind tunnel system. 

Figurure 1 
The schematic structure of the 2.4m wind tunnel

Figure 2 
The structure of the wind tunnel control system

The stagnation pressure ( 1y ) and the Mach number  
( 2y ) in the test section are two major controlled vari-
ables of the flow field.

2.2 The input-output characteristics of the 
exhaust valve loop, choke finger loop and 
flow field

The actuators of the wind tunnel are the main ex-
haust valve subsystem and choke finger subsystem. 
Each of the subsystems is composed of a hydraulic 
servomechanism including a control loop. These two 
subsystems are mutually independent. The structures 
of the exhaust valve loop and the choke finger loop are 
represented in Fig. 3. The actual ( 1u , 2u ) and outputs 
( 1v , 2v ) of the actuators are available. By analyzing the 
characteristics of the measured data, the exhaust 
valve loop has a linear behavior, and the choke finger 
loop has a nonlinear behavior.
The dynamic characteristics of the exhaust valve loop 
and the choke finger loop are neglected in the previous 
contributions [7,10,22]. However, the prediction ac-
curacy and control performance may deteriorate 
if the dynamic characteristics of actuators are not 
fully considered, especially the inherent nonlinear 
behavior of the choke finger loop. To this end, by 
analyzing the mechanical features and input-output 
characteristics of the actuator, we try to introduce 
an input backlash into the modeling scheme. Later, 
the numerical results will verify the reasonableness 
of this novel idea. It is well known that backlash is 
particularly common in actuators, such as mechani-
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analyzing the input-output characheristcs based on the 
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squares (AW-RLS) algorithm is applied based on the 
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an adaptive weighted factor, the convergence 
properties are also enhanced; 3) the flow field 
subsystem that can be described by a two-input two-
output (TITO) linear model. Since the computational 
burden deteriorates greatly along with larger 
dimensions, the hierarchical recursive least squares 
(H-RLS) algorithm is used to address this problem. 
Based on the hierarchical concept, the flow field is 
simpilified  into several sub-models with fewer 
parameters and smaller dimensions. Finally, numerical 
results are presented to validate the modeling scheme 
and show its merits over the previous ones. 
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cal connections and hydraulic servo valves [27]. The 
actuator nonlinearity may often cause oscillations, 
delays and inaccuracy, and degrade the performance 
of control systems [6,18]. Many identification 
methods are proposed for systems with backlash 
nonlinearities [2,4,17].
In the flow field, there exists high pressure and high 
speed air flow during the wind tunnel testing. For the 
compressibility and viscidity of air in closed circuit, 
changing any of the actuators influences the stagna-
tion pressure and Mach number. Then input-output 
characteristics of the flow field are represented in Fig. 
4. This part can be considered as a TITO linear model.

3. Modeling of the wind  
tunnel system
In this section, the model of the wind tunnel is 
established based on the process actual data and 
structure characteristics. The online identificati-
on aims to achieve the following goals: 1) to predict 
the dynamic behaviors of the process; and 2) to lay 
foundation for an on-line control strategy.

3.1 Block-oriented model of the wind tunnel
By considering the backlash nonlinearity of the cho-
ke finger loop, the nonlinear block-oriented model is 
introduced into the wind tunnel system. The exhaust 
valve subsystem (S1) is represented by a linear model. 

Figure 3 
The structure of actuators 

Figure 4 
The input-output characteristics of the flow field

Figure 5 
The block-oriented model diagram of wind tunnel

The choke finger subsystem (S2) is expressed as a 
pseudo-H model with input backlash. The coupled 
flow field subsystem (S3) is described as a TITO 
linear model. The block-oriented model diagram of 
the process is shown in Fig. 5.
For a wind tunnel, the signals 1u  and 2u  (the system in-
puts), 1v  and 2v  (the position of the exhaust valve and 
the choke finger), 1y  and 2y  (the system outputs) are 
measurable; the variable x is the output of the backlash 

(a) The control loops of exhaust valve

(b) The control loops of choke finger
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choke finger loop has a nonlinear behavior. 
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Figure 6 
An input-output map of backlash

characteristic and is an unmeasurable intermediate 
signal; 1

1( )G z- , 1
2 ( )G z-  and 1

3 ( )G z-  are linear transfer 
functions with the unit time delay operator 1z- .

3.2 Modeling of the exhaust valve subsystem S1
The following linear difference equation can describe 
the dynamics of the subsystem S1
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are the parameters to be estimated. The orders me, 
ne  are known a prior.

3.3 Modeling of the choke finger subsystem S2
A pseudo-H model with backlash is used to capture 
the dynamics of the subsystem S2. The input backlash 
of the pseudo-H model is shown in Fig. 6.
The mathematical models for the discrete-time case 
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In order to obtain the input and output parameters 
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i j

v t b x t i a v t j
= =

= ⋅ - - ⋅ -∑ ∑ (11)

2u

1u 1y

2y
2v

1v

x

1
1( )G z

1
2 ( )G z

1
3 ( )G z

 

2 ( )u t

Rm

Rc
Lm

( )x t

LcActuator 
Backlash

2 ( )u t ( )x t

  

of the backlash characteristics are described by [5]

[ ]

[ ]

2 2

2

2 2

( ) , ( )
( ) ( 1) , ( )

( ) , ( )

L L L

L R

R R R

m u t c u t z
x t x t z u t z

m u t c u t z

 + <


= - ≤ ≤
 - >

(2)

where Lm , Rm , 0Lc > , 0Rc >  are the unknown backlash 
parameters, and 

( 1)
L L

L

x tz c
m

-
= - (3)

( 1)
R R

R

x tz c
m

-
= + (4)
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3.4 Modeling of the flow field subsystem S3
A multivariable coupled linear model is used to 
describe the dynamics of the subsystem S3. The 
inputs of the model are the positions of exhaust valve 
( 1v ) and choke finger ( 2v ), and the outputs of the model 
are stagnation pressure ( 1y ) and Mach number ( 2y ). 
Then the flow field model 1

3 ( )G z-  is defined as

1 1 1 1 2 2 2
1 1

1 1 2 2
1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a b

c d

n n

i j
i j

n n

k l
k l

y t b t v t d i b t v t d j

a t y t k a t y t l

= =

= =

= - - + - -

+ - + -

∑ ∑

∑ ∑
(12)

2 1 1 1 2 2 2
1 1

1 1 2 2
1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a b

c d

n n

i j
i j

n n

k l
k l

y t b t v t d i b t v t d j

a t y t k a t y t l

= =

= =

= - - + - -

+ - + -

∑ ∑

∑ ∑
(13)

where 1 ( )ib t , 2 ( )jb t , 1 ( )ka t , 2 ( )la t , 1 ( )ib t , 2 ( )jb t , 1 ( )ka t , 
2 ( )la t  are the unknown parameters. The orders an , bn , 
cn , dn , an , bn , cn , dn  and the time delays 1d , 2d , 1d , 2d  are 

assumed to be known.

4. Parameter estimation scheme
Parameter estimation is based on available data 
measured from the wind tunnel process. Three 
suitable recursive identification methods are applied 
to these subsystems.

4.1 Parameter estimation for exhaust valve 
subsystem
To estimate the parameters in (1), the recursive 
identification algorithm [11] has been used. Define 
the following parameter and data vectors:

1 1 3 1 2[ , ,... , , ,... ]T
v me neb b b a a aθ = (14)

1 1 1 1

1 1 1

( ) [ ( 1), ( 2),..., ( ),

( 1), ( 2),... ( )] .
v

T

t u t u t u t me

v t v t v t ne

φ = - - -

- - - - - -
(15)

The output equation (1) can be rewriten in a compact  
form 

1 1 1( ) ( ) .T
v vv t tϕ θ= (16)

The estimates of parameter vector can be evaluated 
using the RLS algrithm. Firstly, define the output 
error

1 1 1 1
ˆ( ) ( ) ( ) ( )T

v v ve t v t t tφ θ= - (17)

based on (16), where 1
ˆ ( )v tθ  is the estimate of the 

parameter vector 1( )v tθ .
Then the recursive identification algorithm is as 
follows:

1 1 1 1
ˆ̂ ( ) ( 1) ( ) ( )v v v vt t K t e tθ θ= - + (18)

1 1
1

1 1 1 1

( 1) ( )
( )

( ) ( 1) ( )
v v

v T
v v v v

P t t
K t

t P t t
φ

λ φ φ
-

=
+ -

(19)

1 1 1 1 1( ) ( 1) ( ) ( ) ( 1)T
v v v v vP t P t K t t P tφ= - - - (20)

where 1 1 3 1 2
ˆ̂̂ ˆ̂̂[ , ,... , , ,... ]T

v me neb b b a a aθ = . To initialize the 
recursive algorithm in (17)-(20), we take 1 1(0)v vP Iµ= , 

1 1
ˆ (0) [1,1, 1]v vθ ε= ×  , where 

4 10
1 [10 ,10 ]vµ ∈ , I is the 

unit matrix, 1 1, 1v vε λ ≤  is the weighting term.

4.2 Parameter estimation for choke finger 
subsystem
The AW-RLS method [29] is used to estimate the pa-
rameters of the pseudo-H model. 
The output equation of (11) is a very complex 
expression. In order to obtain the separated variable 

( 1)x t - , according to the key term separation princi-
ple [21], we can assume without loss of generality that 

1 1b =  in (11). Then substituting (8) into (11) yields the 
following equation:

[ ][ ]

2 2 1 1

2 2 2

2 1 2

2 3

1 2 2 2 2

( ) ( 1) ( 1) ( 1)
( 1) ( 1) ( 1)

( 2) 1 ( 1) 1 ( 1)

( 2) ( 3) ( )
( 1) ( 2)... ( ).

L L L

R R R

mf

nf

v t m u t f t m c f t
m u t f t m c f t
x t f t f t

b x t b x t b x t mf
a v t a v t a v t nf

= - - + -
+ - - - -

+ - - - - -

+ - + - + -

- - - - - -



(21)

Define the unknown parameter vector 2vθ

2

2 3 1 2

[ , , , ,

, ,... , , ,... ]
v L L L R R R

T
mf nf

m m c m m c

b b b a a a

θ =
(22)
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and the information vector 2 ( )v tφ

2 2 1 1

2 2 2

2

2 2

( ) [ ( 1) ( 1), ( 1),
( 1) ( 1), ( 1), ( 2),

( 3),..., ( ), ( 1),
( 2),..., ( )] .

v

T

t u t f t f t
u t f t f t x t
x t x t mf v t

v t v t nf

ϕ = - - -
- - - - -

- - - -

- - - -

(23)

Then the parameterized pseudo-H model (21) can be 
rewritten as follows:

[ ][ ]2 1 2 2 2( ) ( 2) 1 ( 1) 1 ( 1) ( ) .T
v vv t x t f t f t tϕ θ- - - - - - =

(24)

In order to estimate the parameters, we introduce the 
estimates 2v̂θ  of the parameter vector 2vθ

2

2 3

1 2

ˆ ˆ̂̂̂( ) [ ( ), ( ) ( ), ( ),
ˆ̂ˆ̂ ( ) ( ), ( ), ( ),...,

ˆ ˆ̂̂( ), ( ), ( ),..., ( )] .

v L L L R

R R

T
mf nf

t m t m t c t m t

m t c t b t b t

b t a t a t a t

θ =

(25)

The predicted output at time t  is

[ ][ ]
2 2 2

1 2

ˆˆ ( ) ( ) ( 1)
( 2) 1 ( 1) 1 ( 1) .

T
v vv t t t
x t f t f t

ϕ θ= -

+ - - - - -
(26)

The output error is

[ ][ ]
2 2 2 2

1 2

ˆ( ) ( ) ( ) ( 1)
( 2) 1 ( 1) 1 ( 1) .

T
v v ve t v t t t

x t f t f t
ϕ θ= - -

- - - - - -
(27)

Providing that the internal auxiliary variables 
{ }1 2 1,2,...( ), ( ), ( ) tf t f t x t

=  
are totally known, based on 

(23)-(27), we can update 2
ˆ ( )v tθ  according to the 

following weighted RLS algorithm

[ ][ ]
2 2 2 2

1 2

ˆ( ) ( ) ( ) ( 1)
( 2) 1 ( 1) 1 ( 1) .

T
v v ve t v t t t

x t f t f t
ϕ θ= - -

- - - - - -
(28)

2 2

2 2 2 2

2 2 2 2

( ) ( 1)

( 1) ( ) ( ) ( 1)
( ) ( ) ( 1) ( )

v v
T

v v v v
T

v v v v

P t P t

P t t t P t
t t P t t

ϕ ϕ
λ ϕ ϕ

= -

- -
-

+ -
(29)

2

2 3

1 2

ˆ ˆ̂̂̂( ) [ ( ), ( ) ( ), ( ),
ˆ̂ˆ̂ ( ) ( ), ( ), ( ),...,

ˆ ˆ̂̂( ), ( ), ( ),..., ( )]

v L L L R

R R

T
mf nf

t m t m t c t m t

m t c t b t b t

b t a t a t a t

θ =

(30)

where 2 ( )v tλ  is the weighting term. 
However, since the true innovation 2 ( )ve t  and the in-
formation vector 2 ( )v tϕ  contain internal auxiliary va-
riables { }1 2 1,2,...( ), ( ), ( ) tf t f t x t

=
, which are generally un-

measurable. Thus the parameter estimation cannot 
be performed directly on the basis of (28)-(30).
Motivated by the ideas in [27], we replace the true 
counterparts 2 ( )ve t  and 2 ( )v tϕ  with the estimated 
innovation 2ˆ ( )ve t  and the estimated information 
vector 2ˆ ( )v tϕ . The internal variable estimations 
{ }1 2 1,2,...

ˆ̂ ˆ( ), ( ), ( )
t

f t f t x t
=

 are used to derive 2ˆ ( )ve t  and 

2ˆ ( )v tϕ . Then, the AW-RLS algorithm based on the 
internal variables estimations is as follows:

2 2

1 2 2

2 2 2 2

ˆ̂ ( ) ( 1)
ˆ( 1) ( ) ( )

ˆ̂( ) ( ) ( 1) ( )

v v

v v
T

v v v v

t t
P t t e t

t t P t t

θ θ
ϕ

λ ϕ ϕ

= -
-

+
+ -

(31)

2 2

2 2 2 2

2 2 2 2

( ) ( 1)
ˆ̂( 1) ( ) ( ) ( 1)

ˆ̂ ( ) ( 1) ( )

v v
T

v v v v
T

v v v v

P t P t

P t t t P t
t P t t

ϕ ϕ
λ ϕ ϕ

= -

- -
-

+ -
(32)

2 2 2 2

1 2

ˆˆˆ̂ ( ) ( ) ( ) ( 1)
ˆ̂( 2) 1 ( 1) 1 ( 1)

T
v v ve t v t t t

x t f t f t

ϕ θ= - -

   - - - - - -   
(33)

2 2 1 1

2 2 2

2

2 2

ˆ̂ˆ ( ) [ ( 1) ( 1), ( 1),
ˆ̂ ˆ( 1) ( 1), ( 1), ( 2),

ˆ̂( 3),... ( ), ( 1),
( 2),... ( )]

v

T

t u t f t f t

u t f t f t x t
x t x t mf v t

v t v t nf

ϕ = - - -

- - - - -
- - - -

- - - -

(34)

1 2
ˆ ˆ̂̂( ) {[ ( ) ( ) ( ) ( )

ˆ̂( 1)] / ( )}
L L L

L

f t h m t u t m t c t
x t m t

= +
- - (35)

2 2
ˆ ˆ̂( ) {[ ( 1) ( ) ( )

ˆ̂̂ ( ) ( )] / ( )}
R

R R R

f t h x t m t u t
m t c t m t

= - -
+ (36)

2 1 1

2 2 2

1 2

ˆ̂ˆ̂̂̂( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ̂ˆ̂̂ ( ) ( ) ( ) ( ) ( ) ( )
ˆ̂ˆ( 1) 1 ( ) 1 ( ) .

L L L

R R R

x t m t u t f t m t c t f t

m t u t f t m t c t f t

x t f t f t

= +

+ -

   + - - -   

(37)

The internal variable estimations are updated by 
(35)-(37). Motivated by [29], for the algorithm (31)-
(34), in order to enhance the convergence and tolerate 
large initial estimation errors, 2 ( )v tλ  is suggested to be 
chosen as an adaptive form
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2 1 2 2 2 2
ˆ̂( ) ( ) ( ) ( )T

v v v vt t P t tλ ε φ φ ε= + (38)

where 1ε  and 2ε  are positive real numbers. At the 
beginning of the identification process, especially 
for bad initial conditions, a larger 1ε  is beneficial to 
convergence properties. On the other hand, the term 

1 2 2 2
ˆ̂ ( ) ( ) ( )T
v v vt P t tε φ φ  tends to zero as the estimates 

approach the true values. Inevitably, a small 2ε  is also 
required to guarantee a high convergence speed. 
To initialize the recursive algorithm in (31)-(34), we 
take 2 21(0)v vP Iρ= , where 21vρ  is a large positive sca-
lar, e.g., 5

21 10vρ =  and 2 22
ˆ (0) [1,1, ,1]T
v vθ ρ= ×  , where 

22vρ  is a small positive scalar, e.g., 2
22 10vρ -= .

4.3 Parameter estimation for the flow field 
subsystem

The wind tunnel is a rapid sampling system and 
the sampling time is 10ms to 50ms. According to 
the principle of aerodynamics and the analysis of 
the actual data, the variation between adjacent ele-
ments sampling interval is small. Therefore, the flow 
field subsystem can be considered as a TITO slowly 
time-varying linear process. 
Since the computational burden deteriorates greatly 
along with larger dimensions, the H-RLS algorithm is 
used to address this problem. The basic idea of H-RLS 
is to decompose the identification model into several 
sub-models with fewer parameters and smaller di-
mensions. It is proven that the H-RLS algorithm re-
tains much less computational burden than the RLS 
algorithm [3, 28]. 
Then the flow field subsystem is identified by the 
following H-RLS algorithm.
Step1. Decomposition
Define the parameter vectors 1( )w tθ , 2 ( )w tθ , and the 
information vectors 1( )w tϕ , 1( )w tϕ  for the wind tunnel 
flow field in (20) and (21)

1 11 1 21 2

11 1 21 2

( ) [ ( ), , ( ), ( ), , ( ),

( ), , ( ), ( ), , ( )]
a b

c d

w n n

T
n n

t a t a t a t a t

b t b t b t b t

θ =  

 
(39)

2 11 1 21 2

11 1 21 2

( ) [ ( ), , ( ), ( ), , ( ),

( ), , ( ), ( ), , ( )]
a b

c d

w n n

T
n n

t a t a t a t a t

b t b t b t b t

θ =  

  (40)

1 1 1 2

2 1 1 1 1

2 2 2 2

( ) [ ( 1), , ( ), ( 1), ,
( ), ( ), , ( ),

( ), , ( )]

w a

b c
T

d

t y t y t n y t
y t n v t d v t d n

v t d v t d n

ϕ = - - -
- - - -

- - -

 





(41)

2 1 1 2

2 1 1 1 1

2 2 2 2

( ) [ ( 1), , ( ), ( 1), ,

( ), ( ), , ( ),

( ), , ( )] .

w a

b c

T
d

t y t y t n y t

y t n v t d v t d n

v t d v t d n

ϕ = - - -

- - - -

- - -

 





(42)

Equations (12) and (13) can be rewritten in a regres-
sive form

1 1 1( ) ( ) ( )T
w wy t t tϕ θ= (43)

2 2 2( ) ( ) ( ).T
w wy t t tϕ θ= (44)

The system in (43) and (44) is decomposed into two 
subsystems, respectively, and consequently the para-
meter vectors 1( )w tθ  and 2 ( )w tθ  are decomposed into 
two sub-parameter vectors

1 1 1( ) [ ( ), ( )]T T T
w w a w bt t tθ θ θ= (45)

2 2 2( ) [ ( ), ( )]T T T
w w a w bt t tθ θ θ= (46)

and the information vectors 1( )w tϕ  and 2 ( )w tϕ  are de-
composed into two sub-information vectors 

1 1 1( ) [ ( ), ( )]T T T
w w y w vt t tϕ ϕ ϕ= (47)

2 2 2( ) [ ( ); ( )]T T T
w w y w vt t tϕ ϕ ϕ= (48)

where the vectors 1 ( )w a tθ , 1 ( )w b tθ , 2 ( )w a tθ , 2 ( )w b tθ , 
1 ( )w y tϕ , 1 ( )w v tϕ , 2 ( )w y tϕ  and 2 ( )w v tϕ  in (46)-(49) are 

defined as follows

1 11 1 21 2( ) [ ( ), , ( ), ( ), , ( )]
a b

T
w a n nt a t a t a t a tθ =   (49)

1 11 1 21 2( ) [ ( ), , ( ), ( ), , ( )]
c d

T
w b n nt b t b t b t b tθ =   (50)

2 11 1 21 2( ) [ ( ), , ( ), ( ), , ( )]
a b

T
w a n nt a t a t a t a tθ =   (51)

2 11 1 21 2( ) [ ( ), , ( ), ( ), , ( )]
c d

T
w b n nt b t b t b t b tθ =   (52)

1 1 1

2 2

( ) [ ( 1), , ( ),

( 1), , ( )]
w y a

T
b

t y t y t n

y t y t n

ϕ = - -

- -




(53)
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1 1 1 1 1

2 2 2 2

( ) [ ( ), , ( ),

( ), , ( )]
w v c

T
d

t v t d v t d n

v t d v t d n

ϕ = - - -

- - -




(54)

2 1 1

2 2

( ) [ ( 1), , ( ),

( 1), , ( )]
w y a

T
b

t y t y t n

y t y t n

ϕ = - -

- -




(55)

2 1 1 1 1

2 2 2 2

( ) [ ( ), , ( ),

( ), , ( )] .
w v c

T
d

t v t d v t d n

v t d v t d n

ϕ = - - -

- - -




(56)

According to the H-RLS principle [29], the equations 
(43) and (44) can be written in the following hierar-
chical forms

1 1 1 1 1( ) ( ) ( ) ( ) ( )T T
w v w b w y w ay t t t t tϕ θ ϕ θ- = (57)

1 1 1 1 1( ) ( ) ( ) ( ) ( )T T
w y w a w v w by t t t t tϕ θ ϕ θ- = (58)

2 2 2 2 2( ) ( ) ( ) ( ) ( )T T
w y w a w v w by t t t t tϕ θ ϕ θ- = (59)

2 2 2 2 2( ) ( ) ( ) ( ) ( ).T T
w y w a w v w by t t t t tϕ θ ϕ θ- = (60)

Step2. Sub-models identification
According to the recursive least squares principle, we 
can derive the identification algorithm for each sub-
system. Let 1

ˆ ( )w a tθ , 1
ˆ ( )w b tθ , 2

ˆ ( )w a tθ  and 2
ˆ ( )w b tθ  denote 

the estimates of the parameter vectors in (49)-(52). 

1 11 1 21 2
ˆ ˆ̂̂̂( ) [ ( ), , ( ), ( ), , ( )]

a b

T
w a n nt a t a t a t a tθ =   (61)

1 11 1 21 2
ˆ̂̂̂ˆ ( ) [ ( ), , ( ), ( ), , ( )]

c d

T
w b n nt b t b t b t b tθ =   (62)

2 11 1 21 2
ˆ ˆ̂̂̂( ) [ ( ), , ( ), ( ), , ( )]

a b

T
w a n nt a t a t a t a tθ =   (63)

2 11 1 21 2
ˆ̂̂̂ˆ ( ) [ ( ), , ( ), ( ), , ( )] .

c d

T
w b n nt b t b t b t b tθ =   (64)

For the hierarchical models (57) and (58), the 
parameter estimates can be updated as follows

1 1 1 1 1

1 1 1 1

ˆ̂ ( ) ( 1) ( ) ( ) [ ( )
ˆ( ) ( ) ( ) ( 1)]

w a w a w y

T T
w v w b w y w a

t t P t t y t

t t t t

θ θ ϕ

ϕ θ φ θ

= - + ×

- - -
(65)

1 1 1 1
1 1

1 1 1

( 1) ( ) ( ) ( 1)
( ) ( 1)

1 ( ) ( 1) ( )

T
w y w y

T
w y w y

P t t t P t
P t P t

t P t t
ϕ ϕ

ϕ ϕ
- -

= - -
+ -

(66)

1 1 2 1 1

1 1 1 1

ˆ̂ ( ) ( 1) ( ) ( ) [ ( )
ˆ( ) ( ) ( ) ( 1)]

w b w b w v

T T
w y w a w v w b

t t P t t y t

t t t t

θ θ ϕ

ϕ θ φ θ

= - + ×

- - -
(67)

2 1 1 1
2 2

1 1 1

( 1) ( ) ( ) ( 1)
( ) ( 1)

1 ( ) ( 1) ( )

T
w v w v

T
w v w v

P t t t P t
P t P t

t P t t
ϕ ϕ

ϕ ϕ
- -

= - -
+ -

(68)

where 1( )P t  and 2 ( )P t  are the covariance matrix of the 
sub-models. However, there is a difficulty that the 
equations (65) and (67) contain unknown parame-
ter vectors. Then, by means of the coordination idea 
based on the hierarchical identification principle, we 
present a new algorithm to deal with the problem. 
Step3. Coordination
The coordination idea is to replace the unknown 
vectors 1 ( )w a tθ  and 1 ( )w b tθ  which appear in (65) and 
(67) by their corresponding estimates 1

ˆ ( 1)w a tθ -  and 
1

ˆ ( 1)w b tθ -  at the preceding time, so we have

1 1 1 1 1

1 1 1 1

ˆ̂ ( ) ( 1) ( ) ( ) [ ( )
ˆ̂( ) ( 1) ( ) ( 1)]

w a w a w y

T T
w v w b w y w a

t t P t t y t

t t t t

θ θ ϕ

ϕ θ φ θ

= - + ×

- - - -
(69)

1 1 1 1
1 1

1 1 1

( 1) ( ) ( ) ( 1)
( ) ( 1)

1 ( ) ( 1) ( )

T
w y w y

T
w y w y

P t t t P t
P t P t

t P t t
ϕ ϕ

ϕ ϕ
- -

= - -
+ -

(70)

1 1 2 1 1

1 1 1 1

ˆ̂ ( ) ( 1) ( ) ( ) [ ( )
ˆ( ) ( 1) ( ) ( 1)]

w b w b w v

T T
w y w a w v w b

t t P t t y t

t t t t

θ θ ϕ

ϕ θ φ θ

= - + ×

- - - -
(71)

2 1 1 1
2 2

1 1 1

( 1) ( ) ( ) ( 1)
( ) ( 1) .

1 ( ) ( 1) ( )

T
w v w v

T
w v w v

P t t t P t
P t P t

t P t t
ϕ ϕ

ϕ ϕ
- -

= - -
+ -

(72)

Then, we can get the parameter estimates 1ŵ aθ  and 1ŵ bθ .
To initialize the H-RLS algorithm, we take 

1 1(0)P Iµ= , 1 1
ˆ (0) [1,1, ,1]T
w aθ ε=  , 2 2(0)P Iµ=  and 

1 2
ˆ (0) [1,1, ,1]T
w bθ ε=  , where 1µ  and 2µ  are large positi-

ve scalars, e.g., 4 10
1 2, [10 ,10 ]µ µ ∈ . I  is the unit matrix, 

1ε  and 2ε  are small positive scalars.
In the same way, we can obtain the parameter estima-
tes 2ŵ aθ  and 2ŵ bθ .

5. Model test and application
The main purpose of this section is to evaluate the 
proposed model and identification algorithms. To 
achieve this goal, MATLAB simulations and control 
platform real-time verification are both carried out.
In the following, two performance evaluation 
criteria are used, namely, the root mean square error 
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(RMSE) and Maximum absolute error (MAE). These 
performance criteria are defined as follows:

2

1

ˆ( ( ) ( ))
N

t
y t y t

RMSE
N

=

-
=

∑ (73)

{ }ˆmax ( ) ( ) , 1MAE y t y t t N= - =  (74)

where ˆ( )y t  denotes the predictive value, ( )y t  denotes 
the actual value, N  is the number of validation data.

5.1 Simulation and verification
The data of two operating conditions are used for 
parameter estimation and model verification. These 
two operating conditions are: 1) stagnation pressure 
110kPa, Mach number 0.578, and 2) stagnation pres-
sure 130kPa, Mach number 0.822. In this section, the 
sampling period is selected as 50ms.
The orders of the systems are determined by the false 
nearest neighbor algorithm [22]. Therefore, we choose 

1me ne= = , 1mf = , 2nf = ， 2a b c dn n n n= = = =  and 
2a b c dn n n n= = = = . We select the time delay 1d , 2d , 

1d  and 2d  as 1. The parameter estimation results of 
the exhaust valve subsystem and the choke finger 
subsystem are shown in Figs. 7-8 and Table 1. The 
unit of the parameters Lc , Rc  is mm (millimeter). 
From the identification results, we can see that it is 
reasonable to introduce the backlash nonlinearity 
into the choke finger loop.

Figure 7 
Estimations of exhaust valve

Figure 8 
Estimations of the choke finger model

Table 1 
The convergent parameter estimates of the exhaust valve 
and choke finger models

exhaust valve choke finger

1â
1̂b ˆ Lm ˆ Rm ˆ

LC ˆ
RC 1â 2â

-0.62 0.39 0.9 0.9 0.8 0.85 1.0 -0.17

8 

 
Fig. 7 Estimations of exhaust valve 

 
Fig. 8 Estimations of the choke finger model 

 

 
Fig. 10 Identification results of pressure model parameters 

 
Fig. 11 Identification results of Mach number model 

parameters 

Fig. 9 shows the comparision results between the 
actual outputs and the predicted outputs of the 
identified exhaust valve subsystem and the choke 
finger subsystem. The former plot is the true (－) 
and predicted (…) outputs for the exhaust valve 
subsystem. The latter plot is the true (－) and 
predicted (…) outputs for the choke finger subsystem. 
This illustrates that the fitting performance between 
the predicted outputs and the actual outputs are 
satisfactory.
The parameter estimation results of the flow field 
are shown in Figs. 10-11. Note that Fig. 10 depicts the 
stagnation pressure parameter estimates of equation 
(40), and Fig. 11 depicts the Mach number parameter 
estimates of equation (41).
The comparisons between the measured values and 
the estimated values of stagnation pressure and Mach 
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Figure 9 
Measured and predicted outputs of the identified exhaust 
valve subsystem and the choke finger subsystem
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parameters Figure 10 
Identification results of pressure model parameters

Figure 11 
Identification results of Mach number model parameters
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number are shown in Figs. 12-13. It can be seen that 
the estimated outputs fit the measured data well. 
The comparison results between the proposed block-
oriented model, ENN model and the conventional 

Figure 12 
The predicted value, measured values and modelling errors 
of stagnation pressure
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Figure 13 
The predicted value, measured values and modelling errors 
of Mach number

 

 

 

Table 2 
Performance criteria for identified block-oriented and conventional models

Working condition 
(P0/Ma) Model

RMSE MAE

P0 Ma P0 Ma

110/0.578

Block_oriented model 0.0256 0.00033 0.0937 0.0012

Conventional model 0.0287 0.0004 0.1252 0.0026

ENN model 0.0023 0.0010 0.135 0.0031

130/0.822

Block_oriented model 0.0367 0.0005 0.1105 0.0041

Conventional model 0.0391 0.0009 0.1843 0.0059

ENN model 0.0045 0.0011 0.1904 0.006

model [14] are shown in Table 2. It is obvious that 
both RMSE and MAE of the proposed model are 
better than the conventional model.

5.2 Verification on the control platform of 
wind tunnel
In order to verify the real-time performance of the 
proposed modeling scheme, further tests on the 
control platform of the wind tunnel system are 
carried out. The platform is equipped with several 
national instrument (NI) modules and created by La-
bVIEW software. It can be used to test or optimize the 

model and controller, and thus reduces the cost and 
risk during the controller design. 
The experiments are performed in the following 
working condition: stagnation pressure 110kPa, Mach 
number 0.578. The control signals are given to both 
the obtained model and the actual wind tunnel. Then 
the measured outputs and the estimated outputs are 
displayed on the interface of the control platform, as 
shown in Figs. 14-15.

6. Conclusions
In this paper we present a nonlinear block-oriented 
model for the 2.4m wind tunnel. The block-oriented 
model consists of three parts: the main exhaust valve 
subsystem is represented as a linear model, the choke 
finger susystem is described as a pseudo-H model 
with input backlash, and the flow field subsystem is 
considered as a TITO linear model. In order to facil-
itate the applications of the modeling scheme, the 
RLS, AW-RLS and H-RLS algorithms are presented 
for three subsystems. Finally, the results of simula-
tions and control platform experiments show the va-
lidity of the proposed modeling scheme.
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Figure 14 
The estimated stagnation pressure from block-oriented model and the measured data

Figure 15 
The estimated Mach number from block-oriented model and the measured data
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Summary / Santrauka

This paper develops a novel nonlinear block-oriented model for the wind tunnel system. Based on the avail-
able signals, the wind tunnel system can be divided into three parts, namely, the exhaust valve loop, the choke 
finger loop and the flow field. Then the considered plant is described as a nonlinear block-oriented model. The 
exhaust valve subsystem and the flow field subsystem are both expressed by linear dynamic models, whereas 
the choke finger subsystem exhibits a nonlinear characteristics and is approximated by a pseudo-Hammer-
stein model. Based on the above parameterization model, the recursive identification algorithms are presented 
for three subsystems. Interestingly, the adaptive weighted recursive least squares algorithm is applied to the 
pseudo-Hammerstein model, and the hierarchical recursive least squares algorithm is used to reduce the com-
putational complexities. Both simulations and experiments are carried out to verify the effectiveness of the 
proposed method.

Straipsnyje aprašomas naujas netiesinis, į blokus orientuotas modelis vėjo tunelio sistemai. Remiantis turimais 
signalais, vėjo tunelio sistemą galima suskirstyti į tris dalis: išmetimo vožtuvo kilpą, droselio kilpą ir srauto lauką. 
Tokiu atveju nagrinėjamas įrenginys aprašomas kaip netiesinis į blokus orientuotas modelis. Išmetimo vožtuvo 
posistemė ir srauto lauko posistemė yra išreiškiamos tiesiniais dinaminiais modeliais, o droselio kilpos posistemė 
demonstruoja būdingas netiesines charakteristikas ir yra aproksimuota pseudo-Hammersteino modeliu. Remian-
tis aukščiau pateiktu parametrizavimo modeliu, trims posistemėms pateikiami rekursiniai identifikavimo algori-
tmai. Pseudo-Hamersteino modeliui pritaikomas adaptyvusis svorinis rekursinis mažiausių kvadratų algoritmas, 
o skaičiavimo sudėtingumui sumažinti naudojamas hierarchinis rekursinis mažiausių kvadratų algoritmas. Siūlo-
mo metodo efektyvumui patvirtinti atliktos simuliacijos ir eksperimentai.




