
319Information Technology and Control 2017/3/46

Development of a Database
for the Common Information
Model of Power Grids

ITC 3/46
Journal of Information Technology
and Control
Vol. 46 / No. 3 / 2017
pp. 319-332
DOI 10.5755/j01.itc.46.3.14340
© Kaunas University of Technology

Development of a Database for the Common Information
Model of Power Grids

Received 2016/07/07 Accepted after revision 2017/07/13

 http://dx.doi.org/10.5755/j01.itc.46.3.14340

Corresponding author: sasa.devic@schneider-electric-dms.com

Saša Dević
Schneider Electric DMS NS, Narodnog fronta 25A, 21000 Novi Sad, Serbia
e-mail: sasa.devic@schneider-electric-dms.com

Ivan Luković
University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
e-mail: ivan@uns.ac.rs

The ongoing development of a complex model for power grid networks, based on the Common Information
Model (CIM), is dealing with design, operability and exchange of data among various power grid operators.
This paper presents a methodological approach to development of a database that supports an easy storing and
managing of active CIM instances, as well as their historical versions. To facilitate the implementation of the
proposed approach, we apply a paradigm of automatic programming. Our code generator eases the work on de-
veloping an API communication layer over the database and allows faster response on CIM changes. Finally, we
present a performance cost analysis on test models. By this, our intention is to contribute to a wider acceptance
of CIM in power grid networks.
KEYWORDS: Common Information Model (CIM), database modeling, code generators, power grid, model to
code transformation.

1. Introduction
Power systems have been increasingly used since the
middle of the 20th century. At the beginning, power

grids were simple, isolated systems. In order to mon-
itor network states, to track power grid states, inputs

Information Technology and Control 2017/3/46320

and outputs, Transmission System Operators (TSOs)
had to have a model that would provide them with
needed data. In 1951, the first European association
appeared – the Union of the Co-operation of Trans-
mission of Electricity (UCTE) [7]. Since the UCTE’s
appearance, electrical energy production, transpor-
tation and distribution became more separated be-
tween different companies.
After the separation of transmission, generation,
distribution and trading activities of the electricity
sector, a possibility of an easy exchange of operation-
al data has become even more important. Electrical
markets have triggered an increase of cross-border
power flows between countries. This leads to signif-
icant variations in generation patterns, displacing
substantial amounts of electricity from one area to
another, or from one hour to another. Therefore, ex-
changes of data have increased dramatically during
recent years [16].
Since UCTE has been established, its model for de-
scribing power grids, UCTE DEF, has been widely
used. UCTE DEF is power flow oriented model. Since
it carries only the basic, necessary, information about
power grid nodes, lines and border nodes, we could say
that it is relatively simple model. UCTE DEF has been
designed to meet requirements of European TSOs in
the middle of the 20th century. For a long time, it was
recognized as a satisfactory model. However, its sim-
plicity appeared to be the main cause of its serious
limitations in recent decades.
To address the UCTE DEF limitations, a development
of a new model for power grids was initiated in 1999.
It is the Common Information Model (CIM). CIM is
a still evolving model, and now maintained by the In-
ternational Electrotechnical Commission (IEC) [11].
As part of its development, cooperation and coordina-
tion, European Network of Transmission System Op-
erators for Electricity (ENTSO-E) [7], the successor
of UCTE, also accepted CIM as the preferred model
for describing power grids. CIM is a network oriented
model that provides a common definition of manage-
ment information for systems, networks, applications
and services, and allows extensions [11].
Development of CIM is followed by a series of stan-
dards. Part of CIM for energy market systems is cov-
ered by the standard IEC 61970, run by the IEC Tech-
nical Committee 57, Work Group 13 (TC57 WG13). At

the time of writing, its current version is 2.4.15, while
the version of its model is 16.25. A profile referred in
our research work is Common Grid Model Exchange
Standard (CGMES) that is used for transmission net-
works. Hereinafter, when referring to CIM, we refer
to the IEC 61970, profile CGMES, standard 2.4.15,
and model version 16.25. The CIM model is defined
via UML.
We may say that CIM defines a meta-model for power
grids, as CIM instances are models of concrete power
grids. Here, we observe CIM as the initial meta-model
of our approach based on Model-Driven Development
(MDD) paradigm [4], [5].
Despite the fact that CIM is a continuously evolving
model, it has already been widely accepted and the
need for its software support is constantly increas-
ing. Vendors that use CIM in their applications are
dealing not only with the problem of how to use it in
their power functions, but also how to store CIM in-
stances. In regard to this, it is not only the issue how to
save initial model instances in a database, as a repos-
itory of CIM instances, but also how to track all their
further changes, as there is a strong requirement to
provide a possibility of restoring a model instance to
some of its previous states.
From the previous experiences reported in [27], [10]
and [28], it follows that for the development of a da-
tabase repository for instances of complex models as
CIM instances certainly are, there is no a straightfor-
ward solution. From this, in our research we assume
that CIM can be implemented as a relational database
schema, while CIM instances are stored in a relational
database, in an optimized way, without losing any data.
The goal of our research is to propose a methodolog-
ical approach with a generic database repository
structure in support of efficient storing of CIM in-
stances, tracking changes without redundant data,
and their restoring to previous states. In support of
our approach, we propose a software application de-
veloped for CIM in power grid.
In this paper, we propose a repository structure for
storing both current and previous (past) states of CIM
instances under a relational database management
system (DBMS). Here we introduce the notions of an
active model and historical model. The active model
supports a specification of the current states of CIM
instances, while historical model supports a specifi-

321Information Technology and Control 2017/3/46

cation of the previous states of CIM instances. The
development of active and historical models is orga-
nized in two phases of our methodological approach.
Our software application for CIM in power grid ful-
ly supports both, the active and historical models. It
is designed in a way to meet expectations and logic
of work of power engineers. As CIM is a constantly
evolving model, an important requirement for this
application is to be easily maintainable. To facilitate
such a requirement, we have applied a paradigm of
automatic programming in development of our ap-
plication. Thus, we have developed our code genera-
tor that eases the work on developing an Application
Programmatic Interface (API) communication layer
over the database that allows faster response on CIM
changes. By this, complexity and the amount of re-
quired work needed for writing code is reduced sig-
nificantly.
The rest of the paper is organized as follows. Works
related to our research are presented in Section 2.
In Section 3, CIM is presented in more details, with
its inner organization. Section 4 presents the first
phase of our methodological approach – how to mod-
el the database to be accessed in a relatively easy way,
without loss of speed. The second phase of our meth-
odological approach is presented in Section 5. The
section explains how to structure historical part of
database to provide tracking changes made on model
instances, and restore them to any selected state. In
Sections 4 and 5, a code generator is introduced to fa-
cilitate the implementation of the system. Evaluation
of the results, with time performance analysis is given
in Section 6.

2. Related work
In the survey of related works, we identified the fol-
lowing groups of references: i) works about CIM stan-
dardization and the importance of formalizing CIM as
a standard (standardization improves CIM interop-
erability among various software vendors); ii) works
about CIM in a practice use in power grids (this group
of references is of an interest in searching for con-
crete examples of potential applications of our work);
iii) works about strategies of storing CIM instances in
a database (these references impact the selection of a

proper approach to data organization and also our ap-
proach of development of a database system for CIM);
and iv) works about automatic programming para-
digm and its influence on a reduction of development
time, and increasing reliability of produced code. We
present a selection of works that mainly affected the
development of our code generator.
In [16] and [7], some important steps in moving from
UCTE DEF to CIM are discussed. Ivanov and Chury
in [16] argue that “the current version of the UCTE
ASCII data exchange format (UCTE DEF) turned out
to be insufficient for planning purposes because some
data is missing and some network elements are not
described in an appropriate level of detail.” In addi-
tion, Britton and deVos in [7] conclude that successful
implementation and the usage of the CIM will signifi-
cantly improve the accuracy, quality and reliability
of cross-TSOs data exchanges. In this research, the
current version of CIM [11] is applied in a power grid.
Moreover, Britton and deVos in [7] and Britton et al.
in [6] propose ways of its development. Our approach
relies on the data exchange process as it is proposed
in [16].
Since it has been introduced by IEC, CIM has been
extensively analyzed and used in power grids. In [20],
CIM is used as the data model in the algorithm for
finding the catalogue of topologies in a power system.
In [8], it is a data model in algorithm for partition-
ing power grid networks. In [24], CIM is used in the
scheduling algorithm for controlling power grid. Our
approach is also based on CIM, as it is well known and
recommended by international authority body. CIM
is designed to be robust enough to support different
granularity of data [15]. As described in [26], both
bus-breaker and node-breaker models can be repre-
sented though CIM. The references [8], [20] and [26]
give examples of a CIM usage in power engineering.
Those are the typical examples of projects, where our
approach will be applicable, as an extension that will
provide a database support for storing and managing
CIM instances.
One of the two papers of a narrow interest for our
research presents a comparison of two strategies for
storing CIM instances, relational and RDF-based da-
tabase approach [28]. CIM itself does not offer any
official database models, so the focus was to find pros
and cons of using a relatively new RDF-based data-
base versus well-established and ubiquitous relation-

Information Technology and Control 2017/3/46322

al database, for storing CIM instances. As concluded
in [28], the main drawback of relational database is in
that all data have to be mapped to and from CIM-XML
format. However, due to being faster, the relational
database is more preferred. In [27], Ravikumar et al.
propose a CIM oriented database (CIMODB) design
through the ORM, similar as we use in our approach.
Both Ravikumar et al. [27] and Schulte et al. [28],
advocate a selection of a relational (SQL) database
in spite the growing popularity of NoSQL, more pre-
cisely RDF solutions. A ubiquitous use of relational
DBMS, as described in [9], precludes the use of other
technologies such as NoSQL, especially for federated
data schemas [27]. In many other works, as in [19] and
[23], the authors are slightly reserved towards NoSQL
databases because of the lack of standards, consisten-
cy, familiarity, maturity and maintenance. Primarily
because of the results presented in [27] and [28], as
well as in [9], [19], [10], and [23], a relational database
approach is used in this work.
Automatic programming, as a programming para-
digm is heavily used in many software development
projects from the very beginnings of software pro-
gramming [17], [21]. Since CIM is described with 600
classes, its specification belongs to a class of large
and consequently complex models. The probability
to make logical errors in designing such systems is
high. The amount of time needed to develop database
procedures and API communication layer by hand is
also high. Therefore, we identify a need for the devel-
opment of a code generator to support the process of
implementation of CIM as a model under a DBMS. A
code generator takes a high-level description as its
input and generates lower level code [25]. That is,
the input specification for generators is simpler and
shorter than the generated code [14]. In [18], UML
with sequence diagrams is used in order to produce
application that would better reflect designed pro-
cess. In [1], Ablonskis and Nemuraitė detect model-
to-code transformations, which can later be reused
for composing templates for generating a program
code. The authors in [3], [12] and [2] start from a data-
base model and templates to generate different layers
of their applications. In addition, in [22], templates
are used to transform model and generate Software-
as-a-Service applications. In our research, we use a
UML representation of CIM as an input specification
of our code generator.

3. CIM structure and data exchange
One of the main purposes of CIM as a standard is to
define how members of ENTSO-E, using software
from different vendors, would exchange network
model instances as required by the ENTSO-E busi-
ness activities. Therefore, in this section we present
the CIM model with its inner structure, as well as the
process of data exchange based on it.
CIM instances are stored in XML file format. Data are
divided into nine files: Equipment, Equipment Bound-
ary, Topology, Topology Boundary, State Variables,
Dynamics, Diagrams, Geographical Data, and Steady
State Hypothesis. Information from all the nine files
represent one complete CIM instance.
CIM is a hierarchical model that comprises abstract and
concrete classes. Through those classes, CIM maps phys-
ics of electrical power system and its states at the specif-
ic time (every hour). Abstract classes are used to ease the
complexity of the system; they group and define base at-
tributes and associations, differentiating between more
and less generic components of the system. In contrast,
real (concrete) components of the system are described
by concrete classes, which inherit much of the attributes
and associations from the abstract classes. Concrete
classes are dependent on abstract classes, as shown in
Figure 1, which is an excerpt of the CIM model. In Fig-
ure 1, Equipment Container and Equipment represent
abstract classes, while Substation, Voltage Level and
Base Voltage represent concrete classes. Here, we are
not discussing the meaning of those classes, as we are
only interested in their relations.

Figure 1
CIM UML class diagram

4

323Information Technology and Control 2017/3/46

Changes made on a model instance are exchanged by
difference files that only contain information of what
is updated, what is new and what is deleted. When
difference files are received, they are applied on the
model instance [11]. One of the main advantages of
CIM is that data are maintained without the need to
exchange the whole model instance [16], [7]. Chang-
es done on one model instance, made by one compa-
ny, are exported to a difference file and sent to other
interesting parties who need to maintain their mod-
el instance of the same network. Difference files are
XML formatted files.
In Section 4, we present a modeling process of the
operational database, which relies on the CIM hier-
archical structure. Besides, CIM exchange process
based on the usage of difference files is a basis for
developing methodological approach for historical
model described in Section 5.

4. Active model
In this section, the first phase of our methodological
approach is presented. The active model (Figure 2)
is described, through which we model CIM oriented
database aimed at storing CIM instances. The active
model is a representation of the CIM model, where
each class in CIM has its active model representa-
tion. As we select a relational data model paradigm
for storing CIM instances, our active model is imple-
mented under a relational DBMS. We call this data-
base the active database.
In this phase of our approach, the primary goal is to
provide storing of the CIM instances, as well as easy
and fast access to them. To achieve the goal, the phase
is divided into three steps.
The first step is to perform an analysis of the active
model in comparison to the CIM model. Next, we dis-
cuss two typical approaches for creating models, sim-
ilar to our active model, and why they do not meet our
goals. The second step is to formulate a procedure for
creating our active model. The final, third step is to
implement an active database. In the following text,
we elaborate each of the steps, in more details.
In the first step, we describe the active model and
how we create it. In Figure 2, an excerpt of the active
model is shown. By the CIM terminology, abstract

Figure 2
A database schema of the active model

classes are mapped to so-called abstract tables, while
concrete classes are mapped to concrete tables. In
the active model, we introduce BASE_OBJECT table
that represents Base Object class, which is not a part
of CIM. We introduce it to ensure that all tables will
have a surrogate primary key (attribute BASE_OB-
JECT_ID), which becomes a foreign key from the
table that represents the Base Object class. Abstract
tables that represent Identified Object, Equipment
Container and Equipment classes are created with-
out their attributes (columns) and references (foreign
keys), as it is more convenient to have these attributes
in their child, concrete tables that represent Substa-
tion, Voltage Level and Base Voltage classes. There-
fore, these concrete tables include attributes from
their parent tables.

4

We discuss two typical approaches that could be used
to create a model that is conceptually similar to our
active model. Since CIM is specified in UML via En-
terprise Architect, the same tool could generate SQL
code for our active model. Next, since classes generat-
ed from CIM UML can be mapped to their table rep-
resentatives, the same approach is also an option for
our active model. As such, object-relational mapping
(ORM) is used. Many frameworks could be used for
ORM. However, in a model as complex as CIM is, with
many hierarchical levels, a potential problem is that
CIM has relatively large number of abstract entities
[20]. If simply table-for-class is created, for reading
data from any table it would be hard to write a simple
select query. A join clause has to be used to reach each

Information Technology and Control 2017/3/46324

of parent tables that contain data mapped from par-
ent classes. The more join clauses we have, the slower
the query will be [10]. However, our goal is to provide
easy and fast access.
In the second step, we perform ORM in a specific way.
Firstly, we map class attributes to their table repre-
sentatives only for concrete classes, with the inclu-
sion of inherited attributes. Secondly, tables repre-
senting abstract classes are created with keys only,
without columns included. In our approach, abstract
classes are needed to properly place the relations. As
an example, in the model excerpt presented in Fig-
ure 2, Equipment requires a relation to Equipment
Container. Equipment Container is an abstract class
representation, as it generalizes either Substation or
Voltage Level. Finally, parent references are mapped
as foreign keys in concrete, child tables only. By do-
ing so, it is possible to fetch all needed data from just
one table, without using join clause. By this, all data
attributes are pushed down to concrete tables, while
abstract tables form the skeleton of the model.
In the final, third step, we present the implementa-
tion process of the first phase of our methodological
approach. CIM model has almost 600 classes, around
200 of which are concrete classes. Here we map CIM-
XML structured data into the relational database.
Implementation efforts for writing SQL commands
for creating our database schema, database proce-
dures and an API communication layer can be quite
high. Therefore, we propose creating a Code Gener-

ator. A development process defined by our method-
ological approach is presented in Figure 3. Our Code
Generator reads the CIM UML specification. From
the CIM UML specification, we generate the CIM
object model, comprising the C# CIM classes. Code-
DOM framework has been used in developing the gen-
erator [13]. Next, the XML files are generated to spec-
ify ORM of the CIM object model. The XML ORM
specification is created in accordance to the approach
already presented in the previous step. Finally, having
the object model and ORM specification, an active da-
tabase is created by using the ORM framework NHi-
bernate. The history elements, presented as the ‘C#
CIM history classes’ and ‘XML ORM history specifi-
cation’ in Figure 3, are explained in the next section.
The Code Generator is used to create database proce-
dures in a way to fully utilize provided mechanisms
of a selected DBMS. Stored procedures are generat-
ed for inserting new element into a concrete table.
Firstly, data are inserted into parent tables (keys
only), and after that into a corresponding concrete ta-
ble. Through update procedures, data are updated in
concrete tables only. Finally, by deletion procedures,
rows are firstly deleted from concrete tables, and then
from all its parent tables. By using database stored
procedures, we gain on speed, and simplify the way
we communicate with the selected DBMS.
By the design of the active database, we provide the
possibility to write queries with no JOIN clauses for
reads and updates, which is important in accessing

Figure 3
The development process

325Information Technology and Control 2017/3/46

the latest states in power calculations like load flow.
A similar approach is applied in [10], where time per-
formances are significantly improved.
To provide the track of changes on a model instance,
restoring the model instances, usage of history data
for analysis, statistics or some other calculations, the
active model has to be extended. Such extensions are
discussed in the next section, in the scope of the sec-
ond phase of our approach.

5. Historical model
In this section, the second phase of our methodologi-
cal approach is presented. The historical model (Fig-
ure 4) is presented, through which the states of CIM
instances are recorded. The historical model is an
extension of the active model, where we track chang-
es for concrete tables of the active model. We do not
track changes on abstract tables, since all the needed
data are in concrete tables. By means of the historical
model, we implement a historical database.

Figure 4
A database schema of the Historical model

In this phase of our methodological approach, the prima-
ry goal is to provide tracking changes of CIM instances,
as well as a way to restore model instances to a select-
ed state before some change has been performed. To
achieve the goal, this phase of our approach is divided
into four steps.
The first step is to create the structure for tracking
changes made on a single element from active model.

In the second step, we create the structure for track-
ing changes made simultaneously on a group of ele-
ments. After that, we discuss prerequisites to restore
a model instance to some previous state in more de-
tail. In the third step, we provide a structure that is
used to restore model instances. The final, fourth step
is to implement a historical database. In the following
text, we elaborate each of the steps in more details.
We describe the historical model, and how it is used
for tracking changes. In Figure 4, an excerpt of the
active and historical model is shown. For tracking
changes on each concrete table from active model,
we create a new history table, where we store previ-
ous states for each concrete class. For the table that
represents the Substation class, a Substation History
Table is created (SUBSTATION_H). All history tables
have a surrogate primary key from BASE_OBJECT_H
table that represents Base Object History class, which
has a foreign key from table representing Base Object
class. The active and historical models are connected
via BASE_OBJECT and BASE_OBJECT_H tables.
Base Object History stores information of what ac-
tion was made, Insert, Update or Delete. Before some
action is performed to an element of active database,
its state is recoded by creating a new record in corre-
sponding history table. We call those records history
elements. Having only history tables, we provide the
possibility to track changes efficiently at the level of
a sole element only. However, restoring a whole mod-
el instance to a particular point in time could be very
demanding, as all history tables are to be searched by
comparing dates and times.
In the second step, we create a structure that groups
changes made simultaneously on a group of elements.
We call such a structure difference group, and it rep-
resents the difference files, introduced in Section 3.
As presented in Figure 4, history tables are connected
to DIFFERENCE table via table BASE_OBJECT_H.
Each row in DIFFERENCE table represents one dif-
ference group. By this, history elements are grouped
into difference groups. Figure 5 illustrates the rela-
tionship between history elements and difference
groups. The elements from active database are shown
in circles (A1 to A7), above the horizontal line. Their
previous states, i.e. history elements are also shown
in circles, placed vertically below the horizontal line.
Letters I, U and D, represent actions made on them:
Insert, Update and Delete, respectively. Difference

Information Technology and Control 2017/3/46326

groups (Diff1 to Diff4) are presented with rectangles
that group history elements. By grouping history
elements into difference groups, it is easier to find
changes made simultaneously, in one transaction.
With each difference group, we also create a check-
point to which a model instance can be restored.
When restoring the model instance by application of
a group of changes, we ensure that the model instance
will remain in a valid state. For example, for a model
instance to remain in a valid state, removing one ele-
ment from the model instance requires removing all
other dependent elements. By this, in order to revert
one group of changes, there is no need to search the
complete historical database and compare all ele-
ments by date and time.
However, to restore the model instance relatively easy
and fast it is not enough to have history elements and
difference groups only. Following Figure 5, if there is
only one group (Diff1), it is easy to restore a model in-
stance to its previous state, as inserted elements need
to be removed, the edited items need to be restored,
while the ones that are deleted need to be added back.
The restoration activity is more complex as we have to
follow a longer chain of differences. For example, let us
have two difference groups, Diff1 and Diff2. For restor-
ing to a state before Diff1, the changes from Diff1 must
be reverted first, and then changes from Diff2 must be
reverted, but without overlapping history elements,
like in the case of A2. Therefore, we potentially have
to compare a large amount of data again to restore the
model instance. The more difference groups we have,
the longer it takes to restore the model instance.
In the third step, we create a structure for reverting
model instances. For this, we add is_first and is_last

Figure 5
Difference groups

flags as columns to the table representing Base Object
History. With this, for one element from active data-
base, we track which of its history elements is the first
and which is the last, respectively. Flag is_last has to
be updated when new history element is added.
Then, we create a structure that groups all previous
last changes from the historical database. We call
such a structure before group of changes. In Figure
4, BEFORE table represents before group of chang-
es. Before applying new changes, all history elements
with is_last flag are recorded into before group, and
that way connected to a difference group whose
changes are then applied. Flags is_last are updated
upon applying changes. Each difference group has its
before group.
In Figure 6, before and difference groups of changes
are shown. Before groups (Before1 to Before4) are
presented with rectangles that group key values as
references to history elements shown as squares.
Here, for difference group Diff3, its before group Be-
fore3 consists of a reference to the history element of
A1, changed in Diff1, and references to the history ele-
ments of A2, A3 and A4, changed in Diff2.
Since there are history elements A5, A6, A7 from Fig-
ure 6 that were changed later in Diff3 and Diff4, but
those changes were not covered by Before3, we also
need to include those elements, in order to restore
the model instance to the state before Diff3. There-
fore, we introduce after group of changes. It compris-

Figure 6
Before groups in squares

327Information Technology and Control 2017/3/46

es history elements, which were created after before
group of changes was formed. For one before group,
its corresponding after group includes all history el-
ements that a) have is_first flag, and b) none of their
instances are included in the before group. By using
those two conditions, we are able to retrieve history
elements without the need to search for them by com-
paring date and time. In Figure 6, for difference group
Diff3, after group consists of history elements A5 and
A6 changed in Diff3 itself, and A7, deleted in Diff4.
The element A4, changed in Diff4, was also changed
in Diff2, but contained in Before3, and therefore is not
part of after group of changes. The after group is not
represented as a separate table structure, as it is de-
fined with the is_fist flag and a before group.
At the end of this step, we join corresponding before
and after groups of changes into a slice. One slice con-
sists of before changes that are not the last, because
their states are current in active database, and after
changes that are not contained in before changes.
Those are all the needed changes we have to revert in
order to restore the model instance before any check-
point. Each difference group has its slice to undo in
order to restore a valid model instance.
In Figure 8, we can see slices presented with rectan-
gles. It is easy to notice that for restoring the model
instance to its first (initial) state, it requires the most
data to be reverted. However, if we apply slices, less
data are needed to revert latest changes.

Figure 7
Revert algorithm for a single history element

Once the slice and the model instance are retrieved
from relational DBMS, reverting individual changes
is the next step. The complete algorithm for reverting
a single element of an active model instance is shown
in Figure 7. Following the algorithm, in Table 1 we
present the possible states of a history element and
operations that are to be performed over it. In Table 1,

Table 1
Revert algorithm for a single history element

State of a history
element

Is
 fi

rs
t?

Is
 in

 a
ct

iv
e

in
st

.?

Operation to revert

In
se

rt

U
pd

at
e

D
el

et
e

A
dd

R
ev

er
t

R
em

ov
e

N
ot

hi
ng

● ⊤ ⊤ √

● ⊤ ⊥ √

● ⊥ ⊤ √

● ⊥ ⊥ √

● ⊤ or ⊥ ⊤ √

● ⊤ or ⊥ ⊥ √

● ⊤ ⊤ √

● ⊤ ⊥ √

● ⊥ ⊤ √

● ⊥ ⊥ √

Information Technology and Control 2017/3/46328

by dots ‘●’ we mark states of a history element, while
‘⊤’ and ‘⊥’ denote true and false values of decision
conditions. The symbol ‘✓’ denotes a selected oper-
ation to perform on a history element in order to get
restored model instance.

Figure 8
Slices in squares

el instance, the action ‘revert’ is performed, since
the element has been firstly deleted after slice and
then element with the same ID was added. If it does
not exist in active model instance, the action ‘add’ is
performed, since the element has been deleted after
checkpoint. If its is_first flag is set to true, and the
element exists in active model instance, the action
‘remove’ is performed, since the element has been de-
leted before and added after checkpoint. If it does not
exist in the active model instance, the action ‘do noth-
ing’ is performed, since the element has been deleted
before, added back and deleted again.
In the final, fourth step, we present the implemen-
tation of the second phase of our approach. Here for
all 200 concrete classes of the CIM model we need to
create their history classes, map them to the tables,
and create stored procedures and the appropriate API
communication layer to approach them. By our prac-
tical experience, it requires high implementation ef-
fort. Therefore, we have applied our Code Generator,
developed to support the implementation. As the his-
torical model is an extension of the active model, we
also extend the Code Generator to create a historical
database.
A development process covered by the second phase
of our approach is also presented in Figure 3. The
Code Generator reads the CIM UML specification
and generates the object model comprising C# CIM
history classes. An XML ORM history specification
is created in accordance to the approach already pre-
sented in the previous step. Finally, a historical data-
base is created by using the NHibernate ORM frame-
work.
The Code Generator is used to produce database pro-
cedures that create history elements in a historical
database, before any action is applied on the active
database. Those procedures contain the calls to the
active database procedures, explained in the previous
section. In this way, we ensure that all changes on a
CIM instance are tracked and can be reverted upon a
request.
In this section, we have presented a new approach for
storing changes made on CIM instances. It allows us
to restore the model instance before any wanted state.
To the best of our knowledge, this is a novel approach,
which introduces improvements in a design of a da-
tabase to store model instances, track changes on a
model instance and restoring it.

If a history element is in the Insert action state, its is_
first flag is set to true, and it exists in the active model
instance, the action ‘remove’ is performed, since the
element has been added after a difference checkpoint.
If it does not exist in the active model instance, the ac-
tion ‘do nothing’ is performed, since the element has
been added and deleted after a checkpoint. If the ele-
ment’s is_first flag is set to false and the element exists
in the active model instance, the action ‘revert’ is per-
formed, since the element has been added before and
changed after a checkpoint. If it does not exist in the
active model instance, the action ‘add’ is performed,
as the element has been added before and deleted af-
ter a checkpoint.
If a history element is in the Update action state, its
is_first flag is not of the importance. If it exists in
the active model instance, the action ‘revert’ is per-
formed, since the element has been edited either
before or after checkpoint. If it does not exist in the
active model instance, the action ‘add’ is performed,
since the element has been edited either before or af-
ter, and deleted after checkpoint.
If a history element is in the Delete action state, its
is_first flag is set to true, and it exists in active mod-

329Information Technology and Control 2017/3/46

6. Evaluation
To support the active and historical CIM models, we
have developed the active and historical relational da-
tabases. Tracking changes in the historical database
increases complexity. Therefore, time performances
may drop. Here we analyze how complexity affects
our relational database. Then, we discuss the usage
of our Code Generator. We present diagrams, where
horizontal axis shows a number of model elements,
while vertical axis shows time of performed opera-
tions over elements, in seconds. The tests were done
on a PC, CPU Intel Core 2 Duo E7500 2.93GHz, with
8GB RAM. Oracle Database 11g Express Edition was
used as a relational DBMS.
The operations over the elements in the active mod-
el are the most frequent. By testing the system and
calculating average time for reading and inserting
active model instances, we created diagrams shown
in Figure 9 and Figure 10, respectively. In Figure 9,
we have two functions displayed, for average time
needed for reading an active model instance from
XML file (a line with triangles) and from the active
database (a line with circles). The time needed to
complete the task linearly depends on the number
of elements. Reading active model instances is not
affected by amount of historical data. Inserting CIM
instance into a database is also linearly dependent, as
it is presented in Figure 10. For model instances, with
number of elements ranging from 500 up to 240.000,
required time is from 1.7 up to 620 seconds. However,

in comparison to saving it as XML files, it is notice-
ably slower, where required time is from 1.2 up to 2.5
seconds, for the same instances. This is due to the fact
that saving to XML files is done by serialization, while
storing to database follows a complex table structure,
as explained in Section 4.
As every change made on a model instance is tracked,
for every operation we have one more action for re-
cording a before state. Thus we create a before group
of changes. On average, changing a model instance,
with tracking history, requires only 65% more time.
Figure 11 shows the performance ratio when mod-
ifying a model instance with and without tracking
changes, which is presented with circles and trian-

Figure 10
Inserting a model into database and XML

Figure 9
Reading a model from XML and from database

Figure 11
Making changes with and without history

Information Technology and Control 2017/3/46330

gles, respectively. For saving changes to database,
with tracking history, ranging from 170 up to 86.000
elements, required time is from 2.1 up to 740 seconds.
Without tracking history, required time is from 1 up
to 475 seconds, for the same instances. When saving
to XML, required time is from 1.2 up to 4.2 seconds.
We have obtained such result by the application of our
generated stored procedures for maintaining histori-
cal model instance while working with active model
instance, as presented in Section 5. In this way, we are
using full capabilities of the relational DBMS. In our
experiments, on each model instance, various chang-
es have been made, and around 45% of all elements
in a model instance have been affected. When saving
CIM instance to the XML files, after applying chang-
es, performance is similar to that from Figure 10, be-
cause there is no tracking of changes.
To restore a model instance, as we explained in Sec-
tion 5, we must have a slice of changes. In Figure 12,
we present the results of revert operations applied on
a model instance, by means of the selected slice. Time
needed to read the current model instance is shown
with triangles, while time for its restoring is shown
with circles. Firstly, the current model instance is read
from active database, secondly a needed slice is read,
and finally the slice is applied on the model instance –
model is restored to a checkpoint of that slice. On aver-
age, after reading the model instance, 75% more time
is needed to complete the restoration. This is possible
because the time is not lost on searching for changes to
revert, but simply reading the changes from the slice
representing a corresponding checkpoint.

Now, we observe a number of lines of code being gen-
erated. In many examples, as it is in [18] and [2], it is
provided a generation of 48% and 75% of total lines of
code for their general-purpose solutions. We provide
only a generation of API communication layer and
database functions, and around 95% of total lines of
code is generated. If we would consider other appli-
cation components, this number would be smaller.
Nonetheless, we consider this as a good result, since
there is a need to provide an efficient code generator
in support of our methodological approach, which is
in many aspects relatively complex.

7. Conclusion and Future work
In this paper, we present an approach to implementa-
tion of CIM instance storage in a relational database
system, in order to provide efficient executions of op-
erations over model instances stored in the database.
In our approach, we support both active and historical
models of power grids. Thus, track change and restore
operations, as complex and demanding in practice, are
fully supported. In addition, we have developed a code
generator to support an easy and efficient adaptation
of the implemented database system to constantly
emerging CIM changes. Finally, we have evaluated our
system by measuring times needed to perform opera-
tions of saving a CIM instance, its reading, changing
(with and without tracking changes), and restoring. By
this, we believe that we may contribute to a wider ac-
ceptance of CIM in power grid networks.
Our future research will include: (i) development of
a data warehouse system for reporting and data anal-
ysis; (ii) improving the code generator to include a
component for graphical representation of CIM in-
stances and all states of CIM instances stored in the
database system; and (iii) improving a code generator
to provide a wider selection of implementation plat-
forms, including various DBMSs.

Acknowledgments
The research presented in this paper was supported
by the Ministry of Education, Science, and Techno-
logical Development of the Republic of Serbia under
Grant III-44010.

Figure 12
Reading from database and restoring the model

331Information Technology and Control 2017/3/46

References
1. Ablonskis, L., Nemuraitė, L. Discovery of Model Imple-

mentation Patterns in Source Code. Information Tech-
nology and Control, 2010, 39(1), 68-76.

2. Antović, I., Vlajić, S., Milić, M., Savić, D., Stanojević, V.
Model and Software Tool for Automatic Generation of
User Interface Based on Use Case and Data Model. IET
Software, 2012, 6(6), 1-15.

3. Armonas, A., Nemuraitė, L. Pattern Based Generation
of Full-Fledged Relational Schemas from UML/OCL
Models. Information Technology and Control, 2006,
35(1), 27-33.

4. Atkinson, C., Kuhne, T. Model-Driven Development:
A Metamodeling Foundation. IEEE Software, 2003,
20(5), 36-41. https://doi.org/10.1109/MS.2003.1231149

5. Bezivin, J., Gerbe, O. Towards a Precise Definition of
the OMG/MDA Framework. Proceedings of the 16th
Annual International Conference on Automated Soft-
ware Engineering (ASE), 2001, 273-280. https://doi.
org/10.1109/ASE.2001.989813

6. Britton, J. P., Brown, P., Moseley, J., Bunda, M. Opti-
mizing Operations with CIM: Today’s Grid Relies on
Network Analysis (and a Lot of Data). IEEE Power
and Energy Magazine, 2016, 14(1), 48-57. https://doi.
org/10.1109/MPE.2015.2481783

7. Britton, J. P., deVos, A. N. CIM-Based Standards and
CIM Evolution. IEEE Transactions on Power Systems,
2005, 20(2), 758-764. https://doi.org/10.1109/TP-
WRS.2005.846202

8. Capko, D., Erdeljan, A., Vukmirovic, S., Lendak, I. A Hy-
brid Genetic Algorithm for Partitioning of Data Model
in Distribution Management Systems. Information
Technology and Control, 2011, 40(4), 316-322. https://
doi.org/10.5755/j01.itc.40.4.981

9. Darwen, H. The Relational Model: Beginning of an Era.
IEEE Annals of the History of Computing, 2012, 34(4),
30-37. https://doi.org/10.1109/MAHC.2012.50

10. Dević, S., Atlagić, B., Gorečan, Z. Database Modelling
and Development of Code Generator for Handling Pow-
er Grid CIM Models. ICEST Conference, 2011.

11. ENTSO-E. Common Grid Model Exchange Standard
(CGMES) – Based on IEC Common Information Model,
version 2.4, August 2014.

12. Fertalj, K., Kalpic, D., Mornar, V. Source Code Generator
Based on a Proprietary Specification Language. Pro-
ceedings of the 35th Annual Hawaii International Con-

ference on System Sciences (HICSS), 2002. https://doi.
org/10.1109/HICSS.2002.994498

13. Hazzard, K., Bock, J. Metaprogramming in. NET. Man-
ning Publications, 2013.

14. Henthorne, C., Tilevich, E. Code Generation on Ste-
roids: Enhancing COTS Code Generators Via Gen-
erative Aspects. Second International Workshop on
Incorporating COTS Software into Software Systems:
Tools and Techniques (IWICSS ‘07), 2007.https://doi.
org/10.1109/IWICSS.2007.4

15. IEC 61970 Energy Management System Application
Program Interface (EMS-API) – Part 301: Common
Information Model (CIM) Base. IEC, Edition 2.0, 2007.

16. Ivanov, C., Chury, D. European Electric Power System
on the Way Towards Implementation of CIM Based
Data Exchange Format. IEEE Power & Energy Society
General Meeting (PES ‘09), 2009.

17. Koss, A. M. Programming on the Univac 1: A Wom-
an’s Account. IEEE Annals of the History of Com-
puting, 2003, 25(1), 48-59. https://doi.org/10.1109/
MAHC.2003.1179879

18. Kundu, D., Samanta, D. Mall R. Automatic Code Gen-
eration from Unified Modelling Language Sequence
Diagrams. IET Software, 2013, 7(1), 12-28. https://doi.
org/10.1049/iet-sen.2011.0080

19. Leavitt, N. Will NoSQL Databases Live Up to Their
Promise? Computer, 2010, 43(2), 12-14. https://doi.
org/10.1109/MC.2010.58

20. Lendak, I. I., Erdeljan, A. M., Popović, D. S. Algorithm
for Cataloging Topologies in the Common Information
Model (CIM). Computers and Mathematics with Appli-
cations, 2011, 61(3), 715-721. https://doi.org/10.1016/j.
camwa.2010.12.021

21. Levy, L. S. A Metaprogramming Method and Its Eco-
nomic Justification. IEEE Transactions on Software
Engineering, 1986, SE-12(2), 272-277. https://doi.
org/10.1109/TSE.1986.6312943

22. Ma, K., Yang, B., Abraham, A. A Template-Based Model
Transformation Approach for Deriving Multi-Tenant
SaaS Applications. Acta Polytechnica Hungarica, 2012,
9(2), 25-41.

23. Nayak, A., Poriya, A., Poojary, D. Type of NOSQL Data-
bases and Its Comparison with Relational Databases.
International Journal of Applied Information Systems,
2013, 5(4), 16-19.

Information Technology and Control 2017/3/46332

24. Nedić, N., Švenda, G. Workflow Management System for
DMS. Information Technology and Control, 2013, 42(4),
373-385. https://doi.org/10.5755/j01.itc.42.4.4546

25. Nguyen, V. C., Qafmolla, X., Richta, K. Domain Specif-
ic Language Approach on Model-Driven Development
of Web Services. Acta Polytechnica Hungarica, 2014,
11(8), 121-138.

26. Pradeep, Y., Seshuraju, P., Khaparde, S. A., Joshi, R.
K. CIM-Based Connectivity Model for Bus-Branch
Topology Extraction and Exchange. IEEE Transac-
tions on Smart Grid, 2011, 2(2), 244-253. https://doi.
org/10.1109/TSG.2011.2109016

27. Ravikumar, G., Khaparde, S. A., Pradeep, Y. CIM Orient-
ed Database for Topology Processing and Integration of
Power System Applications. Power and Energy Society
General Meeting (PES), 2013. https://doi.org/10.1109/
PESMG.2013.6672164

28. Schulte, S., Berbner, R., Steinmetz, R., Uslar, M. Im-
plementing and Evaluating the Common Information
Model in a Relational and RDF-Based Database. Infor-
mation Technologies in Environmental Engineering,
Environmental Science and Engineering, 2007, 109-
118. https://doi.org/10.1007/978-3-540-71335-7_13

Summary / Santrauka

The ongoing development of a complex model for power grid networks, based on the Common Information
Model (CIM), is dealing with design, operability and exchange of data among various power grid operators.
This paper presents a methodological approach to development of a database that supports an easy storing and
managing of active CIM instances, as well as their historical versions. To facilitate the implementation of the
proposed approach, we apply a paradigm of automatic programming. Our code generator eases the work on de-
veloping an API communication layer over the database and allows faster response on CIM changes. Finally, we
present a performance cost analysis on test models. By this, our intention is to contribute to a wider acceptance
of CIM in power grid networks.

Nenutrūkstamas kompleksinio elektros energijos tinklų modelio vystymas, pagrįstas Bendruoju informaci-
jos modeliu (CIM), siekia patobulinti modelio dizainą ir veiksmingumą bei duomenų keitimąsi tarp energijos
tinklų operatorių. Straipsnyje pristatomas metodologinis duomenų bazės, palaikančios nesudėtingus aktyvių
CIM kaupimo ir valdymo atvejus ir jų istorines versijas, sukūrimo būdas. Siekdami palengvinti siūlomo metodo
įgyvendinimą, autoriai taiko automatinio programavimo paradigmą. Jų kodų generatorius palengvina darbą
kuriant API ryšių sluoksnį per duomenų bazę ir leidžia greičiau reaguoti į CIM pokyčius. Galiausiai pristatoma
ir bandomųjų modelių našumo sąnaudų analizė. Straipsnio autoriai siekia prisidėti prie platesnio CIM taikymo
elektros energijos tinkluose.

