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Homomorphic signature schemes provide a feasible solution to the authenticity of computations on an un-
trusted server (e.g. cloud). In a homomorphic signature scheme, given a k -length message set },,,{ 21 kµµµµ =
and its corresponding signed dataset },,,{ 21 kδδδδ = , anyone can publicly perform homomorphic computa-
tions and produce a new signature 'δ  for the messages ),,,( 21

'
kf µµµµ = , where f  is a function or a circuit. 

If the generated homomorphic signature 'δ is valid, then the owner of the dataset (e.g. cloud users) convinces 
that 'µ  is indeed the correct output of the function f  over the original messages even if he/she forgets them. In 
this work, the main contribution is to build a bridge between the leveled Fully Homomorphic Signature Scheme 
(FHSS) and Homomorphic Chameleon Hash Function (HCHF), which is a new cryptographic primitive in-
troduced by us based on prior works. We first present the definition and specific construction of HCHF and 
then use this forceful technique to construct leveled fully homomorphic signature schemes for any polynomi-
al-depth circuit. In our standard model scheme, the size of evaluated homomorphic signature grows polyno-
mially in the depth of the circuit. The security of our scheme is based on the property of collision resistance of 
HCHF, which can be reduced to the Small Integer Solution (SIS) in hard random lattices.
KEYWORDS: homomorphic signature schemes, chameleon hash functions, small integer solution, lattice.
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Introduction
Compared to some traditional number-theoretic 
primitives (e.g., factoring problem, discrete logarithm 
problem), the lattice-based cryptography has the fol-
lowing advantages: i) It is conceptual simple and can 
be efficient implemented; ii) It can resist so far to 
quantum cryptanalysis; iii) The lattice-based scheme 
enjoys the worst case complexity, i.e., any random in-
stance is indeed asymptotically hard [4,22]. Due to 
these attractive and distinguishing features, lattice 
has been widely used to construct a large number of 
cryptographic schemes. Lattice-based cryptography 
can be used for constructing versatile theoretical ap-
plications ranging from functional encryption [2-3, 
6, 9], to fully homomorphic encryption [11, 17-18, 25], 
and much more [7, 8, 19, 21].
Cloud computing enables users to store sensitive data 
in the untrusted sever and sometimes the untrusted 
cloud requires to perform computations on them. The 
privacy of data and the authentication of computation 
are two key secure challenges in this field. Homomor-
phic encryption schemes [11, 17-18,25] can maintain 
the privacy of user’s data by encrypting them and 
the server can also homomorphic perform compu-
tations over the ciphertexts. In this paper, we only 
focus on the authenticity of homomorphic computa-
tion through the notion of homomorphic signatures. 
In a homomorphic signature scheme, given a signed 
dataset vector δ and its corresponding message vec-
tor μ, anyone can homomorphically compute and pro-
duce a new signature δ´ for a message μ´and a circuit 
C. Given the public parameters and the tuple (C, μ´, 
δ´), anyone can verify that δ´ is indeed the signature 
of the message μ´. Note that the verification proce-
dure can be performed without knowing the original 
dataset μ. In recent years, some homomorphic sig-
nature schemes have been proposed [7, 8, 10, 16, 26]. 
However, many prior works have many drawbacks. 
In particular, some of them are only homomorphic 
for linear functions [7, 16, 26] and the security proofs 
of several schemes are in the random oracle model 
[7, 16]. In 2011, Boneh and Freeman [7] introduced a 
linearly homomorphic signature scheme that authen-
ticates vector subspaces of a given ambient space. In 
the same year, they presented a general definition of 
homomorphic signatures, and constructed the first 
homomorphic signature scheme which can compute 

arbitrary polynomial functions over signed data [8]. 
In fact, if we translate these functions to the circuits, 
then the size of evaluated signatures can grow expo-
nentially in the depth of the circuits. Furthermore, 
the construction is based on the SIS problem in ideal 
lattice. Recently, Boyen et al. presented the first adap-
tively secure fully homomorphic signature scheme 
that can evaluate any circuit over signed data [10].
Chameleon hash function, related to the notion of 
non-interactive chameleon commitment schemes, 
was originally introduced by Brassard et al. [12]. 
Roughly speaking, a chameleon trapdoor hash func-
tion is a collision-resistance function with chame-
leon property, i.e., the holder of the trapdoor can eas-
ily find collisions for every input. In addition, anyone 
can compute the hash function using public parame-
ters and the resulting probability distribution is sta-
tistically close to uniform over the range. Chameleon 
hash functions have been proven to be an extremely 
useful tool in many scenarios, especially in signature 
schemes. Mohassel showed a general construction 
for transforming any chameleon hash function to a 
strongly unforgeable one-time signature scheme [23]. 
Recently, Micciancio and Peikert [21] proposed a sig-
nature scheme with short parameters and proved its 
security with strong unforgeability under static cho-
sen-message attack (su-scma). Krawczyk and Rabin 
[20] showed that there is a generic transformation 
from su-scma to su-acma (strong unforgeability un-
der adaptive chosen-message attack) security using a 
family of chameleon hash functions.
The main contribution of this work is to build a bridge 
between FHSS and Homomorphic Chameleon Hash 
Function (HCHF). In [13], Cash et al. straightfor-
wardly presented a simple chameleon hash function 
using the preimage sampleable function under stan-
dard lattice assumption. Along this line of work, we 
give the definition of HCHF and present a family of 
HCHFs, which is based on the SIS problem in hard 
random lattices. After that, we construct a leveled ful-
ly homomorphic signature scheme using the HCHF 
tool. Similar to [1], we use the SampleLeft algorithm 
to extract signatures in real scheme and use the Sam-
pleRight algorithm to response the adversary’s sig-
nature queries in the simulation game. The construc-
tion is straightforward and the security of our scheme 
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is based on the property of collision resistance of 
HCHF. In fact, our scheme is homomorphic for any 
function, and not like those ones in [7, 16, 26] just for 
linear function. Unlike several recent homomorphic 
signature schemes [7-8, 16], our scheme is secure in 
the standard model. These results show that our ho-
momorphic scheme is attractive.
The remainder of this paper is organized in the fol-
lowing manner. We mainly introduce some basic 
knowledge about lattice and homomorphic signature 
scheme in section 2. In section 3 we focus on the defi-
nition of HCHF and the specific construction from 
the standard SIS problem. We describe our homo-
morphic signature scheme, and provide the parame-
ters setting and security analysis in section 4. Section 
5 presents the comparison between our scheme and 
some classical homomorphic signature schemes. Fi-
nally, we draw our conclusions in section 6.

Preliminaries

Notation
For any positive integer q , we denote the set 

},,2,1{ q  by ][q  and let Zq denote the integer ring 
which represents as integers in )2/,2/( qq− . Vectors 
are assumed to be in column form and are written us-
ing bold lower-case letters (e.g. x ). Similarly, we use 
bold capital-case letters (e.g. A ) to represent matri-
ces. 
Given two matrices A1∈Zq

n×m1

 and A2∈Zq
n×m2 , we use

][ 21 AA  to denote the )( 21 mmn +×  matrix formed by 
concatenating 1A  and 2A . For a matrix A∈Zq

n×m, let As
denote the maximal singular values of A  and use A  
to denote the maximum norm of column vector of the 
matrix A , i.e., }{max imi aA ∈= , where ia  is the col-
umn vector of A .
We denote a negligible function )(nf  by )(nnegl  if 
it is )( cno − for any fixed constant c . We say )(nf  is 
polynomial if it is )( cnO  for any fixed constant c , and 
we use )(npoly  to denote it. Given two distributions 
X and Y  over a countable domain Z , the statistical 

distance between them is defined as

∑
∈

−=∆
Zz

zYzX )()(
2
1

(1)

The min-entropy of a random variable X  is denot-
ed by Pr[log(max)( x  XXH Xx =−= ∈∞ ]) . Given two 
random variables X  and Y , the average min-en-
tropy of X  conditioned on (correlated) variable Y  
is defined as

]))Pr[(maxlog()(~ yYxXYXH XxYy ==−= ∈←∞ E (2)

Lemma 1[14]  Given two random variables X  and Y , let 
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grow exponentially in the depth of the circuits. Fur-
thermore, the construction is based on the SIS prob-
lem in ideal lattice. Recently, Boyen et al. presented
the first adaptively secure fully homomorphic signa-
ture scheme that can evaluate any circuit over signed
data [17].

Chameleon hash function, related to the notion
of non-interactive chameleon commitment schemes,
was originally introduced by Brassard et al. [18].
Roughly speaking, a chameleon trapdoor hash func-
tion is a collision-resistance function with chameleon
property, i.e., the holder of the trapdoor can easily
find collisions for every input. In addition, anyone
can compute the hash function using public param-
eters and the resulting probability distribution is sta-
tistically close to uniform over the range. Chameleon
hash functions have been proven to be an extremely
useful tool in many scenarios, especially in signature
schemes. Mohassel [19] showed a general construc-
tion for transforming any chameleon hash function
to a strongly unforgeable one-time signature scheme.
Recently, Micciancio and Peikert [12] proposed a
signature scheme with short parameters and proved
its security with strong unforgeability under static
chosen-message attack (su-scma). Krawczyk and Ra-
bin [20] showed that there is a generic transformation
from su-scma to su-acma (strong unforgeability un-
der adaptive chosen-message attack) security using a
family of chameleon hash functions.

The main contribution of this work is to build a
bridge between FHSS and Homomorphic Chameleon
Hash Function (HCHF). In [21], Cash et al. straight-
forwardly presented a simple chameleon hash func-
tion using the preimage sampleable function under s-
tandard lattice assumption. Along this line of work,
we give the definition of HCHF and present a family
of HCHFs, which is based on the SIS problem in hard
random lattices. After that, we construct a leveled ful-
ly homomorphic signature scheme using the HCHF
tool. Similar to [23], we use the SampleLeft algo-
rithm to extract signatures in real scheme and use the
SampleRight algorithm to response the adversary’s
signature queries in the simulation game. The con-
struction is straightforward and the security of our
scheme is based on the property of collision resis-
tance of HCHF. In fact, our scheme is homomorphic
for any function, and not like those ones in [13,15-
16] just for linear function. Unlike several recent ho-
momorphic signature schemes [13–15], our scheme is
secure in the standard model. These results show that
our homomorphic scheme is attractive.

The remainder of this paper is organized in the
following manner. We mainly introduce some basic
knowledge about lattice and homomorphic signature

scheme in section 2. In section 3 we focus on the def-
inition of HCHF and the specific construction from
the standard SIS problem. We describe our homo-
morphic signature scheme, and provide the parame-
ters setting and security analysis in section 4. Section
5 presents the comparison between our scheme and
some classical homomorphic signature schemes. Fi-
nally, we draw our conclusions in section 6.

2. Preliminaries

2.1. Notation

For any positive integer q, we denote the set
{1, 2, · · · , q} by [q] and let Zq denote the integer ring
which represents as integers in (−q/2, q/2]. Vectors
are assumed to be in column form and are written us-
ing bold lower-case letters (e.g. x). Similarly, we use
bold capital-case letters (e.g. A) to represent matrices.
Given two matrices A1 ∈ Zn×m1

q and A2 ∈ Zn×m2
q ,

we use [A1‖A2] to denote the n × (m1 + m2) ma-
trix formed by concatenating A1 and A2. For a ma-
trix A ∈ Zn×m

q , let sA denote the maximal singu-
lar values of A and use ‖A‖ to denote the maxi-
mum norm of column vector of the matrix A, i.e.,
‖A‖ = max

i∈[m]
{‖ai‖}, where ai is the column vector

of A.
We denote a negligible function f(n) by negl(n)

if it is o(n−c) for any fixed constant c. We say
f(n) is polynomial if it is O(nc) for any fixed con-
stant c, and we use poly(n) to denote it. Given t-
wo distributions X and Y over a countable domain
Z, the statistical distance between them is defined
as ∆ = 1

2

∑
z∈Z

|X(z) − Y (z)|. The min-entropy

of a random variable X is denoted by H∞(X) =
− log(max

x∈X
Pr[X = x]). Given two random variables

X and Y , the average min-entropy of X conditioned
on (correlated) variable Y is defined as H̃∞(X|Y ) =
− log(Ey←Y (max

x∈X
Pr[X = x|Y = y])).

Lemma 1 ([25]). Given two random variables X and
Y , let Y be the support of Y . Then H̃∞(X|Y ) �
H∞(X)− log(|Y|).

2.2. Lattices and SIS problem

Generally speaking, a lattice is a discrete ad-
ditive subgroup of Rn. A (full rank) lattice Λ can
be viewed as the set of all integer linear combina-
tions of n linearly independent basis vectors B =
{b1, b2, · · · , bn}. Using the matrix notation,

Λ = L(B) = {Bc =
∑
i∈[n]

cibi : c ∈ Zn}. (1)

  be the support of Y . Then

)log()()(~ Ψ−≥ ∞∞ XHYXH (3)

Lattices and SIS problem
Generally speaking, a lattice is a discrete additive sub-
group of  
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A family of lattices, called as q-ary lattices, is of
particular interest to many cryptographic application-
s.

Definition 1 (q-ary lattices). For any positive integers
n,m, q(m � n), let A ∈ Zn×m

q be a matrix. Define
the following m-dimensional q-ary lattices:

Λ(At) = {z ∈ Zm|∃ c s.t. z = Atc mod q}; (2)

Λ⊥(A) = {z ∈ Zm|Az = 0 mod q}. (3)

For any v ∈ Zn
q admitting an integral solution x ∈ Zm

to Ax = v mod q, define the shifted lattice as

Λ⊥
v (A) = {z ∈ Zm|Az = v mod q}. (4)

Definition 2 (Gaussian function). For any real s > 0
and any c ∈ Rn, the n-dimensional Gaussian function
ρs,c(x) is defined as

ρs,c(x) = exp(−π
‖x − c‖2

s2
), (5)

where x is a n-dimensional vector in Rn.

Definition 3 (Discrete Gaussian distribution). For
any real s > 0, any c ∈ Rn, and an n-dimensional lat-
tice Λ, the discrete Gaussian distribution DΛ,s,c over
Λ is defined as

DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

, (6)

where x is a vector in Λ. We omit s and c when they
are taken to be 1 and 0, respectively.

Definition 4 (Small integer solution (SIS)). Given
positive integers n,m, q, a real constant β and a ma-
trix A ∈ Zn×m

q (m � n), find a nonzero vector
u ∈ Zm so that Au = 0 mod q and ‖u‖ � β.

In fact, the SIS(n,m, q, β) problem is equiva-
lent to find a short nonzero vector ‖u‖ � β in
the lattice Λ⊥(A). Micciancio and Regev [2] showed
that the worst case of various promise problems (e.g.
GapSV P,GapCV P ) can be reduced to the average
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

1. The TrapGen randomly outputs a parity check
matrix A ∈ Zn×m

q and a trapdoor short basis TA for
Λ⊥(A) so that the output distribution of A is statisti-
cally close to uniform over Zn×m

q .
2. The SampleDom produces a matrix U with

‖U‖ � s
√
m whose column vector is sampled from

DZm,s, where s � w(
√
logm). The output distribu-

tion V = AU is statistically close to uniform over
Zn×m
q .

3. Given a matrix A ∈ Zn×m
q together with it-

s trapdoor TA ∈ Zm×m, and a matrix V ∈ Zn×m
q ,

the SamplePre outputs a matrix U ∈ Zm×m
q with

the conditional distribution of U ← SampleDom
so that AU = V and ‖U‖ � s

√
m , where s �

‖T̃A‖w(
√
logm).

We also need two classic sampling algorithms
[21,23] (see Algorithm 1 and Algorithm 2). Essential-
ly, the algorithm SampleLeft will be used in real sig-
nature system, and the algorithm SampleRight will
be used to exact signatures for adversary’s queried
messages in the simulation game.

Algorithm 1 SampleLeft(A, B, TA, v, s)
Require:

1. A random matrix A ∈ Zn×m1
q with rank n and a matrix

B ∈ Zn×m2
q ;

2. A relatively "short" trapdoor basis TA of Λ⊥
q (A) and a vector

u ∈ Zn
q ;

3. A Gaussian parameter s � ‖T̃A‖w(
√

log(m1 +m2));
Ensure: A vector u ∈ Zm1+m2 sampled from a distribution sta-

tistically close to DΛv
q(A‖B),s.

Algorithm 2 SampleRight(A, B, C, TB, v, s)
Require:

1. A matrix A ∈ Zn×l
q and a matrix C ∈ Zl×m;

2. A matrix B ∈ Zn×m
q and the associated "short" basis TB of

Λ⊥
q (B);

3. A gaussian parameter s > ‖T̃B‖sCw(
√
logm), where sC is

the maximal singular value of C.
Ensure: A vector u ∈ Zm+l sampled from a distribution statisti-

cally close to DΛv
q(A‖AC+B),s.

2.4. Homomorphic Signature Scheme: Definition
and Security

Throughout this paper, let λ be the security pa-
rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

. A (full rank) lattice Λ  can be viewed as 
the set of all integer linear combinations of n  linear-
ly independent basis vectors },,,{ 21 nbbbB = . Using 
the matrix notation,

Λ = L(B) = {Bc =
∑
i∈[n]

cibi : c ∈ Zn}. (4)

A family of lattices, called as q -ary lattices, is of 
particular interest to many cryptographic applica-
tions. 
Definition  1 ( q -ary lattices). For any positive 
integers )(,, nmqmn ≥ , let mn

q
×∈ZA  be a matrix. De-

fine the following m -dimensional q -ary lattices:

mod..{)( q    ts tmt cAzczA =∃∈=Λ Z }; (5)

9 

}.mod{)( qm 0AzzA                  (6) 

}.mod{)( qm vAzzAv                (7) 

,

),/exp()( 22
, ss cxxc                (8) 

),(/)()( ,,,,  ccc xx sssD                      (9) 

 

(6)

For any n
qZ∈v  admitting an integral solution mZ∈x

to qmodv=Ax , define the shifted lattice as

9 

}.mod{)( qm 0AzzA                  (6) 

}.mod{)( qm vAzzAv                (7) 

,

),/exp()( 22
, ss cxxc                (8) 

),(/)()( ,,,,  ccc xx sssD                      (9) 

 

(7)

Definition 2 (Gaussian function). For any real 0>s
and any 
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q be a matrix. Define
the following m-dimensional q-ary lattices:
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), (5)
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q and a trapdoor short basis TA for
Λ⊥(A) so that the output distribution of A is statisti-
cally close to uniform over Zn×m

q .
2. The SampleDom produces a matrix U with

‖U‖ � s
√
m whose column vector is sampled from

DZm,s, where s � w(
√
logm). The output distribu-

tion V = AU is statistically close to uniform over
Zn×m
q .

3. Given a matrix A ∈ Zn×m
q together with it-

s trapdoor TA ∈ Zm×m, and a matrix V ∈ Zn×m
q ,

the SamplePre outputs a matrix U ∈ Zm×m
q with

the conditional distribution of U ← SampleDom
so that AU = V and ‖U‖ � s

√
m , where s �

‖T̃A‖w(
√
logm).

We also need two classic sampling algorithms
[21,23] (see Algorithm 1 and Algorithm 2). Essential-
ly, the algorithm SampleLeft will be used in real sig-
nature system, and the algorithm SampleRight will
be used to exact signatures for adversary’s queried
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Algorithm 1 SampleLeft(A, B, TA, v, s)
Require:

1. A random matrix A ∈ Zn×m1
q with rank n and a matrix

B ∈ Zn×m2
q ;
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q ;
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√
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the maximal singular value of C.
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Throughout this paper, let λ be the security pa-
rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

, the n -dimensional Gaussian function
)(, xcsρ  is defined as

9 

}.mod{)( qm 0AzzA                  (6) 

}.mod{)( qm vAzzAv                (7) 

,

),/exp()( 22
, ss cxxc                (8) 

),(/)()( ,,,,  ccc xx sssD                      (9) 

 

(8)
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trix A ∈ Zn×m

q (m � n), find a nonzero vector
u ∈ Zm so that Au = 0 mod q and ‖u‖ � β.

In fact, the SIS(n,m, q, β) problem is equiva-
lent to find a short nonzero vector ‖u‖ � β in
the lattice Λ⊥(A). Micciancio and Regev [2] showed
that the worst case of various promise problems (e.g.
GapSV P,GapCV P ) can be reduced to the average
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

1. The TrapGen randomly outputs a parity check
matrix A ∈ Zn×m

q and a trapdoor short basis TA for
Λ⊥(A) so that the output distribution of A is statisti-
cally close to uniform over Zn×m

q .
2. The SampleDom produces a matrix U with

‖U‖ � s
√
m whose column vector is sampled from

DZm,s, where s � w(
√
logm). The output distribu-

tion V = AU is statistically close to uniform over
Zn×m
q .

3. Given a matrix A ∈ Zn×m
q together with it-

s trapdoor TA ∈ Zm×m, and a matrix V ∈ Zn×m
q ,

the SamplePre outputs a matrix U ∈ Zm×m
q with

the conditional distribution of U ← SampleDom
so that AU = V and ‖U‖ � s

√
m , where s �

‖T̃A‖w(
√
logm).

We also need two classic sampling algorithms
[21,23] (see Algorithm 1 and Algorithm 2). Essential-
ly, the algorithm SampleLeft will be used in real sig-
nature system, and the algorithm SampleRight will
be used to exact signatures for adversary’s queried
messages in the simulation game.

Algorithm 1 SampleLeft(A, B, TA, v, s)
Require:

1. A random matrix A ∈ Zn×m1
q with rank n and a matrix

B ∈ Zn×m2
q ;

2. A relatively "short" trapdoor basis TA of Λ⊥
q (A) and a vector

u ∈ Zn
q ;

3. A Gaussian parameter s � ‖T̃A‖w(
√

log(m1 +m2));
Ensure: A vector u ∈ Zm1+m2 sampled from a distribution sta-

tistically close to DΛv
q(A‖B),s.

Algorithm 2 SampleRight(A, B, C, TB, v, s)
Require:

1. A matrix A ∈ Zn×l
q and a matrix C ∈ Zl×m;

2. A matrix B ∈ Zn×m
q and the associated "short" basis TB of

Λ⊥
q (B);

3. A gaussian parameter s > ‖T̃B‖sCw(
√
logm), where sC is

the maximal singular value of C.
Ensure: A vector u ∈ Zm+l sampled from a distribution statisti-

cally close to DΛv
q(A‖AC+B),s.

2.4. Homomorphic Signature Scheme: Definition
and Security

Throughout this paper, let λ be the security pa-
rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

.
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grow exponentially in the depth of the circuits. Fur-
thermore, the construction is based on the SIS prob-
lem in ideal lattice. Recently, Boyen et al. presented
the first adaptively secure fully homomorphic signa-
ture scheme that can evaluate any circuit over signed
data [17].

Chameleon hash function, related to the notion
of non-interactive chameleon commitment schemes,
was originally introduced by Brassard et al. [18].
Roughly speaking, a chameleon trapdoor hash func-
tion is a collision-resistance function with chameleon
property, i.e., the holder of the trapdoor can easily
find collisions for every input. In addition, anyone
can compute the hash function using public param-
eters and the resulting probability distribution is sta-
tistically close to uniform over the range. Chameleon
hash functions have been proven to be an extremely
useful tool in many scenarios, especially in signature
schemes. Mohassel [19] showed a general construc-
tion for transforming any chameleon hash function
to a strongly unforgeable one-time signature scheme.
Recently, Micciancio and Peikert [12] proposed a
signature scheme with short parameters and proved
its security with strong unforgeability under static
chosen-message attack (su-scma). Krawczyk and Ra-
bin [20] showed that there is a generic transformation
from su-scma to su-acma (strong unforgeability un-
der adaptive chosen-message attack) security using a
family of chameleon hash functions.

The main contribution of this work is to build a
bridge between FHSS and Homomorphic Chameleon
Hash Function (HCHF). In [21], Cash et al. straight-
forwardly presented a simple chameleon hash func-
tion using the preimage sampleable function under s-
tandard lattice assumption. Along this line of work,
we give the definition of HCHF and present a family
of HCHFs, which is based on the SIS problem in hard
random lattices. After that, we construct a leveled ful-
ly homomorphic signature scheme using the HCHF
tool. Similar to [23], we use the SampleLeft algo-
rithm to extract signatures in real scheme and use the
SampleRight algorithm to response the adversary’s
signature queries in the simulation game. The con-
struction is straightforward and the security of our
scheme is based on the property of collision resis-
tance of HCHF. In fact, our scheme is homomorphic
for any function, and not like those ones in [13,15-
16] just for linear function. Unlike several recent ho-
momorphic signature schemes [13–15], our scheme is
secure in the standard model. These results show that
our homomorphic scheme is attractive.

The remainder of this paper is organized in the
following manner. We mainly introduce some basic
knowledge about lattice and homomorphic signature

scheme in section 2. In section 3 we focus on the def-
inition of HCHF and the specific construction from
the standard SIS problem. We describe our homo-
morphic signature scheme, and provide the parame-
ters setting and security analysis in section 4. Section
5 presents the comparison between our scheme and
some classical homomorphic signature schemes. Fi-
nally, we draw our conclusions in section 6.

2. Preliminaries

2.1. Notation

For any positive integer q, we denote the set
{1, 2, · · · , q} by [q] and let Zq denote the integer ring
which represents as integers in (−q/2, q/2]. Vectors
are assumed to be in column form and are written us-
ing bold lower-case letters (e.g. x). Similarly, we use
bold capital-case letters (e.g. A) to represent matrices.
Given two matrices A1 ∈ Zn×m1

q and A2 ∈ Zn×m2
q ,

we use [A1‖A2] to denote the n × (m1 + m2) ma-
trix formed by concatenating A1 and A2. For a ma-
trix A ∈ Zn×m

q , let sA denote the maximal singu-
lar values of A and use ‖A‖ to denote the maxi-
mum norm of column vector of the matrix A, i.e.,
‖A‖ = max

i∈[m]
{‖ai‖}, where ai is the column vector

of A.
We denote a negligible function f(n) by negl(n)

if it is o(n−c) for any fixed constant c. We say
f(n) is polynomial if it is O(nc) for any fixed con-
stant c, and we use poly(n) to denote it. Given t-
wo distributions X and Y over a countable domain
Z, the statistical distance between them is defined
as ∆ = 1

2

∑
z∈Z

|X(z) − Y (z)|. The min-entropy

of a random variable X is denoted by H∞(X) =
− log(max

x∈X
Pr[X = x]). Given two random variables

X and Y , the average min-entropy of X conditioned
on (correlated) variable Y is defined as H̃∞(X|Y ) =
− log(Ey←Y (max

x∈X
Pr[X = x|Y = y])).

Lemma 1 ([25]). Given two random variables X and
Y , let Y be the support of Y . Then H̃∞(X|Y ) �
H∞(X)− log(|Y|).

2.2. Lattices and SIS problem

Generally speaking, a lattice is a discrete ad-
ditive subgroup of Rn. A (full rank) lattice Λ can
be viewed as the set of all integer linear combina-
tions of n linearly independent basis vectors B =
{b1, b2, · · · , bn}. Using the matrix notation,

Λ = L(B) = {Bc =
∑
i∈[n]

cibi : c ∈ Zn}. (1)
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Definition 3 (Discrete Gaussian distribution). For 
any real 0>s , any 
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A family of lattices, called as q-ary lattices, is of
particular interest to many cryptographic application-
s.

Definition 1 (q-ary lattices). For any positive integers
n,m, q(m � n), let A ∈ Zn×m

q be a matrix. Define
the following m-dimensional q-ary lattices:

Λ(At) = {z ∈ Zm|∃ c s.t. z = Atc mod q}; (2)

Λ⊥(A) = {z ∈ Zm|Az = 0 mod q}. (3)

For any v ∈ Zn
q admitting an integral solution x ∈ Zm

to Ax = v mod q, define the shifted lattice as

Λ⊥
v (A) = {z ∈ Zm|Az = v mod q}. (4)

Definition 2 (Gaussian function). For any real s > 0
and any c ∈ Rn, the n-dimensional Gaussian function
ρs,c(x) is defined as

ρs,c(x) = exp(−π
‖x − c‖2

s2
), (5)

where x is a n-dimensional vector in Rn.

Definition 3 (Discrete Gaussian distribution). For
any real s > 0, any c ∈ Rn, and an n-dimensional lat-
tice Λ, the discrete Gaussian distribution DΛ,s,c over
Λ is defined as

DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

, (6)

where x is a vector in Λ. We omit s and c when they
are taken to be 1 and 0, respectively.

Definition 4 (Small integer solution (SIS)). Given
positive integers n,m, q, a real constant β and a ma-
trix A ∈ Zn×m

q (m � n), find a nonzero vector
u ∈ Zm so that Au = 0 mod q and ‖u‖ � β.

In fact, the SIS(n,m, q, β) problem is equiva-
lent to find a short nonzero vector ‖u‖ � β in
the lattice Λ⊥(A). Micciancio and Regev [2] showed
that the worst case of various promise problems (e.g.
GapSV P,GapCV P ) can be reduced to the average
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

1. The TrapGen randomly outputs a parity check
matrix A ∈ Zn×m

q and a trapdoor short basis TA for
Λ⊥(A) so that the output distribution of A is statisti-
cally close to uniform over Zn×m

q .
2. The SampleDom produces a matrix U with

‖U‖ � s
√
m whose column vector is sampled from

DZm,s, where s � w(
√
logm). The output distribu-

tion V = AU is statistically close to uniform over
Zn×m
q .

3. Given a matrix A ∈ Zn×m
q together with it-

s trapdoor TA ∈ Zm×m, and a matrix V ∈ Zn×m
q ,

the SamplePre outputs a matrix U ∈ Zm×m
q with

the conditional distribution of U ← SampleDom
so that AU = V and ‖U‖ � s

√
m , where s �

‖T̃A‖w(
√
logm).

We also need two classic sampling algorithms
[21,23] (see Algorithm 1 and Algorithm 2). Essential-
ly, the algorithm SampleLeft will be used in real sig-
nature system, and the algorithm SampleRight will
be used to exact signatures for adversary’s queried
messages in the simulation game.

Algorithm 1 SampleLeft(A, B, TA, v, s)
Require:

1. A random matrix A ∈ Zn×m1
q with rank n and a matrix

B ∈ Zn×m2
q ;

2. A relatively "short" trapdoor basis TA of Λ⊥
q (A) and a vector

u ∈ Zn
q ;

3. A Gaussian parameter s � ‖T̃A‖w(
√

log(m1 +m2));
Ensure: A vector u ∈ Zm1+m2 sampled from a distribution sta-

tistically close to DΛv
q(A‖B),s.

Algorithm 2 SampleRight(A, B, C, TB, v, s)
Require:

1. A matrix A ∈ Zn×l
q and a matrix C ∈ Zl×m;

2. A matrix B ∈ Zn×m
q and the associated "short" basis TB of

Λ⊥
q (B);

3. A gaussian parameter s > ‖T̃B‖sCw(
√
logm), where sC is

the maximal singular value of C.
Ensure: A vector u ∈ Zm+l sampled from a distribution statisti-

cally close to DΛv
q(A‖AC+B),s.

2.4. Homomorphic Signature Scheme: Definition
and Security

Throughout this paper, let λ be the security pa-
rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

, and an n -dimensional lat-
tice Λ , the discrete Gaussian distribution c,,sDΛ  over
Λ  is defined as

9 
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,
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where x  is a vector in Λ . We omit s  and c  when 
they are taken to be 1 and 0 , respectively.
Definition 4 (Small integer solution (SIS)). Given 
positive integers ,,, qmn a real constant β  and a ma-
trix ( nmmn

q ≥∈ ×ZA ),
 find a nonzero vector ,mZ∈u  so 

that qmod0=Au  and β≤u .
In fact, the ),,,SIS( βqmn  problem is equivalent to 
find a short nonzero vector β≤u  in the lattice 

(A⊥Λ
 Micciancio and Regev showed that the worst 

case of various promise problems (e.g. GapSVP, Gap-
CVP) can be reduced to the average case of the SIS 
problem [22].

Trapdoors for lattices and sampling algorithms

Lemma 2 ([4, 19]). Given any integers ,1≥n ,2≥q
and sufficiently large )log( qnOm = , there are three 
efficient algorithms TrapGen, SampleDom and 
SamplePre having the following description:

1 The TrapGen randomly outputs a parity check 
matrix mn

q
×∈ZA

 and a trapdoor short basis TA for 
)(A⊥Λ  so that the output distribution of A  is sta-

tistically close to uniform over mn
q
×Z .

2 The SampleDom produces a matrix U  with 
ms≤U  whose column vector is sampled from 

,,smDZ where log( mws ≥  The output distribu-
tion V = AU is statistically close to uniform over

mn
q
×Z .

3 Given a matrix mn
q

×∈ZA  together with its trapdoor
,mm×

∈ZAT  and a matrix mn
q

×∈ZV , the SamplePre 
outputs a matrix mm

q
×∈ZU  with the conditional dis-

tribution of SampleDomU ←  so that AU=V and
,ms≤U where log(~ mws AT≥ ).

We also need two classic sampling algorithms [1, 13] 
(see Algorithm 1 and Algorithm 2). Essentially, the 
algorithm SampleLeft will be used in real signature 
system, and the algorithm SampleRight will be used 
to exact signatures for adversary’s queried messages 
in the simulation game.

Algorithm 1   ),,,,( svTBASampleLeft A  
Require:
1 A random matrix 1mn

q
×∈ZA  with rank n  and a ma-

trix 2mn
q

×∈ZB ;
2 A relatively “short” trapdoor basis AT  of )(A⊥Λq        

and a vector n
qZ∈u ;

3 A Gaussian parameter ))log((~
21 mmws +≥ AT ;

Ensure: A vector 21 mm +∈Zu  sampled from a distribu-
tion statistically close to
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A family of lattices, called as q -ary lattices, is of 
particular interest to many cryptographic applications.  

Definition 1 ( q -ary lattices) For any positive inte- 

gers )(,, nmqmn  , let mn
q
A be a matrix. Define 

the following m -dimensional q -ary lattices: 

};mod..{)( qts tmt cAzczA            (5) 

}.mod{)( qm 0AzzA                  (6) 

For any n
qv admitting an integral solution 

mx to qmodvAx  , define the shifted lattice as 

}.mod{)( qm vAzzAv                (7) 
Definition 2 (Gaussian function) For any real 
0s and any nc , the n -dimensional Gaussian 

function )(, xcs  is defined as 

),/exp()( 22
, ss cxxc                (8) 

where x is a n -dimensional vector in n . 
Definition 3 (Discrete Gaussian distribution) For 

any real 0s , any nc , and an n -dimensional 
lattice  , the discrete Gaussian distribution c,,sD  
over is defined as 

),(/)()( ,,,,  ccc xx sssD                      (9) 
where x is a vector in  . We omit s and c when they 
are taken to be 1 and 0 , respectively. 

Definition 4 (Small integer solution (SIS)) Given 
positive integers ,,, qmn a real constant  and a matrix 

),( nmmn
q  A find a nonzero vector ,mu so 

that qmod0Au  and u . 
In fact, the ),,,SIS( qmn problem is equivalent to 

find a short nonzero vector u in the lattice 

).(A Micciancio and Regev showed that the worst 
case of various promise problems (e.g. GapSVP, 
GapCVP) can be reduced to the average case of the 
SIS problem [22]. 

2.3. Trapdoors for lattices and sampling algorithms 

Lemma 2 ([4, 19]) Given any 
integers ,1n ,2q and sufficiently 
large )log( qnOm  , there are three effici- ent 
algorithms TrapGen, SampleDom and SamplePre 
having the following description: 
     1. The TrapGen randomly outputs a parity check 
matrix mn

q
A and a trapdoor short basis AΤ for 

)(A so that the output distribution of A is 

statistically close to uniform over mn
q
 . 

2. The SampleDom produces a matrix U with 
msU whose column vector is sampled from 

,,smD where ).log( mws  The output distribution 

AUV  is statistically close to uniform over mn
q
 . 

3. Given a matrix mn
q
A together with its 

trapdoor ,mm
 AΤ and a matrix mn

q
V , the 

SamplePre outputs a matrix mm
q
U with the 

conditional distribution of SampleDomU  so 

that VAU  and ,msU where ).log(~ mws AT  

We also need two classic sampling algorithms [1, 
13] (see Algorithm 1 and Algorithm 2). Essentially, 
the algorithm SampleLeft will be used in real 
signature system, and the algorithm SampleRight will 
be used to exact signatures for adversary's queried 
messages in the simulation game. 
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2.4. Homomorphic signature scheme: definition 
and security 

Throughout this paper, let be the security parameter. 
We denote the message space by  and let  be a 
collection of circuits which take k inputs over the 
message space and generate an output in . Boneh 
and Freeman [8] first introduced the formal definition 
of a homomorphic signature scheme for a type of 
circuit . A  -homomorphic signature scheme is a 

.

Algorithm 2   ),,,,,( svTCBAtSampleRigh B  
Require:
1 A random matrix ln

q
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2 A matrix mn
q

×∈ZB  and the "short" basis BT  of 
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A family of lattices, called as q -ary lattices, is of 
particular interest to many cryptographic applications.  

Definition 1 ( q -ary lattices) For any positive inte- 

gers )(,, nmqmn  , let mn
q
A be a matrix. Define 

the following m -dimensional q -ary lattices: 
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For any n
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mx to qmodvAx  , define the shifted lattice as 
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Definition 2 (Gaussian function) For any real 
0s and any nc , the n -dimensional Gaussian 
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Definition 3 (Discrete Gaussian distribution) For 

any real 0s , any nc , and an n -dimensional 
lattice  , the discrete Gaussian distribution c,,sD  
over is defined as 

),(/)()( ,,,,  ccc xx sssD                      (9) 
where x is a vector in  . We omit s and c when they 
are taken to be 1 and 0 , respectively. 

Definition 4 (Small integer solution (SIS)) Given 
positive integers ,,, qmn a real constant  and a matrix 

),( nmmn
q  A find a nonzero vector ,mu so 

that qmod0Au  and u . 
In fact, the ),,,SIS( qmn problem is equivalent to 

find a short nonzero vector u in the lattice 

).(A Micciancio and Regev showed that the worst 
case of various promise problems (e.g. GapSVP, 
GapCVP) can be reduced to the average case of the 
SIS problem [22]. 

2.3. Trapdoors for lattices and sampling algorithms 

Lemma 2 ([4, 19]) Given any 
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having the following description: 
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q
A and a trapdoor short basis AΤ for 

)(A so that the output distribution of A is 

statistically close to uniform over mn
q
 . 

2. The SampleDom produces a matrix U with 
msU whose column vector is sampled from 

,,smD where ).log( mws  The output distribution 
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q
 . 

3. Given a matrix mn
q
A together with its 

trapdoor ,mm
 AΤ and a matrix mn

q
V , the 

SamplePre outputs a matrix mm
q
U with the 

conditional distribution of SampleDomU  so 

that VAU  and ,msU where ).log(~ mws AT  

We also need two classic sampling algorithms [1, 
13] (see Algorithm 1 and Algorithm 2). Essentially, 
the algorithm SampleLeft will be used in real 
signature system, and the algorithm SampleRight will 
be used to exact signatures for adversary's queried 
messages in the simulation game. 
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We denote the message space by  and let  be a 
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 .

Homomorphic signature scheme: definition 
and security
Throughout this paper, let λ  be the security parame-
ter. We denote the message space by 

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 and let 

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 be 
a collection of circuits which take k  inputs over the 
message space and generate an output in 

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

. Boneh 
and Freeman [8] first introduced the formal defini-
tion of a homomorphic signature scheme for a type 
of circuit 

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 and a challenger 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
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 _ The adversary chooses (τ*, μ*, C*) as the challeng-

ed information and gives all information to the 
challenger.

 _ The challenger generates (pk, sk) and gives pk to 
the adversary.

 _ The adversary can make arbitrary polynomial 
number of signing queries. In the i -th query, 
the adversary chooses a fresh tag λτ }1,0{∈i and a  
k -length message set k

ikii M∈),,,( 21 µµµ  . The 
challenger generates the collection of signatures 
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 _ The adversary outputs a signature ∗δ  for the 
chosen tag ∗τ , a message μ* and the circuit *C .

If , then the adversary 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 
wins the game. Due to the definition of selective un-
forgeability, the adversary can query the signatures 
of the challenged message vector μ*. In order to make 
the challenger response for the challenger message 
vector, we set the adversary's challenged plaintext 
as a set of messages, rather than a single message. In 

fact, there are two types of forgers: one is iττ ≠*
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 for some index i 

but μ*≠ C*(μ*).
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probability polynomial time adversary, the probability 
of wining the above game is negligible.

Homomorphic Chameleon 
Hash Functions: Definition and 
Construction
In [15], Freeman embed a homomorphic chameleon 
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the 
definition of chameleon hash function [12], a generic 
definition of HCHF are given in this section. Note that 
compared to chameleon hash function, HCHF has an 
additional property, i.e., homomorphism. Then we 
construct a class of HCHFs using the distinguished 
trapdoor function with preimage sampling technique 
[19, 21].
Definition  6 (Homomorphic Chameleon Hash 
Function). For a message space 

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 and a random-
ness space 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,
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where i is the index and V is the range. There is an
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2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .
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and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
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cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
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this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
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• The adversary chooses (τ∗,µ∗, C∗) as the
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• The challenger generates (pk, sk) and gives pk
to the adversary.
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number of signing queries. In the i-th query,
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text as a set of messages, rather than a single message.
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for all queried i, and the other is τ∗ = τi for some
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parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
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1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.
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(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
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C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ
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is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,
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text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
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trapdoor function with preimage sampling technique
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,
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probability polynomial time adversary, the probabili-
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definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].
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tion). For a message space M and a randomness s-
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functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
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ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
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key pk, a tag τ , a collection of
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circuit C ∈ C. It outputs a signature δ′ for a
message µ′.
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algorithm takes as input the public pk, a tag τ ,
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C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
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A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .
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It is not difficult to verify the uniformity and chame-
leon properties of Ah . Specifically, if µ  is randomly 
sampled from Zg, we naturally get the result that the 
statistical distance  is negligible 
in n  [19]. Given the trapdoor matrix AT , we can use the 
algorithm SamplePre to compute U  which has the 
same distribution as smD ,Z  [19]. Next, we prove that the 
functions constructed by us satisfy the other two prop-
erties, i.e., collision resistance and homomorphism.
Theorem  1. Given an integer )(λpolyn = , let 

)(λpolyq =  be a prime, )(loglog nwqnm += and B
be the upper bound of the size of signatures defined in 
section 4.2. If the  problem is 
hard, then the function Ah  constructed above is colli-
sion resistance with probability )(1 nnegl− .
Proof. Suppose that there is an adversary 
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pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 that finds 
a collision ),( 11 µU  and ),( 22 µU  for a random function 

Af . Obviously, we have
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That is, qmod)()( 1221 GUUA µµ −=− .
If 21 µµ = , then we have a nonzero matrix 21 UUU −=
so that . Note that Bi ≤U , so we have 

B2≤U .
If 21 µµ ≠ , we first choose a vector mr }1,0{∈  at ran-
dom, and let . Since G  is a public primitive ma-
trix and naturally has a trapdoor GT , we can invoke 
the SamplePre to compute a vector mr }1,0{' ∈  so that 

. We have
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Hence, we get a vector rrUUu ' −−= )( 21  so that 
. Using the Cauchy-Schwarz inequality, 

we easily have . Next, we only need 
to prove that the probability of 0u =  is negligible in 
n . Although r  is randomly chosen from m}1,0{ , 'r  is  
mainly dependent on z . Hence,
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The second inequality follows from Lemma 1. There-
fore, from the definition of average min-entropy,
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In summary, if there is an adversary 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 that finds 
a collision for a random function Af , then we can 
construct an algorithm to solve the mqmn ,,,SIS(  

 problem with probability )(1 nnegl− . This 
concludes the proof.
For the homomorphic property, we consider general 
arithmetic circuit C . Specifically, we consider four 
types of gates: addition, multiplication, addition with 
constant, and multiplication with constant. These 
four special gates are completely used to compute an 
arbitrary arithmetic circuit [24].
Theorem  2. Given an integer )(λpolyn = , let 

)(λpolyq =  be a prime and )log( qnOm = . The  func-
tion Ah  constructed above is homomorphic for any 
arithmetic circuit.
Proof. In order to prove this theorem, we consider the 
four types of gates in turn.

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms
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2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms
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1 For an addition gate f , 2121 ),( µµµµ +=f . Sup-
pose that there are two datasets 2,1),,( =iiii VU µ  so 
that iiih VUA =),( µ . Then we have
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Define 21 UUU* +=  and 21 VVV* += . We can easily 
verify that qh mod),( *

21
* VUA =+ µµ .

2 Similarly, for a multiplication gate, let 
2121 ),( µµµµ =f . This time we firstly compute 

the matrix mm×∈ }1,0{R  so that 
[12]. Then we define  and

qmod2RVV * = .
Hen'ce,
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3 For an addition with constant gate, aaf += µµ ),( . 
For the message µ , suppose that there are two 
matrices U and V  so that VUA =),( µh . We de-
fine UU =*

 and qa mod* GVV −= . Obviously, 
qah mod),( ** VUA =+µ  holds.

4 For a multiplication by constant gate, µµ aaf =),( . 
We define  and , where

. It is also easy to check that the 
equation qah mod),( ** VUA =µ  holds.

Note that an arbitrary arithmetic circuit C  can be 
expressed as the above four gate operations. For a cir-
cuit C, we compute *U  and *V  recursively gate by gate 
according to the above rules. Therefore, the function

Ah constructed by us is homomorphic for any arith-
metic circuit.

Our leveled homomorphic  
signature scheme
In this section, we firstly describe our proposed ho-
momorphic signature scheme and then set related 
parameters for some types of circuits. After that, we 
give the correctness analysis and security proof for 
our scheme.

 Our construction
In our construction, we employ the public primi-
tive matrix G  introduced by Micciancio and Peikert 
[21], which naturally has a short basis GT  for )(G⊥Λ . 
Our homomorphic signature scheme =Π (KeyGen, 
Sign, Eval, Verify) specifically works as follows.
 _ )1,1( kλKeyGen . The algorithm takes the security 

parameter λ  and the maximum size of the dataset 
k as input.

1 Choose the parameters smqn ,,,  and B  as in sec-
tion 4.2.

2 Sample a matrix mn
q

×∈ZA  and its corresponding 
trapdoor matrix mm×∈ZAT .

3 Choose 1+k  random matrices B  and ∈∈ ][}{ kiiV  
mn

q
×Z .

4 Output the secret key  and the public key
.

 _ . The algorithm takes the secret key 
AT , a tag λτ }1,0{∈ , an index ][ki ∈  and a message 

M∈µ
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 as input.

1 Choose a specific homomorphic chameleon hash 
function 

τAh
 
for the tag τ , where ][ GBAA ττ +=   mn

q
2×∈Z .

2 Use the secret key AT  to compute U  so that 
ih VUA =),( µ

τ
. Namely,  

 ),, si GVTA µ− .
3 Output the signature U=δ .

 _ . The evaluation algor-
ithm takes the public key pk, the tag τ , a collection 
of message-signature pairs , and a 
circuit Χ∈C

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 as input. It recursively computes a 
homomorphic signature gate by gate.

1 Compute the homomorphic chameleon hash 
function

τAh for the tagτ .
2 Let ),( 21 µµf  be a gate in C , where 1µ  and 2µ  are 

the input messages. By induction, we have two 
signatures 1U  and 2U so that  and 

  22 VG =+µ . According to Theorem 2, we 
can homomorphically output the signature *U . 
Taking the multiplication gate as an example, 

RUUU 212
* += µ , where mm×∈ }1,0{R so that

.
3 Output the evaluated signature CU='δ .

 _ . The verification algorithm 
takes the public pk, the tag τ , a message-signature 
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pair ),( δµ , and a circuit Χ∈C

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 as input. It outputs 
1 if the following conditions hold, otherwise it 
outputs 0:

1 Let CU=δ  and verify BC ≤U ;
2 Let ][ GBAA ττ +=  and check whether 

)(),( i
C Ch VUA =µ

τ  
holds or not.

Parameters
Let λ  be the security parameter in our scheme. Sup-
pose that the maximum depth of the circuits in our 
scheme is )(λdd = . We use B  to denote the upper 
bound of the size of evaluated signatures, and use intB  
to denote the size of the original signatures generated 
by Sign algorithm.
We assume that )(λpolyn = , )(dOnq =  is a large 
prime, and . Due to the TrapGen and 
Theorem 1, set the parameter  

. In order to use Sam-
pleLeft, we need )log(~ mws AT≥

 
where ≤AT~  

)log( qnO . Similarly, SampleRight requires that 
)log(~ mwss WGT≥ , where mm×−∈ }1,1{W  and =Ws  

)( mO  [23]. Hence, we use sufficiently large 
)log()log( mwqnOs =  so that the outputs of Sam-

pleLeft and SampleRight are indistinguishable. If
C is a boolean circuit of maximum depth d , what-
ever the gate is, we also have )1( 5.1

int
* +≤ mBU . 

Hence, the size of evaluated signatures intBC ≤U  

 Next 
we consider that C  is an arithmetic circuit of max-
imum depth d  consisting of fan-in- t addition gates 
and fan-in-2 multiplication gates, where )(λpolyt = . 
Moreover, it is guaranteed that at least one input $\
mu$ about this fan-in-2 multiplication gate is of size 
polynomial in λ . From Theorem 2, maxint

* B≤U  
},{ 5.1 µ+mt . 

Hence, mmtB d ≤+≤ },max{ 5.1
int

* µU
dmtmw },max{)log( 5.1 µ+ B=≤ )(log2 λ .

Correctness and security proof
From the parameters setting defined in section 4.2, 
it is easy to see that the signatures produced by Sign 
are correct. The correctness of signatures generated 
by Eval follows from the homomorphic property of 
HCHF. In this subsection, we mainly discuss the se-
curity of our scheme.

Theorem 3. For any adversary 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 mounting a selective 
unforgeability attack with at most Q  queries on our 
homomorphic signature scheme Π , there is a prob-
abilistic polynomial time algorithm 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 that can find a 
collision for the randomized HCHF with the following 
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2. Let Aτ = [A‖B + τG] and check whether
hAτ (U

C , µ) = C(Vi) holds or not.

4.2. Parameters

Let λ be the security parameter in our scheme.
Suppose that the maximum depth of the circuits in
our scheme is d = d(λ). We use B to denote the up-
per bound of the size of evaluated signatures, and use
Bint to denote the size of the original signatures gen-
erated by Sign algorithm.

We assume that n = poly(λ), q = nO(d) is a
large prime, and B = 2dw(log λ). Due to the TrapGen
and Theorem 1, set m = max{O(n log q), n log q +
w(

√
log n)} = poly(λ). In order to use SampleLeft,

we need s � ‖T̃A‖w(
√
logm) where ‖T̃A‖ �

O(
√
n log q). Similarly, SampleRight requires that

s � ‖T̃G‖sWw(
√
logm), where W ∈ {−1, 1}m×m

and sW = O(
√
m) [23]. So, we use sufficiently

large s = O(
√
n log q)w(

√
logm) so that the out-

puts of SampleLeft and SampleRight are indistin-
guishable. If C is a boolean circuit of maximum
depth d, whatever the gate is, we also have ‖U∗‖ �
Bint(m

3
2 +1). Hence, the size of evaluated signatures

‖UC‖ � Bint(m
3
2 + 1)d � mw(

√
logm)(m

3
2 +

1)d � 2dw(log λ) = B. Next we consider that C
is an arithmetic circuit of maximum depth d con-
sisting of fan-in-t addition gates and fan-in-2 mul-
tiplication gates, where t = poly(λ). Moreover, it
is guaranteed that at least one input µ about this
fan-in-2 multiplication gate is of size polynomial in
λ. From Theorem 2, ‖U∗‖ � Bint max{t,m 3

2 +

|µ|}. So, ‖UC‖ � Bint max{t,m 3
2 + |µ|}d �

mw(
√
logm)max{t,m 3

2 + |µ|}d � 2dw(log λ) = B.

4.3. Correctness and Security Proof

From the parameters setting defined in section
4.2, it is easy to see that the signatures produced by
Sign are correct. The correctness of signatures gener-
ated by Eval follows from the homomorphic property
of HCHF. In this subsection, we mainly discuss the
security of our scheme.

Theorem 3. For any adversary A mounting a se-
lective unforgeability attack with at most Q queries
on our homomorphic signature scheme

∏
, there is a

probabilistic polynomial time algorithm S that can
find a collision for the randomized HCHF with the
following advantage,

AdvHCHF (SA) � Advselective∏ (A)/Q− negl(n).

Proof. Let A
lective unforgeability security game defined in sec-

tion 2.4 with advantage Advselective∏ (A). Our aim is
to construct an algorithm S which can find a collision
for fully homomorphic chameleon function hA over
the random A ∈ Zn×m

q , where n, q,m are defined in
section 4.2. The algorithm S takes a matrix A whose
columns are independent and uniformly random sam-
ples from Zn

q as input. Let τ∗,µ∗, C∗ be the challenge
information about tag, messages, and circuit. Suppose
that the adversary makes Q queries and everytime the
tag is τi, where i ∈ [Q]. We distinguish between two
types of forgers. One is that the adversary will never
query all signatures of messages for the tag τ∗, i.e.,
τ∗ �= τi for all i ∈ [Q]. The other one is τ∗ = τi
for some tag i, but C∗(µ∗) �= µ∗, where µ∗ is the
adversary’s forged message.

1. We first consider the situation, where τ∗ �= τi
for all i ∈ [Q]. The simulation step is as follows:

• The challenger S generates a public key for
the adversary A. Choose the public
parameters n, q, m. Let s be the related
Gaussian parameter and denote the upper
bound on the size of evaluated signature by
B. See section 4.2 for more details. Sample
W ∈ {−1, 1}m×m randomly and let
B = AW − τ∗G mod q. For all i ∈ [k],
choose matrix Wi ∈ {−1, 1}m×m at random
and compute Vi = AWi. Output the public
key (A,B,G, {Vi}i∈[k]).

• The challenger S generates signatures for the
queried messages and the tag τi. Since
[A‖AW+(τi− τ∗)G] = [A‖B+ τiG] = Aτi ,
we can use the trapdoor TG to compute the
signature Uij so that Aτi(Uij , µ

∗
j ) = Vj .

Namely, Uij ← SampleRight(A, (τi −
τ∗)G,W,TG,Vj − µ∗

jG, s).
• The challenger S outputs the signed data
{Uij}j∈[k] and sends them to the adversary A.

We show that the public keys and signatures in
the real scheme and in the simulation game are s-
tatistically indistinguishable. For the matrix A, it is
produced by the TrapGen algorithm in the real sys-
tem and is chosen uniformly at random in the simu-
lation game. For the matrix B, it is chosen uniformly
at random in the real scheme and B = AW − τ∗G in
the simulation game, where W is chosen uniformly
at random. For each i, Vi is chosen uniformly at ran-
dom in the real system and Vi = AWi is computed
using uniformly random Wi in the simulation game.
From Lemma 2, the public keys in the real scheme
and in the simulation game are statistically indistin-
guishable. For the sufficient large Gaussian parameter
s, the outputs of SampleLeft used in the real system

(18)

Proof. Let A be an adversary that wins the selective 
unforgeability security game defined in section 2.4 
with advantage )(Aselective

ΠAdv . Our aim is to construct 
an algorithm 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 which can find a collision for fully ho-
momorphic chameleon function Ah over the random

mn
q

×∈ZA , where mqn ,, are defined in section 4.2. The 
algorithm 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 takes a matrix A  whose columns are in-
dependent and uniformly random samples from n

qZ
as input. Let ** ,, C*µτ  be the challenge information 
about tag, messages, and circuit. Suppose that the ad-
versary makes Q  queries and everytime the tag is iτ , 
where ][Qi ∈ . We distinguish between two types of 
forgers. One is that the adversary will never query all 
signatures of messages for the tag *τ , i.e., iττ ≠*

 for 
all ][Qi ∈ . The other one is iττ =* for some tag i , but

*μC ≠)(* *µ , where *μ  is the adversary’s forged mes-
sage.
1 We first consider the situation, where iττ =*

 for all 
][Qi ∈ . The simulation step is as follows:

 _ The challenger 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 generates a public key for the 
adversary  
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

. Choose the public parameters mqn ,, . 
Let s  be the related Gaussian parameter and 
denote the upper bound on the size of evaluated 
signature by B . See section 4.2 for more details. 
Sample mm×−∈ }1,1{W randomly and let  

qmod*Gτ− . For all ][ki ∈ , choose matrix 
mm

i
×−∈ }1,1{W  at random and compute . 

Output the public key )}{( ][kii,,, ∈VGBA .
 _ The challenger 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 generates signatures for 
the queried messages and the tag iτ . Since 

iii ττττ AGBAGA =+=−+ ][])([ * , we can use 
the trapdoor GT  to compute the signature ijU  so 
that .),( *

jjiji
VUA =µτ  

Namely, tSampleRighU ←ij
),,,,)(,( ** sjji GVTWGA G µττ −− .

 _ The challenger 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 outputs the signed data ][}{ kjij ∈U  
and sends them to the adversary 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

.

We show that the public keys and signatures in the 
real scheme and in the simulation game are statisti-
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .
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cally indistinguishable. For the matrix A , it is pro-
duced by the TrapGen algorithm in the real system 
and is chosen uniformly at random in the simulation 
game. For the matrix B , it is chosen uniformly at ran-
dom in the real scheme and GB *τ−=  in the sim-
ulation game, where W is chosen uniformly at ran-
dom. For each i , iV  is chosen uniformly at random 
in the real system and iiV =  is computed using 
uniformly random iW in the simulation game. From 
Lemma 2, the public keys in the real scheme and in 
the simulation game are statistically indistinguish-
able. For the sufficient large Gaussian parameter s , 
 the outputs of SampleLeft used in the real system 
and SampleRight used in the simulation are statisti-
cally indistinguishable.
If the adversary outputs a forgery ),( ** µU  for 
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From Theorem 2, we can see that the challenger 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 
does not query signatures of all the messages with the 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 gets no information about 
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From the above analysis, the challenger finds a colli-
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 generates a public key for the 
adversary 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

. 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 first chooses the public parameters
Bsmqn ,,,,  which are the same as above. Then 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 randomly samples m
mw
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 computes 
qiii mod][ *GUAV µ+= . Moreover, let 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 
outputs the public key )}{( ][kii,,, ∈VGBA .

 _ The challenger 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 generates signatures for 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 
straightforwardly outputs the signatures ][}{ kii ∈U  
for the challenged tag.

Obviously, the challenger does not abort the game 
with probability Q/1 . Similarly to the above analysis, 
we can also find that the public keys and signatures in 
the real scheme and in the simulation game are statis-
tically indistinguishable.
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On the other hand, the adversary has the collection 
of signatures ][}{ kii ∈U  for the challenged message 
vector *µ . Therefore, the challenger 
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∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 can compute 
the evaluated signature 

*CU  using the Eval algo-
rithm. Namely,
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Letting tCCC ][
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Hence, ))(,(),( *
21

**
2

*
1

** *
AA μUU Chh CC=+ µ . Since 

** )( µ≠*µC , the adversary finds a collision for the 
randomized fully homomorphic chameleon function 

Ah  with advantage
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In table 1, the original and evaluated signatures rep-
resent the signatures generated by the Sign and Eval 
algorithm, respectively. “RO” is an abbreviation for 
“Random Oracle”, and similarly “ST” is an abbrevi-
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ation for “Standard”. The last column “permissible 
functions” means that the signature scheme can 
support the corresponding type of functions for ho-
momorphic computation over signed data. Note that 
if some entries in Table 1 are non-integer, we should 
transform them into integers using the ceil function.

Efficiency
In this section, we consider the efficiency of our 
scheme by comparing it with some existing classical 
homomorphic signature schemes in terms of the bit 
length of the public/private key size, the bit length of 
signatures, the security model and permissible func-
tions for homomorphic computation. Table 1 shows 
the specific comparison results. In [7], Boneh and 
Freeman presented a linearly homomorphic signa-

Scheme Bit length of the public key Bit length of the 
private key

Bit length of original 
signatures

Bit length of 
evaluated  signatures Model Permissible 

functions

[7] q2log )2loglog(2 qm )2log(2 1 mm σ )2log(2 1 mkm σ RO Linear

[8] qkp log)log( 2 +++ σ )loglog(2 qm )log( 2 mm σ )5.0log( 2 mm σ RO Linear

[10] qk log)32( λ++ )loglog(2 qm )2log(2 3
2 mm σ 1

2 log2 Bm ST Any

Ours qk log)3( + )loglog(2 qm )2log(2 4
2 mm σ 2

2 log2 Bm ST Any

Table 1 
Comparison between our scheme and some classical homomorphic signature schemes

 
        (a) 30,50,100000007  ckq             (b) 30,40,100000007  cnq                     (c) 30,100000007  cq  

Figure 1 
Comparison of the bit lengths of public/private key and original signatures

ture scheme that can authenticate vectors defined 
over binary fields. In order to generate the private key, 
they adopted the method introduced in [5], which can 
generate short bases of hard random lattices. Suppose 
that the generated trapdoor short basis (private key) 
is AT . It has been shown that )log( qnO≤AT  [5,7]. 
Thus in our table, c is a constant so that qlog≤AT . 
 According to their construction, the parameter m and 
the Gaussian parameter 1σ  are set equal to  qn log6  
and )log(2log nwqnc , respectively. In the same 
year, they proposed another linearly homomorphic 
signature scheme in section 4 of [8], which can au-
thenticate any linear function of signed vectors de-
fined over small fields 
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and SampleRight used in the simulation are statisti-
cally indistinguishable.

If the adversary outputs a forgery (U∗, µ∗) for
the tag τ∗ and the circuit C∗, we naturally have
hAτ∗ (U∗, µ∗) = C∗(V1,V2, · · · ,Vk), i.e., [A‖AW]U∗

+µ∗G = C∗(V1,V2, · · · ,Vk). Let U∗ = [U∗
1‖U∗

2]
t,

we haveA(U∗
1+WU∗

2)+µ∗G = C∗(V1,V2, · · · ,Vk).
Equivalently, hA(U∗

1+WU∗
2, µ

∗) = C∗(V1,V2, · · · ,Vk).
From Theorem 2, we can see that the challenger

S can compute a matrix UC∗
∈ Zm×m

q and an integer
x ∈ Zq so that C∗(V1,V2, · · · ,Vk) = AUC∗

+ xG.
In other words, hA(UC∗

, x) = C∗(V1,V2, · · · ,Vk).
Therefore, we have hA(UC∗

, x) = hA(U∗
1+WU∗

2, µ
∗).

In the simulation game, all queried signatures are
produced independently through SampleRight algo-
rithm. The adversary A does not query signatures
of all the messages with the tag τ∗. Thus, A get-
s no information about UC∗

. The probability that
U∗

1 + WU∗
2 − UC∗

= 0 can be negligible. From the
above analysis, the challenger finds a collision for the
fully homomorphic chameleon function hA with the
advantage

AdvHCHF (SA) � Advselective∏ (A)− negl(n).
(16)

2. Next, we consider the other type of forgers:

• The challenger S generates a public key for
the adversary A. S first chooses the public
parameters n, q,m, s,B which are the same
as above. Then S randomly samples
Ui

t ← (DZm,w(
√
logm))

2m and chooses
W ∈ {−1, 1}m×m. Last, S computes
Vi = [A‖AW]Ui + µ∗

i G mod q. Moreover,
let B = AW − τ∗G mod q. After that, the
challenger S outputs the public key
(A,B,G, {Vi}i∈[k]).

• The challenger S generates signatures for the
queried messages and the tag τi. If τi �= τ∗,
the challenger aborts the game. Otherwise, S
straightforwardly outputs the signatures
{Ui}i∈[k] for the challenged tag.

Obviously, the challenger does not abort the
game with probability 1/Q. Similarly to the above
analysis, we can also find that the public keys and sig-
natures in the real scheme and in the simulation game
are statistically indistinguishable.

If the adversary outputs a forgery (U∗, µ∗) for
the tag τ∗ and the circuit C∗, we naturally have
[A‖AW]U∗ + µ∗G = C∗(V1,V2, · · · ,Vk). Leting
U∗ = [U∗

1‖U∗
2]

t, we can obtain hA(U∗
1+WU∗

2, µ
∗) =

C∗(V1,V2, · · · ,Vk).
On the other hand, the adversary has the col-

lection of signatures {Ui}i∈[k] for the challenged

message vector µ∗. Therefore, the challenger S can
compute the evaluated signature UC∗

using the E-
val algorithm. Namely, [A‖AW]UC∗

+ C∗(µ∗)G =

C∗(V1,V2, · · · ,Vk). Letting UC∗
= [UC∗

1 ‖UC∗

2 ]t,
we can also obtain hA(UC∗

1 + WUC∗

2 , C∗(µ∗)) =
C∗(V1,V2, · · · ,Vk). Hence, hA(U∗

1 + WU∗
2, µ

∗) =

hA(UC∗

1 + WUC∗

2 , C∗(µ∗)). Since C∗(µ∗) �= µ∗,
the adversary finds a collision for the randomized ful-
ly homomorphic chameleon function hA with advan-
tage

AdvHCHF (SA) � Advselective∏ (A)/Q− negl(n).
(17)

5. Efficiency

In this section, we consider the efficiency of our
scheme by comparing it with some existing classical
homomorphic signature schemes in terms of the bit
length of the public/private key size, the bit length of
signatures, the security model and permissible func-
tions for homomorphic computation. Table 1 shows
the specific comparison results. In [13], Boneh and
Freeman presented a linearly homomorphic signature
scheme that can authenticate vectors defined over bi-
nary fields. In order to generate the private key, they
adopted the method introduced in [26], which can
generate short bases of hard random lattices. Suppose
that the generated trapdoor short basis (private key)
is TA. It has been shown that ‖TA‖ � O(n log q)
[13, 26]. Thus in our table, c is a constant so that
‖TA‖ � cn log q. According to their construction,
the parameter m and the Gaussian parameter σ1 are
set equal to �6n log q� and c

√
n log 2qw(

√
log n), re-

spectively. In the same year, they proposed anoth-
er linearly homomorphic signature scheme in sec-
tion 4 of [14], which can authenticate any linear
function of signed vectors defined over small field-
s Fp. In their scheme, p and q are two primes so
that q � (nkp)2. For convenience, we denote σ2 =
p logm

√
m log q in Table 1. In 2014, Boyen et al.

proposed an adaptively secure homomorphic signa-
ture scheme that can evaluate any circuit over signed
data [17]. In their scheme, the Gaussian parameter
σ3 = w(m log q

√
logm) and the upper bound of the

size of evaluated signatures B1 = w(2d), where d
is the maximum depth of the circuits. According to
section 4.2, the Gaussian parameter σ4 in our scheme
is equal to O(

√
n log q)w(

√
logm), and the upper

bound B2 = 2dw(log λ). In order to achieve the same
security level, all the above-mentioned homomorphic
signature schemes adopt the same parameters when
performing the TrapGen algorithm [26]. That is to
say, the comparison is fair.

. In their scheme, p and q 
are two primes so that 2)(nkpq ≥ . For convenience, 
we denote qmmp loglog2 =σ  in Table 1. In 2014, 
Boyen et al. proposed an adaptively secure homomor-
phic signature scheme that can evaluate any circuit 
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over signed data [10]. In their scheme, the Gauss-
ian parameter )loglog(3 mqmw=σ  and the upper 
bound of the size of evaluated signatures )2(1

dwB = , 
where d is the maximum depth of the circuits. Ac-
cording to section 4.2, the Gaussian parameter 4σ  in 
our scheme is equal to )log()log( mwqnO , and the 
upper bound )(log

2
λB = . In order to achieve the same 

security level, all the above-mentioned homomorphic 
signature schemes adopt the same parameters when 
performing the TrapGen algorithm [5]. That is to say, 
the comparison is fair.
Note that in Table 1, the first two signature schemes 
[7-8] are linearly homomorphic in the random oracle 
model and the latter two ones ([10] and ours) are fully 
homomorphic in the standard model. Nevertheless, 
the comparison result shows that the bit lengths of 
the private keys are almost exactly the same. Unfortu-
nately, the bit lengths of evaluated signatures in fully 
homomorphic schemes are larger than those in lin-
early homomorphic schemes. However, the bit length 
of evaluated signatures in [10] is almost the same as 
that in our scheme. Next, we compare the public key 
size and the size of the original signatures from an ex-
perimental point of view. In [8], the scheme requires 
two primes p  and q . Thus in our experiments, we 
choose two specific primes 2=p  and 100000007=q
which can meet their requirements. The dimen-
sion of random lattices m and the specific constant 
c are set equal to  qn log6 and 30, respectively [7-8]. 
We set nqnc log2log1 =σ , mqm loglog3 =σ , and

mqn loglog4 =σ . In Fig. 1(a) and 1(b), we inves-
tigate the bit length of the public key in terms of the 
parameter n and the maximum size of the dataset k, 
respectively. Note that we set the security parameter
λ in [10] to n. In Fig. 1(c), we investigate the bit length 
of original signatures in terms of n. Evidently, the 
experimental results imply that the public key size 
and the size of original signatures in our scheme are 
smaller than those in [10]. Simultaneously, the public 
key size and the size of original signatures in our fully 
homomorphic signature scheme are larger than those 
in these two linearly homomorphic signature scheme 

[7-8]. It is acceptable because fully homomorphic sig-
natures can support any homomorphic computation 
over signed data, rather than linear homomorphic 
computation. This may be a compromise between the 
functionality and efficiency.

Conclusions
In this paper, we first construct a type of HCHFs based 
on the SIS problem in hard random lattices. Then we 
use this type of HCHFs to construct fully homomor-
phic signature schemes for poly-depth circuits. Our 
construction has many advantages compared to pre-
vious works on this study. It is secure in the standard 
model and the public parameters grow linearly in the 
size of input circuit. The public key size and the bit 
length of original signatures of our scheme are small-
er than those of the classical fully homomorphic sig-
nature scheme [10]. Our future work mainly focuses 
on designing fully homomorphic signature schemes 
with constant-size public keys. From a security per-
spective, the security parameter of the SIS problem 
in our scheme is =+= )12(mβ  )2( )(log5.1 λmO . 
In fact, the size of the evaluated signatures B affects 
the security of our scheme. Another open problem is 
to construct fully homomorphic signature schemes in 
which the size of evaluated signatures is smaller than 
that in ours. 
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Summary / Santrauka

Homomorphic signature schemes provide a feasible solution to the authenticity of computations on an un-
trusted server (e.g. cloud). In a homomorphic signature scheme, given a k -length message set },,,{ 21 kµµµµ =  
and its corresponding signed dataset  },,,{ 21 kδδδδ = , anyone can publicly perform homomorphic computa-
tions and produce a new signature 'δ   for the messages ),,,( 21

'
kf µµµµ = , where f  is a function or a circuit. 

If the generated homomorphic signature 'δ  is valid, then the owner of the dataset (e.g. cloud users) convinces 
that μ' is indeed the correct output of the function f  over the original messages even if he/she forgets them. 
In this work, the main contribution is to build a bridge between the leveled Fully Homomorphic Signature 
Scheme (FHSS) and Homomorphic Chameleon Hash Function (HCHF), which is a new cryptographic primi-
tive introduced by us based on prior works. We first present the definition and specific construction of HCHF 
and then use this forceful technique to construct leveled fully homomorphic signature schemes for any polyno-
mial-depth circuit. In our standard model scheme, the size of evaluated homomorphic signature grows polyno-
mially in the depth of the circuit. The security of our scheme is based on the property of collision resistance of 
HCHF, which can be reduced to the Small Integer Solution (SIS) in hard random lattices.

Homomorfinio parašo schemose pateikiamas galimas sprendimas nepatikimo serverio (pvz., debesies) apskai-
čiavimų autentiškumui nustatyti. Homomorfinio parašo schemoje, turint k-ilgio žinučių rinkinį μ = {μ1, ..., μk } 
ir atitinkamą pasirašytą duomenų rinkinį 𝛿 = { 𝛿1, ... , 𝛿k }, bet kas gali viešai atlikti homomorfinius skaičiavimus 
ir sukurti naują parašą 𝛿‘ žinutėms μ‘ = f { μ1, μ2, μ3, ... , μk }; čia f – grandinės funkcija. Jei gautas homomorfinis 
parašas 𝛿‘ yra validus, duomenų rinkinio savininkas (pvz., debesų vartotojas) įtikina, kad, palyginti su origina-
liomis žinutėmis (net jei apie jas pamirštama), μ‘ išties yra teisinga funkcijos f išeiga. Pagrindinis šio straipsnio 
indėlis – sukurti sąsają tarp išlygintos visiškai homomorfinės parašo sistemos (angl. Fully Homomorphic Si-
gnature Scheme (FHSS)) ir homomorfinės chameleoninės maišos funkcijos (angl. Homomorphic Chameleon 
Hash Function (HCHF)), kuri yra nauja kriptografinė bazė, autorių pristatyta remiantis jų ankstesniais dar-
bais. Straipsnyje pirmiausia apibūdinama HCHF ir pateikiamas jos specifinio sudarymo mechanizmas, tada 
ši veržli technologija taikoma išlygintoms visiškai homomorfinėms parašo schemoms bet kokiai daugianarei 
gylio grandinei konstruoti. Standartinėje autorių modelio schemoje įvertintų homomorfinių parašų dydis dau-
gianariškai auga grandinės gylyje. Schemos saugumas paremtas HCHF susidūrimo pasipriešinimo savybe, kuri 
gali būti sumažinta iki mažojo sveikojo skaičiaus sprendinio (angl. Small Integer Solution (SIS)) kietosiose at-
sitiktinėse gardelėse. 




