
Information Technology and Control 2017/2/46274

Homomorphic Signature
from Chameleon Hash
Functions

ITC 2/46
Journal of Information Technology
and Control
Vol. 46 / No. 2 / 2017
pp. 274-286
DOI 10.5755/j01.itc.46.2.14320
© Kaunas University of Technology

Homomorphic Signature from Chameleon Hash Functions

Received 2016/08/31 Accepted after revision 2017/04/12

 http://dx.doi.org/10.5755/j01.itc.46.2.14320

Corresponding author: penghaipeng@bupt.edu.cn

Dong Xie, Haipeng Peng, Lixiang Li
Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University
of Posts and Telecommunications, Beijing, 100876, China
Yixian Yang
Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang, 550025, China
e-mail: penghaipeng@bupt.edu.cn
Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University
of Posts and Telecommunications, Beijing, 100876, China

Homomorphic signature schemes provide a feasible solution to the authenticity of computations on an un-
trusted server (e.g. cloud). In a homomorphic signature scheme, given a k -length message set },,,{ 21 kµµµµ =
and its corresponding signed dataset },,,{ 21 kδδδδ = , anyone can publicly perform homomorphic computa-
tions and produce a new signature 'δ for the messages),,,(21

'
kf µµµµ = , where f is a function or a circuit.

If the generated homomorphic signature 'δ is valid, then the owner of the dataset (e.g. cloud users) convinces
that 'µ is indeed the correct output of the function f over the original messages even if he/she forgets them. In
this work, the main contribution is to build a bridge between the leveled Fully Homomorphic Signature Scheme
(FHSS) and Homomorphic Chameleon Hash Function (HCHF), which is a new cryptographic primitive in-
troduced by us based on prior works. We first present the definition and specific construction of HCHF and
then use this forceful technique to construct leveled fully homomorphic signature schemes for any polynomi-
al-depth circuit. In our standard model scheme, the size of evaluated homomorphic signature grows polyno-
mially in the depth of the circuit. The security of our scheme is based on the property of collision resistance of
HCHF, which can be reduced to the Small Integer Solution (SIS) in hard random lattices.
KEYWORDS: homomorphic signature schemes, chameleon hash functions, small integer solution, lattice.

275Information Technology and Control 2017/2/46

Introduction
Compared to some traditional number-theoretic
primitives (e.g., factoring problem, discrete logarithm
problem), the lattice-based cryptography has the fol-
lowing advantages: i) It is conceptual simple and can
be efficient implemented; ii) It can resist so far to
quantum cryptanalysis; iii) The lattice-based scheme
enjoys the worst case complexity, i.e., any random in-
stance is indeed asymptotically hard [4,22]. Due to
these attractive and distinguishing features, lattice
has been widely used to construct a large number of
cryptographic schemes. Lattice-based cryptography
can be used for constructing versatile theoretical ap-
plications ranging from functional encryption [2-3,
6, 9], to fully homomorphic encryption [11, 17-18, 25],
and much more [7, 8, 19, 21].
Cloud computing enables users to store sensitive data
in the untrusted sever and sometimes the untrusted
cloud requires to perform computations on them. The
privacy of data and the authentication of computation
are two key secure challenges in this field. Homomor-
phic encryption schemes [11, 17-18,25] can maintain
the privacy of user’s data by encrypting them and
the server can also homomorphic perform compu-
tations over the ciphertexts. In this paper, we only
focus on the authenticity of homomorphic computa-
tion through the notion of homomorphic signatures.
In a homomorphic signature scheme, given a signed
dataset vector δ and its corresponding message vec-
tor μ, anyone can homomorphically compute and pro-
duce a new signature δ´ for a message μ´and a circuit
C. Given the public parameters and the tuple (C, μ´,
δ´), anyone can verify that δ´ is indeed the signature
of the message μ´. Note that the verification proce-
dure can be performed without knowing the original
dataset μ. In recent years, some homomorphic sig-
nature schemes have been proposed [7, 8, 10, 16, 26].
However, many prior works have many drawbacks.
In particular, some of them are only homomorphic
for linear functions [7, 16, 26] and the security proofs
of several schemes are in the random oracle model
[7, 16]. In 2011, Boneh and Freeman [7] introduced a
linearly homomorphic signature scheme that authen-
ticates vector subspaces of a given ambient space. In
the same year, they presented a general definition of
homomorphic signatures, and constructed the first
homomorphic signature scheme which can compute

arbitrary polynomial functions over signed data [8].
In fact, if we translate these functions to the circuits,
then the size of evaluated signatures can grow expo-
nentially in the depth of the circuits. Furthermore,
the construction is based on the SIS problem in ideal
lattice. Recently, Boyen et al. presented the first adap-
tively secure fully homomorphic signature scheme
that can evaluate any circuit over signed data [10].
Chameleon hash function, related to the notion of
non-interactive chameleon commitment schemes,
was originally introduced by Brassard et al. [12].
Roughly speaking, a chameleon trapdoor hash func-
tion is a collision-resistance function with chame-
leon property, i.e., the holder of the trapdoor can eas-
ily find collisions for every input. In addition, anyone
can compute the hash function using public parame-
ters and the resulting probability distribution is sta-
tistically close to uniform over the range. Chameleon
hash functions have been proven to be an extremely
useful tool in many scenarios, especially in signature
schemes. Mohassel showed a general construction
for transforming any chameleon hash function to a
strongly unforgeable one-time signature scheme [23].
Recently, Micciancio and Peikert [21] proposed a sig-
nature scheme with short parameters and proved its
security with strong unforgeability under static cho-
sen-message attack (su-scma). Krawczyk and Rabin
[20] showed that there is a generic transformation
from su-scma to su-acma (strong unforgeability un-
der adaptive chosen-message attack) security using a
family of chameleon hash functions.
The main contribution of this work is to build a bridge
between FHSS and Homomorphic Chameleon Hash
Function (HCHF). In [13], Cash et al. straightfor-
wardly presented a simple chameleon hash function
using the preimage sampleable function under stan-
dard lattice assumption. Along this line of work, we
give the definition of HCHF and present a family of
HCHFs, which is based on the SIS problem in hard
random lattices. After that, we construct a leveled ful-
ly homomorphic signature scheme using the HCHF
tool. Similar to [1], we use the SampleLeft algorithm
to extract signatures in real scheme and use the Sam-
pleRight algorithm to response the adversary’s sig-
nature queries in the simulation game. The construc-
tion is straightforward and the security of our scheme

Information Technology and Control 2017/2/46276

is based on the property of collision resistance of
HCHF. In fact, our scheme is homomorphic for any
function, and not like those ones in [7, 16, 26] just for
linear function. Unlike several recent homomorphic
signature schemes [7-8, 16], our scheme is secure in
the standard model. These results show that our ho-
momorphic scheme is attractive.
The remainder of this paper is organized in the fol-
lowing manner. We mainly introduce some basic
knowledge about lattice and homomorphic signature
scheme in section 2. In section 3 we focus on the defi-
nition of HCHF and the specific construction from
the standard SIS problem. We describe our homo-
morphic signature scheme, and provide the parame-
ters setting and security analysis in section 4. Section
5 presents the comparison between our scheme and
some classical homomorphic signature schemes. Fi-
nally, we draw our conclusions in section 6.

Preliminaries

Notation
For any positive integer q , we denote the set

},,2,1{ q by][q and let Zq denote the integer ring
which represents as integers in)2/,2/(qq− . Vectors
are assumed to be in column form and are written us-
ing bold lower-case letters (e.g. x). Similarly, we use
bold capital-case letters (e.g. A) to represent matri-
ces.
Given two matrices A1∈Zq

n×m1

 and A2∈Zq
n×m2 , we use

][21 AA to denote the)(21 mmn +× matrix formed by
concatenating 1A and 2A . For a matrix A∈Zq

n×m, let As
denote the maximal singular values of A and use A
to denote the maximum norm of column vector of the
matrix A , i.e., }{max imi aA ∈= , where ia is the col-
umn vector of A .
We denote a negligible function)(nf by)(nnegl if
it is)(cno − for any fixed constant c . We say)(nf is
polynomial if it is)(cnO for any fixed constant c , and
we use)(npoly to denote it. Given two distributions
X and Y over a countable domain Z , the statistical

distance between them is defined as

∑
∈

−=∆
Zz

zYzX)()(
2
1

(1)

The min-entropy of a random variable X is denot-
ed by Pr[log(max)(x XXH Xx =−= ∈∞]) . Given two
random variables X and Y , the average min-en-
tropy of X conditioned on (correlated) variable Y
is defined as

]))Pr[(maxlog()(~ yYxXYXH XxYy ==−= ∈←∞ E (2)

Lemma 1[14] Given two random variables X and Y , let

2 D.Xie, H.Peng,L.Li, and Y.Yang

grow exponentially in the depth of the circuits. Fur-
thermore, the construction is based on the SIS prob-
lem in ideal lattice. Recently, Boyen et al. presented
the first adaptively secure fully homomorphic signa-
ture scheme that can evaluate any circuit over signed
data [17].

Chameleon hash function, related to the notion
of non-interactive chameleon commitment schemes,
was originally introduced by Brassard et al. [18].
Roughly speaking, a chameleon trapdoor hash func-
tion is a collision-resistance function with chameleon
property, i.e., the holder of the trapdoor can easily
find collisions for every input. In addition, anyone
can compute the hash function using public param-
eters and the resulting probability distribution is sta-
tistically close to uniform over the range. Chameleon
hash functions have been proven to be an extremely
useful tool in many scenarios, especially in signature
schemes. Mohassel [19] showed a general construc-
tion for transforming any chameleon hash function
to a strongly unforgeable one-time signature scheme.
Recently, Micciancio and Peikert [12] proposed a
signature scheme with short parameters and proved
its security with strong unforgeability under static
chosen-message attack (su-scma). Krawczyk and Ra-
bin [20] showed that there is a generic transformation
from su-scma to su-acma (strong unforgeability un-
der adaptive chosen-message attack) security using a
family of chameleon hash functions.

The main contribution of this work is to build a
bridge between FHSS and Homomorphic Chameleon
Hash Function (HCHF). In [21], Cash et al. straight-
forwardly presented a simple chameleon hash func-
tion using the preimage sampleable function under s-
tandard lattice assumption. Along this line of work,
we give the definition of HCHF and present a family
of HCHFs, which is based on the SIS problem in hard
random lattices. After that, we construct a leveled ful-
ly homomorphic signature scheme using the HCHF
tool. Similar to [23], we use the SampleLeft algo-
rithm to extract signatures in real scheme and use the
SampleRight algorithm to response the adversary’s
signature queries in the simulation game. The con-
struction is straightforward and the security of our
scheme is based on the property of collision resis-
tance of HCHF. In fact, our scheme is homomorphic
for any function, and not like those ones in [13,15-
16] just for linear function. Unlike several recent ho-
momorphic signature schemes [13–15], our scheme is
secure in the standard model. These results show that
our homomorphic scheme is attractive.

The remainder of this paper is organized in the
following manner. We mainly introduce some basic
knowledge about lattice and homomorphic signature

scheme in section 2. In section 3 we focus on the def-
inition of HCHF and the specific construction from
the standard SIS problem. We describe our homo-
morphic signature scheme, and provide the parame-
ters setting and security analysis in section 4. Section
5 presents the comparison between our scheme and
some classical homomorphic signature schemes. Fi-
nally, we draw our conclusions in section 6.

2. Preliminaries

2.1. Notation

For any positive integer q, we denote the set
{1, 2, · · · , q} by [q] and let Zq denote the integer ring
which represents as integers in (−q/2, q/2]. Vectors
are assumed to be in column form and are written us-
ing bold lower-case letters (e.g. x). Similarly, we use
bold capital-case letters (e.g. A) to represent matrices.
Given two matrices A1 ∈ Zn×m1

q and A2 ∈ Zn×m2
q ,

we use [A1‖A2] to denote the n × (m1 + m2) ma-
trix formed by concatenating A1 and A2. For a ma-
trix A ∈ Zn×m

q , let sA denote the maximal singu-
lar values of A and use ‖A‖ to denote the maxi-
mum norm of column vector of the matrix A, i.e.,
‖A‖ = max

i∈[m]
{‖ai‖}, where ai is the column vector

of A.
We denote a negligible function f(n) by negl(n)

if it is o(n−c) for any fixed constant c. We say
f(n) is polynomial if it is O(nc) for any fixed con-
stant c, and we use poly(n) to denote it. Given t-
wo distributions X and Y over a countable domain
Z, the statistical distance between them is defined
as ∆ = 1

2

∑
z∈Z

|X(z) − Y (z)|. The min-entropy

of a random variable X is denoted by H∞(X) =
− log(max

x∈X
Pr[X = x]). Given two random variables

X and Y , the average min-entropy of X conditioned
on (correlated) variable Y is defined as H̃∞(X|Y) =
− log(Ey←Y (max

x∈X
Pr[X = x|Y = y])).

Lemma 1 ([25]). Given two random variables X and
Y , let Y be the support of Y . Then H̃∞(X|Y) �
H∞(X)− log(|Y|).

2.2. Lattices and SIS problem

Generally speaking, a lattice is a discrete ad-
ditive subgroup of Rn. A (full rank) lattice Λ can
be viewed as the set of all integer linear combina-
tions of n linearly independent basis vectors B =
{b1, b2, · · · , bn}. Using the matrix notation,

Λ = L(B) = {Bc =
∑
i∈[n]

cibi : c ∈ Zn}. (1)

 be the support of Y . Then

)log()()(~ Ψ−≥ ∞∞ XHYXH (3)

Lattices and SIS problem
Generally speaking, a lattice is a discrete additive sub-
group of

Homomorphic Signatures from Chameleon Hash Functions 3

A family of lattices, called as q-ary lattices, is of
particular interest to many cryptographic application-
s.

Definition 1 (q-ary lattices). For any positive integers
n,m, q(m � n), let A ∈ Zn×m

q be a matrix. Define
the following m-dimensional q-ary lattices:

Λ(At) = {z ∈ Zm|∃ c s.t. z = Atc mod q}; (2)

Λ⊥(A) = {z ∈ Zm|Az = 0 mod q}. (3)

For any v ∈ Zn
q admitting an integral solution x ∈ Zm

to Ax = v mod q, define the shifted lattice as

Λ⊥
v (A) = {z ∈ Zm|Az = v mod q}. (4)

Definition 2 (Gaussian function). For any real s > 0
and any c ∈ Rn, the n-dimensional Gaussian function
ρs,c(x) is defined as

ρs,c(x) = exp(−π
‖x − c‖2

s2
), (5)

where x is a n-dimensional vector in Rn.

Definition 3 (Discrete Gaussian distribution). For
any real s > 0, any c ∈ Rn, and an n-dimensional lat-
tice Λ, the discrete Gaussian distribution DΛ,s,c over
Λ is defined as

DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

, (6)

where x is a vector in Λ. We omit s and c when they
are taken to be 1 and 0, respectively.

Definition 4 (Small integer solution (SIS)). Given
positive integers n,m, q, a real constant β and a ma-
trix A ∈ Zn×m

q (m � n), find a nonzero vector
u ∈ Zm so that Au = 0 mod q and ‖u‖ � β.

In fact, the SIS(n,m, q, β) problem is equiva-
lent to find a short nonzero vector ‖u‖ � β in
the lattice Λ⊥(A). Micciancio and Regev [2] showed
that the worst case of various promise problems (e.g.
GapSV P,GapCV P) can be reduced to the average
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

1. The TrapGen randomly outputs a parity check
matrix A ∈ Zn×m

q and a trapdoor short basis TA for
Λ⊥(A) so that the output distribution of A is statisti-
cally close to uniform over Zn×m

q .
2. The SampleDom produces a matrix U with

‖U‖ � s
√
m whose column vector is sampled from

DZm,s, where s � w(
√
logm). The output distribu-

tion V = AU is statistically close to uniform over
Zn×m
q .

3. Given a matrix A ∈ Zn×m
q together with it-

s trapdoor TA ∈ Zm×m, and a matrix V ∈ Zn×m
q ,

the SamplePre outputs a matrix U ∈ Zm×m
q with

the conditional distribution of U ← SampleDom
so that AU = V and ‖U‖ � s

√
m , where s �

‖T̃A‖w(
√
logm).

We also need two classic sampling algorithms
[21,23] (see Algorithm 1 and Algorithm 2). Essential-
ly, the algorithm SampleLeft will be used in real sig-
nature system, and the algorithm SampleRight will
be used to exact signatures for adversary’s queried
messages in the simulation game.

Algorithm 1 SampleLeft(A, B, TA, v, s)
Require:

1. A random matrix A ∈ Zn×m1
q with rank n and a matrix

B ∈ Zn×m2
q ;

2. A relatively "short" trapdoor basis TA of Λ⊥
q (A) and a vector

u ∈ Zn
q ;

3. A Gaussian parameter s � ‖T̃A‖w(
√

log(m1 +m2));
Ensure: A vector u ∈ Zm1+m2 sampled from a distribution sta-

tistically close to DΛv
q(A‖B),s.

Algorithm 2 SampleRight(A, B, C, TB, v, s)
Require:

1. A matrix A ∈ Zn×l
q and a matrix C ∈ Zl×m;

2. A matrix B ∈ Zn×m
q and the associated "short" basis TB of

Λ⊥
q (B);

3. A gaussian parameter s > ‖T̃B‖sCw(
√
logm), where sC is

the maximal singular value of C.
Ensure: A vector u ∈ Zm+l sampled from a distribution statisti-

cally close to DΛv
q(A‖AC+B),s.

2.4. Homomorphic Signature Scheme: Definition
and Security

Throughout this paper, let λ be the security pa-
rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

. A (full rank) lattice Λ can be viewed as
the set of all integer linear combinations of n linear-
ly independent basis vectors },,,{ 21 nbbbB = . Using
the matrix notation,

Λ = L(B) = {Bc =
∑
i∈[n]

cibi : c ∈ Zn}. (4)

A family of lattices, called as q -ary lattices, is of
particular interest to many cryptographic applica-
tions.
Definition  1 (q -ary lattices). For any positive
integers)(,, nmqmn ≥ , let mn

q
×∈ZA be a matrix. De-

fine the following m -dimensional q -ary lattices:

mod..{)(q ts tmt cAzczA =∃∈=Λ Z }; (5)

9

}.mod{)(qm 0AzzA (6)

}.mod{)(qm vAzzAv (7)

,

),/exp()(22
, ss cxxc (8)

),(/)()(,,,, ccc xx sssD (9)

(6)

For any n
qZ∈v admitting an integral solution mZ∈x

to qmodv=Ax , define the shifted lattice as

9

}.mod{)(qm 0AzzA (6)

}.mod{)(qm vAzzAv (7)

,

),/exp()(22
, ss cxxc (8)

),(/)()(,,,, ccc xx sssD (9)

(7)

Definition 2 (Gaussian function). For any real 0>s
and any

Homomorphic Signatures from Chameleon Hash Functions 3

A family of lattices, called as q-ary lattices, is of
particular interest to many cryptographic application-
s.

Definition 1 (q-ary lattices). For any positive integers
n,m, q(m � n), let A ∈ Zn×m

q be a matrix. Define
the following m-dimensional q-ary lattices:

Λ(At) = {z ∈ Zm|∃ c s.t. z = Atc mod q}; (2)

Λ⊥(A) = {z ∈ Zm|Az = 0 mod q}. (3)

For any v ∈ Zn
q admitting an integral solution x ∈ Zm

to Ax = v mod q, define the shifted lattice as

Λ⊥
v (A) = {z ∈ Zm|Az = v mod q}. (4)

Definition 2 (Gaussian function). For any real s > 0
and any c ∈ Rn, the n-dimensional Gaussian function
ρs,c(x) is defined as

ρs,c(x) = exp(−π
‖x − c‖2

s2
), (5)

where x is a n-dimensional vector in Rn.

Definition 3 (Discrete Gaussian distribution). For
any real s > 0, any c ∈ Rn, and an n-dimensional lat-
tice Λ, the discrete Gaussian distribution DΛ,s,c over
Λ is defined as

DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

, (6)

where x is a vector in Λ. We omit s and c when they
are taken to be 1 and 0, respectively.

Definition 4 (Small integer solution (SIS)). Given
positive integers n,m, q, a real constant β and a ma-
trix A ∈ Zn×m

q (m � n), find a nonzero vector
u ∈ Zm so that Au = 0 mod q and ‖u‖ � β.

In fact, the SIS(n,m, q, β) problem is equiva-
lent to find a short nonzero vector ‖u‖ � β in
the lattice Λ⊥(A). Micciancio and Regev [2] showed
that the worst case of various promise problems (e.g.
GapSV P,GapCV P) can be reduced to the average
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

1. The TrapGen randomly outputs a parity check
matrix A ∈ Zn×m

q and a trapdoor short basis TA for
Λ⊥(A) so that the output distribution of A is statisti-
cally close to uniform over Zn×m

q .
2. The SampleDom produces a matrix U with

‖U‖ � s
√
m whose column vector is sampled from

DZm,s, where s � w(
√
logm). The output distribu-

tion V = AU is statistically close to uniform over
Zn×m
q .

3. Given a matrix A ∈ Zn×m
q together with it-

s trapdoor TA ∈ Zm×m, and a matrix V ∈ Zn×m
q ,

the SamplePre outputs a matrix U ∈ Zm×m
q with

the conditional distribution of U ← SampleDom
so that AU = V and ‖U‖ � s

√
m , where s �

‖T̃A‖w(
√
logm).

We also need two classic sampling algorithms
[21,23] (see Algorithm 1 and Algorithm 2). Essential-
ly, the algorithm SampleLeft will be used in real sig-
nature system, and the algorithm SampleRight will
be used to exact signatures for adversary’s queried
messages in the simulation game.

Algorithm 1 SampleLeft(A, B, TA, v, s)
Require:

1. A random matrix A ∈ Zn×m1
q with rank n and a matrix

B ∈ Zn×m2
q ;

2. A relatively "short" trapdoor basis TA of Λ⊥
q (A) and a vector

u ∈ Zn
q ;

3. A Gaussian parameter s � ‖T̃A‖w(
√

log(m1 +m2));
Ensure: A vector u ∈ Zm1+m2 sampled from a distribution sta-

tistically close to DΛv
q(A‖B),s.

Algorithm 2 SampleRight(A, B, C, TB, v, s)
Require:

1. A matrix A ∈ Zn×l
q and a matrix C ∈ Zl×m;

2. A matrix B ∈ Zn×m
q and the associated "short" basis TB of

Λ⊥
q (B);

3. A gaussian parameter s > ‖T̃B‖sCw(
√
logm), where sC is

the maximal singular value of C.
Ensure: A vector u ∈ Zm+l sampled from a distribution statisti-

cally close to DΛv
q(A‖AC+B),s.

2.4. Homomorphic Signature Scheme: Definition
and Security

Throughout this paper, let λ be the security pa-
rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

, the n -dimensional Gaussian function
)(, xcsρ is defined as

9

}.mod{)(qm 0AzzA (6)

}.mod{)(qm vAzzAv (7)

,

),/exp()(22
, ss cxxc (8)

),(/)()(,,,, ccc xx sssD (9)

(8)

where x is a n -dimensional vector in

Homomorphic Signatures from Chameleon Hash Functions 3

A family of lattices, called as q-ary lattices, is of
particular interest to many cryptographic application-
s.

Definition 1 (q-ary lattices). For any positive integers
n,m, q(m � n), let A ∈ Zn×m

q be a matrix. Define
the following m-dimensional q-ary lattices:

Λ(At) = {z ∈ Zm|∃ c s.t. z = Atc mod q}; (2)

Λ⊥(A) = {z ∈ Zm|Az = 0 mod q}. (3)

For any v ∈ Zn
q admitting an integral solution x ∈ Zm

to Ax = v mod q, define the shifted lattice as

Λ⊥
v (A) = {z ∈ Zm|Az = v mod q}. (4)

Definition 2 (Gaussian function). For any real s > 0
and any c ∈ Rn, the n-dimensional Gaussian function
ρs,c(x) is defined as

ρs,c(x) = exp(−π
‖x − c‖2

s2
), (5)

where x is a n-dimensional vector in Rn.

Definition 3 (Discrete Gaussian distribution). For
any real s > 0, any c ∈ Rn, and an n-dimensional lat-
tice Λ, the discrete Gaussian distribution DΛ,s,c over
Λ is defined as

DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

, (6)

where x is a vector in Λ. We omit s and c when they
are taken to be 1 and 0, respectively.

Definition 4 (Small integer solution (SIS)). Given
positive integers n,m, q, a real constant β and a ma-
trix A ∈ Zn×m

q (m � n), find a nonzero vector
u ∈ Zm so that Au = 0 mod q and ‖u‖ � β.

In fact, the SIS(n,m, q, β) problem is equiva-
lent to find a short nonzero vector ‖u‖ � β in
the lattice Λ⊥(A). Micciancio and Regev [2] showed
that the worst case of various promise problems (e.g.
GapSV P,GapCV P) can be reduced to the average
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

1. The TrapGen randomly outputs a parity check
matrix A ∈ Zn×m

q and a trapdoor short basis TA for
Λ⊥(A) so that the output distribution of A is statisti-
cally close to uniform over Zn×m

q .
2. The SampleDom produces a matrix U with

‖U‖ � s
√
m whose column vector is sampled from

DZm,s, where s � w(
√
logm). The output distribu-

tion V = AU is statistically close to uniform over
Zn×m
q .

3. Given a matrix A ∈ Zn×m
q together with it-

s trapdoor TA ∈ Zm×m, and a matrix V ∈ Zn×m
q ,

the SamplePre outputs a matrix U ∈ Zm×m
q with

the conditional distribution of U ← SampleDom
so that AU = V and ‖U‖ � s

√
m , where s �

‖T̃A‖w(
√
logm).

We also need two classic sampling algorithms
[21,23] (see Algorithm 1 and Algorithm 2). Essential-
ly, the algorithm SampleLeft will be used in real sig-
nature system, and the algorithm SampleRight will
be used to exact signatures for adversary’s queried
messages in the simulation game.

Algorithm 1 SampleLeft(A, B, TA, v, s)
Require:

1. A random matrix A ∈ Zn×m1
q with rank n and a matrix

B ∈ Zn×m2
q ;

2. A relatively "short" trapdoor basis TA of Λ⊥
q (A) and a vector

u ∈ Zn
q ;

3. A Gaussian parameter s � ‖T̃A‖w(
√

log(m1 +m2));
Ensure: A vector u ∈ Zm1+m2 sampled from a distribution sta-

tistically close to DΛv
q(A‖B),s.

Algorithm 2 SampleRight(A, B, C, TB, v, s)
Require:

1. A matrix A ∈ Zn×l
q and a matrix C ∈ Zl×m;

2. A matrix B ∈ Zn×m
q and the associated "short" basis TB of

Λ⊥
q (B);

3. A gaussian parameter s > ‖T̃B‖sCw(
√
logm), where sC is

the maximal singular value of C.
Ensure: A vector u ∈ Zm+l sampled from a distribution statisti-

cally close to DΛv
q(A‖AC+B),s.

2.4. Homomorphic Signature Scheme: Definition
and Security

Throughout this paper, let λ be the security pa-
rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

.

2 D.Xie, H.Peng,L.Li, and Y.Yang

grow exponentially in the depth of the circuits. Fur-
thermore, the construction is based on the SIS prob-
lem in ideal lattice. Recently, Boyen et al. presented
the first adaptively secure fully homomorphic signa-
ture scheme that can evaluate any circuit over signed
data [17].

Chameleon hash function, related to the notion
of non-interactive chameleon commitment schemes,
was originally introduced by Brassard et al. [18].
Roughly speaking, a chameleon trapdoor hash func-
tion is a collision-resistance function with chameleon
property, i.e., the holder of the trapdoor can easily
find collisions for every input. In addition, anyone
can compute the hash function using public param-
eters and the resulting probability distribution is sta-
tistically close to uniform over the range. Chameleon
hash functions have been proven to be an extremely
useful tool in many scenarios, especially in signature
schemes. Mohassel [19] showed a general construc-
tion for transforming any chameleon hash function
to a strongly unforgeable one-time signature scheme.
Recently, Micciancio and Peikert [12] proposed a
signature scheme with short parameters and proved
its security with strong unforgeability under static
chosen-message attack (su-scma). Krawczyk and Ra-
bin [20] showed that there is a generic transformation
from su-scma to su-acma (strong unforgeability un-
der adaptive chosen-message attack) security using a
family of chameleon hash functions.

The main contribution of this work is to build a
bridge between FHSS and Homomorphic Chameleon
Hash Function (HCHF). In [21], Cash et al. straight-
forwardly presented a simple chameleon hash func-
tion using the preimage sampleable function under s-
tandard lattice assumption. Along this line of work,
we give the definition of HCHF and present a family
of HCHFs, which is based on the SIS problem in hard
random lattices. After that, we construct a leveled ful-
ly homomorphic signature scheme using the HCHF
tool. Similar to [23], we use the SampleLeft algo-
rithm to extract signatures in real scheme and use the
SampleRight algorithm to response the adversary’s
signature queries in the simulation game. The con-
struction is straightforward and the security of our
scheme is based on the property of collision resis-
tance of HCHF. In fact, our scheme is homomorphic
for any function, and not like those ones in [13,15-
16] just for linear function. Unlike several recent ho-
momorphic signature schemes [13–15], our scheme is
secure in the standard model. These results show that
our homomorphic scheme is attractive.

The remainder of this paper is organized in the
following manner. We mainly introduce some basic
knowledge about lattice and homomorphic signature

scheme in section 2. In section 3 we focus on the def-
inition of HCHF and the specific construction from
the standard SIS problem. We describe our homo-
morphic signature scheme, and provide the parame-
ters setting and security analysis in section 4. Section
5 presents the comparison between our scheme and
some classical homomorphic signature schemes. Fi-
nally, we draw our conclusions in section 6.

2. Preliminaries

2.1. Notation

For any positive integer q, we denote the set
{1, 2, · · · , q} by [q] and let Zq denote the integer ring
which represents as integers in (−q/2, q/2]. Vectors
are assumed to be in column form and are written us-
ing bold lower-case letters (e.g. x). Similarly, we use
bold capital-case letters (e.g. A) to represent matrices.
Given two matrices A1 ∈ Zn×m1

q and A2 ∈ Zn×m2
q ,

we use [A1‖A2] to denote the n × (m1 + m2) ma-
trix formed by concatenating A1 and A2. For a ma-
trix A ∈ Zn×m

q , let sA denote the maximal singu-
lar values of A and use ‖A‖ to denote the maxi-
mum norm of column vector of the matrix A, i.e.,
‖A‖ = max

i∈[m]
{‖ai‖}, where ai is the column vector

of A.
We denote a negligible function f(n) by negl(n)

if it is o(n−c) for any fixed constant c. We say
f(n) is polynomial if it is O(nc) for any fixed con-
stant c, and we use poly(n) to denote it. Given t-
wo distributions X and Y over a countable domain
Z, the statistical distance between them is defined
as ∆ = 1

2

∑
z∈Z

|X(z) − Y (z)|. The min-entropy

of a random variable X is denoted by H∞(X) =
− log(max

x∈X
Pr[X = x]). Given two random variables

X and Y , the average min-entropy of X conditioned
on (correlated) variable Y is defined as H̃∞(X|Y) =
− log(Ey←Y (max

x∈X
Pr[X = x|Y = y])).

Lemma 1 ([25]). Given two random variables X and
Y , let Y be the support of Y . Then H̃∞(X|Y) �
H∞(X)− log(|Y|).

2.2. Lattices and SIS problem

Generally speaking, a lattice is a discrete ad-
ditive subgroup of Rn. A (full rank) lattice Λ can
be viewed as the set of all integer linear combina-
tions of n linearly independent basis vectors B =
{b1, b2, · · · , bn}. Using the matrix notation,

Λ = L(B) = {Bc =
∑
i∈[n]

cibi : c ∈ Zn}. (1)

277Information Technology and Control 2017/2/46

Definition 3 (Discrete Gaussian distribution). For
any real 0>s , any

Homomorphic Signatures from Chameleon Hash Functions 3

A family of lattices, called as q-ary lattices, is of
particular interest to many cryptographic application-
s.

Definition 1 (q-ary lattices). For any positive integers
n,m, q(m � n), let A ∈ Zn×m

q be a matrix. Define
the following m-dimensional q-ary lattices:

Λ(At) = {z ∈ Zm|∃ c s.t. z = Atc mod q}; (2)

Λ⊥(A) = {z ∈ Zm|Az = 0 mod q}. (3)

For any v ∈ Zn
q admitting an integral solution x ∈ Zm

to Ax = v mod q, define the shifted lattice as

Λ⊥
v (A) = {z ∈ Zm|Az = v mod q}. (4)

Definition 2 (Gaussian function). For any real s > 0
and any c ∈ Rn, the n-dimensional Gaussian function
ρs,c(x) is defined as

ρs,c(x) = exp(−π
‖x − c‖2

s2
), (5)

where x is a n-dimensional vector in Rn.

Definition 3 (Discrete Gaussian distribution). For
any real s > 0, any c ∈ Rn, and an n-dimensional lat-
tice Λ, the discrete Gaussian distribution DΛ,s,c over
Λ is defined as

DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

, (6)

where x is a vector in Λ. We omit s and c when they
are taken to be 1 and 0, respectively.

Definition 4 (Small integer solution (SIS)). Given
positive integers n,m, q, a real constant β and a ma-
trix A ∈ Zn×m

q (m � n), find a nonzero vector
u ∈ Zm so that Au = 0 mod q and ‖u‖ � β.

In fact, the SIS(n,m, q, β) problem is equiva-
lent to find a short nonzero vector ‖u‖ � β in
the lattice Λ⊥(A). Micciancio and Regev [2] showed
that the worst case of various promise problems (e.g.
GapSV P,GapCV P) can be reduced to the average
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

1. The TrapGen randomly outputs a parity check
matrix A ∈ Zn×m

q and a trapdoor short basis TA for
Λ⊥(A) so that the output distribution of A is statisti-
cally close to uniform over Zn×m

q .
2. The SampleDom produces a matrix U with

‖U‖ � s
√
m whose column vector is sampled from

DZm,s, where s � w(
√
logm). The output distribu-

tion V = AU is statistically close to uniform over
Zn×m
q .

3. Given a matrix A ∈ Zn×m
q together with it-

s trapdoor TA ∈ Zm×m, and a matrix V ∈ Zn×m
q ,

the SamplePre outputs a matrix U ∈ Zm×m
q with

the conditional distribution of U ← SampleDom
so that AU = V and ‖U‖ � s

√
m , where s �

‖T̃A‖w(
√
logm).

We also need two classic sampling algorithms
[21,23] (see Algorithm 1 and Algorithm 2). Essential-
ly, the algorithm SampleLeft will be used in real sig-
nature system, and the algorithm SampleRight will
be used to exact signatures for adversary’s queried
messages in the simulation game.

Algorithm 1 SampleLeft(A, B, TA, v, s)
Require:

1. A random matrix A ∈ Zn×m1
q with rank n and a matrix

B ∈ Zn×m2
q ;

2. A relatively "short" trapdoor basis TA of Λ⊥
q (A) and a vector

u ∈ Zn
q ;

3. A Gaussian parameter s � ‖T̃A‖w(
√

log(m1 +m2));
Ensure: A vector u ∈ Zm1+m2 sampled from a distribution sta-

tistically close to DΛv
q(A‖B),s.

Algorithm 2 SampleRight(A, B, C, TB, v, s)
Require:

1. A matrix A ∈ Zn×l
q and a matrix C ∈ Zl×m;

2. A matrix B ∈ Zn×m
q and the associated "short" basis TB of

Λ⊥
q (B);

3. A gaussian parameter s > ‖T̃B‖sCw(
√
logm), where sC is

the maximal singular value of C.
Ensure: A vector u ∈ Zm+l sampled from a distribution statisti-

cally close to DΛv
q(A‖AC+B),s.

2.4. Homomorphic Signature Scheme: Definition
and Security

Throughout this paper, let λ be the security pa-
rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

, and an n -dimensional lat-
tice Λ , the discrete Gaussian distribution c,,sDΛ over
Λ is defined as

9

}.mod{)(qm 0AzzA (6)

}.mod{)(qm vAzzAv (7)

,

),/exp()(22
, ss cxxc (8)

),(/)()(,,,, ccc xx sssD (9)

(9)

where x is a vector in Λ . We omit s and c when
they are taken to be 1 and 0 , respectively.
Definition 4 (Small integer solution (SIS)). Given
positive integers ,,, qmn a real constant β and a ma-
trix (nmmn

q ≥∈ ×ZA),
 find a nonzero vector ,mZ∈u so

that qmod0=Au and β≤u .
In fact, the),,,SIS(βqmn problem is equivalent to
find a short nonzero vector β≤u in the lattice

(A⊥Λ
 Micciancio and Regev showed that the worst

case of various promise problems (e.g. GapSVP, Gap-
CVP) can be reduced to the average case of the SIS
problem [22].

Trapdoors for lattices and sampling algorithms

Lemma 2 ([4, 19]). Given any integers ,1≥n ,2≥q
and sufficiently large)log(qnOm = , there are three
efficient algorithms TrapGen, SampleDom and
SamplePre having the following description:

1 The TrapGen randomly outputs a parity check
matrix mn

q
×∈ZA

 and a trapdoor short basis TA for
)(A⊥Λ so that the output distribution of A is sta-

tistically close to uniform over mn
q
×Z .

2 The SampleDom produces a matrix U with
ms≤U whose column vector is sampled from

,,smDZ where log(mws ≥ The output distribu-
tion V = AU is statistically close to uniform over

mn
q
×Z .

3 Given a matrix mn
q

×∈ZA together with its trapdoor
,mm×

∈ZAT and a matrix mn
q

×∈ZV , the SamplePre
outputs a matrix mm

q
×∈ZU with the conditional dis-

tribution of SampleDomU ← so that AU=V and
,ms≤U where log(~ mws AT≥).

We also need two classic sampling algorithms [1, 13]
(see Algorithm 1 and Algorithm 2). Essentially, the
algorithm SampleLeft will be used in real signature
system, and the algorithm SampleRight will be used
to exact signatures for adversary’s queried messages
in the simulation game.

Algorithm 1),,,,(svTBASampleLeft A
Require:
1 A random matrix 1mn

q
×∈ZA with rank n and a ma-

trix 2mn
q

×∈ZB ;
2 A relatively “short” trapdoor basis AT of)(A⊥Λq

and a vector n
qZ∈u ;

3 A Gaussian parameter))log((~
21 mmws +≥ AT ;

Ensure: A vector 21 mm +∈Zu sampled from a distribu-
tion statistically close to

Homomorphic Signature from Chameleon Hash Functions

9

A family of lattices, called as q -ary lattices, is of
particular interest to many cryptographic applications.

Definition 1 (q -ary lattices) For any positive inte-

gers)(,, nmqmn , let mn
q
A be a matrix. Define

the following m -dimensional q -ary lattices:

};mod..{)(qts tmt cAzczA (5)

}.mod{)(qm 0AzzA (6)

For any n
qv admitting an integral solution

mx to qmodvAx , define the shifted lattice as

}.mod{)(qm vAzzAv (7)
Definition 2 (Gaussian function) For any real
0s and any nc , the n -dimensional Gaussian

function)(, xcs is defined as

),/exp()(22
, ss cxxc (8)

where x is a n -dimensional vector in n .
Definition 3 (Discrete Gaussian distribution) For

any real 0s , any nc , and an n -dimensional
lattice , the discrete Gaussian distribution c,,sD
over is defined as

),(/)()(,,,, ccc xx sssD (9)
where x is a vector in . We omit s and c when they
are taken to be 1 and 0 , respectively.

Definition 4 (Small integer solution (SIS)) Given
positive integers ,,, qmn a real constant and a matrix

),(nmmn
q A find a nonzero vector ,mu so

that qmod0Au and u .
In fact, the),,,SIS(qmn problem is equivalent to

find a short nonzero vector u in the lattice

).(A Micciancio and Regev showed that the worst
case of various promise problems (e.g. GapSVP,
GapCVP) can be reduced to the average case of the
SIS problem [22].

2.3. Trapdoors for lattices and sampling algorithms

Lemma 2 ([4, 19]) Given any
integers ,1n ,2q and sufficiently
large)log(qnOm , there are three effici- ent
algorithms TrapGen, SampleDom and SamplePre
having the following description:
 1. The TrapGen randomly outputs a parity check
matrix mn

q
A and a trapdoor short basis AΤ for

)(A so that the output distribution of A is

statistically close to uniform over mn
q
 .

2. The SampleDom produces a matrix U with
msU whose column vector is sampled from

,,smD where).log(mws The output distribution

AUV is statistically close to uniform over mn
q
 .

3. Given a matrix mn
q
A together with its

trapdoor ,mm
 AΤ and a matrix mn

q
V , the

SamplePre outputs a matrix mm
q
U with the

conditional distribution of SampleDomU so

that VAU and ,msU where).log(~ mws AT

We also need two classic sampling algorithms [1,
13] (see Algorithm 1 and Algorithm 2). Essentially,
the algorithm SampleLeft will be used in real
signature system, and the algorithm SampleRight will
be used to exact signatures for adversary's queried
messages in the simulation game.

Algorithm 1),,,,(svTBASampleLeft A
Require:
 1. A random matrix 1mn

q
A with rank n and a

matrix 2mn
q
B ;

 2. A relatively "short" trapdoor basis AT of)(Aq

and a vector n
qu ;

 3. A Gaussian parameter))log((~
21 mmws AT ;

Ensure: A vector 21 mm u sampled from a distributi-
on statistically close to sq

D),(BAv .

Algorithm 2),,,,,(svTCBAtSampleRigh B
Require:
 1. A random matrix ln

q
A and a matrix mlC ;

2. A matrix mn
q
B and the "short" basis BT of

)(Bq ;

3. A gaussian parameter)log(~ mwss CBT ,

where Cs is the maximal singular value of C .

Ensure: A vector lmu sampled from a distribution
statistically close to sq

D),(BACAv .

2.4. Homomorphic signature scheme: definition
and security

Throughout this paper, let be the security parameter.
We denote the message space by and let be a
collection of circuits which take k inputs over the
message space and generate an output in . Boneh
and Freeman [8] first introduced the formal definition
of a homomorphic signature scheme for a type of
circuit . A -homomorphic signature scheme is a

.

Algorithm 2),,,,,(svTCBAtSampleRigh B
Require:
1 A random matrix ln

q
×∈ZA and a matrix ml×∈ZC ;

2 A matrix mn
q

×∈ZB and the "short" basis BT of
)(B⊥Λq ;

3 A gaussian parameter)log(~ mwss CBT≥ , where
Cs is the maximal singular value of C .

Ensure: A vector lm+∈Zu sampled from a distribu-
tion statistically close to

Homomorphic Signature from Chameleon Hash Functions

9

A family of lattices, called as q -ary lattices, is of
particular interest to many cryptographic applications.

Definition 1 (q -ary lattices) For any positive inte-

gers)(,, nmqmn , let mn
q
A be a matrix. Define

the following m -dimensional q -ary lattices:

};mod..{)(qts tmt cAzczA (5)

}.mod{)(qm 0AzzA (6)

For any n
qv admitting an integral solution

mx to qmodvAx , define the shifted lattice as

}.mod{)(qm vAzzAv (7)
Definition 2 (Gaussian function) For any real
0s and any nc , the n -dimensional Gaussian

function)(, xcs is defined as

),/exp()(22
, ss cxxc (8)

where x is a n -dimensional vector in n .
Definition 3 (Discrete Gaussian distribution) For

any real 0s , any nc , and an n -dimensional
lattice , the discrete Gaussian distribution c,,sD
over is defined as

),(/)()(,,,, ccc xx sssD (9)
where x is a vector in . We omit s and c when they
are taken to be 1 and 0 , respectively.

Definition 4 (Small integer solution (SIS)) Given
positive integers ,,, qmn a real constant and a matrix

),(nmmn
q A find a nonzero vector ,mu so

that qmod0Au and u .
In fact, the),,,SIS(qmn problem is equivalent to

find a short nonzero vector u in the lattice

).(A Micciancio and Regev showed that the worst
case of various promise problems (e.g. GapSVP,
GapCVP) can be reduced to the average case of the
SIS problem [22].

2.3. Trapdoors for lattices and sampling algorithms

Lemma 2 ([4, 19]) Given any
integers ,1n ,2q and sufficiently
large)log(qnOm , there are three effici- ent
algorithms TrapGen, SampleDom and SamplePre
having the following description:
 1. The TrapGen randomly outputs a parity check
matrix mn

q
A and a trapdoor short basis AΤ for

)(A so that the output distribution of A is

statistically close to uniform over mn
q
 .

2. The SampleDom produces a matrix U with
msU whose column vector is sampled from

,,smD where).log(mws The output distribution

AUV is statistically close to uniform over mn
q
 .

3. Given a matrix mn
q
A together with its

trapdoor ,mm
 AΤ and a matrix mn

q
V , the

SamplePre outputs a matrix mm
q
U with the

conditional distribution of SampleDomU so

that VAU and ,msU where).log(~ mws AT

We also need two classic sampling algorithms [1,
13] (see Algorithm 1 and Algorithm 2). Essentially,
the algorithm SampleLeft will be used in real
signature system, and the algorithm SampleRight will
be used to exact signatures for adversary's queried
messages in the simulation game.

Algorithm 1),,,,(svTBASampleLeft A
Require:
 1. A random matrix 1mn

q
A with rank n and a

matrix 2mn
q
B ;

 2. A relatively "short" trapdoor basis AT of)(Aq

and a vector n
qu ;

 3. A Gaussian parameter))log((~
21 mmws AT ;

Ensure: A vector 21 mm u sampled from a distributi-
on statistically close to sq

D),(BAv .

Algorithm 2),,,,,(svTCBAtSampleRigh B
Require:
 1. A random matrix ln

q
A and a matrix mlC ;

2. A matrix mn
q
B and the "short" basis BT of

)(Bq ;

3. A gaussian parameter)log(~ mwss CBT ,

where Cs is the maximal singular value of C .

Ensure: A vector lmu sampled from a distribution
statistically close to sq

D),(BACAv .

2.4. Homomorphic signature scheme: definition
and security

Throughout this paper, let be the security parameter.
We denote the message space by and let be a
collection of circuits which take k inputs over the
message space and generate an output in . Boneh
and Freeman [8] first introduced the formal definition
of a homomorphic signature scheme for a type of
circuit . A -homomorphic signature scheme is a

 .

Homomorphic signature scheme: definition
and security
Throughout this paper, let λ be the security parame-
ter. We denote the message space by

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 and let

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 be
a collection of circuits which take k inputs over the
message space and generate an output in

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

. Boneh
and Freeman [8] first introduced the formal defini-
tion of a homomorphic signature scheme for a type
of circuit

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

. A

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

-homomorphic signature scheme is
a tuple of polynomial time algorithms =Π (KeyGen,
Sign, Eval, Verify) with the following syntax.
 _)1,1(kλKeyGen .The key generation algorithm

takes as input the security parameter λ and the
maximum size of the dataset k . It outputs a signing
secret key sk and a public verification key pk.

 _ .The signing algorithm takes as input
the secret key sk, a tag λτ }1,0{∈ , an index][ki ∈ and
a message M∈µ

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

. It outputs a signature δ .
 _ .The evaluation algo-

rithm takes as input the public key pk, a tag τ , a
collection of message-signature pairs ,
and a circuit .C∈C

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

. It outputs a signature 'δ for a
message 'µ .

 _ .The verification algorithm

Information Technology and Control 2017/2/46278

takes as input the public pk, a tag τ , a message-
signature pair),(δµ , and a circuit .C∈C

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

. It outputs
either 1 (accept) or 0 (reject).

For correctness, we require that both the original sig-
natures (generated by Sign) and the evaluated signa-
tures (generated by Eval) are accepted. Specifically,
we require that the following conditions hold.
1 For all tags λτ }1,0{∈ , all M∈µ

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

, and all][ki ∈ , if
, then we get

1) =iI . In order to maintain the consistency of
the verification algorithm, we use the circuit

iI to denote the identity mapping, namely,
ikiI µµµµ =),,,(21 .

2 For all tags λτ }1,0{∈ , all messages ,,,(21 µµ

 and all circuits .C∈C

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

, if
), ii µ and , we

have .
A signature scheme is fully homomorphic if it is ho-
momorphic for all polynomial-size circuits. In this
work, we construct leveled fully homomorphic signa-
ture schemes, i.e., they are homomorphic for all poly-
nomial-depth circuits. Next, we define the selective-
ly unforgeable security for homomorphic signature
schemes via the following game between a probabilis-
tic polynomial time adversary

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 and a challenger

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

.
 _ The adversary chooses (τ*, μ*, C*) as the challeng-

ed information and gives all information to the
challenger.

 _ The challenger generates (pk, sk) and gives pk to
the adversary.

 _ The adversary can make arbitrary polynomial
number of signing queries. In the i -th query,
the adversary chooses a fresh tag λτ }1,0{∈i and a
k -length message set k

ikii M∈),,,(21 µµµ . The
challenger generates the collection of signatures

),,,(21 ikii δδδ for the i -th query and sends it to
the adversary.

 _ The adversary outputs a signature ∗δ for the
chosen tag ∗τ , a message μ* and the circuit *C .

If , then the adversary

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

wins the game. Due to the definition of selective un-
forgeability, the adversary can query the signatures
of the challenged message vector μ*. In order to make
the challenger response for the challenger message
vector, we set the adversary's challenged plaintext
as a set of messages, rather than a single message. In

fact, there are two types of forgers: one is iττ ≠*
 for

all queried i, and the other is iττ =*
 for some index i

but μ*≠ C*(μ*).
Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme ,,(SignKeyGen=Π

),VerifyEval is selectively unforgeable if for any
probability polynomial time adversary, the probability
of wining the above game is negligible.

Homomorphic Chameleon
Hash Functions: Definition and
Construction
In [15], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [12], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has an
additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[19, 21].
Definition  6 (Homomorphic Chameleon Hash
Function). For a message space

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 and a random-
ness space

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

, a family of homomorphic chameleon
hash functions is a collection

i

Ii(µ1, µ2, · · · , µk) = µi.
2. For all tags τ ∈ {0, 1}λ, all messages

(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

where i is the index and

i

Ii(µ1, µ2, · · · , µk) = µi.
2. For all tags τ ∈ {0, 1}λ, all messages

(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 is the range. There is an
algorithm which can generate a public index i and the
corresponding trapdoor secret key iT . Homomorphic
chameleon hash functions consist of the following four
properties:
 _ Uniformity property. For a randomized index

i , M∈µ
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

, and Υ∈u

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

, the statistical distance

τ ,
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 is negligible, where

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

and

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 denote the uniform distributions on

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V . and

i

Ii(µ1, µ2, · · · , µk) = µi.
2. For all tags τ ∈ {0, 1}λ, all messages

(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

.
 _ Chameleon property. For any M∈µ

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 and ς∈v

i

Ii(µ1, µ2, · · · , µk) = µi.
2. For all tags τ ∈ {0, 1}λ, all messages

(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

,
given the trapdoor iT , anyone can efficiently
compute Υ∈u

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 so that vuhi =),(µ .
 _ Collision resistance. Given a public index i , there

are no polynomial time adversary which can find a
pair),(),(** uu µµ ≠ so that),(),(** uhuh ii µµ = .

 _ Homomorphic property. Given a dataset
][),,(kjjjj vu ∈µ so that jjji vuh =),(µ and a circuit

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

279Information Technology and Control 2017/2/46

MM →kC : , anyone can homomorphically
compute a 'u from jj u,µ and a 'v from jv so that

''
21)),,,,((vuCh ki =µµµ .

Next, we construct a class of specific HCHFs using
the trapdoor technique from standard lattices [19, 21]
and prove that it satisfies the above four properties.
Let

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

qZ=M ,

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

}:{ 2 Bmm
q ≤∈= × UU ZY and

i

Ii(µ1, µ2, · · · , µk) = µi.
2. For all tags τ ∈ {0, 1}λ, all messages

(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

mn
q

×= Zς .
We remark that B is the upper bound of the size of
evaluated signatures in our homomorphic schemes.
Every column of the matrix U is sampled from the
distribution smD ,Z , where s is the Gaussian parame-
ter. All related parameters are defined in section 4.2.
We use the TrapGen algorithm to generate the index
and the corresponding trapdoor for our HCHF.
The primitive matrix qnn

q
log×∈Z'G , introduced in

[21], has public trapdoor short basis 'GT for)('G⊥Λ .
Here we construct a new matrix mn

q
×∈= Z]['' RGG ,

where qnmn
q

log−×∈Z'R is a random matrix. Using Ext-
Basis algorithm in [13], we can obtain a short basis

GT for)(G⊥Λ so that G'G TT = [10]. Hence, anyone
can efficiently perform SamlePre algorithm using the
trapdoor GT . We define the homomorphic chameleon
hash function Ah with index A as follows:

.mod),(qh GAUUA (10)

.mod
),(

),(

22
22

1111

q
h
h

GAU
U
UGAU

A

A

 (11)

.mod
))(())((1221

q0zz
ArrGrrUUA ''

 (12)

).(log
log

)log()(
)(~)(~

nw
qnm

qH
HH

n

r
zrrr '

 (13)

).(2
]Pr[]Pr[

)(log nneglnw

'
21)rU(Ur0u (14)

(10)

It is not difficult to verify the uniformity and chame-
leon properties of Ah . Specifically, if µ is randomly
sampled from Zg, we naturally get the result that the
statistical distance is negligible
in n [19]. Given the trapdoor matrix AT , we can use the
algorithm SamplePre to compute U which has the
same distribution as smD ,Z [19]. Next, we prove that the
functions constructed by us satisfy the other two prop-
erties, i.e., collision resistance and homomorphism.
Theorem  1. Given an integer)(λpolyn = , let

)(λpolyq = be a prime,)(loglog nwqnm += and B
be the upper bound of the size of signatures defined in
section 4.2. If the problem is
hard, then the function Ah constructed above is colli-
sion resistance with probability)(1 nnegl− .
Proof. Suppose that there is an adversary

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 that finds
a collision),(11 µU and),(22 µU for a random function

Af . Obviously, we have

.mod),(qh GAUUA (10)

.mod
),(

),(

22
22

1111

q
h
h

GAU
U
UGAU

A

A

 (11)

.mod
))(())((1221

q0zz
ArrGrrUUA ''

 (12)

).(log
log

)log()(
)(~)(~

nw
qnm

qH
HH

n

r
zrrr '

 (13)

).(2
]Pr[]Pr[

)(log nneglnw

'
21)rU(Ur0u (14)

(11)

That is, qmod)()(1221 GUUA µµ −=− .
If 21 µµ = , then we have a nonzero matrix 21 UUU −=
so that . Note that Bi ≤U , so we have

B2≤U .
If 21 µµ ≠ , we first choose a vector mr }1,0{∈ at ran-
dom, and let . Since G is a public primitive ma-
trix and naturally has a trapdoor GT , we can invoke
the SamplePre to compute a vector mr }1,0{' ∈ so that

. We have

.mod),(qh GAUUA (10)

.mod
),(

),(

22
22

1111

q
h
h

GAU
U
UGAU

A

A

 (11)

.mod
))(())((1221

q0zz
ArrGrrUUA ''

 (12)

).(log
log

)log()(
)(~)(~

nw
qnm

qH
HH

n

r
zrrr '

 (13)

).(2
]Pr[]Pr[

)(log nneglnw

'
21)rU(Ur0u (14)

(12)

Hence, we get a vector rrUUu ' −−=)(21 so that
. Using the Cauchy-Schwarz inequality,

we easily have . Next, we only need
to prove that the probability of 0u = is negligible in
n . Although r is randomly chosen from m}1,0{ , 'r is
mainly dependent on z . Hence,

.mod),(qh GAUUA (10)

.mod
),(

),(

22
22

1111

q
h
h

GAU
U
UGAU

A

A

 (11)

.mod
))(())((1221

q0zz
ArrGrrUUA ''

 (12)

).(log
log

)log()(
)(~)(~

nw
qnm

qH
HH

n

r
zrrr '

 (13)

).(2
]Pr[]Pr[

)(log nneglnw

'
21)rU(Ur0u (14)

(13)

The second inequality follows from Lemma 1. There-
fore, from the definition of average min-entropy,

.mod),(qh GAUUA (10)

.mod
),(

),(

22
22

1111

q
h
h

GAU
U
UGAU

A

A

 (11)

.mod
))(())((1221

q0zz
ArrGrrUUA ''

 (12)

).(log
log

)log()(
)(~)(~

nw
qnm

qH
HH

n

r
zrrr '

 (13)

).(2
]Pr[]Pr[

)(log nneglnw

'
21)rU(Ur0u (14) (14)

In summary, if there is an adversary

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 that finds
a collision for a random function Af , then we can
construct an algorithm to solve the mqmn ,,,SIS(

 problem with probability)(1 nnegl− . This
concludes the proof.
For the homomorphic property, we consider general
arithmetic circuit C . Specifically, we consider four
types of gates: addition, multiplication, addition with
constant, and multiplication with constant. These
four special gates are completely used to compute an
arbitrary arithmetic circuit [24].
Theorem  2. Given an integer)(λpolyn = , let

)(λpolyq = be a prime and)log(qnOm = . The func-
tion Ah constructed above is homomorphic for any
arithmetic circuit.
Proof. In order to prove this theorem, we consider the
four types of gates in turn.

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

Information Technology and Control 2017/2/46280

1 For an addition gate f , 2121),(µµµµ +=f . Sup-
pose that there are two datasets 2,1),,(=iiii VU µ so
that iiih VUA =),(µ . Then we have

,mod111 qGAUV (15)
.mod222 qGAUV (16)

.mod
,

,
,)()()(

*
2

*
12

212

2121221
*

qV
VVV

RAUV
GRUUAGAU

 (17)

(15)
,mod111 qGAUV (15)
.mod222 qGAUV (16)

.mod
,

,
,)()()(

*
2

*
12

212

2121221
*

qV
VVV

RAUV
GRUUAGAU

 (17)

(16)

Define 21 UUU* += and 21 VVV* += . We can easily
verify that qh mod),(*

21
* VUA =+ µµ .

2 Similarly, for a multiplication gate, let
2121),(µµµµ =f . This time we firstly compute

the matrix mm×∈ }1,0{R so that
[12]. Then we define and

qmod2RVV * = .
Hen'ce,

,mod111 qGAUV (15)
.mod222 qGAUV (16)

.mod
,

,
,)()()(

*
2

*
12

212

2121221
*

qV
VVV

RAUV
GRUUAGAU

 (17)

(17)

3 For an addition with constant gate, aaf += µµ),(.
For the message µ , suppose that there are two
matrices U and V so that VUA =),(µh . We de-
fine UU =*

 and qa mod* GVV −= . Obviously,
qah mod),(** VUA =+µ holds.

4 For a multiplication by constant gate, µµ aaf =),(.
We define and , where

. It is also easy to check that the
equation qah mod),(** VUA =µ holds.

Note that an arbitrary arithmetic circuit C can be
expressed as the above four gate operations. For a cir-
cuit C, we compute *U and *V recursively gate by gate
according to the above rules. Therefore, the function

Ah constructed by us is homomorphic for any arith-
metic circuit.

Our leveled homomorphic
signature scheme
In this section, we firstly describe our proposed ho-
momorphic signature scheme and then set related
parameters for some types of circuits. After that, we
give the correctness analysis and security proof for
our scheme.

 Our construction
In our construction, we employ the public primi-
tive matrix G introduced by Micciancio and Peikert
[21], which naturally has a short basis GT for)(G⊥Λ .
Our homomorphic signature scheme =Π (KeyGen,
Sign, Eval, Verify) specifically works as follows.
 _)1,1(kλKeyGen . The algorithm takes the security

parameter λ and the maximum size of the dataset
k as input.

1 Choose the parameters smqn ,,, and B as in sec-
tion 4.2.

2 Sample a matrix mn
q

×∈ZA and its corresponding
trapdoor matrix mm×∈ZAT .

3 Choose 1+k random matrices B and ∈∈][}{ kiiV
mn

q
×Z .

4 Output the secret key and the public key
.

 _ . The algorithm takes the secret key
AT , a tag λτ }1,0{∈ , an index][ki ∈ and a message

M∈µ
case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 as input.

1 Choose a specific homomorphic chameleon hash
function

τAh

for the tag τ , where][GBAA ττ += mn

q
2×∈Z .

2 Use the secret key AT to compute U so that
ih VUA =),(µ

τ
. Namely,

),, si GVTA µ− .
3 Output the signature U=δ .

 _ . The evaluation algor-
ithm takes the public key pk, the tag τ , a collection
of message-signature pairs , and a
circuit Χ∈C

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 as input. It recursively computes a
homomorphic signature gate by gate.

1 Compute the homomorphic chameleon hash
function

τAh for the tagτ .
2 Let),(21 µµf be a gate in C , where 1µ and 2µ are

the input messages. By induction, we have two
signatures 1U and 2U so that and

  22 VG =+µ . According to Theorem 2, we
can homomorphically output the signature *U .
Taking the multiplication gate as an example,

RUUU 212
* += µ , where mm×∈ }1,0{R so that

.
3 Output the evaluated signature CU='δ .

 _ . The verification algorithm
takes the public pk, the tag τ , a message-signature

281Information Technology and Control 2017/2/46

pair),(δµ , and a circuit Χ∈C

case of the SIS problem.

2.3. Trapdoors for lattices and Sampling algo-
rithms

Lemma 2 ([1, 11]). Given any integers n � 1, q �
2, and sufficiently large m = O(n log q), there are
three efficient algorithms TrapGen, SampleDom and
SamplePre having the following description.

rameter. We denote the message space by M and
let C be a collection of circuits which take k input-
s over the message space and generate an output in
M. Boneh and Freeman [14] first introduced the for-
mal definition of a homomorphic signature scheme
for a type of circuit C. A C-homomorphic signa-
ture scheme is a tuple of polynomial time algorithms

 as input. It outputs
1 if the following conditions hold, otherwise it
outputs 0:

1 Let CU=δ and verify BC ≤U ;
2 Let][GBAA ττ += and check whether

)(),(i
C Ch VUA =µ

τ
holds or not.

Parameters
Let λ be the security parameter in our scheme. Sup-
pose that the maximum depth of the circuits in our
scheme is)(λdd = . We use B to denote the upper
bound of the size of evaluated signatures, and use intB
to denote the size of the original signatures generated
by Sign algorithm.
We assume that)(λpolyn = ,)(dOnq = is a large
prime, and . Due to the TrapGen and
Theorem 1, set the parameter

. In order to use Sam-
pleLeft, we need)log(~ mws AT≥

where ≤AT~

)log(qnO . Similarly, SampleRight requires that
)log(~ mwss WGT≥ , where mm×−∈ }1,1{W and =Ws

)(mO [23]. Hence, we use sufficiently large
)log()log(mwqnOs = so that the outputs of Sam-

pleLeft and SampleRight are indistinguishable. If
C is a boolean circuit of maximum depth d , what-
ever the gate is, we also have)1(5.1

int
* +≤ mBU .

Hence, the size of evaluated signatures intBC ≤U

 Next
we consider that C is an arithmetic circuit of max-
imum depth d consisting of fan-in- t addition gates
and fan-in-2 multiplication gates, where)(λpolyt = .
Moreover, it is guaranteed that at least one input $\
mu$ about this fan-in-2 multiplication gate is of size
polynomial in λ . From Theorem 2, maxint

* B≤U
},{ 5.1 µ+mt .

Hence, mmtB d ≤+≤ },max{ 5.1
int

* µU
dmtmw },max{)log(5.1 µ+ B=≤)(log2 λ .

Correctness and security proof
From the parameters setting defined in section 4.2,
it is easy to see that the signatures produced by Sign
are correct. The correctness of signatures generated
by Eval follows from the homomorphic property of
HCHF. In this subsection, we mainly discuss the se-
curity of our scheme.

Theorem 3. For any adversary

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 mounting a selective
unforgeability attack with at most Q queries on our
homomorphic signature scheme Π , there is a prob-
abilistic polynomial time algorithm

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 that can find a
collision for the randomized HCHF with the following
advantage,

Homomorphic Signatures from Chameleon Hash Functions 7

2. Let Aτ = [A‖B + τG] and check whether
hAτ (U

C , µ) = C(Vi) holds or not.

4.2. Parameters

Let λ be the security parameter in our scheme.
Suppose that the maximum depth of the circuits in
our scheme is d = d(λ). We use B to denote the up-
per bound of the size of evaluated signatures, and use
Bint to denote the size of the original signatures gen-
erated by Sign algorithm.

We assume that n = poly(λ), q = nO(d) is a
large prime, and B = 2dw(log λ). Due to the TrapGen
and Theorem 1, set m = max{O(n log q), n log q +
w(

√
log n)} = poly(λ). In order to use SampleLeft,

we need s � ‖T̃A‖w(
√
logm) where ‖T̃A‖ �

O(
√
n log q). Similarly, SampleRight requires that

s � ‖T̃G‖sWw(
√
logm), where W ∈ {−1, 1}m×m

and sW = O(
√
m) [23]. So, we use sufficiently

large s = O(
√
n log q)w(

√
logm) so that the out-

puts of SampleLeft and SampleRight are indistin-
guishable. If C is a boolean circuit of maximum
depth d, whatever the gate is, we also have ‖U∗‖ �
Bint(m

3
2 +1). Hence, the size of evaluated signatures

‖UC‖ � Bint(m
3
2 + 1)d � mw(

√
logm)(m

3
2 +

1)d � 2dw(log λ) = B. Next we consider that C
is an arithmetic circuit of maximum depth d con-
sisting of fan-in-t addition gates and fan-in-2 mul-
tiplication gates, where t = poly(λ). Moreover, it
is guaranteed that at least one input µ about this
fan-in-2 multiplication gate is of size polynomial in
λ. From Theorem 2, ‖U∗‖ � Bint max{t,m 3

2 +

|µ|}. So, ‖UC‖ � Bint max{t,m 3
2 + |µ|}d �

mw(
√
logm)max{t,m 3

2 + |µ|}d � 2dw(log λ) = B.

4.3. Correctness and Security Proof

From the parameters setting defined in section
4.2, it is easy to see that the signatures produced by
Sign are correct. The correctness of signatures gener-
ated by Eval follows from the homomorphic property
of HCHF. In this subsection, we mainly discuss the
security of our scheme.

Theorem 3. For any adversary A mounting a se-
lective unforgeability attack with at most Q queries
on our homomorphic signature scheme

∏
, there is a

probabilistic polynomial time algorithm S that can
find a collision for the randomized HCHF with the
following advantage,

AdvHCHF (SA) � Advselective∏ (A)/Q− negl(n).

Proof. Let A
lective unforgeability security game defined in sec-

tion 2.4 with advantage Advselective∏ (A). Our aim is
to construct an algorithm S which can find a collision
for fully homomorphic chameleon function hA over
the random A ∈ Zn×m

q , where n, q,m are defined in
section 4.2. The algorithm S takes a matrix A whose
columns are independent and uniformly random sam-
ples from Zn

q as input. Let τ∗,µ∗, C∗ be the challenge
information about tag, messages, and circuit. Suppose
that the adversary makes Q queries and everytime the
tag is τi, where i ∈ [Q]. We distinguish between two
types of forgers. One is that the adversary will never
query all signatures of messages for the tag τ∗, i.e.,
τ∗ �= τi for all i ∈ [Q]. The other one is τ∗ = τi
for some tag i, but C∗(µ∗) �= µ∗, where µ∗ is the
adversary’s forged message.

1. We first consider the situation, where τ∗ �= τi
for all i ∈ [Q]. The simulation step is as follows:

• The challenger S generates a public key for
the adversary A. Choose the public
parameters n, q, m. Let s be the related
Gaussian parameter and denote the upper
bound on the size of evaluated signature by
B. See section 4.2 for more details. Sample
W ∈ {−1, 1}m×m randomly and let
B = AW − τ∗G mod q. For all i ∈ [k],
choose matrix Wi ∈ {−1, 1}m×m at random
and compute Vi = AWi. Output the public
key (A,B,G, {Vi}i∈[k]).

• The challenger S generates signatures for the
queried messages and the tag τi. Since
[A‖AW+(τi− τ∗)G] = [A‖B+ τiG] = Aτi ,
we can use the trapdoor TG to compute the
signature Uij so that Aτi(Uij , µ

∗
j) = Vj .

Namely, Uij ← SampleRight(A, (τi −
τ∗)G,W,TG,Vj − µ∗

jG, s).
• The challenger S outputs the signed data
{Uij}j∈[k] and sends them to the adversary A.

We show that the public keys and signatures in
the real scheme and in the simulation game are s-
tatistically indistinguishable. For the matrix A, it is
produced by the TrapGen algorithm in the real sys-
tem and is chosen uniformly at random in the simu-
lation game. For the matrix B, it is chosen uniformly
at random in the real scheme and B = AW − τ∗G in
the simulation game, where W is chosen uniformly
at random. For each i, Vi is chosen uniformly at ran-
dom in the real system and Vi = AWi is computed
using uniformly random Wi in the simulation game.
From Lemma 2, the public keys in the real scheme
and in the simulation game are statistically indistin-
guishable. For the sufficient large Gaussian parameter
s, the outputs of SampleLeft used in the real system

(18)

Proof. Let A be an adversary that wins the selective
unforgeability security game defined in section 2.4
with advantage)(Aselective

ΠAdv . Our aim is to construct
an algorithm

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 which can find a collision for fully ho-
momorphic chameleon function Ah over the random

mn
q

×∈ZA , where mqn ,, are defined in section 4.2. The
algorithm

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 takes a matrix A whose columns are in-
dependent and uniformly random samples from n

qZ
as input. Let ** ,, C*µτ be the challenge information
about tag, messages, and circuit. Suppose that the ad-
versary makes Q queries and everytime the tag is iτ ,
where][Qi ∈ . We distinguish between two types of
forgers. One is that the adversary will never query all
signatures of messages for the tag *τ , i.e., iττ ≠*

 for
all][Qi ∈ . The other one is iττ =* for some tag i , but

μC ≠)(*µ , where *μ is the adversary’s forged mes-
sage.
1 We first consider the situation, where iττ =*

 for all
][Qi ∈ . The simulation step is as follows:

 _ The challenger

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 generates a public key for the
adversary

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

. Choose the public parameters mqn ,, .
Let s be the related Gaussian parameter and
denote the upper bound on the size of evaluated
signature by B . See section 4.2 for more details.
Sample mm×−∈ }1,1{W randomly and let

qmod*Gτ− . For all][ki ∈ , choose matrix
mm

i
×−∈ }1,1{W at random and compute .

Output the public key)}{(][kii,,, ∈VGBA .
 _ The challenger

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 generates signatures for
the queried messages and the tag iτ . Since

iii ττττ AGBAGA =+=−+][])([* , we can use
the trapdoor GT to compute the signature ijU so
that .),(*

jjiji
VUA =µτ

Namely, tSampleRighU ←ij
),,,,)(,(** sjji GVTWGA G µττ −− .

 _ The challenger

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 outputs the signed data][}{ kjij ∈U
and sends them to the adversary

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

.

We show that the public keys and signatures in the
real scheme and in the simulation game are statisti-

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

Information Technology and Control 2017/2/46282

cally indistinguishable. For the matrix A , it is pro-
duced by the TrapGen algorithm in the real system
and is chosen uniformly at random in the simulation
game. For the matrix B , it is chosen uniformly at ran-
dom in the real scheme and GB *τ−= in the sim-
ulation game, where W is chosen uniformly at ran-
dom. For each i , iV is chosen uniformly at random
in the real system and iiV = is computed using
uniformly random iW in the simulation game. From
Lemma 2, the public keys in the real scheme and in
the simulation game are statistically indistinguish-
able. For the sufficient large Gaussian parameter s ,
 the outputs of SampleLeft used in the real system
and SampleRight used in the simulation are statisti-
cally indistinguishable.
If the adversary outputs a forgery),(** µU for
the tag *τ and the circuit *C , we naturally have

),,(),(1

* kCh VVUA =µ
τ

, i.e., GUA **][µ+
),,(1

*
kC VV = . Let t][*

2
*
1

* UUU = , we have

14

),,()(1

2
*
1 kC VVGWUUA . (19)

),,(),(1

2
*
1 kCh VVWUUA . (20)),,(][1

kC VVGUAWA . (22)

),,(),(1

2
*
1 kCh VVWUUA . (23)

),,()(][1
**

*

k
C CC VVGμUAWA * . (24)

),,())(,(1
**

21
**

k
CC CCh VVμWUU *

A . (25)
**

).(/)()(nneglQselective
HCHF AdvAdv (26)

(19)

Equivalently,

14

),,()(1

2
*
1 kC VVGWUUA . (19)

),,(),(1

2
*
1 kCh VVWUUA . (20)),,(][1

kC VVGUAWA . (22)

),,(),(1

2
*
1 kCh VVWUUA . (23)

),,()(][1
**

*

k
C CC VVGμUAWA * . (24)

),,())(,(1
**

21
**

k
CC CCh VVμWUU *

A . (25)
**

).(/)()(nneglQselective
HCHF AdvAdv (26)

(20)

From Theorem 2, we can see that the challenger

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 can compute a matrix mm
q

C ×∈Z
*

U and an integer
qx Z∈ so that GVV xC C

k +=
*

),,(1
* L . In other

words,),,(),(1
**

k
C Cxh VVUA = . Therefore, we have

),(),(**
2

*
1

*

µUU AA += hxh C . In the simulation game,
all queried signatures are produced independently
through SampleRight algorithm. The adversary

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

does not query signatures of all the messages with the
tag *τ . Thus,

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 gets no information about
*CU . The

probability that 0UU =−+
**

2
*
1

C can be negligible.
From the above analysis, the challenger finds a colli-
sion for the fully homomorphic chameleon function

Ah with the advantage

).()()(nneglselective
HCHF AdvAdv (21) (21)

2 Next, we consider the other type of forgers:
 _ The challenger

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 generates a public key for the
adversary

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

.

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 first chooses the public parameters
Bsmqn ,,,, which are the same as above. Then

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 randomly samples m
mw

t
i mD 2

)log(,)(Z←U and

chooses mm×−∈ }1,1{W . Last,

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 computes
qiii mod][*GUAV µ+= . Moreover, let

qmod*GB τ−= . After that, the challenger

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

outputs the public key)}{(][kii,,, ∈VGBA .

 _ The challenger

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 generates signatures for
the queried messages and the tag iτ . If *ττ ≠i ,
the challenger aborts the game. Otherwise,

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

straightforwardly outputs the signatures][}{ kii ∈U
for the challenged tag.

Obviously, the challenger does not abort the game
with probability Q/1 . Similarly to the above analysis,
we can also find that the public keys and signatures in
the real scheme and in the simulation game are statis-
tically indistinguishable.
If the adversary outputs a forgery),(** µU for the tag

*τ and the circuit *C , we naturally have

14

),,()(1

2
*
1 kC VVGWUUA . (19)

),,(),(1

2
*
1 kCh VVWUUA . (20)),,(][1

kC VVGUAWA . (22)

),,(),(1

2
*
1 kCh VVWUUA . (23)

),,()(][1
**

*

k
C CC VVGμUAWA * . (24)

),,())(,(1
**

21
**

k
CC CCh VVμWUU *

A . (25)
**

).(/)()(nneglQselective
HCHF AdvAdv (26)

(22)

Letting t][*
2

*
1

* UUU = , we can obtain

14

),,()(1

2
*
1 kC VVGWUUA . (19)

),,(),(1

2
*
1 kCh VVWUUA . (20)),,(][1

kC VVGUAWA . (22)

),,(),(1

2
*
1 kCh VVWUUA . (23)

),,()(][1
**

*

k
C CC VVGμUAWA * . (24)

),,())(,(1
**

21
**

k
CC CCh VVμWUU *

A . (25)
**

).(/)()(nneglQselective
HCHF AdvAdv (26)

(23)

On the other hand, the adversary has the collection
of signatures][}{ kii ∈U for the challenged message
vector *µ . Therefore, the challenger

4 D.Xie, H.Peng,L.Li, and Y.Yang

∏
= (KeyGen, Sign,Eval,Verify) with the follow-

ing syntax.

• KeyGen(1λ, 1k) The key generation
algorithm takes as input the security
parameter λ and the maximum size of the
dataset k. It outputs a signing secret key sk
and a public verification key pk.

• Sign(sk, τ, i, µ) The signing algorithm takes
as input the secret key sk, a tag τ ∈ {0, 1}λ,
an index i ∈ [k] and a message µ ∈ M. It
outputs a signature δ.

• Eval(pk, τ, {(µi, δi)}i∈[k], C) The
evaluation algorithm takes as input the public
key pk, a tag τ , a collection of
message-signature pairs {(µi, δi)}i∈[k], and a
circuit C ∈ C. It outputs a signature δ′ for a
message µ′.

• Verify(pk, τ, µ, δ, C) The verification
algorithm takes as input the public pk, a tag τ ,
a message-signature pair (µ, δ), and a circuit
C ∈ C. It outputs either 1 (accept) or 0
(reject).

For correctness, we require that both the origi-
nal signatures (generated by Sign) and the evaluated
signatures (generated by Eval) are accepted. Specifi-
cally, we require that the following conditions hold.

1. For all tags τ ∈ {0, 1}λ, all µ ∈ M, and
all i ∈ [k], if δ ← Sign(sk, τ, i, µ) then we get
Verify(pk, τ, µ, δ, Ii) = 1. In order to maintain the
consistency of the verification algorithm, we use the
circuit Ii to denote the identity mapping, namely,
Ii(µ1, µ2, · · · , µk) = µi.

2. For all tags τ ∈ {0, 1}λ, all messages
(µ1, µ2, · · · , µk) ∈ Mk and all circuits C ∈ C, if
δi ← Sign(sk, τ, i, µi) and δ′ ← Eval(pk, τ, {(µi, δi)}i∈[k],
C), we have Verify(pk, τ, C(µ1, µ2, · · · , µk), δ

′, C) =
1.

A signature scheme is fully homomorphic if it
is homomorphic for all polynomial-size circuits. In
this work, we construct leveled fully homomorphic
signature schemes, i.e., they are homomorphic for al-
l polynomial-depth circuits. Next, we define the se-
lectively unforgeable security for homomorphic sig-
nature schemes via the following game between a
probabilistic polynomial time adversary A and a chal-
lenger S .

• The adversary chooses (τ∗,µ∗, C∗) as the
challenged information and gives all
information to the challenger.

• The challenger generates (pk, sk) and gives pk
to the adversary.

• The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,

the adversary chooses a fresh tag τi ∈ {0, 1}λ
and a k-length message set
(µi1, µi1, · · · , µik) ∈ Mk. The challenger
generates the collection of signatures
(δi1, δi2, · · · , δik) for the i-th query and sends
it to the adversary.

• The adversary outputs a signature δ∗ for the
chosen tag τ∗, a message µ∗ and the circuit
C∗.

If Verify(pk, τ∗, µ∗, δ∗, C∗) = 1, then the adver-
sary A wins the game. Due to the definition of selec-
tive unforgeability, the adversary can query the signa-
tures of the challenged message vector µ∗. In order to
make the challenger response for the challenger mes-
sage vector, we set the adversary’s challenged plain-
text as a set of messages, rather than a single message.
In fact, there are two types of forgers: one is τ∗ �= τi
for all queried i, and the other is τ∗ = τi for some
index i but µ∗ �= C∗(µ∗).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme

∏
= (KeyGen, Sign,

Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probabili-
ty of wining the above game is negligible.

3. Homomorphic Chameleon Hash Functions: Def-
inition and Construction

In [24], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [18], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has
an additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[11-12].

Definition 6 (Homomorphic Chameleon Hash Func-
tion). For a message space M and a randomness s-
pace U , a family of homomorphic chameleon hash
functions is a collection H = {hi : M × U → V},
where i is the index and V is the range. There is an
algorithm which can generate a public index i and
the corresponding trapdoor secret key Ti. Homomor-
phic chameleon hash functions consist of the follow-
ing four properties:

• Uniformity property For a randomized
index i, µ ∈ M, and u ∈ U , the statistical
distance �((hi, hi(µ, u)), (UH, UV)) is
negligible, where UH and UV denote the
uniform distributions on H and V .

 can compute
the evaluated signature

*CU using the Eval algo-
rithm. Namely,

14

),,()(1

2
*
1 kC VVGWUUA . (19)

),,(),(1

2
*
1 kCh VVWUUA . (20)),,(][1

kC VVGUAWA . (22)

),,(),(1

2
*
1 kCh VVWUUA . (23)

),,()(][1
**

*

k
C CC VVGμUAWA * . (24)

),,())(,(1
**

21
**

k
CC CCh VVμWUU *

A . (25)
**

).(/)()(nneglQselective
HCHF AdvAdv (26)

(24)

Letting tCCC][

21 UUU = , we can also obtain

14

),,()(1

2
*
1 kC VVGWUUA . (19)

),,(),(1

2
*
1 kCh VVWUUA . (20)),,(][1

kC VVGUAWA . (22)

),,(),(1

2
*
1 kCh VVWUUA . (23)

),,()(][1
**

*

k
C CC VVGμUAWA * . (24)

),,())(,(1
**

21
**

k
CC CCh VVμWUU *

A . (25)
**

).(/)()(nneglQselective
HCHF AdvAdv (26)

(25)

Hence,))(,(),(*
21

**
2

*
1

** *
AA μUU Chh CC=+ µ . Since

**)(µ≠*µC , the adversary finds a collision for the
randomized fully homomorphic chameleon function

Ah with advantage

14

),,()(1

2
*
1 kC VVGWUUA . (19)

),,(),(1

2
*
1 kCh VVWUUA . (20)),,(][1

kC VVGUAWA . (22)

),,(),(1

2
*
1 kCh VVWUUA . (23)

),,()(][1
**

*

k
C CC VVGμUAWA * . (24)

),,())(,(1
**

21
**

k
CC CCh VVμWUU *

A . (25)
**

).(/)()(nneglQselective
HCHF AdvAdv (26)

(26)

In table 1, the original and evaluated signatures rep-
resent the signatures generated by the Sign and Eval
algorithm, respectively. “RO” is an abbreviation for
“Random Oracle”, and similarly “ST” is an abbrevi-

283Information Technology and Control 2017/2/46

ation for “Standard”. The last column “permissible
functions” means that the signature scheme can
support the corresponding type of functions for ho-
momorphic computation over signed data. Note that
if some entries in Table 1 are non-integer, we should
transform them into integers using the ceil function.

Efficiency
In this section, we consider the efficiency of our
scheme by comparing it with some existing classical
homomorphic signature schemes in terms of the bit
length of the public/private key size, the bit length of
signatures, the security model and permissible func-
tions for homomorphic computation. Table 1 shows
the specific comparison results. In [7], Boneh and
Freeman presented a linearly homomorphic signa-

Scheme Bit length of the public key Bit length of the
private key

Bit length of original
signatures

Bit length of
evaluated signatures Model Permissible

functions

[7] q2log)2loglog(2 qm)2log(2 1 mm σ)2log(2 1 mkm σ RO Linear

[8] qkp log)log(2 +++ σ)loglog(2 qm)log(2 mm σ)5.0log(2 mm σ RO Linear

[10] qk log)32(λ++)loglog(2 qm)2log(2 3
2 mm σ 1

2 log2 Bm ST Any

Ours qk log)3(+)loglog(2 qm)2log(2 4
2 mm σ 2

2 log2 Bm ST Any

Table 1
Comparison between our scheme and some classical homomorphic signature schemes

 (a) 30,50,100000007 ckq (b) 30,40,100000007 cnq (c) 30,100000007 cq

Figure 1
Comparison of the bit lengths of public/private key and original signatures

ture scheme that can authenticate vectors defined
over binary fields. In order to generate the private key,
they adopted the method introduced in [5], which can
generate short bases of hard random lattices. Suppose
that the generated trapdoor short basis (private key)
is AT . It has been shown that)log(qnO≤AT [5,7].
Thus in our table, c is a constant so that qlog≤AT .
 According to their construction, the parameter m and
the Gaussian parameter 1σ are set equal to qn log6
and)log(2log nwqnc , respectively. In the same
year, they proposed another linearly homomorphic
signature scheme in section 4 of [8], which can au-
thenticate any linear function of signed vectors de-
fined over small fields

8 D.Xie, H.Peng,L.Li, and Y.Yang

and SampleRight used in the simulation are statisti-
cally indistinguishable.

If the adversary outputs a forgery (U∗, µ∗) for
the tag τ∗ and the circuit C∗, we naturally have
hAτ∗ (U∗, µ∗) = C∗(V1,V2, · · · ,Vk), i.e., [A‖AW]U∗

+µ∗G = C∗(V1,V2, · · · ,Vk). Let U∗ = [U∗
1‖U∗

2]
t,

we haveA(U∗
1+WU∗

2)+µ∗G = C∗(V1,V2, · · · ,Vk).
Equivalently, hA(U∗

1+WU∗
2, µ

∗) = C∗(V1,V2, · · · ,Vk).
From Theorem 2, we can see that the challenger

S can compute a matrix UC∗
∈ Zm×m

q and an integer
x ∈ Zq so that C∗(V1,V2, · · · ,Vk) = AUC∗

+ xG.
In other words, hA(UC∗

, x) = C∗(V1,V2, · · · ,Vk).
Therefore, we have hA(UC∗

, x) = hA(U∗
1+WU∗

2, µ
∗).

In the simulation game, all queried signatures are
produced independently through SampleRight algo-
rithm. The adversary A does not query signatures
of all the messages with the tag τ∗. Thus, A get-
s no information about UC∗

. The probability that
U∗

1 + WU∗
2 − UC∗

= 0 can be negligible. From the
above analysis, the challenger finds a collision for the
fully homomorphic chameleon function hA with the
advantage

AdvHCHF (SA) � Advselective∏ (A)− negl(n).
(16)

2. Next, we consider the other type of forgers:

• The challenger S generates a public key for
the adversary A. S first chooses the public
parameters n, q,m, s,B which are the same
as above. Then S randomly samples
Ui

t ← (DZm,w(
√
logm))

2m and chooses
W ∈ {−1, 1}m×m. Last, S computes
Vi = [A‖AW]Ui + µ∗

i G mod q. Moreover,
let B = AW − τ∗G mod q. After that, the
challenger S outputs the public key
(A,B,G, {Vi}i∈[k]).

• The challenger S generates signatures for the
queried messages and the tag τi. If τi �= τ∗,
the challenger aborts the game. Otherwise, S
straightforwardly outputs the signatures
{Ui}i∈[k] for the challenged tag.

Obviously, the challenger does not abort the
game with probability 1/Q. Similarly to the above
analysis, we can also find that the public keys and sig-
natures in the real scheme and in the simulation game
are statistically indistinguishable.

If the adversary outputs a forgery (U∗, µ∗) for
the tag τ∗ and the circuit C∗, we naturally have
[A‖AW]U∗ + µ∗G = C∗(V1,V2, · · · ,Vk). Leting
U∗ = [U∗

1‖U∗
2]

t, we can obtain hA(U∗
1+WU∗

2, µ
∗) =

C∗(V1,V2, · · · ,Vk).
On the other hand, the adversary has the col-

lection of signatures {Ui}i∈[k] for the challenged

message vector µ∗. Therefore, the challenger S can
compute the evaluated signature UC∗

using the E-
val algorithm. Namely, [A‖AW]UC∗

+ C∗(µ∗)G =

C∗(V1,V2, · · · ,Vk). Letting UC∗
= [UC∗

1 ‖UC∗

2]t,
we can also obtain hA(UC∗

1 + WUC∗

2 , C∗(µ∗)) =
C∗(V1,V2, · · · ,Vk). Hence, hA(U∗

1 + WU∗
2, µ

∗) =

hA(UC∗

1 + WUC∗

2 , C∗(µ∗)). Since C∗(µ∗) �= µ∗,
the adversary finds a collision for the randomized ful-
ly homomorphic chameleon function hA with advan-
tage

AdvHCHF (SA) � Advselective∏ (A)/Q− negl(n).
(17)

5. Efficiency

In this section, we consider the efficiency of our
scheme by comparing it with some existing classical
homomorphic signature schemes in terms of the bit
length of the public/private key size, the bit length of
signatures, the security model and permissible func-
tions for homomorphic computation. Table 1 shows
the specific comparison results. In [13], Boneh and
Freeman presented a linearly homomorphic signature
scheme that can authenticate vectors defined over bi-
nary fields. In order to generate the private key, they
adopted the method introduced in [26], which can
generate short bases of hard random lattices. Suppose
that the generated trapdoor short basis (private key)
is TA. It has been shown that ‖TA‖ � O(n log q)
[13, 26]. Thus in our table, c is a constant so that
‖TA‖ � cn log q. According to their construction,
the parameter m and the Gaussian parameter σ1 are
set equal to �6n log q� and c

√
n log 2qw(

√
log n), re-

spectively. In the same year, they proposed anoth-
er linearly homomorphic signature scheme in sec-
tion 4 of [14], which can authenticate any linear
function of signed vectors defined over small field-
s Fp. In their scheme, p and q are two primes so
that q � (nkp)2. For convenience, we denote σ2 =
p logm

√
m log q in Table 1. In 2014, Boyen et al.

proposed an adaptively secure homomorphic signa-
ture scheme that can evaluate any circuit over signed
data [17]. In their scheme, the Gaussian parameter
σ3 = w(m log q

√
logm) and the upper bound of the

size of evaluated signatures B1 = w(2d), where d
is the maximum depth of the circuits. According to
section 4.2, the Gaussian parameter σ4 in our scheme
is equal to O(

√
n log q)w(

√
logm), and the upper

bound B2 = 2dw(log λ). In order to achieve the same
security level, all the above-mentioned homomorphic
signature schemes adopt the same parameters when
performing the TrapGen algorithm [26]. That is to
say, the comparison is fair.

. In their scheme, p and q
are two primes so that 2)(nkpq ≥ . For convenience,
we denote qmmp loglog2 =σ in Table 1. In 2014,
Boyen et al. proposed an adaptively secure homomor-
phic signature scheme that can evaluate any circuit

Information Technology and Control 2017/2/46284

over signed data [10]. In their scheme, the Gauss-
ian parameter)loglog(3 mqmw=σ and the upper
bound of the size of evaluated signatures)2(1

dwB = ,
where d is the maximum depth of the circuits. Ac-
cording to section 4.2, the Gaussian parameter 4σ in
our scheme is equal to)log()log(mwqnO , and the
upper bound)(log

2
λB = . In order to achieve the same

security level, all the above-mentioned homomorphic
signature schemes adopt the same parameters when
performing the TrapGen algorithm [5]. That is to say,
the comparison is fair.
Note that in Table 1, the first two signature schemes
[7-8] are linearly homomorphic in the random oracle
model and the latter two ones ([10] and ours) are fully
homomorphic in the standard model. Nevertheless,
the comparison result shows that the bit lengths of
the private keys are almost exactly the same. Unfortu-
nately, the bit lengths of evaluated signatures in fully
homomorphic schemes are larger than those in lin-
early homomorphic schemes. However, the bit length
of evaluated signatures in [10] is almost the same as
that in our scheme. Next, we compare the public key
size and the size of the original signatures from an ex-
perimental point of view. In [8], the scheme requires
two primes p and q . Thus in our experiments, we
choose two specific primes 2=p and 100000007=q
which can meet their requirements. The dimen-
sion of random lattices m and the specific constant
c are set equal to qn log6 and 30, respectively [7-8].
We set nqnc log2log1 =σ , mqm loglog3 =σ , and

mqn loglog4 =σ . In Fig. 1(a) and 1(b), we inves-
tigate the bit length of the public key in terms of the
parameter n and the maximum size of the dataset k,
respectively. Note that we set the security parameter
λ in [10] to n. In Fig. 1(c), we investigate the bit length
of original signatures in terms of n. Evidently, the
experimental results imply that the public key size
and the size of original signatures in our scheme are
smaller than those in [10]. Simultaneously, the public
key size and the size of original signatures in our fully
homomorphic signature scheme are larger than those
in these two linearly homomorphic signature scheme

[7-8]. It is acceptable because fully homomorphic sig-
natures can support any homomorphic computation
over signed data, rather than linear homomorphic
computation. This may be a compromise between the
functionality and efficiency.

Conclusions
In this paper, we first construct a type of HCHFs based
on the SIS problem in hard random lattices. Then we
use this type of HCHFs to construct fully homomor-
phic signature schemes for poly-depth circuits. Our
construction has many advantages compared to pre-
vious works on this study. It is secure in the standard
model and the public parameters grow linearly in the
size of input circuit. The public key size and the bit
length of original signatures of our scheme are small-
er than those of the classical fully homomorphic sig-
nature scheme [10]. Our future work mainly focuses
on designing fully homomorphic signature schemes
with constant-size public keys. From a security per-
spective, the security parameter of the SIS problem
in our scheme is =+=)12(mβ)2()(log5.1 λmO .
In fact, the size of the evaluated signatures B affects
the security of our scheme. Another open problem is
to construct fully homomorphic signature schemes in
which the size of evaluated signatures is smaller than
that in ours.

Acknowledgments
The authors gratefully thank the reviewers for their
valuable comments. This paper is supported by the
National Key Research and Development Program
of China (Grant no. 2016YFB0800602), the Nation-
al Natural Science Foundation of China (Grant nos.
61573067, 61472045), and the Beijing City Board of
Education Science and technology key project (Grant
no. KZ201510015015), the Beijing City Board of Edu-
cation Science and technology project (Grant no. KM
201510015009).

References
1. Agrawal, S., Boneh, D., Boyen, X. Efficient lattice (H)IBE

in the standard model. Advances in Cryptology-EURO-
CRYPT, 2010, 553-572. https://doi.org/10.1007/978-3-
642-13190-5_28

2. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P.,
Wee, H. Functional encryption for threshold functions
(or fuzzy ibe) from lattices. Public Key Cryptography.
Springer, Berlin-Heidelberg, 2012, 280-297.

285Information Technology and Control 2017/2/46

3. Agrawal, S., Freeman, D. M., Vaikuntanathan, V. Func-
tional encryption for inner product predicates from
learning with errors. Advances in Cryptology-ASIA-
CRYPT. Springer, Berlin-Heidelberg, 2011, 21-40.

4. Ajtai, M. Generating hard instances of lattice problems.
Extended abstracts of the Proceedings of the 28 annual
ACM symposium on Theory of computing, 1988.

5. Alwen, J., Peikert, C. Generating shorter bases for hard
random lattices. Theory of Computing Systems, 2011, 48,
535-553. https://doi.org/10.1007/s00224-010-9278-3

6. Barbosa, M., Farshim, P. On the semantic security of
functional encryption schemes. Public Key Cryptogra-
phy. Springer, Berlin-Heidelberg, 2013, 143-161.

7. Boneh, D., Freeman, D. M. Linearly homomorphic sig-
natures over binary fields and new tools for latticebased
signatures. Public Key Cryptography, volume 6571 of
Lecture Notes in Computer Science. Springer, 2011, 1-16.

8. Boneh, D., Freeman, D. M. Homomorphic signatures for
polynomial functions. Advances in Cryptology- EURO-
CRYPT, 2011, 149-168. https://doi.org/10.1007/978-3-
642-20465-4_10

9. Boyen, X. Attribute-based functional encryption on lat-
tices. Theory of Cryptography. Springer, Berlin-Heidel-
berg, 2013, 122-142.

10. Boyen, X., Fan, X., Shi, E. Adaptively Secure Fully Ho-
momorphic Signatures Based on Lattices. IACR Cryp-
tology ePrint Archive, 2014, 916.

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V. (Leveled)
fully homomorphic encryption without bootstrapping.
Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ACM, 2012, 309-325.
https://doi.org/10.1145/2090236.2090262

12. Brassard, G., Chaum, D., Crépeau, C. Minimum dis-
closure proofs of knowledge. Journal of Computer
and System Sciences, 1988, 37, 156-189. https://doi.
org/10.1016/0022-0000(88)90005-0

13. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C. Bonsai trees, or
how to delegate a lattice basis. Journal of Cryptology, 2012,
25, 601-639. https://doi.org/10.1007/s00145-011-9105-2

14. Dodis, Y., Reyzin, L., Smith, A. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy
data. Advances in Cryptology-Eurocrypt. Springer, Ber-
lin-Heidelberg, 2004, 523-540.

15. Freeman, D. M. Improved security for linearly ho-
momorphic signatures: A generic framework. In: In-

ternational Workshop on Public Key Cryptography.
Springer, Berlin-Heidelberg, 2012, 697-714. https://doi.
org/10.1007/978-3-642-30057-8_41

16. Gennaro, R., Katz, J., Krawczyk, H., Rabin T. Secure net-
work coding over the integers. Public Key Cryptogra-
phy. Springer, 2010, 142-160.

17. Gentry, C. Fully homomorphic encryption using ideal
lattices. Proceedings of the 41 Annual ACM Symposium
on Theory of Computing, ACM, 2009, 169-178. https://
doi.org/10.1145/1536414.1536440

18. Gentry, C., Halevi, S., Vaikuntanathan, V. i-hop homo-
morphic encryption and rerandomizable Yao circuits.
Advances in Cryptology-CRYPTO. Springer, Ber-
lin-Heidelberg, 2010, 155-172.

19. Gentry, C., Peikert, C., Vaikuntanathan, V. Trapdoors
for hard lattices and new cryptographic constructions.
Proceedings of the fortieth Annual ACM Symposium on
Theory of Computing, ACM, 2008, 197-206. https://doi.
org/10.1145/1374376.1374407

20. Krawczyk, H., Rabin, T. Chameleon hashing and signa-
tures. IACR Cryptology ePrint Archive, 1998, 10.

21. Micciancio, D., Peikert, C. Trapdoors for lattices: Sim-
pler, tighter, faster, smaller. Advances in Cryptolo-
gy-EUROCRYPT. Springer, Berlin-Heidelberg, 2012,
700-718.

22. Micciancio, D., Regev, O. Worst-case to averagecase re-
ductions based on Gaussian measures. SIAM Journal
on Computing, 2007, 37(1), 267-302. http://epubs.siam.
org/doi/abs/10.1137/S0097539705447360.

23. Mohassel, P. One-time signatures and chameleon hash
functions. Selected Areas in Cryptography. Sprin-
ger, Berlin-Heidelberg, 2011, 302-319. https://doi.
org/10.1007/978-3-642-19574-7_21

24. Shpilka, A., Yehudayoff, A. Arithmetic circuits: A survey
of recent results and open questions. Foundations and
Trends in Theoretical Computer Science, 2010, 5, 207-
388. https://doi.org/10.1561/0400000039

25. Van, D. M., Gentry, C., Halevi, S., Vaikuntanathan, V.
Fully homomorphic encryption over the integers.
Advances in Cryptology-EUROCRYPT. Springer, Ber-
lin-Heidelberg, 2010, 24-43.

26. Xie, D., Peng, H., Li, L., Yang, Y. Efficient PostQuantum
Secure Network Coding Signatures in the Standard
Model. KSII Transactions on Internet and Information
Systems, 2016, 10, 2427-2445.

Information Technology and Control 2017/2/46286

Summary / Santrauka

Homomorphic signature schemes provide a feasible solution to the authenticity of computations on an un-
trusted server (e.g. cloud). In a homomorphic signature scheme, given a k -length message set },,,{ 21 kµµµµ =
and its corresponding signed dataset },,,{ 21 kδδδδ = , anyone can publicly perform homomorphic computa-
tions and produce a new signature 'δ for the messages),,,(21

'
kf µµµµ = , where f is a function or a circuit.

If the generated homomorphic signature 'δ is valid, then the owner of the dataset (e.g. cloud users) convinces
that μ' is indeed the correct output of the function f over the original messages even if he/she forgets them.
In this work, the main contribution is to build a bridge between the leveled Fully Homomorphic Signature
Scheme (FHSS) and Homomorphic Chameleon Hash Function (HCHF), which is a new cryptographic primi-
tive introduced by us based on prior works. We first present the definition and specific construction of HCHF
and then use this forceful technique to construct leveled fully homomorphic signature schemes for any polyno-
mial-depth circuit. In our standard model scheme, the size of evaluated homomorphic signature grows polyno-
mially in the depth of the circuit. The security of our scheme is based on the property of collision resistance of
HCHF, which can be reduced to the Small Integer Solution (SIS) in hard random lattices.

Homomorfinio parašo schemose pateikiamas galimas sprendimas nepatikimo serverio (pvz., debesies) apskai-
čiavimų autentiškumui nustatyti. Homomorfinio parašo schemoje, turint k-ilgio žinučių rinkinį μ = {μ1, ..., μk }
ir atitinkamą pasirašytą duomenų rinkinį 𝛿 = { 𝛿1, ... , 𝛿k }, bet kas gali viešai atlikti homomorfinius skaičiavimus
ir sukurti naują parašą 𝛿‘ žinutėms μ‘ = f { μ1, μ2, μ3, ... , μk }; čia f – grandinės funkcija. Jei gautas homomorfinis
parašas 𝛿‘ yra validus, duomenų rinkinio savininkas (pvz., debesų vartotojas) įtikina, kad, palyginti su origina-
liomis žinutėmis (net jei apie jas pamirštama), μ‘ išties yra teisinga funkcijos f išeiga. Pagrindinis šio straipsnio
indėlis – sukurti sąsają tarp išlygintos visiškai homomorfinės parašo sistemos (angl. Fully Homomorphic Si-
gnature Scheme (FHSS)) ir homomorfinės chameleoninės maišos funkcijos (angl. Homomorphic Chameleon
Hash Function (HCHF)), kuri yra nauja kriptografinė bazė, autorių pristatyta remiantis jų ankstesniais dar-
bais. Straipsnyje pirmiausia apibūdinama HCHF ir pateikiamas jos specifinio sudarymo mechanizmas, tada
ši veržli technologija taikoma išlygintoms visiškai homomorfinėms parašo schemoms bet kokiai daugianarei
gylio grandinei konstruoti. Standartinėje autorių modelio schemoje įvertintų homomorfinių parašų dydis dau-
gianariškai auga grandinės gylyje. Schemos saugumas paremtas HCHF susidūrimo pasipriešinimo savybe, kuri
gali būti sumažinta iki mažojo sveikojo skaičiaus sprendinio (angl. Small Integer Solution (SIS)) kietosiose at-
sitiktinėse gardelėse.

