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Homomorphic signature schemes provide a feasible solution to the authenticity of computations on an un-
trusted server (e.g. cloud). In ahomomorphic signature scheme, given a k -length message set = {1, 1.+, 14, }

and its corresponding signed dataset & ={J,,5,,":-,d,}, anyone can publicly perform homomorphic computa-
tions and produce a new signature § for the messages u' = f(y,,14,, -+, 4, ) , Where f isa function or a circuit.
If the generated homomorphic signature ¢ is valid, then the owner of the dataset (e.g. cloud users) convinces
that y' isindeed the correct output of the function f over the original messages even ifhe/she forgets them. In
this work, the main contribution is to build a bridge between the leveled Fully Homomorphic Signature Scheme
(FHSS) and Homomorphic Chameleon Hash Function (HCHF), which is a new cryptographic primitive in-
troduced by us based on prior works. We first present the definition and specific construction of HCHF and
then use this forceful technique to construct leveled fully homomorphic signature schemes for any polynomi-
al-depth circuit. In our standard model scheme, the size of evaluated homomorphic signature grows polyno-
mially in the depth of the circuit. The security of our scheme is based on the property of collision resistance of
HCHEF, which can be reduced to the Small Integer Solution (SIS) in hard random lattices.

KEYWORDS: homomorphic signature schemes, chameleon hash functions, small integer solution, lattice.
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Introduction

Compared to some traditional number-theoretic
primitives (e.g., factoring problem, discrete logarithm
problem), the lattice-based cryptography has the fol-
lowing advantages: i) It is conceptual simple and can
be efficient implemented; ii) It can resist so far to
quantum cryptanalysis; iii) The lattice-based scheme
enjoys the worst case complexity, i.e., any random in-
stance is indeed asymptotically hard [4,22]. Due to
these attractive and distinguishing features, lattice
has been widely used to construct a large number of
cryptographic schemes. Lattice-based cryptography
can be used for constructing versatile theoretical ap-
plications ranging from functional encryption [2-3,
6, 9], to fully homomorphic encryption [11, 17-18, 25],
and much more [7, 8, 19, 21].

Cloud computing enables users to store sensitive data
in the untrusted sever and sometimes the untrusted
cloud requires to perform computations on them. The
privacy of data and the authentication of computation
are two key secure challenges in this field. Homomor-
phic encryption schemes [11, 17-18,25] can maintain
the privacy of user’s data by encrypting them and
the server can also homomorphic perform compu-
tations over the ciphertexts. In this paper, we only
focus on the authenticity of homomorphic computa-
tion through the notion of homomorphic signatures.
In a homomorphic signature scheme, given a signed
dataset vector § and its corresponding message vec-
tor u, anyone can homomorphically compute and pro-
duce a new signature ¢ for a message g’'and a circuit
C. Given the public parameters and the tuple (C, u’,
d"), anyone can verify that " is indeed the signature
of the message u’. Note that the verification proce-
dure can be performed without knowing the original
dataset . In recent years, some homomorphic sig-
nature schemes have been proposed [7, 8, 10, 16, 26].
However, many prior works have many drawbacks.
In particular, some of them are only homomorphic
for linear functions [7, 16, 26] and the security proofs
of several schemes are in the random oracle model
[7, 16]. In 2011, Boneh and Freeman [7] introduced a
linearly homomorphic signature scheme that authen-
ticates vector subspaces of a given ambient space. In
the same year, they presented a general definition of
homomorphic signatures, and constructed the first
homomorphic signature scheme which can compute
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arbitrary polynomial functions over signed data [8].
In fact, if we translate these functions to the circuits,
then the size of evaluated signatures can grow expo-
nentially in the depth of the circuits. Furthermore,
the construction is based on the SIS problem in ideal
lattice. Recently, Boyen et al. presented the first adap-
tively secure fully homomorphic signature scheme
that can evaluate any circuit over signed data [10].

Chameleon hash function, related to the notion of
non-interactive chameleon commitment schemes,
was originally introduced by Brassard et al. [12].
Roughly speaking, a chameleon trapdoor hash func-
tion is a collision-resistance function with chame-
leon property, i.e., the holder of the trapdoor can eas-
ily find collisions for every input. In addition, anyone
can compute the hash function using public parame-
ters and the resulting probability distribution is sta-
tistically close to uniform over the range. Chameleon
hash functions have been proven to be an extremely
useful tool in many scenarios, especially in signature
schemes. Mohassel showed a general construction
for transforming any chameleon hash function to a
strongly unforgeable one-time signature scheme [23].
Recently, Micciancio and Peikert [21] proposed a sig-
nature scheme with short parameters and proved its
security with strong unforgeability under static cho-
sen-message attack (su-scma). Krawezyk and Rabin
[20] showed that there is a generic transformation
from su-scma to su-acma (strong unforgeability un-
der adaptive chosen-message attack) security using a
family of chameleon hash functions.

The main contribution of this work is to build a bridge
between FHSS and Homomorphic Chameleon Hash
Function (HCHF). In [13], Cash et al. straightfor-
wardly presented a simple chameleon hash function
using the preimage sampleable function under stan-
dard lattice assumption. Along this line of work, we
give the definition of HCHF and present a family of
HCHFs, which is based on the SIS problem in hard
random lattices. After that, we construct aleveled ful-
ly homomorphic signature scheme using the HCHF
tool. Similar to [1], we use the SampleLeft algorithm
to extract signatures in real scheme and use the Sam-
pleRight algorithm to response the adversary’s sig-
nature queries in the simulation game. The construc-
tion is straightforward and the security of our scheme
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is based on the property of collision resistance of
HCHEF. In fact, our scheme is homomorphic for any
function, and not like those ones in [7, 16, 26] just for
linear function. Unlike several recent homomorphic
signature schemes [7-8, 16], our scheme is secure in
the standard model. These results show that our ho-
momorphic scheme is attractive.

The remainder of this paper is organized in the fol-
lowing manner. We mainly introduce some basic
knowledge about lattice and homomorphic signature
scheme in section 2. In section 3 we focus on the defi-
nition of HCHF and the specific construction from
the standard SIS problem. We describe our homo-
morphic signature scheme, and provide the parame-
ters setting and security analysis in section 4. Section
5 presents the comparison between our scheme and
some classical homomorphic signature schemes. Fi-
nally, we draw our conclusions in section 6.

Preliminaries

Notation

For any positive integer ¢, we denote the set
11,2,---,q} by [¢q] and let Z, denote the integer ring
which represents as integers in (—¢q/2,q/2) . Vectors
are assumed to be in column form and are written us-
ing bold lower-case letters (e.g. x ). Similarly, we use
bold capital-case letters (e.g. A) to represent matri-
ces.

Given two matrices 4,€Z;™ and A,eZ™, we use
[A4, ||A2] to denote the n x(m, +m,) matrix formed by
concatenating A4, and A4,.For amatrixAeZ; ", lets,
denote the maximal singular values of 4 and use ||A||

to denote the maximum norm of column vector of the
matrix 4,ie, ||A|| =max,_, {"ai"} ,where a; is the col-
umn vector of 4.

We denote a negligible function f(n) by negl(n) if
itis o(n ) for any fixed constant c¢. We say f(n) is
polynomial ifitis O(n“) for any fixed constant ¢, and
we use poly(n) to denote it. Given two distributions
X and Y over a countable domain Z , the statistical
distance between them is defined as

A= %Z|X(z) ~Y(2)| o

zeZ
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The min-entropy of a random variable X is denot-
ed by H,(X)=-log(max, , Pr{X =x]). Given two
random variables X and Y, the average min-en-
tropy of X conditioned on (correlated) variable Y
is defined as

ITIOC (X|Y) = _log(Eer (maXXEX Pr[X = X|Y = y])) (2)

Lemma 1M Given two random variables X and Y, let
Y bethe supportof Y. Then

H,(X|Y)>H_ (X)—-log(V] @3)

Lattices and SIS problem

Generally speaking, alattice is a discrete additive sub-
group of R"™. A (full rank) lattice A can be viewed as
the set of all integer linear combinations of n linear-
ly independent basis vectors B = {b,,b,,-:-,b,} . Using
the matrix notation,

A=L(B)={Bc= ) cbi:ceZ"}.

i€ln]

(€0

A family of lattices, called as ¢ -ary lattices, is of
particular interest to many cryptographic applica-
tions.

Definition 1 (g -ary lattices). For any positive

integersn,m,q(m>n),let A€ Z';X'" be a matrix. De-

fine the following m -dimensional ¢ -ary lattices:
AA)={z€Z"|3c st 7= A'cmodg}; ()

A (A)={z€ Z"| Az =0 mod g}. ®

Foranyv e ZZ admitting an integral solution x € Z."
to Ax=v mod g, define the shifted lattice as

Ay(A)={z€ Z"| Az =v modg}. @

Definition 2 (Gaussian function). For any real s >0
and any ¢ € R, the n -dimensional Gaussian function
P, .(x) isdefined as

P, (x)= exp(—ﬂ"x - c”2 /s* ), 9

where x is a n -dimensional vector in R™.
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Definition 3 (Discrete Gaussian distribution). For
anyreal s >0, any ¢ € R", and an n -dimensional lat-
tice A, the discrete Gaussian distribution D, . over
A isdefined as

Dy, .(x)=p, (%) p, . (N), ©)

where x is a vector in A. We omit s and ¢ when
they are taken to be 1 and 0, respectively.

Definition 4 (Small integer solution (SIS)). Given
positive integers n,m,q, a real constant [ and a ma-
trix A e Z;X’” (m = n), find a nonzero vector uc 2™, so
that Au= 0 mod q and ||u|| <pB.

In fact, the SIS(n,m,q, ) problem is equivalent to
find a short nonzero vector "u"S f in the lattice
A" (A). Micciancio and Regev showed that the worst
case of various promise problems (e.g. GapSVP, Gap-
CVP) can be reduced to the average case of the SIS
problem [22].

Trapdoors for lattices and sampling algorithms

Lemma 2 ([4, 19]). Given any integers n>1, ¢ =2,
and sufficiently large m =0O(nloggq), there are three
efficient algorithms TrapGen, SampleDom and
SamplePre having the following description:

1 The TrapGen randomly outputs a parity check
matrix A € L™ and a trapdoor short basis T, for
A" (A) so that the output distribution of A is sta-
tistically close to uniform over ZZX'”.

2 The SampleDom produces a matrix U with
||U || < s\/Z whose column vector is sampled from
D,. ., where s 2 w(y/logm). The output distribu-
tion V = AU is statistically close to uniform over
ZZx'ﬂ.

3 Given a matrix A € L™ together with its trapdoor
T mem, and a matrix V e ZZX’", the SamplePre
outputs a matrix U e ZZ’X’" with the conditional dis-
tribution of U <« SampleDom so that AU=V and
||U|| < s\/z, where s > ||TA||W(1/logm ).

We also need two classic sampling algorithms [1, 13]

(see Algorithm 1 and Algorithm 2). Essentially, the

algorithm SampleLeft will be used in real signature

system, and the algorithm SampleRight will be used
to exact signatures for adversary’s queried messages
in the simulation game.
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Algorithm1 SampleLeft(A,B,T,,v,s)

Require:

1 Arandom matrix 4 € Z]™" with rank n and a ma-
trix B € ZZX”'Z;

2 A relatively “short” trapdoor basis 7, of Afi (A)

and avector # € ZZ;

3 A Gaussian parameter s > “TA Hw(,/log(m1 +m,));

Ensure: A vector u € Z™"™ sampled from a distribu-
tion statistically close to Dy yz).,-

Algorithm 2 SampleRight(A, B,C,T,,v,s)

Require:

1 Arandom matrix 4 € ZZXI and amatrix C € Z"";

2 A matrix BeZ;™ and the "short” basis T, of
A, (B);

3 A gaussian parameters > Hf B Wscw(wl logm) , where
Sc is the maximal singular value of C'.

Ensure: A vector u € Z™"' sampled from a distribu-
tion statistically close to D N (A AC+B)s *
Homomorphic signature scheme: definition
and security

Throughout this paper, let 4 be the security parame-
ter. We denote the message space by M andlet C be
a collection of circuits which take &k inputs over the
message space and generate an output in M. Boneh
and Freeman [8] first introduced the formal defini-
tion of a homomorphic signature scheme for a type
of circuit C. A C-homomorphic signature scheme is
a tuple of polynomial time algorithms IT = (KeyGen,
Sign, Eval, Verify) with the following syntax.
KeyGen(1*,1*). The key generation algorithm
takes as input the security parameter A and the
maximum size of the dataset k . It outputs asigning
secret key sk and a public verification key pk.

Sign(sk,t,i, 11). Thesigningalgorithmtakesasinput
the secret key sk, atag 7 € {0,1}*, an index i € [k] and
amessage y € M.Itoutputsa signature 9.

Eval( pk,7,{(14;,6,)} ;41 C) - The evaluation algo-
rithm takes as input the public key pk, atag 7, a
collection of message-signature pairs {(£;,9,)},qu,
and a circuit C e C. It outputs a signature § for a
message i

Verify (pk,7,1,5,C). The verification algorithm
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takes as input the public pk, a tag 7, a message-
signature pair (u,9),and acircuit C € C.Itoutputs
either 1 (accept) or O (reject).

For correctness, we require that both the original sig-
natures (generated by Sign) and the evaluated signa-
tures (generated by Eval) are accepted. Specifically,
we require that the following conditions hold.

1 Forall tags 7 €{0,1}*, all xe M, and all i e[k], if
O « Sign(sk,z,i, 1), then we get Verify(pk,t, 1,9,
I,)=1. In order to maintain the consistency of
the verification algorithm, we use the circuit
I, to denote the identity mapping, namely,
[i(,uluuz""huk) =H;-

2 For all tagsre{0,1}*, all messages (s Mgy ey
M) eM" and all circuits C e C, if 6, « Sign(sk,,
i’;ui) and 5<— Eval(pkara {(;ui’é‘i)}ie[ld’c)’ we
have Verify (pk,7,C(u,, 1y, 14,) 5 ,C) = 1.

A signature scheme is fully homomorphic if it is ho-

momorphic for all polynomial-size circuits. In this

work, we construct leveled fully homomorphic signa-
ture schemes, i.e., they are homomorphic for all poly-
nomial-depth circuits. Next, we define the selective-
ly unforgeable security for homomorphic signature
schemes via the following game between a probabilis-

tic polynomial time adversary A and a challenger S.

The adversary chooses (z°, 4, C") as the challeng-

ed information and gives all information to the

challenger.

The challenger generates (pk, sk) and gives pk to
the adversary.

The adversary can make arbitrary polynomial
number of signing queries. In the i-th query,
the adversary chooses a fresh tagz, € {0,1}1 and a
k -length message set (i, i, -, 4, ) € M". The
challenger generates the collection of signatures
(0,1,0,5,"++,0, ) for the i-th query and sends it to
the adversary.

The adversary outputs a signature 6  for the
chosen tag 7', a message x and the circuit C".

If Verify (pk,z", 1" ,6°,C") =1, then the adversary A
wins the game. Due to the definition of selective un-
forgeability, the adversary can query the signatures
of the challenged message vector #". In order to make
the challenger response for the challenger message
vector, we set the adversary’s challenged plaintext
as a set of messages, rather than a single message. In
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fact, there are two types of forgers: one is 7~ # 7, for
all queried i, and the otheris z* = 7, for some index i
but x#C ).

Definition 5 (Selective Unforgeability). A leveled
homomorphic signature scheme I1=(KeyGen,Sign,
Eval,Verify) is selectively unforgeable if for any
probability polynomial time adversary, the probability
of wining the above game is negligible.

Homomorphic Chameleon
Hash Functions: Definition and
Construction

In [15], Freeman embed a homomorphic chameleon
hash function to show the unforgeability of his ho-
momorphic signature scheme. Based on this and the
definition of chameleon hash function [12], a generic
definition of HCHF are given in this section. Note that
compared to chameleon hash function, HCHF has an
additional property, i.e., homomorphism. Then we
construct a class of HCHFs using the distinguished
trapdoor function with preimage sampling technique
[19, 21].

Definition 6 (Homomorphic Chameleon Hash
Function). For a message space M and a random-
ness space U, a family of homomorphic chameleon
hash functions is a collection H = {h; : M xU — V},
where i1is the index and ) 1is the range. There is an
algorithm which can generate a public index i and the
corresponding trapdoor secret key T. Homomorphic
chameleon hash functions consist of the following four
properties:

Uniformity property. For a randomized index
i, HeM, and ueld, the statistical distance
A((hi, hi(p,w)), (U, Uy)) is negligible, where Uy
and ], denotetheuniformdistributionson Hand)V.

Chameleon property. For any pueM and v €Y,
given the trapdoor T,, anyone can efficiently
computeu €l sothat h,(pu)=v.

Collision resistance. Given a publicindex i , there
are no polynomial time adversary which can find a
pair (uu)# (' ,u’) sothat h(uu)=h,(u ,u’).
Homomorphic property. Given a dataset
(#5u;,v;) jquy SO that h(u;,u;)=v, and a circuit
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CM* 5M, anyone can homomorphically
compute a u from u,u, anda v from v, so that
h(CQys pyy oy ) U ) =v.

Next, we construct a class of specific HCHFs using
the trapdoor technique from standard lattices [19, 21]
and prove that it satisfies the above four properties.
Let M=Z, U={UeZ™" :||U||2 <B} and VY =Z7Z]".
We remark that B is the upper bound of the size of
evaluated signatures in our homomorphic schemes.
Every column of the matrix U is sampled from the
distribution DZ,,,’S, where s is the Gaussian parame-
ter. All related parameters are defined in section 4.2.
We use the TrapGen algorithm to generate the index
and the corresponding trapdoor for our HCHF.

The primitive matrix G e Z’q’x"ﬁ"gﬂ, introduced in
[21], has public trapdoor short basis 7. for AY(G).
Here we construct a new matrix G = [G'"R'] ez,
where R € Z;X’"’"ﬁ"gﬂ is a random matrix. Using Ext-
Basis algorithm in [13], we can obtain a short basis
T, for A*(G) so that ||TG|| = ||TG || [10]. Hence, anyone
can efficiently perform SamlePre algorithm using the
trapdoor T;. We define the homomorphic chameleon
hash function 4, withindex A as follows:

h,(U,u)=AU+ uGmodgq. (10)

It is not difficult to verify the uniformity and chame-
leon properties of 4 ,. Specifically, if x4 is randomly
sampled from Z,, we naturally get the result that the
statistical distance A = ((4,4,),(U ,,U\ ) is negligible
in n [19]. Given the trapdoor matrix T ,, we can use the
algorithm SamplePre to compute U which has the
same distributionas D,. | [19]. Next, we prove that the
functions constructed by us satisfy the other two prop-
erties, i.e., collision resistance and homomorphism.

Theorem 1. Given an integer n= poly(1), let
q = poly(A) be a prime, m =nlogq+w(logn)and B
be the upper bound of the size of signatures defined in
section 4.2. If the SIS(n,m,q,\/;(ZmB+l) problem is
hard, then the function h, constructed above is colli-
sion resistance with probability 1—negl(n).

Proof. Suppose that thereis an adversary A thatfinds
acollision (U}, 1) and (U,, u,) for arandom function
/4 - Obviously, we have

AU+ uG =h, (U, 1)
=h,U,,1,) (€hY)
=AU, + 1,Gmodg.
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Thatis, AU, -U,)=(u, —,)Gmodg .
If 44 = i, ,then we have anonzero matrix U =U, - U.

so that AU=0modg. Note that ”U," < B, so we havie
U] <28.

If u, # u,, we first choose a vector r € {0,1}" at ran-
dom, andlet z =Ar. Since G is apublic primitive ma-
trix and naturally has a trapdoor T, we can invoke
the SamplePre to compute avector 7 € {0,1}" so that
Gr=z(1, — 11,)" mod q. We have

AU, - Uz)r' - r)j (1, :ﬂl )G)r, —Ar 12)
=z—z=0modg.

Hence, we get a vector u=(U,-U,)r —r so that
Au=0modgq. Using the Cauchy-Schwarz inequality,
we easily have ||u|| < \/; (2mB +1). Next, we only need
to prove that the probability of u =0 is negligible in
n. Although r is randomly chosen from {0,1}”, r’ is
mainly dependent on z.Hence,

Flm(r|r') > I-le(r|z)
2 H._(r)—log(q") (13)
=m-nlogq
=w(logn).

The second inequality follows from Lemma 1. There-
fore, from the definition of average min-entropy,

Pr[u=0]=Pr[r=(U,-U,)r']

< pwllogm) — negl(n). (14

In summary, if there is an adversary A that finds
a collision for a random function f,, then we can
construct an algorithm to solve the SIS(n,m,q,\/Z
(2mB+1) problem with probability 1-neg/(n). This
concludes the proof.

For the homomorphic property, we consider general
arithmetic circuit C. Specifically, we consider four
types of gates: addition, multiplication, addition with
constant, and multiplication with constant. These
four special gates are completely used to compute an
arbitrary arithmetic circuit [24].

Theorem 2. Given an integer n= poly(1), let
q = poly(A) be a prime and m =O(nlogq). The func-
tion h, constructed above is homomorphic for any
arithmetic circuit.

Proof. In order to prove this theorem, we consider the
four types of gates in turn.
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1 For an addition gate f, f(u,t,) =4 +1,. Sup-
pose that there are two datasets (U,, u;,V;),.;, so
that 4, (U, 11,) =V,. Then we have

V=AU, + u,Gmodg, (15)
V, =AU, + u,Gmodg. (16)

Define U'=U, +U,and V' = V| +V,. We can easily
verify that 4 (U, 4, + 11,) =V modgq .

2 Similarly, for a multiplication gate, let
Sy, 1) =, . This time we firstly compute
the matrix Re{0,1}"" so that GR=VF, modg
[12]. Then we define U'= x,U, +U,Rmodq and
V' =V,Rmodgq.

Hen'ce,

AU + (4 1,)G = A(@U, + U, R) + (14, 14,) G,
=V, + AUR,
= /"2*V1 Vo —wV,
=V modg.

an

3 For an addition with constant gate, f (¢, a) =y +a.
For the message u, suppose that there are two
matrices Uand V so that h,(U,u)=V. We de-
fine U'=U and V' =V -aG modg . Obviously,
h,U",u+a)=V modq holds.

4 For a multiplication by constant gate, f'(u,a) = au.
We define U'= URmodg and V" = VR mod ¢, where
GR=aG modg. It is also easy to check that the
equation /(U ,au) =V modg holds.

Note that an arbitrary arithmetic circuit C can be

expressed as the above four gate operations. For a cir-

cuitC, we compute U” and V" recursively gate by gate
according to the above rules. Therefore, the function

h ,constructed by us is homomorphic for any arith-

metic circuit.

Our leveled homomorphic
signature scheme

In this section, we firstly describe our proposed ho-
momorphic signature scheme and then set related
parameters for some types of circuits. After that, we
give the correctness analysis and security proof for
our scheme.
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Our construction

In our construction, we employ the public primi-

tive matrix G introduced by Micciancio and Peikert

[21], which naturally has a short basis T, for A*(G).

Our homomorphic signature scheme IT= (KeyGen,

Sign, Eval, Verify) specifically works as follows.
KeyGen(1*1"). The algorithm takes the security
parameter A and the maximum size of the dataset
k as input.

1 Choose the parameters n,q,m,s and B as in sec-
tion4.2.

2 Sample amatrix 4 € ZZ “" and its corresponding
trapdoor matrix T, € Z™".

3 Choose k+1 random matrices B and {V},,, €
VA

4 Output the secret key sk=T, and the public key
pk=(A,B, G’{V:‘}ie[k])-

Sign(sk,7,i, ). The algorithm takes the secret key

T,,atag 7 €{0,1}*, an index i € [k] and a message

i e M asinput.

1 Chooseaspecifichomomorphicchameleonhash

function h,, for the tag 7, where A, =[A4|B+ 1G]
c Zn>< m ‘
.

2 Use the secret key T, to compute U so that
hy (U, )=V, Namely, U<« SampleLeft(A,B +
G, T, V,— uG,s).

3 Output the signature o =U.

Eval(pk,7,{(#;,5)},41;,C). The evaluation algor-

ithm takes the public key pk, the tag 7 , a collection

of message-signature pairs {(ﬂn(sf)}fe[k]’ and a

circuit C € C as input. It recursively computes a

homomorphic signature gate by gate.

1 Compute the homomorphic chameleon hash
function s, forthetagr .

2 Let f(u,1,)beagatein C,where g, and u, are
the input messages. By induction, we have two
signatures U, and U, sothat AU, + u,G = V,and
AU, +1,G =V, . According to Theorem 2, we
can homomorphically output the signature U".
Taking the multiplication gate as an example,
U =wU +U,R, where Re{0,1}""so that
GR=V.

3 Output the evaluated signature § = U°.

Verify (pk,7,1,0,C). The verification algorithm

takes the public pk, the tag 7 , a message-signature
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pair (u,06), and a circuit C € C as input. It outputs
1 if the following conditions hold, otherwise it
outputs O:

1 Let § =U€ andverify "UC" <B;

2 Let A = [A||B +7G| and check whether
hy (U€, 1) = C(V,) holds or not.

Parameters

Let A be the security parameter in our scheme. Sup-
pose that the maximum depth of the circuits in our
scheme is d =d(4). We use B to denote the upper
bound of the size of evaluated signatures, and use B,
to denote the size of the original signatures generated
by Sign algorithm.

We assume that n=poly(1), ¢=n°" is a large

prime, and B =290¢Y Due to the TrapGen and
Theorem 1, set the parameter m =max{O(nlogg),

nlogq+w( /logn)}:ploy(l)- In order to use Sam-
pleLeft, we need s ZHTA”W(,Ilogm) where “TAHS
O(4y/nlogg). Similarly, SampleRight requires that

s Z\DZG”sz(wllogm), where W e {-L1}""" and s, =
O(Wm) [23]. Hence, we use sufficiently large
s =0(y/nlogqg)w(4/logm) so that the outputs of Sam-
pleLeft and SampleRight are indistinguishable. If
C is a boolean circuit of maximum depth d, what-
ever the gate is, we also have "U *” <B, (m"+1).
Hence, the size of evaluated signatures |[U°|< B,,
(m"+1) < mw(y/logm)(m'® +1)¢ <2™0eH — B Next
we consider that C is an arithmetic circuit of max-
imum depth d consisting of fan-in- ¢ addition gates
and fan-in-2 multiplication gates, where ¢ = poly(1).
Moreover, it is guaranteed that at least one input $\
mu$ about this fan-in-2 multiplication gate is of size
polynomial in A. From Theorem 2, "U *" < B,, max
{t,m"’ +|,u|}.

Hence, "U*" < B,, max{t,m"’ +|,u|}d <m

w(y/logm)max{t,m"* + |y} <270 = B,

Correctness and security proof

From the parameters setting defined in section 4.2,
it is easy to see that the signatures produced by Sign
are correct. The correctness of signatures generated
by Eval follows from the homomorphic property of
HCHEF. In this subsection, we mainly discuss the se-
curity of our scheme.
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Theorem 3. For any adversary A mounting a selective
unforgeability attack with at most Q queries on our
homomorphic signature scheme I1, there is a prob-
abilistic polynomial time algorithm S that can find a
collision for the randomized HCHF with the following
advantage,

Advyopp(SHh) > Advﬁlem“e(A)/Q — negl(n). (18)

Proof. Let A be an adversary that wins the selective
unforgeability security game defined in section 2.4
with advantage Adv;"“"**(A ). Our aim is to construct
an algorithm S which can find a collision for fully ho-
momorphic chameleon function 4, over the random
AeZ]" wheren,q,m are defined in section 4.2. The
algorithm S takes a matrix A whose columns are in-
dependent and uniformly random samples from ZZ
as input. Let z°, u",C" be the challenge information
about tag, messages, and circuit. Suppose that the ad-
versary makes O queries and everytime the tagis 7,
where i € [Q]. We distinguish between two types of
forgers. One is that the adversary will never query all
signatures of messages for the tag 7, ie, 7" # 7, for
all i €[Q]. The other oneis 7~ =, for some tag i , but
C *(,u*) # ,u*, where ,u* is the adversary’s forged mes-
sage.

1 Wefirst consider the situation, where 7" = 7, forall
i €[Q].The simulation step is as follows:

The challenger S generates a public key for the
adversary A .Choosethepublic parameters n,q,m .
Let s be the related Gaussian parameter and
denote the upper bound on the size of evaluated
signature by B . See section 4.2 for more details.
Sample W e{-1L1}"*" randomly and let B= AW
—7'Gmodg. For all ie[k], choose matrix
W, e{-11}"" at random and compute V, = AW,
Output the publickey (A4,B,G{V;} i k]) .

The challenger S generates signatures for
the queried messages and the tag 7,. Since
[A||AW+ (r,-7)G]=[A|B+7,G]= A,, we can use
the trapdoor T, to compute the signature U, so
that 4, (U;, y;) =V,. Namely, U; < SampleRight
(A, (7, - )GW., TV, — 11G.5) .

The challenger S outputs the signed data {U, }
and sends them to the adversary .A.

Jelk]

We show that the public keys and signatures in the
real scheme and in the simulation game are statisti-
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cally indistinguishable. For the matrix A, it is pro-
duced by the TrapGen algorithm in the real system
and is chosen uniformly at random in the simulation
game. For the matrix B, itischosen uniformly at ran-
dom in the real scheme and B = AW— 7 G in the sim-
ulation game, where W is chosen uniformly at ran-
dom. For each i, V, is chosen uniformly at random
in the real system and V, = AW, is computed using
uniformly random W,in the simulation game. From
Lemma 2, the public keys in the real scheme and in
the simulation game are statistically indistinguish-
able. For the sufficient large Gaussian parameters,
the outputs of SampleLeft used in the real system
and SampleRight used in the simulation are statisti-
cally indistinguishable.

If the adversary outputs a forgery (U : ,u*) for
the tag 7 and the circuit C°, we naturally have
hy U 1)=C V-V, e, [AAWIU+4'G
=C' (V. V,). Let U =[U; |U; ] , we have

AU WU+’ G=C'(V,,---,V,). (19)
Equivalently,
h, (U +WU,, i’ )y=C"(V;,-,V,). (20)

From Theorem 2, we can see that the challenger
S can compute a matrix U e Z;”x”’ and an integer
x€Z, so that C'V,,-,V,)= AU+ xG. In other
words, h, (U ,x)=C"(V,,~-,V,) . Therefore, we have
h (U ,x)=h,U, +WU,,u"). Inthe simulation game,
all queried signatures are produced independently
through SampleRight algorithm. The adversary A
does not query signatures of all the messages with the
tag 7 . Thus, A gets no information about U ¢ The
probability that U 1* +WU ; — U = 0 can be negligible.
From the above analysis, the challenger finds a colli-
sion for the fully homomorphic chameleon function
h , with the advantage

Adv, e (S*) 2 Advyi"(A) - negl(n). (a)

2 Next, we consider the other type of forgers:

_ The challenger S generates a public key for the
adversary A. S first chooses the public parameters
n,q,m,s,B which are the same as above. Then

t 2m
S randomly samples U, « (DZ,,,,W( J@)) and
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chooses W e{-11}"". Last, S computes
V.= [A||AW]UI, + 1, Gmodg. Moreover, let
B = AW—-7"Gmodgq. After that, the challenger S
outputs the publickey (4,B,G{V} iere)) -

The challenger S generates signatures for
the queried messages and the tag 7. If 7, #7,
the challenger aborts the game. Otherwise, S
straightforwardly outputs the signatures {U,},,,
for the challenged tag.

Obviously, the challenger does not abort the game
with probability 1/Q. Similarly to the above analysis,
we can also find that the public keys and signatures in
the real scheme and in the simulation game are statis-
tically indistinguishable.

If the adversary outputs a forgery (U, i) for the tag
7 and the circuit C*, we naturally have

[AAWW + ' G=C"(V,,--. V). (22)

Letting U =[U, |U, ], we can obtain

hA(Ul*+WU;’IU*)=C*(I/1"”’I/1¢)' (23)

On the other hand, the adversary has the collection
of signat*ures U, },qiy for the challenged message
vector u . Therefore, the challenger S can compute
the evaluated signature US using the Ewal algo-
rithm. Namely,

[AJAW W +C (16 =C W+ V,). (20)

Letting US =[U,“ |U, |, we can also obtain

h(US +WUS ,C' (i) =C"(V,,---,V,). (25)

Hence, (U, +WU,, 1) =h (U +WUS, C’"(u")-Since
C"(u")# u', the adversary finds a collision for the
randomized fully homomorphic chameleon function
h ,with advantage

AV (1) 2 Advi“™ (M) Q ~negl(n). 20

In table 1, the original and evaluated signatures rep-
resent the signatures generated by the Sign and Eval
algorithm, respectively. “RO” is an abbreviation for
“Random Oracle”, and similarly “ST” is an abbrevi-
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Table 1
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Comparison between our scheme and some classical homomorphic signature schemes

. . Bitlength of the | Bitlength of original Bit length of Permissible
SEEe BRI A e 5y private key signatures evaluated signatures LCeC functions
(7] mnlog2q m’log(cnlog2q) 2mlog(c,2m) 2mlog(ko,\2m) RO Linear
[8] log(p +k +0,)+mnlogg m*log(cnlogq) mlog(c,m) mlog(0.5kpo, Jm) RO Linear
[10] (2k+3+ A)mnlogq m’log(cnlogq) | 2m*log(o,N2m) 2m? log B, ST Any
Ours (k+3)mnlogq m’log(cnlogq) | 2m? log(c,v2m) 2mlog B, ST Any
Figure 1
Comparison of the bit lengths of public/private key and original signatures
o 10° Bitlength of public key 100 15X 10° Bitlength of public key x10° o Bitlength of original signatures x10°
——0 ——1 J———)
a8 2 (8] e (8]
e e e

Fully homomorphic signature schemes

Linearly homomorphic signature schemes
Y ~

Linearly homomorphic signature schemes

"
-

-

IR

Linearly homomorphic signature schemes
Fully homomorphic signature schemes

Fully homomorphic signature schemes

0 10 20 30 40 50 60 o 10 20
n

(a) ¢ =100000007, k = 50,c =30

ation for “Standard”. The last column “permissible
functions” means that the signature scheme can
support the corresponding type of functions for ho-
momorphic computation over signed data. Note that
if some entries in Table 1 are non-integer, we should
transform them into integers using the ceil function.

Efficiency

In this section, we consider the efficiency of our
scheme by comparing it with some existing classical
homomorphic signature schemes in terms of the bit
length of the public/private key size, the bit length of
signatures, the security model and permissible func-
tions for homomorphic computation. Table 1 shows
the specific comparison results. In [7], Boneh and
Freeman presented a linearly homomorphic signa-

(b) ¢ =100000007,n = 40,c =30

40 50 60

(¢) ¢ = 100000007, ¢ = 30

ture scheme that can authenticate vectors defined
over binary fields. In order to generate the private key,
they adopted the method introduced in [5], which can
generate short bases of hard random lattices. Suppose
that the generated trapdoor short basis (private key)
is T,. It has been shown that T, <O(nlogq) [5,7].
Thus in our table, ¢ is a constant so that T, < cnloggq.
According to their construction, the parameter m and
the Gaussian parameter o, are setequal to [6nlogq |
and cy/nlog2gw(4/logn), respectively. In the same
year, they proposed another linearly homomorphic
signature scheme in section 4 of [8], which can au-
thenticate any linear function of signed vectors de-
fined over small fields IF),. In their scheme, p and ¢
are two primes so that ¢ > (nkp)>. For convenience,
we denote o, = plogm,/mlogg in Table 1. In 2014,
Boyen et al. proposed an adaptively secure homomor-
phic signature scheme that can evaluate any circuit
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over signed data [10]. In their scheme, the Gauss-
ian parameter o, = w(mlogg,/logm) and the upper
bound of the size of evaluated signatures B, = w(2"),
where d is the maximum depth of the circuits. Ac-
cording to section 4.2, the Gaussian parameter o, in
our scheme is equal to O(y/nlogq)w(4/logm), and the
upper bound B, = 2900} 11 order to achieve the same
security level, all the above-mentioned homomorphic
signature schemes adopt the same parameters when
performing the TrapGen algorithm [5]. That is to say,
the comparison is fair.

Note that in Table 1, the first two signature schemes
[7-8] are linearly homomorphic in the random oracle
model and the latter two ones ([10] and ours) are fully
homomorphic in the standard model. Nevertheless,
the comparison result shows that the bit lengths of
the private keys are almost exactly the same. Unfortu-
nately, the bit lengths of evaluated signatures in fully
homomorphic schemes are larger than those in lin-
early homomorphic schemes. However, the bit length
of evaluated signatures in [10] is almost the same as
that in our scheme. Next, we compare the public key
size and the size of the original signatures from an ex-
perimental point of view. In [8], the scheme requires
two primes p and ¢g. Thus in our experiments, we
choose two specific primes p =2 and ¢ =100000007
which can meet their requirements. The dimen-
sion of random lattices m and the specific constant
¢ are set equal to|6nlo q—| and 30, respectively [7-8].
We set o, =cy/nlog2qlogn, o, =mlogglogm, and
o, =4/nlogglogm. In Fig. 1(a) and 1(b), we inves-
tigate the bit length of the public key in terms of the
parameter n and the maximum size of the dataset %,
respectively. Note that we set the security parameter
A in[10] to n. In Fig. 1(c), we investigate the bit length
of original signatures in terms of n. Evidently, the
experimental results imply that the public key size
and the size of original signatures in our scheme are
smaller than those in [10]. Simultaneously, the public
key size and the size of original signatures in our fully
homomorphic signature scheme are larger than those
in these two linearly homomorphic signature scheme
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Summary / Santrauka

Homomorphic signature schemes provide a feasible solution to the authenticity of computations on an un-
trusted server (e.g. cloud). In ahomomorphic signature scheme, given a k -length message set 4= {4, 1,,**, 14, }
and its corresponding signed dataset 6 =1{J,,9,,":-,d,}, anyone can publicly perform homomorphic computa-
tions and produce a new signature 5 for the messages u = f(u,,4,,++,1,), Where f is a function or a circuit.
If the generated homomorphic signature ¢ is valid, then the owner of the dataset (e.g. cloud users) convinces
that u' is indeed the correct output of the function f over the original messages even if he/she forgets them.
In this work, the main contribution is to build a bridge between the leveled Fully Homomorphic Signature
Scheme (FHSS) and Homomorphic Chameleon Hash Function (HCHF), which is a new cryptographic primi-
tive introduced by us based on prior works. We first present the definition and specific construction of HCHF
and then use this forceful technique to construct leveled fully homomorphic signature schemes for any polyno-
mial-depth circuit. In our standard model scheme, the size of evaluated homomorphic signature grows polyno-
mially in the depth of the circuit. The security of our scheme is based on the property of collision resistance of
HCHEF, which can be reduced to the Small Integer Solution (SIS) in hard random lattices.

Homomorfinio paraso schemose pateikiamas galimas sprendimas nepatikimo serverio (pvz., debesies) apskai-
¢iavimy autentiSkumui nustatyti. Homomorfinio paraso schemoje, turint k-ilgio zinuciy rinkinj u = {u,, ..., s, }
ir atitinkama pasirasytg duomeny rinkinj § ={6,, ..., 8, }, bet kas gali vieSai atlikti homomorfinius skai¢iavimus
ir sukurti naujg parasg §“ zinutéms u‘ = f{ 4, fo, fs .. , 1,15 ¢ia f — grandinés funkeija. Jei gautas homomorfinis
parasas 6 ‘yra validus, duomeny rinkinio savininkas (pvz., debesy vartotojas) jtikina, kad, palyginti su origina-
liomis zinutémis (net jei apie jas pamirstama), u‘ iSties yra teisinga funkcijos fiseiga. Pagrindinis $io straipsnio
indélis - sukurti sgsajg tarp islygintos visiskai homomorfinés paraso sistemos (angl. Fully Homomorphic Si-
gnature Scheme (FHSS)) ir homomorfinés chameleoninés maisos funkcijos (angl. Homomorphic Chameleon
Hash Function (HCHF)), kuri yra nauja kriptografiné bazé, autoriy pristatyta remiantis jy ankstesniais dar-
bais. Straipsnyje pirmiausia apibtidinama HCHF ir pateikiamas jos specifinio sudarymo mechanizmas, tada
§i verzli technologija taikoma islygintoms visiSkai homomorfinéms paraso schemoms bet kokiai daugianarei
gylio grandinei konstruoti. Standartinéje autoriy modelio schemoje jvertinty homomorfiniy parasy dydis dau-
gianariskai auga grandinés gylyje. Schemos saugumas paremtas HCHF susidirimo pasipriesinimo savybe, kuri
gali buiti sumazinta iki mazojo sveikojo skaic¢iaus sprendinio (angl. Small Integer Solution (SIS)) kietosiose at-
sitiktinése gardelése.





