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Abstract. Classification error rate estimation is one of the most important issues in machine learning and pattern 

recognition. This problem has been studied by many researchers and a number of error estimators have been proposed. 

However, theoretical analysis and empirical experiments show that most of these error estimation techniques are 

biased. One way to correct this bias is to use a linear combination of two different error rate estimators. In this paper 

we propose a new combined classification error rate estimator designed specially for the Fisher linear classifier. 

Experiments with real world and synthetic data sets show that resubstitution, leave-one-out, repeated 10-fold cross-

validation, repeated 2-fold cross-validation, basic bootstrap, 0.632 bootstrap, zero bootstrap, D-method, DS-method 

and M-method are outperformed by the proposed combined error rate estimator (in terms of root-mean-square error). 

Keywords: Error estimation; Classification; Resubstitution; Cross-validation; Bootstrap. 

1. Introduction

Supervised machine learning is an important 

research area with many practical applications ranging 

from credit card fraud detection to image and 

language recognition [16, 32, 33, 34]. One key aspect 

of supervised learning is the evaluation of the induced 

classifier by means of any score or evaluation 

function. The most popular evaluation function is 

classification error which can be defined as the ratio 

between the number of incorrectly classified instances 

and the total number of instances. However, in most 

real-world situations, the true classification error of a 

classifier is unknown. Moreover, it can not be exactly 

calculated because the underlying probability 

distribution is unknown. So, it must be estimated from 

the given data. The problem of classification error rate 

estimation has been studied by many researchers and a 

number of error estimators have been proposed [5, 14, 

17, 19, 20, 29, 30]. However, theoretical analysis and 

empirical experiments show that most of these error 

estimation techniques are biased [4, 8, 18, 20]. One 

way to deal with the problem of biased classification 

error rate estimation is to combine two different error 

rate estimators. A combined error rate estimator is an 

estimator of the form [28, 31]: 

)2()1( ˆ)1(ˆˆ
NNN   , (1) 

where 
)1(ˆ

N  and
)2(ˆ

N are error estimators, N is the

training set size and 10  . If 
)1(ˆ

N  and 
)2(ˆ

N  are 

biased high (true classification error is overestimated) 

and low (true classification error is underestimated), 

respectively, then weight ω can be chosen so that the 

bias of estimator (1) is minimized. However, such an 

estimator requires prior knowledge about the 

underlying probability distribution, classification rule 

and sample size in order to derive the optimal weight 

ω [28]. In most cases, this information is unavailable 

and therefore, empirically chosen suboptimal weights 

are used [12, 13, 24, 28, 31]. 

In this paper we propose a new combined classi-

fication error rate estimator designed specially for the 

Fisher linear classifier. Contrary to most other combi-

ned estimators, the new method uses theoretically cal-

culated fixed weight ω that is asymptotically optimal. 

This paper is organized as follows. Section 2 

presents basic definitions used throughout the paper, 

Fisher linear classifier, which is the basis of our 

method and also, most common classification error 

rate estimation techniques that are used as baseline 

methods in this study. The new error estimation 

method is introduced in section 3. Section 4 presents 

the results of our simulation study. The concluding 

remarks are in section 5. 
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2. Methods investigated 

2.1. Basic definitions 

Consider two category classification problem 

where class label }1,0{y , feature vector nRx  

and a classifier is a function f: }1,0{nR . An 

induction algorithm builds a classifier from a set of 

21 NNN   independent observations 

1 1{( , ),...,ND y x ( , )}N Nyx  drawn from some 

distribution T. Formaly, it is a mapping g: 

}1,0{}}1,0{{  nNn RR . Here N1 is the number 

of observations from the first class and N2 is the 

number of observations from the second class. The 

performance of a classifier is measured by conditional 

probability of misclassification (conditional PMC):  

)),(( yDgP NN  x  (2) 

Some authors call it true classification error rate or 

actual error rate [4, 27]. This error is conditioned on 

one particular training set DN and induction algorithm 

g. In most real world pattern recognition problems 

conditional PMC is unknown, therefore an error 

estimator N̂  is used.  

2.2. Fisher linear classifier 

Fisher linear classifier is a well known classifica-

tion method which is widely used in many fields, 

including medical diagnosis [10], robotics [7] and 

computer vision [6]. This classification rule can 

realize linear least squares and single layer perceptron 

classifiers [9, 25], also it bears strong connection with 

support vector machine classification technique [15]. 

Fisher classifier can be written as a linear discriminant 

function: 

0)( vxj T  xV  (3) 

where 

)ˆˆ(ˆ
21

1
MMΣV   , (4) 

2

1
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2

1

P
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v T  VMM  (5) 

here Σ̂  is a sample estimate of a common covariance 

matrix and 1ˆ 
Σ  is inverse of Σ̂ , 1M̂  and 2M̂  are the 

estimates of class mean vectors, P1 and P2 are class 

prior probabilities. A new pattern x is classified 

according to the sign of the discriminant function j. 

2.3. Resubstitution 

The resubstitution method is the simplest example 

of the class of nonparametric estimators. In this 

method, the whole data set is used as the training set 

and then reused as the test set. The resubstitution 

estimated error is defined as 






N

i

iiN
R

N yDg
N

1

)( |),(|
1

ˆ x  (6) 

This method is known to have high bias, but low 

variance [4, 27]. 

2.4. Cross-validation 

In k-fold cross-validation, the data set is randomly 

partitioned into k subsets of approximately equal size. 

Each subset is used as a test set and the remaining k-1 

subsets are used as the training set. The cross-

validation error estimate is defined as 

 
 



k

i

N

Dyj
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CV
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ijj

yDDg
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)(
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1
ˆ

x

x  (7) 

where Di is the i-th fold of the data set DN, k is the 

number of folds and N is the size of DN. The tradeoff 

between bias and variance in cross-validation depends 

on k [18]. Cross-validation with small k values (5-2) 

typically have lower variance than cross-validation 

with large k values (10-N), however, estimators with 

small k values are more biased.  

2.5. Bootstrap 

Basic bootstrap estimator tries to correct the bias 

of resubstitution estimator. This bias can be expressed 

as ]ˆ[][
)(R

NN EEb   . Since b is not known, it 

must be estimated from the given data set DN. The 

estimation procedure is as follows. First, a bootstrap 

sample is formed by sampling N data points uniformly 

and with replacement from the original data set. Then, 

an induction algorithm is trained on the bootstrap 

sample and tested on the original data set DN. These 

steps are repeated r times and the estimate of b is 

calculated as 






r

i

R
NN

r
b

1

)(
)ˆˆ(

1ˆ
*

  (8) 

where 
*)(ˆ R

N  is resubstitution error on the bootstrap 

data and N̂  is conditional error estimate obtained by 

testing the classifier on the original data set DN. The 

bootstrap estimate of the conditional error rate is given 

by [11] 

b
R

N
B

N
ˆˆˆ )()(

   (9) 

where 
)(ˆ R

N  is resubstitution error on the original data 

set DN. There are many variants of this basic bootstrap 

estimator. The one, which in various empirical studies 

has shown good performance is called the 0.632 

bootstrap. Similar to basic bootstrap estimator, this 

method tries to correct the bias of zero bootstrap by 

doing a weighted average of resubstitution and zero 

bootstrap estimators [4]. The 0.632 bootstrap 

estimated error is defined as [12, 13] 
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)(0)632.0( ˆ368.0ˆ632.0ˆ R
N

B
N

B
N    (10) 

where 
)0(ˆ B

N is zero bootstrap estimate 
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here r is the number of bootstrap samples and DBi is 

the i-th bootstrap sample. 

2.6. D-method 

It is the first parametric classification error rate 

estimator, proposed in statistical pattern recognition 

literature. For the homoscedastic (equal covariance 

matrices) normal model for two classes with equal 

prior probabilities, the D estimator is given by [14] 














2

ˆ
ˆ )( 
 D

N  (12) 

where   is a standard Gaussian cumulative distribu-

tion function and )ˆˆ(ˆ)ˆˆ(ˆ
21

1
21 MMΣMM  T  

is an estimate of Mahalanobis distance. This method is 

known to have low variance but large bias [20].  

2.7. DS-method 

An estimate of the Mahalanobis distance ̂  used 

in D estimator overestimates true Mahalanobis 

distance and this increases the bias of the above 

mentioned parametric error rate estimator. An 

unbiased estimator of the Mahalanobis distance   is 

given by [20] 

 ˆ
2

3ˆ





N

nN
DS  (13) 

and the DS estimator can be expressed as 


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2.8. M-method 

McLachlan proposed another parametric classifi-

cation error rate estimator which assumes multivariate 

normality [23]. This estimator can be expressed as 
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here   is standart normal density function. Note that 

by interchanging Nl and N2 in the expressions above 

for the first group, the corresponding error rate 

estimator for the second group is obtained. 

2.9. Performance of error estimators 

Commonly used performance measures of an error 

estimator N̂  are bias, deviation variance and root-

mean-square error (RMS) [4, 8]. However, in most 

cases, the derivation of exact analytical expressions 

for the above mentioned performance measures is 

rather complicated, therefore, in practice, bias, 

deviation variance and RMS are calculated 

approximately, by using the following expressions: 

 


MC

i
iNiNN

MC
Bias

1
)()( )ˆ(

1
]ˆ[   (21) 
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where MC is the number of samples created by 

Monte-Carlo simulation, )(
ˆ

iN  is i-th estimate of 

conditional PMC based on the i-th sample and )(iN  is 

i-th conditional PMC. 

The bias measures whether, on average, the 

estimator overestimates or underestimates true 

conditional PMC, while deviation variance measures 

the variability of the estimator. Finally, root-mean-

square error combines both, bias and the deviation 

variance into a single metric. 

3. Proposed method 

Unbiased combined classification error rate 

estimator can be expressed as 

0][]ˆ[)1(]ˆ[]ˆ[ )2()1(  NNNN EEEBias  . (24) 

Now, assume that estimator )1(ˆ
N  is repeated k-fold 

cross-validation. In each run, repeated k-fold cross-

validation uses kNNN /*   vectors for classifier 

training, therefore we can write that ][]ˆ[ *
)1(

NN EE   . 

Also, suppose that estimator 
)2(ˆ

N is resubstitution and 

it uses N  vectors to estimate resubstitution error. 
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Now we can write that ][]ˆ[
)2( R

NN EE    and equation 

(24) can be rewritten as 

0][][)1(][]ˆ[ *  N
R
NNN EEEBias  .

 (25) 

From (25) we have that  

][][
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R
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R
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EE
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




 . (26) 

Now, suppose that the following preconditions are 

met:  

1. classifier deals with two multivariate 

Gaussian pattern classes; 

2. the covariance matrix is the same for all 

classes; 

3. class prior probabilities are equal; 

4. the training set has the same number of 

patterns from each class; 

5. Mahalanobis distance is constant; 

6. the dimensionality n is fixed and very large; 

7. both values, N, N* → ∞. 

Then expected error of the Fisher linear classifier 

can be expressed as [25, 26] 
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and expected resubstitution error can be expressed as 
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The derivation of expression (29) is based on the 

Taylor series expansion of ][ NE  , ][ *
R

N
E   and 

][ *N
E  . The proposed combined classification error 

rate estimator (PCE) is defined as: 


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CV
N
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N
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where r is the number of repetitions. 

4. Simulation study 

4.1. Experimental setup 

Our experiments consist of two parts: synthetic 

experiments with Gaussian data and experiments with 

real world data sets. The error estimators studied are 

resubstitution (resub), leave-one-out (loo), repeated 

10-fold cross-validation (rcv10), repeated 2-fold 

cross-validation (rcv2), basic bootstrap (bboot) 0.632 

bootstrap (b0632), zero bootstrap (zboot), D-method 

(D), DS-method (DS), M-method (M) and proposed 

combined estimator that uses repeated 2-fold cross-

validation and resubstitution as component estimators. 

To get a fair comparison, we made the number of 

classifiers built for each estimator equal, i.e. 200 

(except resubstitution and leave-one-out estimators 

where the number of induced classifiers is fixed and 

cannot be changed). Therefore, in 0.632 bootstrap, 

zero bootstrap and basic bootstrap, the number of runs 

(r) is set to 200, in proposed combined estimator and 

repeated 2-fold cross-validation the number of runs is 

set to 100, in repeated 10-fold cross-validation the 

number of runs is set to 20. Finally, to make the 

simulations more realistic, we used small to moderate 

sample sizes (20-200).  

4.2. Synthetic data 

We use four data models to generate sample 

points. Data model 1 is two-class Gaussian data model 

with equally likely classes, common covariance ma-

trix and class means located at Tmmm ),...,,(1 M  

and Tmmm ),...,,(2 M . The elements of the 

common covariance matrix are equal to 0.1, except the 

main diagonal, where elements are equal to 1. Data 

model 2 is similar to model 1. The only difference is 

that different class prior probabilities are used. In 

model 2, we use P1 = 0.7, P2 = 0.3. Data models 3 and 

4 are similar to models 1 and 2, except that different 

covariance matrices 1Σ  and 2Σ  are used. The 

elements of main diagonal of 1Σ  and 2Σ  are set to 1, 

non diagonal elements of 1Σ are set to 0.2 and non 

diagonal elements of 2Σ are set to 0.4. For each data 

model, we choose four values of m such that Bayes 

error is from 0.05 to 0.20. In each of these 16 cases, 

10000 independent samples of size N = 60 are 

generated (in all cases n = 20). A pseudo-code for 

synthetic simulations is presented in Algorithm 1. 

Experimental results for data models 1-4 are 

displayed in Tables 1-4. The best bias, variance and 

RMS are marked in bold font for easier reading of the 

presented tables. Also, to better visualize the obtained 

results, RMS values from Tables 1-4 are additionally 

provided in Fig. 1-4. Our experiments show that the 

least biased error estimation method is leave-one-out 

while repeated 10-fold cross-validation, M-method, 

zero bootstrap, 0.632 bootstrap and proposed 

combined estimator are moderately biased. The most 

biased error estimation methods are resubstitution, D-

method, DS-method, basic bootstrap and repeated 2-

fold cross-validation. Also, we can see that the 

proposed method works well in correcting the bias of 

repeated 2-fold cross-validation. The situation with 

other bias correcting classification error rate 
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estimators is similar. However, there is one exception: 

when the Bayes error is high, 0.632 bootstrap fails in 

correcting the bias of zero bootstrap. The experiments 

also show that repeated 10-fold cross-validation, 

leave-one-out, M-method, zero bootstrap and basic 

bootstrap are more variable than the proposed 

combined estimator, repeated 2-fold cross-validation, 

0.632 bootstrap, D-method, DS-method and 

resubstitution. Also, we can see that the proposed 

estimator outperforms resubstitution, D-method, DS-

method, basic bootstrap, zero bootstrap and 2-fold 

cross-validation (in RMS sense). However, the 

situation with other error estimators is different. When 

εBayes = 0.05, repeated 10-fold cross-validation , leave-

one-out, M-method and 0.632 bootstrap are better than 

proposed combined estimator and when εBayes ≥ 0.10, 

the proposed method outperforms the above 

mentioned methods. 
 

 

Algorithm 1: synthetic simulation scheme 

Table 1. Simulation results, data model 1 

  resub loo rcv10 b0632 
Proposed 

combined 

estimator 

bboot D DS M rcv2 zboot 

Bayes 

error 0.05 

Bias -0.0875 0.0012 0.0077 -0.0045 0.0380 0.0613 -0.0854 -0.0579 -0.0205 0.1009 0.0501 

Variance 7.3∙10-4 0.0025 0.0022 0.0012 0.0014 0.0029 5.7∙10-4 8.6∙10-4 0.0019 0.0022 0.0022 

RMS 0.0916 0.0497 0.0477 0.0353 0.0535 0.0817 0.0887 0.0649 0.0484 0.1110 0.0687 

Bayes 

error 0.10 

Bias -0.1283 -0.0018 0.0089 -0.0228 0.0240 0.0784 -0.1256 -0.0848 -0.0155 0.1003 0.0532 

Variance 0.0014 0.0037 0.0033 0.0018 0.0020 0.0043 0.0011 0.0015 0.0033 0.0026 0.0029 

RMS 0.1336 0.0606 0.0578 0.0478 0.0503 0.1021 0.1298 0.0930 0.0593 0.1123 0.0760 

Bayes 

error 0.15 

Bias -0.1572 0.0022 0.0091 -0.0398 0.0090 0.0902 -0.1544 -0.1062 -0.0097 0.0923 0.0512 

Variance 0.0020 0.0045 0.0040 0.0021 0.0023 0.0051 0.0015 0.0019 0.0041 0.0027 0.0033 

RMS 0.1635 0.0675 0.0638 0.0611 0.0486 0.1152 0.1593 0.1146 0.0649 0.1059 0.0771 

Bayes 

error 0.20 

Bias -0.1794 0.0024 0.0085 -0.0557 -0.0061 0.0985 -0.1770 -0.1252 -0.0046 0.0807 0.0466 

Variance 0.0025 0.0053 0.0045 0.0024 0.0024 0.0056 0.0019 0.0021 0.0047 0.0027 0.0035 

RMS 0.1862 0.0728 0.0677 0.0740 0.0499 0.1237 0.1823 0.1332 0.0685 0.0960 0.0753 
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Table 2. Simulation results, data model 2 

  resub loo rcv10 b0632 
Proposed 

combined 

estimator 

bboot D DS M rcv2 zboot 

Bayes 

error 0.05 

Bias -0.0912 0.0020 0.0083 -0.0067 0.0354 0.0623 -0.0891 -0.0604 -0.0201 0.0989 0.0499 

Variance 7.9∙10-4 0.0026 0.0023 0.0012 0.0014 0.0031 6.1∙10-4 9∙10-4 0.0021 0.0021 0.0023 

RMS 0.0954 0.0506 0.0486 0.0359 0.0518 0.0833 0.0925 0.0675 0.0497 0.1092 0.0689 

Bayes 

error 0.10 

Bias -0.1343 0.0029 0.0091 -0.0279 0.0182 0.0789 -0.1315 -0.0892 -0.0144 0.0947 0.0507 

Variance 0.0015 0.0039 0.0034 0.0018 0.0020 0.0045 0.0012 0.0015 0.0035 0.0025 0.0030 

RMS 0.1398 0.0623 0.0591 0.0507 0.0478 0.1033 0.1359 0.0974 0.0609 0.1070 0.0743 

Bayes 

error 0.15 

Bias -0.1646 0.0029 0.0085 -0.0478 4.6∙10-5 0.0902 -0.1619 -0.1125 -0.0080 0.0825 0.0460 

Variance 0.0022 0.0048 0.0042 0.0021 0.0023 0.0053 0.0017 0.0019 0.0044 0.0026 0.0033 

RMS 0.1710 0.0693 0.0650 0.0665 0.0475 0.1159 0.1670 0.1208 0.0667 0.0967 0.0734 

Bayes 

error 0.20 

Bias -0.1895 0.0034 0.0071 -0.0681 -0.0200 0.0974 -0.1872 -0.1349 -0.0021 0.0651 0.0376 

Variance 0.0027 0.0057 0.0047 0.0023 0.0024 0.0057 0.0021 0.0021 0.0050 0.0025 0.0033 

RMS 0.1964 0.0752 0.0689 0.0835 0.0526 0.1232 0.1926 0.1426 0.0709 0.0819 0.0690 

 

Table 3. Simulation results, data model 3 

  resub loo rcv10 b0632 
Proposed 

combined 

estimator 

bboot D DS M rcv2 zboot 

Bayes 

error 0.05 

Bias -0.0948 0.0016 0.0085 -0.0063 0.0383 0.0675 -0.0931 -0.0624 -0.0183 0.1049 0.0535 

Variance 8.7∙10-4 0.0027 0.0024 0.0013 0.0015 0.0032 6.8∙10-4 9.9∙10-4 0.0022 0.0023 0.0024 

RMS 0.0993 0.0519 0.0498 0.0372 0.0549 0.0883 0.0967 0.0699 0.0506 0.1152 0.0724 

Bayes 

error 0.10 

Bias -0.1387 0.0022 0.0095 -0.0275 0.0208 0.0851 -0.1361 -0.0919 -0.0120 0.1006 0.0549 

Variance 0.0016 0.0040 0.0035 0.0019 0.0021 0.0046 0.0013 0.0016 0.0036 0.0026 0.0031 

RMS 0.1445 0.0634 0.0600 0.0517 0.0501 0.1088 0.1406 0.1004 0.0610 0.1128 0.0780 

Bayes 

error 0.15 

Bias -0.1707 0.0026 0.0093 -0.0481 0.0014 0.0965 -0.1678 -0.1170 -0.0061 0.0875 0.0502 

Variance 0.0023 0.0049 0.0042 0.0023 0.0024 0.0053 0.0018 0.0020 0.0044 0.0026 0.0034 

RMS 0.1773 0.0697 0.0655 0.0676 0.0486 0.1210 0.1729 0.1252 0.0663 0.1015 0.0767 

Bayes 

error 0.20 

Bias -0.1961 0.0029 0.0082 -0.0683 -0.0191 0.1034 -0.1935 -0.1409 -9∙10-4 0.0696 0.0419 

Variance 0.0028 0.0055 0.0047 0.0024 0.0025 0.0057 0.0021 0.0021 0.0049 0.0025 0.0034 

RMS 0.2031 0.0743 0.0690 0.0842 0.0530 0.1280 0.1988 0.1481 0.0702 0.0859 0.0721 

 

Table 4. Simulation results, data model 4 

  resub loo rcv10 b0632 
Proposed 

combined 

estimator 

bboot D DS M rcv2 zboot 

Bayes 

error 0.05 

Bias -0.0919 0.0022 0.0088 -0.0061 0.0371 0.0655 -0.0899 -0.0597 -0.0159 0.1018 0.0520 

Variance 8.3∙10-4 0.0026 0.0024 0.0013 0.0015 0.0032 6.6∙10-4 9.6∙10-4 0.0023 0.0022 0.0023 

RMS 0.0964 0.0515 0.0495 0.0366 0.0535 0.0865 0.0936 0.0673 0.0501 0.1122 0.0710 

Bayes 

error 0.10 

Bias -0.1405 0.0030 0.0098 -0.0304 0.0170 0.0851 -0.1372 -0.0921 -0.0065 0.0961 0.0527 

Variance 0.0018 0.0041 0.0036 0.0019 0.0021 0.0048 0.0014 0.0017 0.0039 0.0026 0.0031 

RMS 0.1466 0.0643 0.0608 0.0535 0.0488 0.1095 0.1421 0.1008 0.0627 0.1087 0.0766 

Bayes 

error 0.15 

Bias -0.1754 0.0033 0.0086 -0.0556 -0.0067 0.0981 -0.1727 -0.1212 0.0028 0.0780 0.0452 

Variance 0.0025 0.0051 0.0044 0.0023 0.0024 0.0055 0.0019 0.0021 0.0048 0.0026 0.0034 

RMS 0.1825 0.0717 0.0666 0.0735 0.0493 0.1231 0.1783 0.1295 0.0697 0.0931 0.0735 

Bayes 

error 0.20 

Bias -0.2066 0.0031 0.0060 -0.0836 -0.0356 0.1038 -0.2045 -0.1528 0.0110 0.0501 0.0308 

Variance 0.0031 0.0059 0.0048 0.0024 0.0024 0.0057 0.0023 0.0021 0.0055 0.0023 0.0032 

RMS 0.2139 0.0768 0.0697 0.0968 0.0604 0.1283 0.2100 0.1596 0.0752 0.0695 0.0647 
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Figure 1. RMS results, data model 1 

 

Figure 2. RMS results, data model 2 

 

Figure 3. RMS results, data model 3 



M. Gvardinskas 

426 

 

Figure 4. RMS results, data model 4 

4.3. Real data 

In most real world scenarios true class-conditional 

densities are unknown. As a result, there is no way to 

generate new independent data points or very large 

test sets. Therefore, in all real data experiments 

approximately independent data vectors and relatively 

small test sets are used. A pseudo-code for real data 

simulations is presented below: 

Real world experiments were conducted on eight 

non Gaussian data sets (according to Mardia's and 

Henze-Zirkler tests) from the UCI machine learning 

repository: 

Magic Gamma Telescope data set [2]. This data set 

is generated to simulate registration of high energy 

gamma particles in a ground-based atmospheric 

Cherenkov gamma telescope. The data set contains 

19020 instances, of which 12332 are classified as 

signal and 6688 are classified as background. Each 

instance has 10 features. The size of the training/error 

estimation data set is 32. 

Pima Indian Diabetes data [2]. It consists of 768 

instances that are diabetes positive (268) or diabetes 

negative (500). The number of features is 8. Training/ 

error estimation sample size is set to 32. 

MiniBoone particle identification data [2]. This 

data set is taken from the MiniBoone experiment and 

is used to distinguish electron neutrinos from muon 

neutrinos. The database is composed of 130064 

instances of which 36499 are electron neutrinos and 

93565 are muon neutrinos. The number of features is 

50. Training/error estimation sample size is 200. 

Skin data set [3]. This data set is collected by 

randomly sampling B,G,R values from face images of 

various age groups, race groups, and genders obtained 

from FERET database and PAL database. Skin data set 

is composed of 245057 instances of which 50859 are 

skin instances and 194198 are non-skin instances. The 

number of features is 3. Training/error estimation 

sample size is set to 20. 

 

Algorithm 2: simulation scheme 

Climate Model Simulation Crashes data set [21]. 

This data set is composed of 540 instances and each 

instance is represented by 18 climate model input 

parameter values. The goal is to predict simulation 

outcomes (fail or succeed) from the input parameters. 

There are 46 instances classified as simulation crashes 

and 494 instances that are classified as not simulation 

crashes. Training/error estimation sample size is set  

to 50. 

Diabetic Retinopathy data [1]. This data set 

contains 1151 instances, of which 540 are classified as 

diabetic retinopathy and 611 are classified as not 

diabetic retinopathy. The number of features is 19 and 

training/error estimation sample size is set to 50. 
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QSAR biodegradation database [22]. This data set 

describes 1055 molecules that are ready biodegradable 

(356) or not ready biodegradable (699). The original 

data set contains 41 features, however, in order to 

avoid non-invertible singular covariance matrix, the 

number of features is reduced to 20 (linear correlation 

based feature selection). Training/error estimation 

sample size is 40. 

Spambase data set [2]. This database is composed 

of 4601 instances of which 1813 are classified as 

spam and 2788 are classified as non-spam. The 

number of features is 20 (after feature selection). 

Training/error estimation sample size is set to 80. 

Table 5 displays experimental results based on real 

world data sets. The best bias, the best variance and 

the best RMS is marked in bold font for easier reading 

of the presented tables. Also, to better visualize the 

obtained results, RMS values from Table 5 are 

additionally provided in Fig. 5-6. The experiments 

show that leave-one-out, repeated 10-fold cross-

validation, M-method and the proposed combined 

estimator generally have smaller bias than 

resubstitution, D-method, DS-method, basic bootstrap, 

0.632 bootstrap, zero bootstrap and repeated 2-fold 

cross-validation. Also, we can see that DS-method 

corrects the bias of D-method, basic bootstrap corrects 

the bias of resubstitution and proposed combined 

estimator corrects the bias of repeated 2-fold cross-

validation. The only one exception is 0.632 bootstrap 

method which fails in correcting the bias of zero 

bootstrap estimator. The experiments also show that 

proposed combined estimator, repeated 2-fold cross-

validation, 0.632 bootstrap, D-method, DS-method 

and resubstitution are less variable than repeated  

10-fold cross-validation, leave-one-out, M-method, 

zero bootstrap and basic bootstrap. Also, we can see 

that the proposed estimator generally outperforms 

other error estimation techniques (in RMS sense) and 

the only exception is Skin data set, where 0.632 

bootstrap performs better. 

 

Table 5. real data results 

  Resub Loo rcv10 b0632 
Proposed 

combined 

estimator 

bboot D DS M rcv2 zboot 

Magic 

Gamma 

Telescope 

Bias -0.1709 0.0071 0.0075 -0.0566 -0.0144 0.0975 -0.1700 -0.1169 -3∙10-4 0.0640 0.0422 

Variance 0.0046 0.0097 0.0084 0.0043 0.0046 0.0102 0.0039 0.0042 0.0101 0.0052 0.0063 

RMS 0.1839 0.0988 0.0917 0.0868 0.0696 0.1403 0.1812 0.1337 0.1006 0.0965 0.0896 

Pima 

Indian 

Diabetes 

Bias -0.1496 0.0076 0.0072 -0.0546 -0.0203 0.0825 -0.1475 -0.1054 -0.0046 0.0445 0.0307 

Variance 0.0055 0.0099 0.0085 0.0048 0.0052 0.0103 0.0042 0.0041 0.0087 0.0055 0.0065 

RMS 0.1671 0.0999 0.0926 0.0882 0.0747 0.1307 0.1610 0.1234 0.0934 0.0868 0.0864 

Mini 

Boone 

Bias -0.0835 0.0012 0.0058 -0.0190 0.0110 0.0554 -0.0897 -0.0604 -0.0001 0.0583 0.0321 

Variance 4.1∙10-4 8.4∙10-4 7.4∙10-4 4.7∙10-4 5.5∙10-4 0.0010 3.3∙10-4 4.2∙10-4 8.7∙10-4 7.1∙10-4 7.2∙10-4 

RMS 0.0860 0.0292 0.0280 0.0289 0.0260 0.0640 0.0915 0.0638 0.0296 0.0641 0.0419 

Skin 

Bias -0.0348 0.0046 0.0065 -0.0079 -2.1∙10-4 0.0246 -0.0258 -0.0114 -0.0019 0.0171 0.0139 

Variance 0.0029 0.0046 0.0046 0.0030 0.0034 0.0060 0.0049 0.0064 0.0097 0.0042 0.0042 

RMS 0.0642 0.0683 0.0682 0.0551 0.0587 0.0813 0.0746 0.0811 0.0983 0.0668 0.0663 

Climate 

Model 

Simula-

tion 

Crashes 

Bias -0.1401 0.0071 0.0022 -0.0352 -3.82∙10-4 0.0566 -0.1360 -0.0940 -0.0255 0.0697 0.0372 

Variance 0.0019 0.0049 0.0039 0.0020 0.0021 0.0043 0.0016 0.0020 0.0045 0.0025 0.0029 

RMS 0.1467 0.0706 0.0624 0.0572 0.0456 0.0867 0.1419 0.1041 0.0714 0.0855 0.0657 

Diabetic 

Retinopa-

thy 

Bias -0.1239 0.0028 0.0042 -0.0461 -0.0161 0.0664 -0.1167 -0.0885 0.0266 0.0380 0.0238 

Variance 0.0037 0.0063 0.0054 0.0034 0.0035 0.0060 0.0026 0.0024 0.0042 0.0037 0.0043 

RMS 0.1380 0.0794 0.0734 0.0744 0.0610 0.1019 0.1274 0.1014 0.0702 0.0721 0.0695 

QSAR 

Biodegra-

dation 

Bias -0.1388 0.0031 0.0047 -0.0467 -0.0113 0.0803 -0.1323 -0.0924 0.0258 0.0529 0.0339 

Variance 0.0045 0.0079 0.0069 0.0042 0.0043 0.0081 0.0035 0.0034 0.0068 0.0048 0.0055 

RMS 0.1541 0.0891 0.0831 0.0797 0.0668 0.1207 0.1451 0.1092 0.0866 0.0869 0.0817 

Spambase 

Bias -0.0900 1.7∙10-4 0.0045 -0.0210 0.0086 0.0571 -0.0987 -0.0675 -0.0088 0.0579 0.0330 

Variance 0.0012 0.0023 0.0020 0.0012 0.0013 0.0024 0.0012 0.0015 0.0029 0.0015 0.0017 

RMS 0.0962 0.0478 0.0450 0.0409 0.0372 0.0750 0.1045 0.0778 0.0550 0.0700 0.0529 
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Figure 5. RMS results, Mini Boone, Pima Indian Diabetes, Magic Gamma Telescope and Skin data sets 

 

Figure 6. RMS results, Climate Model Simulation Crashes, Diabetic Retinopathy,  

QSAR Biodegradation and Spambase data sets 

5. Conclusion 

In this paper we have proposed a new classifica-

tion error rate estimator designed specially for the 

Fisher linear classifier. The proposed method approxi-

mates unbiased combined classification error rate 

estimator by using fixed weight that is calculated from 

asymptotic approximations of expected classification 

and resubstitution errors of the Fisher linear classifier. 

This weight is computed by assuming that the 

classifier deals with two multivariate Gaussian pattern 

classes (1), all classes share the same covariance 

matrix (2), class prior probabilities are equal (3), the 

training set has the same number of patterns from each 

class (4) Mahalanobis distance is constant (5), 

dimensionality is fixed and very large (6) and sample 

size approaches infinity (7). When these assumptions 

are violated, proposed method may fail to correct the 

bias of cross validation. However, experimental results 

show that bias correction works well, even when some 

of the above preconditions are not met. Although 

proposed weight ω does not minimize RMS of the 

combined error rate estimator, it allows to construct 

estimator that has better RMS than most other error 

estimation techniques. 

References 

[1] B. Antal, A. Hajdu. An ensemble-based system for 

automatic screening of diabetic retinopathy. Know-

ledge-Based Systems, 2014, Vol. 60, 20-27. 

[2] K. Bache, M Lichman. UCI Machine Learning Repo-

sitory [http://archive.ics.uci.edu/ml]. Irvine, CA: Uni-



Combined Classification Error Rate Estimator for The Fisher Linear Classifier 

429 

versity of California, School of Information and Com-

puter Science, 2015. 

[3] R. B. Bhatt, G. Sharma, A. Dhall, S. Chaudhury. 

Efficient skin region segmentation using low 

complexity fuzzy decision tree model. In: Proceedings 

of the sixth IEEE India International Conference, 

2009, pp. 1-4. 

[4] U. Braga-Neto, E. Dougherty. Is cross-validation 

valid for small sample microarray classification? Bio-

informatics, 2004, Vol. 20, No. 3, 374-380. 

[5] V. L. Brailovskij. An object recognition algorithm 

with many parameters and its applications. Enginee-

ring Cybernetics, 1964, Vol. 2, 22-30. 

[6] M. Breukelen, R. P. V. Duin, D. M. J. Tax, 

J. E. Hartog. Handwritten digit recognition by 

combined classifiers. Kybernetika, 1998, Vol. 34, 

No. 4, 381-386. 

[7] Y. Chen, H. Wang, J. Zhang, G. Garty, N. Simaan, 

Y. L. Yao, D. J. Brenner. Automated recognition of 

robotic manipulation failures in high-throughput 

biodosimetry tool. Expert Systems with Applications, 

2012, Vol. 39, No. 10, 9602-9611. 

[8] E. Dougherty, C. Sima., J. Hua., B. Hanczar, 

U. Braga-Neto. Performance of error estimators for 

classification. Current Bioinformatics, 2010, Vol. 5, 

No. 1, 53-67. 

[9] R. Duda, P. Hart, D. Stork. Pattern classification. 

Wiley, 2000. 

[10] S. Dudoit, J. Fridlyand, T. P. Speed. Comparison of 

discrimination methods for the classification of tumors 

using gene expression data. Journal of the American 

Statistical Association, 2002, Vol. 97, Issue 457, 

77–87. 

[11] B. Efron. Bootstrap Methods: Another look at the 

jackknife. Annals of Statistics, 1979, Vol. 7, No. 1, 

1-26. 

[12] B. Efron. Estimating the error rate of a prediction rule: 

improvement on cross-validation. Journal of the 

American Statistical Association, 1983, Vol. 78, 

No. 382, 316–331. 

[13] B. Efron, R. Tibshirani. Improvements on cross-

validation: The .632+ bootstrap method. Journal of the 

American Statistical Association, 1997, Vol. 92, 

No. 438, 548-560. 

[14] R. Fisher. The use of multiple measurements in 

taxonomic problems. Annals of Eugenics, 1936, Vol. 7, 

179–188. 

[15] T. Gestel, J. Suykens, B. Baesens, S. Viaene, 

J. Vanthienen, G. Dedene, B. Moor, J. Vandewalle. 
Benchmarking Least Squares Support Vector Machine 

Classifiers. Machine Learning,  2004, Vol. 54, No. 1, 

5-32. 

[16] G. Guodong, S. Li, C. Kapluk. Face recognition by 

support vector machines. In: Proceedings of the fourth 

IEEE International Conference on Automatic Face and 

Gesture Recognition, 2000, pp. 196–201. 

[17] M. Gvardinskas. Weighted Classification Error Rate 

Estimator for the Euclidean Distance Classifier. In: 

Proceedings of the 21st International Conference on 

Information and Software Technologies (ICIST), 2015, 

pp. 343-355. 

[18] R. Kohavi. A study of cross-validation and bootstrap 

for accuracy estimation and model selection. In: 

Proceedings of the Fourteenth International Joint 

Conference on Artificial Intelligence, 1995, 

pp. 1137-1143. 

[19] W. J. Krzanowski, D. J. Hand. Assessing error rate 

estimators: the leaving-one-out reconsidered. Austra-

lian Journal of Statistics, 1997, Vol. 39, No. 1, 1997, 

35-46. 

[20] P. Lachenbruch, R. Mickey. Estimation of error rates 

in discriminant analysis. Technometrics, 1968, Vol. 10, 

No. 1, 1-11. 

[21] D. D. Lucas, R. Klein, J. Tannahill, D. Ivanova, 

S. Brandon, D. Domyancic, Y. Zhang. Failure 

analysis of parameter-induced simulation crashes in 

climate models. Geoscientific Model Development, 

2013, Vol. 6, No. 4, 1157-1171. 

[22] K. Mansouri, T. Ringsted, D. Ballabio, 

R. Todeschini, V. Consonni. Quantitative Structure - 

Activity Relationship models for ready biodegra-

dability of chemicals. Journal of Chemical Information 

and Modeling, 2013, Vol. 53, No. 4, 867-878. 

[23] G. J. McLachlan. An asymptotic unbiased technique 

for estimating the error rates in discriminant analysis. 

Biometrics, 1974, Vol. 30, 239-249. 

[24] G. J. McLachlan. A note on the choice of a weighting 

function to give an efficient method for estimating the 

probability of misclassification. Pattern Recognition, 

1977, Vol. 9, 147-149. 

[25] S. Raudys. Statistical and Neural Classifiers. An Inte-

grated Approach to Design. Springer-Verlag, London, 

2001. 

[26] S. Raudys, D. M. Young. Results in statistical discri-

minant analysis: A review of the former Soviet Union 

literature. Journal of Multivariate Analysis, 2004, 

Vol. 89, No. 1, 1–35. 

[27] R. A. Schiavo, D. J. Hand. Ten more years of error 

rate Research. International Statistical Review, 2000, 

Vol. 68, No. 3, 295–310. 

[28] C. Sima, E. Dougherty. Optimal convex error estima-

tors for classification. Pattern Recognition, 2006, 

Vol. 39, No. 9, 1763-1780. 

[29] C. Smith. Some examples of discrimination. Annals of 

Eugenics, 1947, Vol. 18, 272–282. 

[30] M. Stone. Cross-validatory choice and assessment of 

statistical predictions. Journal of the Royal Statistical 

Society, 1974, Vol. 36, No. 2, 111–147. 

[31] G. Toussaint, P. Sharpe. An efficient method for 

estimating the probability of misclassification applied 

to a problem in medical diagnosis. Computers in 

Biology and Medicine, 1975, Vol. 4, 269–278. 

[32] V. Uloza, A. Verikas, M. Bacauskiene, A. Gelzinis, 

R. Pribuisiene, M. Kaseta, V. Saferis. Categorizing 

Normal and Pathalogical Voices: Automated and 

Perceptual Categorization. Journal of Voice, 2011, 

Vol. 25, No. 6, 700-708. 

[33] A. Verikas, A. Gelzinis, M. Bacauskiene, 

M. Hallander, V. Uloza, M. Kaseta. Combining 

image, voice, and the patient's questionnaire data to 

categorize laryngeal disorders. Artificial Intelligence in 

Medicine, 2010, Vol. 49, No. 1, 43-50. 

[34] S. Viaene, R. Derrig, G. Dedene. A Case Study of 

Applying Boosting Naive Bayes to Claim Fraud 

Diagnosis. IEEE Transactions on Knowledge and Data 

Engineering, 2004, Vol. 16, No. 5, 612-620. 

Received October 2015. 




